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Abstract. Let K denote prefix-free Kolmogorov Complexity, and KA denote

it relative to an oracle A. We show that for any n, K∅
(n)

is definable purely in

terms of the unrelativized notion K. It was already known that 2-randomness

is definable in terms of K (and plain complexity C) as those reals which infin-
itely often have maximal complexity. We can use our characterization to show

that n-randomness is definable purely in terms of K. To do this we extend

a certain “limsup” formula from the literature, and apply Symmetry of Infor-
mation. This extension entails a novel use of semilow sets, and a more precise

analysis of the complexity of ∆0
2 sets of mimimal descriptions.

1. Introduction

1.1. n-randomness. The concern of this paper is Kolmogorov complexity, where
C denotes plain complexity and K prefix-free complexity. A fundamental theorem
in the theory of algorithmic randomness is Schnorr’s Theorem (see Chaitin [3]) that
a real X is Martin-Löf random iff K(X � n) ≥+ n for all n. We know that this
result relativises, and hence a real X is A-random iff KA(X � n) ≥+ n for all n. In

particular, if A = ∅(n), then this says that X is n+1-random iff K∅
(n)

(X � n) ≥+ n,
for all n.

The reason we need to use prefix-free complexity in the definition of k-randomness
is that, as proven by Martin-Löf, there is no real X such that C(X � n) ≥+ n for all
n, due to complexity oscillations (Martin-Löf [9, 10]) and the failure of C to capture
the intentional meaning of least descriptions. (See, e.g. Downey and Hirschfeldt [5],
Chapter 6, or Nies [14].) One of the striking results in this theory is there are reals
where C(X � n) ≥+ n for infinitely many n, and these coincide with one of the
randomness classes (and indeed this also holds for an analogous fact about strong
K-randomness1), as we see below.

Theorem 1.1.
• [Miller [11], Nies, Stephan, and Terwijn [15]] X is 2-random iff

C(X�n) ≥+ n

for infinitely many n.
• [Miller [12]] X is 2-random iff

K(X�n) ≥+ n+K(n)

All supported by the Marsden Fund of New Zealand, with Lu on a Postdoctoral Fellowship.
We thank Denis Hirschfeldt, Joeseph Miller and André Nies for helpful discussions.

1A string σ is called strongly K-random if it achieves maximal K-complexity, namely K(σ) =+

|σ|+K(|σ|).
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for infinitely many n.

Thus, there is a definition of being 2-random involving the basic definition of K
or C which does not involve any relativization.

One goal in this paper is to give a definition of n-randomness for all n ∈ ω only
involving K, by giving a definition of K(n) purely in terms of K. Our starting point
is the following attractive result.

Theorem 1.2 (Bienvenu, Muchnik, Shen and Vereshchagin [2]).

K∅
′
(σ) =+ lim sup

n
K(σ | n).

The same result holds for C in place of K.
Here we remind the reader that K(σ | n) is the prefix-free Kolmogorov com-

plexity of σ when n, a self-delimited version of n, is provided as an oracle. The
reader might think that this result provides a definition of K∅

′
in terms of K, but

K(σ | n) is not an unrelativized notion. Indeed, in §6, we will see that finite strings
can have very strong compression power. In §6, we will also give a partial analysis
as to precisely for which n, the limsup is achieved.

Nevertheless, our plan is to leverage K(σ | n), and we will do this using Symme-
try of Information (Levin and Gács [8], Chaitin [3]) which says that

K(σ, n) =+ K(n) +K(σ | n∗).

Here the reader should recall that K(ν, ρ) is the complexity of the pair 〈ν, ρ〉, and
that for any string τ , τ∗ is the first to occur of length K(τ) with U(τ∗) = τ . (In
the case of C we will write τ∗C .)

While τ∗ is a particular minimal code for τ (the first to appear), it may not be
the only code for τ of length K(τ). We will also be interested in all minimal codes,
and so we adopt the following notation.

Notation 1.3. For a universal machine U (prefix-free or otherwise), let NU = {n∗ :
n ∈ ω}, where n∗ is defined based on U . Let MU = {ρ : U(ρ)↓ ∧|ρ| = K(U(ρ))}.

When U is clear from context, we will omit the subscript.

Observe that NU ⊆MU .
In §5 we will prove the following.

Theorem 1.4. For any universal prefix-free machine U ,

lim sup
n

K(σ | n∗) = lim sup
τ∈MU

K(σ | τ) = K∅
′
(σ).

Notice that by rearranging Symmetry of Information, we obtain K(σ | n∗) =+

K(σ, n)−K(n). Hence K∅
′
(σ) =+ lim supn[K(σ, n)−K(n)], giving a definition of

K∅
′

purely in terms of K without relativization.
By relativizing Theorem 1.2, we obtain

KA′(σ) =+ lim sup
n

KA(σ | n)2,

2Indeed =+ lim supnK(σ | A�n).
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for all A. By appropriately iterating and relativizing Theorem 1.4, we obtain a

definition of K∅
(n)

for all n ∈ ω, e.g.,

K∅
(2)

(σ) =+ lim sup
n

[K∅
′
(σ, n)−K∅

′
(n)]

=+ lim sup
n

(
lim sup

m
[K(σ, n,m)−K(m)]− lim sup

m
[K(n,m)−K(m)]

)
.

From this follows a definition of n-randomness purely in terms of unrelativized K.

