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Abstract. Kernelization is a strong and widely-applied technique in parameterized complexity. In
a nutshell, a kernelization algorithm, or simply a kernel, is a polynomial-time transformation that
transforms any given parameterized instance to an equivalent instance of the same problem, with size
and parameter bounded by a function of the parameter in the input. A kernel is polynomial if the size
and parameter of the output are polynomially-bounded by the parameter of the input.

In this paper we develop a framework which allows showing that a wide range of FPT problems do
not have polynomial kernels. Our evidence relies on hypothesis made in the classical world (i.e. non-
parametric complexity), and evolves around a new type of algorithm for classical decision problems,
called a distillation algorithm, which might be of independent interest. Using the notion of distillation
algorithms, we develop a generic lower-bound engine which allows us to show that a variety of FPT
problems, fulfilling certain criteria, cannot have polynomial kernels unless the polynomial hierarchy
collapses. These problems include k-PATH, k-CYCLE, k-EXACT CYCLE, k-SHORT CHEAP TOUR, k-
GRAPH MINOR ORDER TEST, k-CUTWIDTH, k-SEARCH NUMBER, k-PATHWIDTH, k-TREEWIDTH, k-
BRANCHWIDTH, and several optimization problems parameterized by treewidth or cliquewidth.

1 Introduction

Parameterized complexity extends classical complexity theory in a way that allows a refined cate-
gorization of tractable and intractable computational problems. This is done by a two-dimensional
analysis of problems instances — one dimension used as usual for measuring the input-length, and
the other used for measuring other structural-properties of the input, e.g. its witness size. A problem
is considered tractable, if there is an algorithm solving it with any super-polynomial running-time
confined strictly to the parameter. As an example, consider the well-studied k-VERTEX COVER
problem:

k-VERTEX COVER:
Instance: A graph G, and k € N in unary.

Question: Does G have a vertex cover of size k?

Parameter: k.
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When viewed classically, this problem is NP-complete. However, its parameterized variant can
be solved in O(2%n) time [20] (see [36] for improvements), which is practical for instances with small
parameter values, and in general is far better than the O(n**1) running time of the brute-force
algorithm. More generally, a problem is said to be fized-parameter tractable if it has an algorithm
running in time f(k)p(n) (FPT-time), where f is any computable function solely in the parameter
k, and p(n) is a polynomial in the total input length n [20]. The class of all fixed-parameter tractable
problems is denoted by FPT. The first class of fized-parameter intractable problems is W[1], and it
is known that if FPT = W[1] then n variable 3-SAT can be solved in 2°() time [13].

A fundamental and very powerful technique in designing FPT algorithms is kernelization. In a
nutshell, a kernelization algorithm for a parameterized problem is a polynomial-time transformation
that transforms any given instance to an equivalent instance of the same problem, with size and
parameter bounded by a function of the parameter in the input. Typically this is done using so-
called reduction rules, which allow the safe reduction of the instance to an equivalent “smaller”
instance. In this sense, kernelization can be viewed as polynomial-time preprocessing which has
universal applicability, not only in the design of efficient FPT algorithms, but also in the design
of approximation and heuristic algorithms [34]. For instance, Weihe showed in the late 90’s that a
simple reduction rule can be applied to efficiently solve the problem of covering all European trains
with train stations that facilitate maintenances and repairs [47]. Nemhauser and Trotter’s classical
kernelization algorithm for k-VERTEX COVER [42] is widely used as a preprocessing step in many
approximation algorithms for this problem (see e.g. [4, 38]).

As an example of kernelization, consider the following algorithm for k- VERTEX COVER suggested
by Sam Buss which is now folklore: Given an instance (G, k) for k-VERTEX COVER, if there exists
a vertex v in G with at least k4 1 neighbors, remove v from G (along with all of its incident edges)
and decrease k by one. This reduction rule is safe since any k-vertex cover of G (if one exists)
must include v, as otherwise all edges incident to v cannot be covered with at most k£ vertices.
Continuing to apply this rule until no longer possible, the graph G’ in the remaining instance
(G', k') has maximum degree k' < k. Since k' vertices of maximum degree k' can cover at most k'
edges, we know that either G’ does not have a vertex cover of size k’, or G’ has size (excluding
isolated vertices) O(k'?) = O(k?). This algorithm exemplifies the power of kernelization in that
sometimes very simple and easily implementable reduction rules allow for a dramatic reduction in
the total input size. Nevertheless, the reader should not be misled to thinking that all kernelization
algorithms are that simple. Indeed, an increasing amount of research over the years has lead to the
development of some rather sophisticated and involved kernelization techniques, see e.g. [15,22, 28,
33, 35].

It is clear that any (decidable) language which has a kernelization algorithm is in FPT. Some-
what more surprising, but still very simple to show, is that all problems in FPT have kernelization
algorithms [12]. This is seen by considering the two cases f(k) > n and f(k) < n separately,
where f(k) is the parameter-dependent time-bound of the algorithm solving the given problem.
Since every FPT problem has a kernelization algorithm, it is interesting to study problems that are
kernelizable in a stricter sense - for example, problems which allow kernelization algorithms that
reduce instances to a size which is polynomially bounded by the parameter. Such problems are said
to have a polynomial kernelization algorithm, or a polynomial kernel. For instance, the classical
kernelization algorithm of Buss for k-VERTEX COVER is a polynomial kernel (see e.g. [20]), and
so k-VERTEX COVER has a polynomial kernel. Other problems known to have polynomial kernels
include k-LEAF SPANNING TREE [9], k-FEEDBACK VERTEX SET [5,11], k-PLANAR DOMINATING
SET [1], k-CLUSTER EDITING [32], k-HITTING SET FOR SETS OF BOUNDED SIZE [43], and many
more.