1.2. The complexity of the sets MU and NU . The question arises how should
we prove the lim supnK(σ | n∗) theorem? The answer really comes from under-
standing the behaviour of the set of minimal descriptions. One hint came from
unpublished work of Hirschfeldt:

Theorem 1.5 (Hirschfeldt, unpubl.). C∅
′
(σ) =+ lim supn C(σ | n∗C).

We will prove this result in §2. The method is to construct an infinite low subset
of NV , for V the machine generating C, and use some relativization tricks.

We had hoped to use this method for K, but unfortunately we were able to prove
a result saying that this is impossible.

Theorem 1.6. Let U be a universal prefix-free machine, and let S be an infinite
∆0

2 subset of MU . Then ∅′ ≤T S.

Note that MU and NU are of degree 0′ e.g. [5]. For example, NU ≥wtt Ω by
the Coding Theorem ([5], §3.9), and Ω is wtt-complete. In view of Theorem 1.6, it
would seem reasonable to suggest that they are introreducible, which in this context
would mean that every infinite subset computes ∅′. However, Joeseph Miller proved
that this is not the case. We include this also in §3.

We remark that the proof can also be adapted to show that an infinite ∆0
2 hitting

set for a Solovay function3 must also be Turing complete. We prove these results,
which are on independent interest, in §3.

In the end we found a way around these problems using an idea from studies in
the automorphism group of the lattice of computably enumerable sets (Soare [17].)
We recall that a set S is called semi-low iff

{e | S ∩We 6= ∅} ≤T ∅′,

i.e., a pointwise version of being low. This notion was introduced as a method
towards characterizing when the lattice of supersets of a c.e. set was isomorphic to
the lattice of all c.e. sets. In §5, we will show that, although there cannot be an
infinite low subset of MU or NU , there can be a semi-low one. In §4 we will prove
that this is enough for our main result. There have been other uses of semi-lowness
outside of the lattice of c.e. sets, such as Downey and Melnikov [7] in the study of
abelian groups, but these seem sporadic at best.

1.3. The machine existence theorem. As we will be using it several times, we
recall the machine existence theorem and fix our notation surrounding it.

Definition 1.7. For a set A ⊆ 2<ω × ω, wt(A) =
∑

(σ,s)∈A 2−s.

3That is, a computable F such that F (σ) ≥+ K(σ) for all σ, and F (σ) =+ K(σ) for infinitely
many σ.



4 RODNEY DOWNEY, LU LIU, KENG MENG NG, AND DANIEL TURETSKY

Theorem 1.8 (KC Theorem or The Machine Existence Theorem see Downey and
Hirschfeldt [5], §3.6). If A ⊆ 2<ω × ω is c.e. and has wt(A) ≤ 1, then there is a
prefix-free machine V such that for every (σ, s) ∈ A, there is a ρ with |ρ| = s and
V (ρ) = σ. Further, an index for V can be effectively obtained from a c.e. index for
A.

Corollary 1.9. If A ⊆ 2<ω × ω is c.e. with wt(A) < ∞, then for all (σ, s) ∈ A,
K(σ) ≤+ s.

Sets A of this form are sometimes called request sets.
The following is more of a proof technique, but we will state it as a corollary.

Corollary 1.10. As part of a uniform construction, we may effectively obtain an
ε > 0 such that if we enumerate A ⊆ 2<ω × ω with wt(A) ≤ ε, then K(σ) ≤ s for
every (σ, s) ∈ A (observe the lack of additive constant).

Proof. Fix U the universal prefix-free machine used to define K. We will generate
an auxiliary c.e. set B with wt(B) ≤ 1. By the Recursion Theorem, we know a c.e.
index for the set B we will enumerate. By the Machine Existence Theorem, this
effectively gives us an index for a prefix-free machine V . From this we effectively
obtain a string ρ with U(ρτ) = V (τ) for all τ , and so K(σ) ≤ t+|ρ| for all (σ, t) ∈ B.

Set ε = 2−|ρ|, and define B by enumerating (σ, s − |ρ|) whenever A enumerates
(σ, s), provided this enumeration does not put wt(B) over 1. If wt(A) ≤ ε, then
(σ, s−|ρ|) is enumerated into B for every pair (σ, s) ∈ A, and so K(σ) ≤ (s−|ρ|)+
|ρ| = s, as desired. �

2. Hirschfeldt’s Theorem

We prove Theorem 1.5. We will prove that

C∅
′
(σ) = lim sup

n
C(σ | n∗C).

Consider the Π0
1 class of sequences

P = {(m0,m1, . . . ) | ∀n [2n ≤ m < 2n+1 ∧ C(mn) ≥ n]}.
A simple counting argument shows that there is an appropriate mn for every n,
and so P is nonempty. Since there are only 2n options for mn, P ⊆ 2ω under an
appropriate effective identification. So there is a low infinite path L = (m0,m1, . . . )
by the Low Basis Theorem.

Recall that for 2n ≤ m < 2n+1, C(m) ≤+ n, so fix the least d such that
∃∞nC(mn) = n+ d, and fix an N such that C(mn) ≥ n+ d for all n ≥ N . Then

X = {(mn)∗C : n ≥ N ∧ C(mn) = n+ d}
is L-c.e. and an infinite subset of NV , where V is the universal machine defining C.
Fix (ρi)i∈ω an L-computable enumeration of X.

Then by relativizing Theorem 1.2, we have

C∅
′
(σ) =+ CL

′
(σ) =+ lim sup

i
CL(σ | i).

Note that we can L-effectively pass between i and ρi, so CL(σ | i) =+ CL(σ | ρi),
giving

C∅
′
(σ) =+ lim sup

ρ∈X
CL(σ | ρ).
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We also have

lim sup
ρ∈X

CL(σ | ρ) ≤+ lim sup
ρ∈X

C(σ | ρ),

since oracles can only help;

lim sup
ρ∈X

C(σ | ρ) ≤ lim sup
n∗C

C(σ | n∗C) ≤ lim sup
ρ∈MV

C(σ | ρ) ≤ lim sup
ρ∈2<ω

C(σ | ρ),

since X ⊆ NV ⊆ MV ⊆ 2<ω, and limit supremums over larger sets are larger; and
finally

lim sup
ρ∈2<ω

C(σ | ρ) =+ C∅
′
(σ),

by the unrelativized version of Theorem 1.2, after an effective identification of 2<ω

with ω. Picking out the relevant bits, we see that

C∅
′
(σ) =+ lim sup

n
C(σ | n∗C) =+ lim sup

ρ∈MV

C(σ | ρ).

3. No low hitting sets

We prove Theorem 1.6. Fix a universal prefix-free machine U , and suppose that
X = limsXs is an infinite ∆0

2 subset of MU . Fix ε as in Corollary 1.10; we will
enumerate an appropriate set A ⊆ 2<ω × ω.

We describe how we code whether n ∈ ∅′. Fix k ∈ ω with

1

k
< 2−(n+2)ε.

To do this coding, we will define a k-colouring χ on dom(U). This colouring will
be unique to n; the colourings for other values of n will have no interaction.

We declare that colour i is small if∑
χ(σ)=i

2−|σ| ≤ 1

k
.

This has natural approximations: at a stage s, based on the finitely many strings
we have so far coloured, a colour may still be small or may have already proven
itself to be large. Note that since colours are disjoint, and we have k colours, there
is always at least one small colour.

Suppose that σ enters dom(U) at stage s. Let

ri = min{|τ | | χ(τ) = i ∧ τ ∈ Xs}.

We regard this as infinite if there is no such τ . Then amongst the i which are small
at stage s, we fix a j maximizing rj and colour χ(σ) = j.

Suppose that n enters ∅′ at some stage s + 1. Fix a single colour j which was
small at stage s; we invalidate all the strings which had colour j at stage s. That
is, for every σ ∈ dom(U)[s] with χ(σ) = j, we enumerate (U(σ), |σ| − 1) into A.
Provided wt(A) ≤ ε, this will ensure that σ 6∈MU for each such σ.

As j was small at stage s, the weight of these pairs is at most 2
k < 2−(n+1)ε. Thus,

summing over the strategies for every n, wt(A) ≤
∑
n 2−(n+1)ε = ε, as required.

Claim 3.1. X has members of every small colour.
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Proof. Fix A the set of small colours which occur in X, and suppose this is not all
the small colours.

Fix a length n such that every colour in A occurs on a string τ ∈ X with |τ | ≤ n,
and fix t sufficiently large such that X has converged on strings of length at most
n by stage t, i.e., if |τ | ≤ n, then for all s ≥ t, Xs(τ) = X(τ). Suppose also that t
is large enough such that every large colour has proven itself large by stage t.

Since X is infinite, it contains some τ which enters dom(U) at some stage s > t.
At stage s, ri ≤ n for every i ∈ A, whereas ri > n for every small colour i 6∈ A. So
χ(τ) will be a small colour not in A, contrary to choice of A. �

We can now state our procedure for computing ∅′(n) from X: in the colouring
for n, search for a stage t such that for every colour i which is still small at stage
t, some element of X has been given colour i by stage t; then output ∅′t(n).

As just argued, there is eventually some stage at which X intersects every small
colour, so this algorithm is total. Suppose first that n 6∈ ∅′. Then certainly ∅′t(n) =
0, as desired.

Suppose instead that n ∈ ∅′, and fix the stage s+ 1 at which it enters. Fix the
chosen colour j. Then no σ which received colour j at or before stage s belongs to
MU , and so cannot belong to X. Since colour j is still small by stage s, j witnesses
t 6≤ s, giving ∅′t(n) = 1, as desired.

This concludes the proof of Theorem 1.6.

The same method can be used to prove:

Corollary 3.2. Suppose that X is an infinite ∆0
2 set of hitting points for a Solovay

function F . That is, a set S of points n where F (n) =+ K(n). Then ∅′ ≤T S.

We remark that Corollary 3.2 improves a result of Bienvenu, Downey, Merkle
and Nies [1] who showed that the collection of all hitting points is Turing complete.

The reader should note that if σ = m∗, then σ must be weakly K-random in
that K(σ) ≥+ |σ|. The reason is that if K(σ) << |σ| then using the KC Theorem,
we can use σ∗ to describe m, in a machine M we build. This would show that
K(m) << |σ| = |m∗|, a contradiction. This brings in to focus the question of
precisely which weakly K-random strings are minimal descriptions. By the Low
Basis Theorem, there are infinite low collections of weakly K-random strings. At
most finitely many can be minimal descriptions. Another consequence of Theorem
1.6 is the following4.

Corollary 3.3. If X is a ∆0
2 collection of weakly K-random strings (that is,

K(σ) ≥+ |σ|), and |X ∩NU | =∞, then X computes ∅′.