On the other hand, there are also several problems for which no polynomial kernel has yet
been found. These clearly include all problems known to be W[1]-hard, as the existence of a kernel
for such a problem would imply WJ[1] = FPT. So we focus on parameterized problems known
to be in FPT. Many examples of such problems can be found among the problems shown to be
in FPT using heavy machinery such as color-coding [2], the graph minor technique [23], or tree-
decomposition dynamic programming [3]. In many cases, the algorithms given by these frameworks
are impractical in practice. For instance, consider the k-PATH problem:

k-PATH:
Instance: A graph G, and k € N in unary.
Question: Does G have a simple path of length k7

Parameter: k.

This problem can be solved in O(2°*)n21gn) time using the color-coding technique of Alon,
Yuster, and Zwick [2]. This time complexity might seem similar to the complexity of the algorithm
for k-VERTEX COVER mentioned above, however the hidden constant in the O(k) exponent is quite
large, ruling-out any possibility for practical usefulness!. Nevertheless, an efficient polynomial kernel
could be a promising path in making this algorithm practical. Does k-PATH have a polynomial
kernel? k-MINOR ORDER TEST and k-TREEWIDTH are other good examples, as both serve as
highly time-consuming subroutines in most algorithms deploying the graph minor technique or
tree-decomposition dynamic programming. Do k-MINOR ORDER TEST and k-TREEWIDTH have
polynomial kernels?

Questions such as these are the motivating starting point of this paper. In this paper, we
introduce a new framework which allows us to show that many FPT problems do not have poly-
nomial kernels under reasonable complexity-theoretic assumptions. We believe that this material
is significant and will have wide applications. For instance, learning of our material, three other
teams of authors, namely, Fortnow and Santhanam [29], Chen et al. [16,17], and Buhrman [10]
have applied the concepts in this paper to other arenas. Also, a team of authors including the
first author of this paper have recently extended the framework presented here, via the notion of
polynomial-transformations, so that it captures additional FPT problems [6].

Obviously, if P = NP then all parameterized problems based on NP-complete problems have
constant size kernels. Thus, any method we generate to show that a problem is unlikely to have a
polynomial kernel will entail a complexity-theoretic hypothesis. For developing such a hypotheses,
we introduce the notion of a distillation algorithm. Intuitively speaking, a distillation algorithm
for a given problem functions like a Boolean OR gate of problem-instances — it receives as input
a sequence of instances, and outputs yes-instance iff at least one of the instances in the sequence
is also a yes-instance. The algorithm is allowed to run in time polynomial in the total length of
the sequence, but must output an instance whose size is polynomially bounded by the size of the
maximum-size instance in its input sequence. We remark that independently and somewhat earlier,
a similar notion had been formulated by Harnik and Naor [37] in relation to compression-related
cryptographic problems. Our paper, as well as the subsequent papers mentioned above, show that
the notion of distillation is of central importance in complexity considerations.

We study the possibility of the existence of distillation algorithms for NP-complete problems,
and conjecture that this is highly implausible. It is clear that if any NP-complete problem has
a distillation algorithm, then they all do. This seems very unlikely. Intuitively, large amounts of

! Tt was brought to our attention that there are recent improvements to the k-PATH algorithm mentioned above
which have rather practical running-times [39, 41].



information cannot be coalesced into a single small instance. This notion seems rather similar to
the notion of P-selectivity which collapses the polynomial hierarchy [40]. It turns out that this
intuition can be realized to also relate the existence of distillation algorithms for NP-complete
problems to a similar collapse. After correspondence about this issue, Fortnow and Santhanam
verified a conjecture of ours proving that the existence a of distillation algorithm for any NP-
complete problem would imply the collapse of the polynomial hierarchy to the third level [29].
This allows us to prove, via a carefully defined parametric-analog of distillation, the unlikelihood
of polynomial kernels for FPT problems such as k-PATH, k-MINOR ORDER TEST and others. In
particular, our study gives rise to the following theorem.

Theorem 1. Unless all NP-complete problems have distillation algorithms, none of the following
FPT problems have polynomial kernels:

— k-PATH, k-CYCLE, k-EXAcT CYCLE and k-SHORT CHEAP TOUR.

— k-GRAPH MINOR ORDER TEST and k-BOUNDED TREEWIDTH SUBGRAPH TEST.

— k-PLANAR GRAPH SUBGRAPH TEST and k-PLANAR GRAPH INDUCED SUBGRAPH TEST.
— k,0-SHORT NONDETERMINISTIC TURING MACHINE COMPUTATION.

— w-INDEPENDENT SET, w-CLIQUE and w-DOMINATING SET.

Here, w-INDEPENDENT SET, w-CLIQUE, and w-DOMINATING SET denote the classical INDEPEN-
DENT SET, CLIQUE, and DOMINATING SET problems parameterized by the treewidth of their given
graphs. These are given as mere examples. Many other graph-theoretic problems parameterized by
the treewidth of the graph could have been used in the theorem.

We next turn to study distillation of coNP-complete problems. Although we are unable to relate
the existence of distillation algorithms for coNP-complete problems to any known complexity con-
jecture, we can still show that polynomial kernels for some important FPT problems not captured
by Theorem 1, imply distillation algorithms for coNP-complete problems.