Proof. Fix d such that for every σ ∈ X, K(σ) > |σ| − d. For every n, let n∗s be
the natural stage s approximation to n∗. This may be undefined for small s, but
it will eventually converge to the true n∗. Further, if n∗s ↓ and n∗s+1 6= n∗s, then
|n∗s+1| < |n∗s|.

Again fix ε as in Corollary 1.10. Fix k with 2−k < ε. For every n and s with
|n∗s| > |n∗| + k + d (a c.e. event), we enumerate (n, |n∗s| − d) into A. Since for a

4More or less the same proof will also give this for intersections of ∆0
2 sets of hitting points

for Solovay functions, and ∆0
2 subsets of M∗, this last one by the Coding Theorem, there are at

most O(1) many elements of M∗ of length n∗ for a fixed n.
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fixed n there is at most one n∗s of any given length, the weight of our requests is
bounded by ∑

n

∑
i>|n∗|+k+d

2−(i−d) = 2−k
∑
n

2−|n
∗| < 2−k.

Thus wt(A) ≤ ε, and so K(n∗s) ≤ |n∗s| − d for every such n∗s.
It follows that if n∗s ∈ X, then since K(n∗s) > |n∗s| − d by assumption, |n∗s| ≤

|n∗|+ k + d, or |n∗| ≥ |n∗s| − k − d. As in the proof of Theorem 1.5, this allows X
to enumerate an infinite sequence from NU . Since every infinite c.e. set contains
an infinite computable set, and this relativizes, we get that X computes an infinite
Y ⊆ NU . As X is ∆0

2, Y is as well, so Y ≥T ∅′, and thus X ≥T ∅′. �

As we mentioned in the introduction, Thorem 1.6 cannot be improved to show
that all infinite subsets of NU compute ∅′.

Theorem 3.4 (Joeseph Miller, unpublished). There is an infinite X ⊂ NU which
does not compute ∅′.

Proof. Let P be a bounded Π0
1 class of K-compression functions5. Since we have

an a priori upper bound of K(n) ≤+ 2 log(n), we may take P ⊆ 2ω. Let F be
a “weakly-low for K” path. That is, there are infinitely many n with F (n) =+

K(n). This can be shown to exist using the “low for Ω”-Basis Theorem6 (Downey,
Hirschfeldt, Miller, Nies [6], Reimann and Slaman [16]) and the fact that low for Ω
is equivalent to “weakly low for K”, see Downey and Hirschfeldt [5].

Now fix the least c with K(n) = F (n) + c for infinitely many n, and fix an m
with K(n) ≥ F (n) + c for all n ≥ m. F can enumerate an infinite subset of NU :
{n∗s : n ≥ m ∧ |n∗s| = F (n) + c}. Thus F computes an infinite X ⊆ NU (again
relativizing the fact that every infinite c.e. set has an infinite computable subset),
Since F does not compute ∅′ (since it is weakly-low for K), X also does not compute
∅′. �

4. Conditional complexity along semi-low sets

Semi-lowness has previously been studied for co-c.e. sets. We are interested in
it for ∆0

2 sets, in which case it is not entirely clear that the following is the correct
definition7, but it is the definition relevant to our current interest.

Definition 4.1. Let (We)e∈ω be a standard listing of c.e. sets. A set X is semi-low
if the set {e : X ∩We 6= ∅} is ∆0

2.

Recall Theorem 1.2:

K∅
′
(σ) =+ lim sup

n∈ω
K(σ | n).

As we have seen, it can be helpful to consider lim supn∈X K(σ | n) for X infinite.

It is immediate that this is ≤+ K∅
′
(σ), as we are taking a limit supremum over a

smaller set. It turns out that for semi-low sets, we have equality.

5A K-compression function is an injective function G : ω → ω such that for all n, G(n) ≤ K(n).

These were introduced by Nies, Stephan and Terwijn [15] in their proof that 2-randomness is the
same as infinitely often C-random.

6Every Π0
1 class on 2ω contains a ∅′-left c.e. real A relative to which ΩA = Ω.

7An alternative definition would additionally require that {e : We ⊆ X} is ∆0
2; note that when

X is co-c.e., this set is Π0
1.
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Proposition 4.2. If X is semi-low and infinite, then K∅
′
(σ) =+ lim supn∈X K(σ |

n).

Proof. As one direction is immediate, it remains to show that

K∅
′
(σ) ≤+ lim sup

n∈X
K(σ | n).

We will work with request sets.
For each n ∈ ω, define An = {(σ, s) : s ≥ K(σ | n)}. We may think of An as the

request set generating K(·|n). Observe that wt(An) < 2 for all n.
Note that for any finite set D ⊂ 2<ω × ω and any m ∈ ω, the set {n ≥ m :

wt(D∪An) > 2} is c.e. (it is even primitive recursive with appropriate assumptions
on K(·|n), but this is not necessary). Indeed this is uniform, so we may fix a total
computable function e such that We(D,m) = {n ≥ m : wt(D ∪ An) > 2}, where D
is given by a canonical index.

We will build a ∅′-enumerable request set B with wt(B) ≤ 2 and such that for
all σ, if s = lim supn∈X K(σ | n), then (σ, s) ∈ B. By Corollary 1.9 relativized to
∅′, this will suffice to prove the result.