Theorem 2. Unless all coNP-complete problems have distillation algorithms, none of the following
FPT problems have polynomial kernels:

— k-CUTWIDTH, k-MODIFIED CUTWIDTH, and k-SEARCH NUMBER.
— k-PATHWIDTH, k-TREEWIDTH, and k-BRANCHWIDTH.

— k-GATE MATRIX LAYOUT and k-FRONT SIZE.

— w-3-COLORING and w-3-DOMATIC NUMBER.

We remark that in unpublished work, Buhrman [10] has shown that there are oracles relative
to which no coNP-complete problem has a distillation algorithm. We believe that the same
information-theoretical intuition applies here, and that no coNP-complete problem can have a
distillation algorithm.

Prior to our results, there were limited attempts in showing negative results for kernelization.
Below we mention all such results known to us: Flum and Grohe showed that trivial parameter-
izations lead to problems that clearly do not have polynomial kernels (see Example 9.3 in [26]).
Frick and Grohe showed a non-elementary lower-bound on the running-time of any FPT algorithm
for the model checking problem for monadic second order logic on trees [30], which implies, along
with the fact that the unparameterized version of this problem is in PSPACE, that the problem
has no kernel of elementary size unless P =NP. There are also negative results which follow from
approximation lower-bounds. For instance, k-VERTEX COVER cannot have a kernel of size 1.36 - k
unless P = NP [34], due to the lower bounds on the approximation factor guarantee of any ap-
proximation for the optimization variant of this problem [19]. Finally, there is limited approach for



showing linear lower-bounds for some FPT problems called the dual-parameter approach [15]. An
example result obtained by this approach is that k-PLANAR VERTEX COVER cannot have a kernel
of size (4/3 —¢) - k for any € > 0 (unless P = NP).

In the last part of the paper, we study sub-exponential kernels, i.e kernelization algorithms that
reduce instances to a size which is sub-exponentially bounded by the parameter. In particular, we
prove that there are problems solvable in O(2%n) time which (unconditionally) do not have any
sub-exponential kernel of size 2°F). This relates our material to the work of Flum, Grohe, and
Weyer [27] who introduced the notion of “bounded fixed-parameter tractability” as an attempt to
provide a theory for feasible FPT algorithms. They argued that for an FPT algorithm to be useful
in practice, it should most likely have a running time of 20 )% or perhaps 2k 00 We show
that the notion of small kernel and small running-time are quite different.

2 Preliminaries

Throughout the paper, we let X denote a finite alphabet, and N the set of natural numbers. A
(classical) problem L is a subset of X*, where X* is the set of all finite length strings over Y. In
natural cases, the strings in L will be encodings of some combinatorial object, e.g. graphs. We will
call strings x € X* which are proper encodings, input of L, regardless of whether z € L. We will
often not distinguish between a combinatorial object and its string encoding, using for example G
to denote both a graph and a string in X*.

A parameterized problem is a subset L C X* x N. In this way, an input (z, k) to a parameterized
language consists of two parts, where the second part k is the parameter. A parameterized problem
L is fized-parameter tractable if there exists an algorithm which on a given (z, k) € X* x N, decides
whether (z,k) € L in f(k)p(n) time, where f is an arbitrary computable function solely in k,
and p is a polynomial in the total input length (including the unary encoding of the parameter)
n = |z|+k. Such an algorithm is said to run in FPT-time, and FPT is the class of all parameterized
problems that can be solved by an FPT-time algorithm (i.e. all problems which are fixed-parameter
tractable). For more background on parameterized complexity, the reader is referred to [5, 20, 26].

To relate notions from parameterized complexity and notions from classic complexity theory
with each other, we use a natural way of mapping parameterized problems to classical problems.
The mapping of parameterized problems is done by mapping (x,k) to the string z#1%, where
# ¢ X denotes the blank letter and 1 is an arbitrary letter in 2. In this way, the unparameterized
version of a parameterized problem L is the language L = {#1* | (2, k) € L}. Note that it is casy
to obtain the derived parameterized instance (z, k) of L, given the instance x#1% of L.

We next give a formal definition for the central notion of this paper:

Definition 1 (Kernelization). A kernelization algorithm, or in short, a kernel for a parameter-
ized problem L C X* x N is an algorithm that given (x,k) € X* x N, outputs in p(|x| + k) time a
pair (¢’ k') € X* x N such that

- (x,k)e L& (oK) € L,
- 'K < k),

where f is an arbitrary computable function, and p a polynomial. Any function [ as above is referred
to as the size of the kernel.

That is, if we have a kernel for L, then for any (z,k) € X' x N, we can obtain in polynomial time
an equivalent instance with respect to L whose size is bounded by a function of the parameter. Of
particular interest are polynomial kernels. These are kernels with polynomial sizes.



There are also generalizations of the above definition that have appeared in the literature. Most
notably is the generalization which allows the kernelization algorithm to map the instance to an
instance of a different language.

Definition 2 (Generalized Kernelization). A generalized kernelization algorithm from a pa-
rameterized problem L C X* x N to another parameterized problem L' C X* x N is an algorithm
that given (z,k) € X* x N, outputs in p(|x| + k) time a pair (', k") € X* x N such that

- (x,k)e L& (oK) e L,
- [ K < k),

where f is an arbitrary computable function, and p a polynomial.

While the latter definition can prove useful in certain cases, where one can, for instance, general-
ize the problem at hand in order to obtain additional combinatorial leverage, the former definition
is the more natural one. We therefore present our framework in terms of the former definition,
though all our results extend easily to the generalized definition as well.

3 A Generic Lower-Bounds Engine

In the following we develop the main engine for proving Theorems 1 and 2. This engine evolves
around the notion of distillation algorithms for NP-complete problems. We first introduce this
notion, and then carefully define a parametric-analog of a distillation algorithm which we call a
composition algorithm. Following this, we show that if a compositional parameterized problem has
a polynomial kernel, then its unparameterized counterpart has a distillation algorithm. We begin
with the central notion of our framework:

Definition 3 (Distillation). A distillation algorithm for a classical problem L C X* is an algo-
rithm that

— receives as input a sequence (x1,...,x¢), with x; € X* for each 1 <i <'t,
— uses time polynomial in S i_, |z,
— and outputs a string y € 2* with

1. ye L < x; € L for some 1 <i<t.

2. |y| is polynomial in maxi<;<¢ |z

That is, given a sequence of ¢ instances of L, a distillation algorithm gives an output that is
equivalent to the sequence of instances, in the sense that a collection with at least one yes-instance
(i.e. instance belonging to L) is mapped to a yes-instance, and a collection with only no-instances
is mapped to a no-instance. (In a certain sense, this functions like a Boolean OR operator.) The
algorithm is allowed to use polynomial-time in the total size of all instances. The crux is that
its output must be bounded by a polynomial in the size of the largest of the instances from the
sequence, rather than in the total length of the instances in the sequence.

We next introduce the notion of a composition algorithm for parameterized problems. In some
sense, one can view a composition algorithm as the parametric-analog of a distillation algorithm.

Definition 4 (Composition). A composition algorithm for a parameterized problem L C X* x N
1s an algorithm that

— receives as input a sequence ((x1,k),. .., (x4, k)), with (z;,k) € X* x NT for each 1 <i <,
— uses time polynomial in 22:1 |xi| + K,



~ and outputs (y, k') € X* x N* with
1. (y,k') € L <= (k) € L for some 1 <i<t.
2. k' is polynomial in k.

Hence, given a sequence of instances for L, a composition-algorithm outputs an equivalent
instance to this sequence in same sense of a distillation algorithm, except that now the parameter
of the instance is required to be polynomially-bounded by parameter appearing in all instances of
the sequence, rather than the size of the instance bounded by the maximum size of of all instances.

We call classical problems with distillation algorithms distillable problems, and parameterized
problems with composition algorithms compositional problems. Despite the similarities between the
two definitions, as we shall soon see, the existence of composition algorithms for some parameter-
ized problems is much more plausible than the existence of distillations for their unparameterized
counterparts. Nevertheless, there is still a deep connection between distillation and composition,
obtained via polynomial kernelization. In the following lemma we prove that combining a composi-
tion algorithm for a parameterized problem L, with a polynomial kernel for it, admits a distillation
algorithm for the unparameterized counterpart of L.

Lemma 1. Let L be a compositional parameterized problem whose unparameterized version L is
NP-complete. If L has a polynomial kernel, then L is distillable.

Proof. Let x1,...,7; € X* be instances of L, and let (z;, k) € X% x NT denote the instance
of L derived from z;, for all 1 < ¢ < ¢. Since L is NP-complete, there exist two polynomial-
time transformations @ : L — SAT and ¥ : SAT — L where SAT is the problem of deciding
whether a given boolean formula is satisfiable. We use the composition and polynomial kernelization
algorithms of L, along with @ and ¥, to obtain a distillation algorithm for L. The distillation
algorithm proceeds in three steps.

Set k = maxj<i<¢ k;. In the first step, we take the subsequence in ((x1,k1),..., (z¢ kt)) of
instances whose parameter equals ¢, for each 1 < £ < k. We apply the composition algorithm on
each one of these subsequence separately, and obtain a new sequence ((y1,k]), ..., (yr, k.)), where
(yi, ki), 1 < i < r, is the instance obtained by composing all instances with parameters equaling
the ¢’th parameter value in {k1, ..., k;}. In the second step, we apply the polynomial kernel on each
instance of the sequence ((y1,%}),...,(yr,k}.)), to obtain a new sequence ((z1,k7),..., (2, k})),
with (z;, k!') the instance obtained from (y;, k), for each 1 < i < r. Finally, in the last step, we
transform each %;, the unparameterized instance of L derived from (z, k'), to a Boolean formula
@(Z;). We output the instance of L for which ¥ maps the disjunction of these formulas to, i.e.
W(Vlgz‘gr QS(Z))

We argue that this algorithm distills the sequence (71, ..., Z;) in polynomial time, and therefore
is a distillation algorithm for L. First, by the correctness of the composition and kernelization
algorithms of L, and by the correctness of @ and ¥, we have

V(Vici<r () € L <= V<<, P(zi) € SAT

3, 1<i<r:®(%) e SAT
Eli,lgigr:giei
Ji,1<i<r:(z k) eL
Ji, 1 <i<r:(y,ki)eL
Hi,lgigt:(l'i,k‘i)EL
Ji,1<i<t:3; € L.

reeeey

Furthermore, as each step in the algorithm runs in polynomial-time in the total size of its input, and
since the output of each step is the input of the next step, the total running-time of our algorithm



is polynomial in 25:1 |Z;|. To complete the proof, we show that the final output returned by our
algorithm is polynomially bounded in n = max;<i<¢ |Z;|.