Fix an effective listing (σm, sm)m∈ω of 2<ω × ω such that every pair is repeated
infinitely many times on the list. We define B as follows:

• B0 = ∅;
• Given Bm, fix D = Bm∪{(σm, sm)}. If X∩We(D,m) = ∅, we let Bm+1 = D;

otherwise, we let Bm+1 = Bm.

As X is semi-low, ∅′ can run this construction, and so B is ∅′-enumerable.

Claim 4.3. For all n ≥ m with n ∈ X, wt(Bm ∪An) ≤ 2, and thus wt(B) ≤ 2.

Proof. Suppose not. Then as this clearly holds for B0, we may fix m + 1 the
least value where the claim is violated. So there is some n ≥ m + 1 with n ∈ X,
wt(Bm ∪ An) ≤ 2 and wt(Bm+1 ∪ An) > 2. As Bm+1 6= Bm, we must be in the
case X ∩We(D,m) = ∅, with Bm+1 = Bm ∪{(σm, sm)} = D. But n ∈ X ∩We(D,m),
a contradiction.

That wt(B) ≤ 2 then follows from X being infinite. �

Claim 4.4. For any σ, if s = lim supn∈X K(σ | n), then (σ, s) ∈ B.

Proof. Fix an n0 such that for all n ≥ n0 with n ∈ X, K(σ | n) ≤ s. Then for all
n ≥ n0 with n ∈ X, (σ, s) ∈ An. Fix an m ≥ n0 such that (σ, s) = (σm, sm). Let
D = Bm ∪ {σm, sm}. Then for all n ≥ m with n ∈ X, D ∪ An = Bm ∪ An, and
wt(Bm ∪An) ≤ 2. So X ∩We(D,m) = ∅, and (σ, s) ∈ Bm+1 by construction. �

This completes the proof. �

5. Conditional complexity along minimal codes

Fix a universal prefix-free machine U . We are interested in lim supτ∈MU
K(σ | τ)

and limτ∈NU
K(σ | τ). First we verify that these values are machine independent.

Lemma 5.1. If U and V are universal prefix-free machines, and K(·|·) is defined
from a third (unnamed) universal prefix-free machine, then

lim sup
τ∈MU

K(σ | τ) =+ lim sup
τ∈MV

K(σ | τ) = lim sup
τ∈NV

K(σ | τ).
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Proof. By symmetry, and the fact that NV ⊆MV , it suffices to show

lim sup
τ∈MU

K(σ | τ) ≤+ lim sup
τ∈NV

K(σ | τ).

By standard arguments, there is a constant c such that if τ ∈ MU , ρ ∈ MV , and
U(τ) = V (ρ), then ||τ | − |ρ|| ≤ c.

For each τ ∈ 2<ω and i ∈ Z with |i| ≤ c, let ρ(τ, i) be the first ρ located with
|ρ| = |τ |+ i and U(τ)↓= V (ρ)↓, if such ρ exists. We define

Bτ = {(σ, s) : ∃i ρ(τ, i)↓ ∧s ≥ K(σ | ρ(τ, i))}.

Then wt(Bτ ) ≤
∑
|i|≤c

∑
σ 2·2−K(σ|ρ(τ,i)) ≤ (2c+1)·2, and thus these are uniformly

given request sets.
It follows that K(σ | τ) ≤+ K(σ | ρ(τ, i)) for all i with ρ(τ, i)↓. Note that if

τ ∈MU , then there is an i with ρ(τ, i)↓∈ NV . The claim follows. �

Proposition 5.2. There is a universal prefix-free machine U and an infinite, semi-
low set X ⊆ NU .

Proof. Fix some universal prefix-free machine V . We define U(03̂τ) = V (τ) for all
τ , which makes U universal while giving us the freedom to do as we like on other
neighborhoods.

Let (Ns)s∈ω be the natural approximation to NU . We will have semi-lowness
requirements Re and infiniteness requirements Pn. The strategy for each require-
ment will claim various strings in Ns, and each strategy will have a directive at
every stage: meet or avoid. A string may only be claimed by a single strategy at a
time, and a strategy will retain its claim on a string until either the string leaves
Ns, or a higher priority strategy claims the string. In either case, the strategy will
immediately relinquish its claim.

We will build a c.e. set A ⊆ 2<ω ×ω. As we will argue, the sum
∑

2−|σ| over all
strings σ which are ever claimed in the construction will be bounded by 1/2. The
first time a string σ is claimed by a strategy (i.e. it was unclaimed at all previous
stages), we will immediately enumerate (k, |σ| − 1) into A, where k is larger than
any value yet seen in the construction. As the previous sum is bounded by 1/2,
wt(A) ≤ 1. By the Machine Existence Theorem, we uniformly obtain the index of
a corresponding prefix-free machine Q such that for every such pair (k, |σ|−1) ∈ A,
there is a τ with |τ | = |σ| − 1 and Q(τ) = k.

We define U(1̂τ) = Q(τ) for all τ . Suppose σ is first claimed at stage s, and
so we enumerate (k, |σ| − 1) into A for some large k. Then for the appropriate
τ , |1̂τ | = |σ| and U(1̂τ) = k. By the largeness of k, Ns contains no codes for
k, so τ will belong to NU unless V enumerates a sufficiently shorter code at some
subsequent stage. The idea is that whenever a potential element of NU is claimed,
we ensure it is replaced with a new element of the same length or shorter.