The first observation is that since each Z; is derived from the instance (x;, k;), 1 < i < t, we
have r < k = maxij<;<t ki < maxj<i<¢|Z;| = n. Therefore, there are at most n instances in the
sequence ((y1,k}),..., (yr, k.)) obtained in the first step of the algorithm. Furthermore, as each
(yi,k}), 1 < i < r, is obtained via composition, we know that k, is bounded by some polynomial
in £ < k < n. Hence, since for each 1 < i < r, the instance (z;, k;’ ) is the output of a polynomial
kernelization on (y;, k}), we also know that (z;,k!') and Zz; have size polynomially-bounded in n.
It follows that > ., |Z;| is polynomial in n, and since both @ and ¥ are polynomial-time, so is
(Vi<icr 2(Z1)- O

We conclude this section by stating a lemma proven by by Fortnow and Santhanam [29], which
verifies our initial intuition that NP-complete problems are unlikely to have distillation algorithms.
Fortnow and Santhanam showed that a distillation algorithm for an NP-complete problem would
imply the collapse of the polynomial hierarchy [46], a hierarchy believed by many to be proper.
Note that it is clear from Definition 3, that if any NP-complete problem were distillable, then they
all would be — we can use the polynomial-time reductions provided for any NP-complete problem
L to and from our presumed distillable NP-complete problem to distill L. In the following we use
PH to denote the polynomial hierarchy, and Zg to denote its third level.

Lemma 2 ([29]). If any NP-complete problem has a distillation algorithm then PH = 3.

4 Applications

Lemma 1, the core of our lower bound engine together, implies that any compositional parameter-
ized problem whose unparameterized counterpart is NP-complete is unlikely to have a polynomial
kernel. In the following we exemplify the strength of our lower bound engine by giving several ex-
amples of compositional FPT problems that are based on unparameterized classical NP-complete
problems. We focus only on natural examples, and in particular, we complete the proof of Theo-
rem 1.

Let us call a parameterized problem L C X* x N a parameterized graph problem, if for any
(z,k) € L, z is an encoding of a graph.

Lemma 3. Let L be a parameterized graph problem such that for any pair of graphs G1 and Ga,
and any integer k € N, we have (G1,k) € LV (Ga, k) € L < (G1UGa,k) € L, where G1 U Gy
is the disjoint union of G1 and Gy. Then L is compositional.

Proof. Given (G1,k),..., (G, k), take G to be the disjoint union G; U---UGy. The instance (G, k)
satisfies all requirements of Definition 4. O

As an immediate corollary of the simple lemma above, we get that our case-study problem
k-PATH is compositional, and thus is unlikely to have a polynomial kernel. Indeed, the disjoint
union of two graphs has a k-path iff one of the graphs has a k-path. Two other similar examples
are the k-CYCLE and k-EXACT CYCLE problems, which respectively ask to determine whether a
given graph has a (not necessarily induced) subgraph which is isomorphic to a cycle with at least
k vertices and a cycle with exactly k vertices. Both these problems are also in FPT by the color-
coding technique of Alon et al. [2], and are compositional by the lemma above. Another example
is k-SHORT CHEAP TOUR, which given an edge-weighted graph, asks whether there is a tour of



length at least k in the graph with total weight not more than some given threshold. This problem
is in FPT due to [44], and is again compositional according to Lemma 3.

In fact, Lemma 3 implies that any parameterized problem which asks to determine whether a
specific graph H (e.g. a k-clique) is a “subgraph of some kind” of an input graph G, for almost
any natural notion of subgraph, is compositional when parameterized by H (or more precisely, by
the numeric encoding of H, the position of H in some canonical ordering of simple graphs). For
example, consider the k-MINOR ORDER TEST problem, famously in FPT due to Robertson and
Seymour’s celebrated Graph Minor Theorem. This problem asks to decide whether a given graph
H is a minor of another given graph G, and the parameter k is H. Clearly, if we slightly relax the
problem and require H to be connected, the disjoint union construction of Lemma 3 above gives a
composition algorithm for this problem. If H is not connected, we can connect it by adding a new
global vertex adjacent to all other vertices in H, and then add such a global vertex to each Gj,
1 <14 < t. By similar arguments we can also show that k-BOUNDED TREEWIDTH SUBGRAPH TEST
— the problem of determining whether a given bounded treewidth graph occurs as a subgraph in
another given graph (in FPT again via color-coding [2]) — is also compositional. Other two good
examples are k-PLANAR GRAPH SUBGRAPH TEST and k-PLANAR GRAPH INDUCED SUBGRAPH
TEST, both in FPT due to [21].

As an example of a non graph-theoretic problem which is compositional, consider the parame-
terized variant of Cook’s generic NP-complete problem [18] — the k, 0-SHORT NONDETERMINISTIC
TURING MACHINE COMPUTATION problem. In this problem, we receive as input a non-deterministic
Turing machine M with alphabet-size o, and an integer k, and the goal is to determine in FPT-
time, with respect to both k£ and o, whether M has a computation path halting on the empty input
in at most k steps. This problem can be shown to be in FPT by applying the algorithm which
exhaustively checks all global configurations of M [14].

Lemma 4. k,c-SHORT NONDETERMINISTIC TURING MACHINE COMPUTATION s compositional.

Proof. Given (Mj,k,0),...,(M,k,0), we can assume that the alphabet of each M;, 1 <1i <, is
{1,...,0}. We create a new NDTM M, which is the disjoint union of all M;’s, in addition to a
new unique initial state which is connected the initial states of all M; by an e-edge. (That is, by a
non-deterministic transition that does not write anything on the tape, nor moves the head.) Note
that M has alphabet size o. Letting k' = 1 + k, the instance (M, k', o) satisfies all requirements of
Definition 4. a

We now turn to show that many natural NP-complete problems parameterized by treewidth
also fall easily into our framework. In particular, we prove the last item of Theorem 1. We Let us
begin with the w-INDEPENDENT SET problem:

w-INDEPENDENT SET:

Instance: A graph G, a tree-decomposition 7 of GG, and a positive integer k.
Question: Does G have an independent set of size k7

Parameter: The width w of 7.

Note that the parameter in w-INDEPENDENT SET is w and not k. We call the unparameter-
ized variant of w-INDEPENDENT SET the INDEPENDENT SET WITH TREEWIDTH problem. Clearly,
INDEPENDENT SET WITH TREEWIDTH is NP-complete by the straightforward reduction from IN-
DEPENDENT SET which appends a trivial tree-decomposition to the given instance of INDEPENDENT
SET. To show that w-INDEPENDENT SET is compositional, we will work with a ‘guarantee’ version:
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w-INDEPENDENT SET REFINEMENT:

Instance: A graph G, a tree-decomposition 7 of G, and an independent set I in G.
Question: Does G have an independent set of size |I| + 17

Parameter: The width w of 7.

The unparameterized variant of w-INDEPENDENT SET REFINEMENT is INDEPENDENT SET
REFINEMENT WITH TREEWIDTH. It is easy to see that this problem is NP-complete by the following
reduction from INDEPENDENT SET WITH TREEWIDTH — Given an instance (G, 7, k), construct the
instance (G',7',1), where G’ is the graph obtained by adding k — 1 new pairwise non-adjacent
vertices I to G which are connected to all the old vertices, and 7 is the tree-decomposition obtained
by adding the set of new vertices I to each node in 7.

Lemma 5. w-INDEPENDENT SET REFINEMENT s compositional, and furthermore, if w-
INDEPENDENT SET has a polynomial kernel then so does w-INDEPENDENT SET REFINEMENT.

Proof. To prove the first part of lemma, suppose we are given ¢ instances (G1, 71, 11), ..., (G, Ty, It)
of w-INDEPENDENT SET REFINEMENT. Consider the algorithm which maps this sequence of in-
stances to (G, 7, I), with G the disjoint union U§:1 G, T the tree obtained by connecting all 7;’s,
1 <i <t, and with I = (J!_, I;. Note that G has an independent set of size |I| + 1 if and only if
there exists an i, 1 < i < t, such that G; has an independent set of size |I;| + 1. Moreover, as the
width of each tree-decomposition 7; is w, 1 < ¢ <, 7 also has width w.

We next show that a polynomial kernel for w-INDEPENDENT SET implies a polynomial kernel
for w-INDEPENDENT SET REFINEMENT. For this, suppose w-INDEPENDENT SET has a polynomial
kernel, and consider a given instance (G, 7, ) of w-INDEPENDENT SET REFINEMENT. Forgetting /,
we create an equivalent instance (G, 7 ) of w-INDEPENDENT SET, and apply the polynomial kernel-
ization algorithm on this instance to obtain the instance (G’,7"), with |G’| and |7’| polynomially
bounded by the width w of 7. We now consider the instance (G’,7") as an instance of the unpa-
rameterized INDEPENDENT SET WITH TREEWIDTH problem. Using the reduction discussed above,
we transform (G’,7’) in polynomial-time to an equivalent instance (G”,7”,1") of INDEPENDENT
SET REFINEMENT. The parameterized instance (G”, 7", I") is equivalent to (G, 7, ), and has size
polynomial in the width w of 7. a

The proof of the lemma above implies that to fit a natural NP-complete graph problem param-
eterized by treewidth into the context of our lower-bound framework, one has to basically show
two things: First, that the refinement variant of the problem is compositional, and second, that
the unparameterized version of the refinement variant is NP-complete. In fact, this technique is
not necessarily limited to treewidth, but can be used with almost any other structural parameter
such as cliquewidth, max. degree, min. vertex-cover, and so forth. To complete the proof of Theo-
rem 1, we prove that DOMINATING SET REFINEMENT WITH TREEWIDTH is NP-complete; CLIQUE
REFINEMENT WITH TREEWIDTH can be seen to be NP-complete by a similar construction shown
above. Note that an instance of DOMINATING SET REFINEMENT WITH TREEWIDTH consists of
a graph G, a tree decomposition 7 of G, and a dominating set D C V(G), and the goal is to
determine whether there exists a dominating set in G of size |D| — 1.

Lemma 6. DOMINATING SET REFINEMENT WITH TREEWIDTH is NP-complete.

Proof. We prove the lemma by showing that DOMINATING SET REFINEMENT is NP-complete
via a reduction from DOMINATING SET. The fact that DOMINATING SET REFINEMENT WITH
TREEWIDTH is NP-complete will follow immediately.
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Let (G, k) be an instance of DOMINATING SET. We construct an instance (G’, D) of DOMINATING
SET REFINEMENT by creating k + 1 copies vy, ..., vks1 € V(G') of each vertex v € V(G), and then
connecting all pairs of vertices:

— {vj,vj}, forall1 <i<j<k+1andallveV(G),
— {u,v;}, forall 1 <i<k+1andall u+#veV(Q),
— {ui, v}, forall 1 <i<j<k+1and {u,v} e EG).