This completes the description of U , apart from describing how strategies claim
strings. We order our requirements R0, P0, R1, P1, . . . . At stage s, we consider the
first s requirements in order, implementing the following strategies.

Strategy for Pn:
Pn will always have the meet directive, and will claim at most one string at a

time. At stage s, if it retains a claimed string from the previous stage (i.e. s > 0,
Pn had a claimed string at stage s− 1, that string remains in Ns, and that string
has not been claimed by a higher priority strategy earlier in stage s), then we take
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no further action. Otherwise, if there is a string in Ns of length at least 2n+ 4 and
unclaimed by any higher priority strategy, Pn claims the least one (in some effective
ordering). If Pn did not retain a claimed string, and there is no appropriate string
to claim, we simply do nothing.

Strategy for Re:
At stage s, let C be the set of strings which Re retains the claim on from the

previous stage: those strings which it claimed at stage s− 1, which remain in Ns,
and which were not claimed by a higher priority strategy earlier in stage s. If Re
was not considered at stage s− 1 (possibly because s = 0), then C = ∅.

Let w =
∑
σ∈C 2−|σ|. Our directive for Re at stage s will depend on w and on

Re’s directive at stage s− 1:

• If w = 0 (i.e. C = ∅), then Re has the directive avoid at stage s.
• If 0 < w ≤ 2−(2e+4), then Re retains the same directive as it had at the

previous stage (w > 0 entails that Re was considered at the previous stage).
• If w > 2−(2e+4), then Re has the directive meet at stage s.

If our directive for Re at stage s is meet, we take no further action at this stage.
If our directive for Re at stage s is avoid, and there is a string in Ns ∩We,s of

length at least 2e+4 and unclaimed by any higher priority strategy, then Re claims
the least such string (in some effective ordering). Our action for Re at this stage is
then complete.

Thus the behaviour of Re is a yo-yo: it continues to claim strings until the
claimed strings surpass its threshold, at which point it stops and lets those strings
bleed away. Once it has lost all of its claims, the strategy begins claiming new
strings again. Note that we claim no more than one string for Re at each stage.

This completes the construction.

Definition of X:
Observe that if σ ∈ NU is claimed by a strategy, then there are only two pos-

sibilities: that strategy may retain its claim on σ forever, or the claim on σ may
pass to a higher priority strategy. As we will argue, each Re strategy changes its
directive only finitely many times. Thus we may speak of a strategy’s ultimate
directive. We then define X as follows, for each string σ:

• If σ 6∈ NU , then σ 6∈ X;
• If σ ∈ NU but σ is never claimed by any strategy, then σ 6∈ X;
• If σ ∈ NU and σ is claimed by some strategy, fix the highest priority

strategy to ever claim σ. If that strategy’s ultimate directive is meet, then
σ ∈ X; otherwise, σ 6∈ X.

Verification:
First we must keep our promises.

Claim 5.3. At any stage s, for the strategy Re, the value w = w(e, s) is at most
2−(2e+3).

Proof. At each stage, Re claims at most one string, and that string will always
have length at least 2e + 4. So w(e, s + 1) − w(e, s) ≤ 2−(2e+4). Further, Re only
claims a string if w(e, s) ≤ 2−(2e+4), so w(e, s+ 1) is at most 2−(2e+4) + 2−(2e+4) =
2−(2e+3). �

Claim 5.4. The sum
∑

2−|σ| over all strings σ which are ever claimed in the course
of the construction is at most 1/2.
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Proof. If a string σ is claimed during the construction, there are three possible fates
for σ: 1) there is some n such that Pn claims σ at almost every stage; 2) there is
some e such that Re claims σ at almost every stage; 3) σ leaves NU . We consider
each case in turn.

Fix n. By construction, there is at most one string which is ultimately claimed
by Pn, and such a string has length at least 2n + 4. So the sum

∑
2−|σ| over all

strings σ ultimately claimed by Pn is bounded by 2−(2n+4).
Fix e. Let Ĉ be the set of strings σ such that Re claims σ at almost every

stage. Then each σ ∈ Ĉ contributes to almost every w(e, s), so
∑
σ∈Ĉ 2−|σ| ≤

sups w(e, s) ≤ 2−(2e+3).
Finally, consider strings which leaveNU . We will split this case into two subcases,

based on whether the given string extends 000, and so was introduced by our
copying of V , or it extends 1, and so was introduced by our other actions. Since
the extensions of 000 in the domain of U form an antichain, the sum

∑
2−|σ| over

all strings in the first subcase is bounded by 1/8.
Consider now the second subcase. Note that strings never leave NU because of

our action; instead, if σ leaves NU , then there must be some τ ∈ NV with V (τ) =
U(σ) and |τ | < |σ|−3. As we always choose our values large, if σ0 and σ1 are distinct
strings from this subcase, U(σ0) 6= U(σ1), so the corresponding τs are distinct.
So summing over the σ of this subcase, we have

∑
2−|σ| < 1

8

∑
τ∈NV

2−|τ | < 1
8 .

Putting these all together, our desired sum is bounded by∑
n∈ω

2−(2n+4) +
∑
e∈ω

2−(2e+3) +
1

8
+

1

8
≤ 1

2
,

as desired. �

Claim 5.5. Each Re changes its directive only finitely many times.