The “guaranteed” (k 4 1)-dominating set of G’ is taken as D = {vy,...,vgs1} for some arbitrary
v € V(G). We argue that G has a k-dominating set iff G’ has a k-dominating set. First, if G
has a k-dominating set Dg C V(G), then {vi |v € D¢} is a k-dominating set of G’. Conversely,
if Dgr C V(@) is a k-dominating set of G’, then {v|v; € D¢ for some i} is a k-dominating
set of G. This is since there must be an ¢ € {1,...,k 4+ 1} with v; ¢ D¢ for all v € V(G),
as |Dgr| < k + 1, and therefore for this particular i, any vertex v; € V(G') is dominated by some
uj € Der, j € {1,...,k+1}\{i}. By our construction, it follows that either v = v or {u,v} € E(G),
and so v dominates v in G. O

5 Extensions

We next extend the framework presented in the previous section so that it captures other impor-
tant FPT problems not captured by Theorem 1. In particular, we provide a complete proof for
Theorem 2. The main observation we use for the former is that an AND-variant of a composition
algorithm for a parameterized problem L, yields a composition algorithm for L, the complement of
L. This observation is useful since a lot of problems have natural AND-compositions rather than
regular compositions. As any FPT problem has a polynomial kernel iff its complement also has one,
showing that a coFPT problem is compositional is just as good for our purposes as showing that
its complement in FPT is compositional.

Lemma 7. Let L be a parameterized graph problem such that for any pair of graphs G1 and Go,
and any integer k € N, we have (G1,k) € L A (Ga, k) € L < (G1UGa, k) € L, where G1 U Gy
is the disjoint union of G1 and G5. Then L, the complement of L, is compositional.

Proof. Given (G1,k),...,(Gt, k), take G to be the disjoint union Gy U---UG;. Then (G, k) € L iff
(Gi, k) € Lfor alli, 1 < i <t. But then (G, k) € L iff (G;,k) € L for any i, 1 < i < t. It follows
that (G, k) satisfies all requirements of Definition 4. O

There are many FPT problem with a natural composition as above. These include the classical
“width problems” k-PATHWIDTH, k-TREEWIDTH, and k-BRANCHWIDTH (see [8] for formal defini-
tions and FPT algorithms for these problems). Three closely related relatives of these problems are
k-SEARCH NUMBER [7,24], k-FRONT SIZE [8], and k-GATE MATRIX LAYOUT [25], which all have
AND-composition by the lemma above. Lemma 7 also implies that two other famous FPT “width
problems” are AND-compositional, namely, k-CUTWIDTH and k-MODIFIED CUTWIDTH [7,24].

We prove the last item of Theorem 2 by using refinement variants as done for the treewidth
parameterized problems in Theorem 1. In this context, it is worth mentioning that partitioning
problems seem more adaptable to AND-compositions, as opposed to subset problems which are
better suited for regular composition. Recall that w-3-CHROMATIC NUMBER is the problem of
determining, given a graph G and a tree-decomposition 7 of G, whether there exists a partitioning
(or coloring) II of V(G) into three classes, where each class induces an independent set in G. The
parameter is the width of 7. The w-3-DOMATIC NUMBER problem is defined similarly, except
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that here the goal is to partition (or domatic-color) V(G), again into three classes, with each class
inducing a dominating set of GG. Indeed, we selected w-3-CHROMATIC NUMBER and w-3-DOMATIC
NUMBER for Theorem 2 as they are two of the more well-known graph partitioning problems. Many
other natural partitioning problems could have been selected as well.

The refinement variants of these two problems, w-3-CHROMATIC NUMBER REFINEMENT and
w-3-DOMATIC NUMBER REFINEMENT, are defined by adding to the input an appropriate vertex-
partitioning IT (with respect to the problem definition), of cardinality four for w-3-CHROMATIC
NUMBER REFINEMENT and two for w-3-DOMATIC NUMBER REFINEMENT. It is easy to see that the
unparameterized versions of these two problems are NP-complete by recalling that one can color
planar graphs with four colors in polynomial-time (see e.g. [45]), while it is NP-complete to decide
whether a planar graph is 3-colorable, and by recalling that every graph without an isolated vertex
can be domatic-colored with two colors in polynomial-time (see e.g. [31]). Furthermore, it is easy
to see that the standard disjoint union algorithm is an AND-composition for these two problems.
Thus, by similar arguments used in Section 4, we can conclude that a polynomial-kernel for either
w-3-CHROMATIC NUMBER or w-3-DOMATIC NUMBER implies that all coNP-complete problems
are distillable.

6 Sub-Exponential Kernels

In this section we turn to explore sub-exponential kernels, i.e. kernelization algorithms that output
instances which are sub-exponentially bounded by the parameter of the input instances. We study
sub-exponential kernelization from a more structural point of view. In particular, we show that there
are parameterized languages solvable in O(2*n) time, with no kernelization of size g(k) = 2°(%),

In [27], Flum, Grohe, and Weyer introduced the notion of “bounded fixed-parameter tractabil-
ity” as an attempt to provide a theory for feasible FPT algorithms. They argued that for an FPT
algorithm to be useful in practice, it should most likely have a running-time of 20*)nM) or per-
haps kO O Tt s tempting to think that the classes of problems with such running-times will
align themselves with the classes of problems having linear and polynomial kernels respectively. We
have already seen evidence in this paper that this attractive idea fails: k-PATH can be solved in
20(k)pO(M) "but is unlikely to have a polynomial kernel (Theorem 1). In the following we show that
this idea fails in a sharper sense, and without having to rely on any complexity assumption.

Theorem 3. There is an FPT langauge L C X* x Nt solvable in O(2Fn) time, n = |x| + k, with
no kernelization of size g(k) = 2°00F).

Proof. Let @1,®, ... denote the set of all kernelization algorithms, and let g1, go, ... denote the set
of all computable functions which are bounded by 2°(%). We will assume that we have a linear-time
enumeration of all possible pairs (@, g), where for convenience we will actually assume we have an
enumeration {(@y, g¢) | ¢ € w}, with each (@, g) occurring infinitely-many often. We will say that
(D, g) is a proper pair, if g is in fact the size of @. Our argument is via diagonalization. We give an
algorithm that decides a langauge L C X* x N* in O(2¥n) time, n = |z| + k, where for each proper
pair (@, g) there is an (z,k) € X* x N such that

(1,k) ¢ L = &(x,k) € L. (1)

Clearly this will imply that @ is not a kernelization algorithm of L for all proper pairs (@, g).
The langauge L that our algorithm decides will be rather sparse: If there is no £ € N* with
¢ =lglgk, then (z, k) will not be in L for all xz € X*. In other words, the non-empty slices of L will
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be at least 22 far apart. Furthermore, L will only contain pairs (x,k) € Y* x Nt with 2 = 19¢(k)
for £ =lglgk and 1 € Y. This will ensure us enough time to diagonalize. Our algorithm proceeds
in the following steps:

Check whether there exists an ¢ € N* with ¢ = 1glg k. If not, determine (z,k) ¢ L.

Compute (¥, g¢) and check whether z = 19¢(%)_If not, determine (z, k) ¢ L.

Run &, on input (z, k) for at most 2¥n steps. If #; does not terminate, determine (z, k) ¢ L.
Set (2/, k') = ®y(x, k). If |2'| + k' > go(k), determine (z, k) ¢ L.

Determine (z,k) ¢ L < (2/,k') € L.

e W=

There are two important claims we need to make here. First, we need to argue that our algorithm
indeed has a running-time of O(2*n), as promised above. Second, we need to show that (??) is
satisfied for every proper pair (@, g). In other words, we need to show that for every proper pair
(@, g) there is an ¢ € w and a pair (x,k) € ¥* x N* for which &, terminates on in step 3 of the
algorithm.

For bounding the running time of our algorithm, first observe that both steps 1 and 2 can be
performed in O(k) time, and that steps 3 and 4 together require O(2¥n) time. Step 5 is recursive.
To bound the time required for the recursion, first note that step 4 guarantees that (x, k) # (2/, k'),
and so the recursion will terminate. (Here is where we actually use the fact that we only need to
diagonalize on proper pairs (@, g).) Moreover, notice that the only way we will simulate another
kernelization algorithm @, for some ¢ # ¢, is if k' < lglgk and if 2/ = 19¢(%)_ This implies that
the running-time of &, will be

M (|| + k) = 25 (go (K) + k') < 2% (gp(1g k) + 1g k) << k- (2% +1gk) = O(k).

It is now easy to see that our algorithm will have less than lg* k recursive steps, and in each step
the running-time will decrease at least logarithmically. Hence, our algorithm is O(2*n) time.

To see that (1) is satisfied for every proper pair, let (@, g) be a proper pair, and let n¢ denote
the running-time of @ on input (z,k) € X* x N*, with n = |z| + k and ¢ € N*. Since g(k) = 2°0),
for (x, k) = (19%) k) with k sufficiently large, we will have

2k = 2% (g(k) + k) > (g(k) + k)¢ = n.

Let k be an integer for which the above holds. Since (@,g) occurs infinitely-many often in
{{®y,90) | ¢ € w}, there is an ¢ € w with ¢ > lglgk and (P4, g;) = (P, g). For this ¢, ¢, will
terminate on (19%) k) in at most 2¥n steps. The theorem follows. O

7 Conclusions

In this paper we presented a generic framework which allowed us to show that a wide variety of
FPT problems are unlikely to have a polynomial kernel. This framework gives the first polynomial
lower-bounds on kernelization sizes of natural FPT problems, and provide an initial glimpse into
what makes polynomial kernelization intrinsically hard in certain type of problems. Central in our
framework is the notion of distillation for NP-hard problems, which appears to be of interest in
other areas of complexity theory [10,16,17,29].

There are many future directions of research and open questions stemming from our work. To
conclude the paper, we give below an incomplete list which contains four of the more important
ones:
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First and foremost, in light of Theorem 2, can one relate the non-existence of distillation al-
gorithms for coNP-complete problems to any known complexity conjecture? In this regard,
Buhrmann has shown in private communication that there are oracles relative to which no
distillation algorithm exists for coNP-complete problems [10].

Is there a way to base the non-existence of polynomial kernels for any FPT problem on a
conjecture in parameterized complexity, e.g. FPT # XP or FPT # W[t| for some t € N*?

In light of the last items of Theorem 1 and Theorem 2, can one give evidence for the non-existence
of polynomial kernels for all NP-complete graph problems parameterized by treewidth?
Finally, can one obtain sub-exponential lower bounds of any form on the kernel sizes of some of
the problems discussed in this paper?
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