Proof. Suppose not. Then there is a sequence of stages s0 < s1 < . . . such that Re
has directive avoid at stage si, and has directive meet at stage si+1, for every i. In
order to switch from meet at stage si + 1 back to avoid at stage si+1, every string
claimed by Re at stage si + 1 must either be stolen by a higher priority strategy
or leave NU , both of which are irreversible. Thus the strings which contribute to
w(e, si + 1) must be entirely different from those which contribute to w(e, sj + 1)

for j 6= i. But w(e, si + 1) > 2−(2e+4) for every i, and the strings which contribute
to w(e, si + 1) all belong to dom(U), a contradiction. �

Our promises being met, the construction of X is as described. Now we verify
that X has the desired properties.

Claim 5.6. For each n, the strategy Pn ultimately claims a string which it never
renounces its claim upon, and thus X is infinite.

Proof. Fix n. It suffices to argue that there is some string in NU of length at least
2n+ 4 which is never claimed by any strategy.

Fix s0 such that Ns0 has converged on all strings of length less than 2n+ 4. We
build a sequence σ0, σ1, · · · ∈ NU :

• Fix some σ0 ∈ NU \dom(Us0). Such a σ0 must exist, as U is universal (and
in particular, surjective).
• If σi is eventually claimed by some strategy, then the construction responds

by enumerating a τ into dom(U) with |τ | = |σi| and U(τ) not any previously
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seen value. It may be that τ is not a minimal code, but there is some
σi+1 ∈ NU with U(σi+1) = U(τ), and σi+1 enters dom(U) after the stage
at which σi is claimed (by the largeness of U(τ)).

Inductively, we see that U(σi) 6= U(σj) for any j < i, and so the sequence σ0, σ1, . . .

is injective. Further, |σi+1| ≤ |σi|. As
∑
σ∈NU

2−|σ| < 1, this sequence must be
finite, so there is some σi which is never claimed by any strategy. Since σi enters
dom(U) after stage s0, |σi| ≥ 2n+ 4 by choice of s0. �

Claim 5.7. X is semi-low.

Proof. We give an algorithm for determining whether X ∩We = ∅, using oracle
∅′. First, ∅′ can determine a stage s0 such that every Rj strategy with j ≤ e has
settled on its ultimate directive, and such that each Pn strategy with n < e has
made its ultimate claim.

We may ignore those Rj with j ≤ e which have avoid as their ultimate directive.
For the remaining, they have claimed some finitely many strings by stage s0, and
none will ever claim another string. With oracle ∅′, we can examine the entire finite
collection to determine if there is a string σ among them which remains claimed by
its current strategy forever, and with σ ∈We.

We claim that there is such a σ if and only if X ∩We 6= ∅. In the one direction,
if there is such a σ, then σ ∈ X by construction, so σ ∈ X ∩We.

In the other direction, if there is no such σ, note that this implies that Re’s
ultimate directive is avoid – if it were meet, then Re’s strings are amongst those
examined, so it must eventually renounce its claim to all of them, resulting in Re
changing directive to avoid, contrary to choice of s0. Now for any τ ∈We ∩NU , we
consider two cases: |τ | < 2e+ 4, and |τ | ≥ 2e+ 4.

If |τ | < 2e+4, then τ is too short to be claimed by any strategy of lower priority
than Re, and by assumption τ cannot be ultimately claimed by any strategy of
higher priority with ultimate directive meet. So τ 6∈ X.

If |τ | ≥ 2e+ 4, then τ will eventually be claimed by Re, by construction, and so
τ 6∈ X. �

This completes the proof. �

Corollary 5.8. For some, and hence any, universal prefix-free machine U ,

lim sup
τ∈NU

K(σ | τ) = lim sup
τ∈MU

K(σ | τ) =+ K∅
′
(σ).

Proof. As this is independent of choice of machine, let U and X be as in Proposi-
tion 5.2. Then

K∅
′
(σ) =+ lim sup

τ∈X
K(σ | τ) ≤ lim sup

τ∈NU

K(σ | τ) ≤ lim sup
τ∈MU

K(σ | τ) ≤ lim sup
τ∈2<ω

K(σ | τ) =+ K∅
′
(σ),

where the first equality is by Proposition 4.2, the last is by Theorem 1.2, and the
inequalities are by subset. �

6. Where the limsup’s live, and finite strings as oracles

Here we collect some miscellaneous results about finite strings as oracles. The
first is motivated by our (numerous!) failed attempts to prove Theorem 1.4 before
we finally discovered the method of Sections 4 and 5.
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One avenue we pursued was attempting to determine for which m does K(σ | m)
achieve lim supnK(σ | n). A natural candidate is the nondeficiency stages: fix a
computable enumeration (am)m∈ω of ∅′, and define

E = {m : (∀n > m) [am < an]}.

This is the basis for the method of true stages (see Montalbán [13] for a modern
interpretation for higher level priority arguments, but the idea going back to Dekker
[4], as per Soare [18], Ch. V 2.5), where the elements of E are employed because
they make correct guesses about ∅′ (as we shall see in a moment).

However, this turns out to be approaching from the wrong direction. Since
K∅
′
(σ) = lim supnK(σ | n), to find places where the limit supremum is achieved,

we are not concerned with doing as well as ∅′ – we are concerned with doing no
better than ∅′. Thus we are looking not for n which are powerful, but for those
which are weak.

The following result says that for m ∈ E, K(σ | m) does much better than
lim supnK(σ | n).

Proposition 6.1.

lim sup
m∈E

K(σ | m) =+ K∅
(2)

(σ).

Proof. For anym, define τm ∈ 2<ω to be the string of length am such that τm(x) = 1
iff x = an for some n < m. Note that m 7→ τm is effective, so K(σ | m) ≤+ K(σ |
τm). Also, σm ≺ ∅′ iff m ∈ E, so

lim sup
m∈E

K(σ | m) ≤+ lim sup
m∈E

K(σ | ∅′�am)

≤ lim sup
n

K(σ | ∅′�n)

=+ lim sup
n

K∅
′
(σ | n).

Conversely, ∅′ can compute the increasing enumeration of E, E = {b0 < b1 < . . . },
so K∅

′
(σ | n) ≤+ K(σ | bn), giving

lim sup
m∈E

K(σ | m) =+ lim sup
n

K∅
′
(σ | n).

By Theorem 1.2 relativized to ∅′, this is (up to an additive constant) K∅
(2)

(σ). �

The reader might note the following somewhat paradoxical situation. The nat-
ural proof to show that K∅

′
(σ) ≤+ lim supnK(σ | n) is to folly approximate

K∅
′
(σ)[n] at each stage n, where both the computations and oracles are approx-

imated for n stages. We would do this as part of the computation of Kn(σ) for
some machine Mn(σ) via the Machine Existence Theorem as mentioned above.
Therefore, for all stages t > n it can only be that K(σ | n)[t] ≤+ K(σ | n)[n] ≤+

K∅
′
(σ)[n]. The true value of K∅

′
(σ) must have been achieved at a true stage, but

we see above, it does not happen at almost all true stages. Thus it must be achieved
at infinitely many non-true stages s, but where K∅

′
[s] =+ K∅

′
(σ). We don’t really

understand the characteristics of such “almost true” stages s. We also point out
that the limsups appear to be achieved for different s’s for different σ’s.

Theorem 1.2 says that for almost any string σ, almost any finite oracle can aid
in the compression of σ. A priori, however, there is no reason to expect there
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to be a single finite oracle which aids in the compression of almost every string.
Nevertheless, this is the case.

Theorem 6.2. For all e there is a string ρ such that for almost all τ , K(τ | ρ) <
K(τ)− e. Kξ(τ) < K(τ)− e.

We give two proofs. The first is based on Symmetry of Information and Theo-
rem 1.2.

First proof of Theorem 6.2. By Theorem 1.2, K∅
′
(σ) =+ lim supnK(σ | n). The

proof shows that K∅
′
(σ) =+ lim sup{τ ||τ |→∞}K(σ | τ). (Alternatively use 1τ for

any string τ , with a =+, change.) By a counting argument, we know that as
|τ | → ∞, |τ∗| → ∞.

Solovay [19] (see Downey and Hirschfeldt [5], Ch 10.2, Lemma 10.2.6) proved
that

K∅
′
(n) ≤ K(n)− α(n) +O(logα(n)),

where α(n) = min{K(m) | m ≥ n}.
Thus, for all e, and almost all σ,

K∅
′
(σ) < K(σ)− e.

Hence, for all e there is an m and σ = n such that for all τ with |τ | > m,

K(σ | τ∗) < K(σ)− e.
Now, Symmetry of Information (Levin and Gács [8], Chaitin [3]) says that

K(σ, τ) = K(σ) +K(τ | σ∗) = K(τ) +K(σ | τ∗).
Thence, for σ as above and for τ with |τ | > m, we have

K(σ) +K(τ | σ∗) = K(τ) +K(σ | τ∗).
Since K(σ | τ∗) < K(σ)− e, this gives

K(σ) +K(τ | σ∗) < K(τ) +K(σ)− e.
Thus, K(τ | σ∗) < K(τ)− e. Choosing σ∗ = ρ gives the result. �

Our second proof is based on the conditional complexity variant of the Machine
Existence Theorem, which we first state.

Proposition 6.3. Suppose A ⊆ 2<ω × ω × 2<ω is a c.e. set such that for every
τ ∈ 2<ω,

∑
(σ,s,τ)∈A 2−s ≤ 1. Then for all (σ, s, τ) ∈ A, K(σ | τ) ≤+ s.

Second proof of Theorem 6.2. We will enumerate a c.e. set A. Fix an effective bi-
jection τ = 〈D, k〉 between τ ∈ 2<ω and pairs 〈D, k〉 with D ⊂ 2<ω finite and
k ∈ ω. For τ = 〈D, k〉, for every σ ∈ 2<ω \D, we enumerate (σ, t− k, τ) into A for
every t ≥ K(σ), provided doing so does not cause

∑
(σ,s,τ)∈A 2−s to exceed 1.

Fix the constant c such that K(σ | τ) ≤ s + c for every (σ, s, τ) ∈ A. As∑
σ 2−K(σ) < 1, there is some finite D such that

∑
σ 6∈D 2−K(σ) < 2−(e+c+1). Fix

τ = 〈D, e+ c〉. Then
∑
σ 6∈D

∑
t≥K(σ 2−(t−e−c) < 1, so (σ, t− e− c, τ) is successfully

enumerated into A for all such σ and t. Thus K(σ | τ) ≤ K(σ)−e−c+c = K(σ)−e
for all σ 6∈ D. �

Define ρ to be e-compressing if for almost all τ , K(τ | ρ) < K(τ)− e.

Question 6.4. What can be said about the set Ce = {ρ | ρ is e-compressing}?
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