
SOME NOTES ON THE wtt-JUMP

KLAUS AMBOS-SPIES, ROD DOWNEY, AND MARTIN MONATH

1. Introduction

One of the fundamental operations in classical computability is the jump opera-
tor. For a set B, B′ = {e | ΦBe (e) ↓} is the canonical ΣB1 complete set; the halting
set relative to B. This notion goes back to Turing [17], but it is first highlighted in
Kleene and Post [13]. The interplay between the jump operator and the partial or-
dering of the Turing degrees has provided one of the main areas of work in classical
and applied computability theory.

This paper studies a notion called the wtt-jump. This is an operator akin to the
classical Turing jump but using wtt-operators in place of Turing ones. The wtt-
jump has previously been studied in one form or another by Coles, Downey and
Laforte [6], Downey and Greenberg [8] and Anderson and Csima [2]. Recently, the
authors have shown that properties of the wtt-jump can be used to characterize pre-
cisely when a c.e. set can be computed from a maximal c.e. set with a computably
bounded use [1]. Earlier, Barmpalias, Downey and Greenberg [4], building on work
by Chisholm, Chubb, Harizanov, Hirschfeldt, Jockusch, McNicholl and Pingrey [5]
and by Afshari, Barmpalias, Cooper and Stephan [3], characterized when all c.e.
members of a c.e. Turing degree are computable from a hypersimple set and from
an initial segment of a scattered linear ordering via a bounded reduction; but that
characterization used what are called totally ω-c.a. degrees, and concerned approxi-
mations to total functions, whereas our maximal set result involved a new hierarchy
generated from wtt-computations. Thus we see the following. In the same way that
tt-reducibility turned out to be a central unifying idea in algorithmic randomness
(e.g. Downey-Hirschfeldt [9]), these studies, and others, show that rather than mere
artifacts of definitions in classical computability theory, hierarchies related to strong
reducibilities and bounded jump operators can give classification and unification of
combinatorics in parts of computable mathematics. As a consequence, it seems we
should better understand analogs of the core notions of classical computability for
such hierarchies. This paper contributes to that program.

The earliest analog of a jump operator using only bounded reducibilities is the
“mini-jump” hierarchy introduced by Ershov [10] as discussed in Odifreddi [15],
Chapter XI.6. Ershov’s hierarchy concerned a jump operator for the m-degrees
involving the partialm-degrees. Also a bounded analog of the jump for tt-reductions
was investigated by Gerla [11].

2010 Mathematics Subject Classification. Primary 03D25.
Downey is partially supported by Marsden Fund of New Zealand. The results of this paper were

obtained whilst Downey was an Alexander von Humboldt Fellow at the University of Heidelberg.
1

2 KLAUS AMBOS-SPIES, ROD DOWNEY, AND MARTIN MONATH

As in Downey and Greenberg [8], we will let Φ̂e denote the e-th wtt-procedure
which will have use ϕe. It can be obtained from a standard listing of all pairs
{〈Ψe, ψe〉 | e ∈ N} consisting of a partial Turing procedure and a partial computable
function, by allowing ΨA

e (x) ↓ only if ΨA
e (x) halts with information used ≤ ψe(x) ↓.

Note that {ϕe}e≥0 is an acceptable numbering of the partial computable functions.
So we may assume that the halting set is based on this numbering, i.e., ∅′ = {e :

ϕe(e) ↓}. Moreover, for any uniformly computable wtt-functionals {Ψ̂e}e≥0 (i.e.,

ΨA(〈e, x〉) = Ψ̂A
e (x) is a wtt-functional) there are computable functions f and g

such that Ψ̂A
e (x) = Φ̂Af(e)(x) = Φ̂Ag(〈e,x〉)(z) for all oracle sets A and all numbers

e, x, z (see [1] or [8] for details). In the following we will tacitly use these facts.

Definition 1.1. The wtt-jump or bounded jump of a set A is defined by

A† = {e | Φ̂Ae (e) ↓}.

Clearly the usual equivalences obtained by the s-m-n theorem apply. So the

wtt-jump of A is (up to m-degree) the same as {〈e, n〉 | Φ̂Ae (n) ↓}.

Note that ∅′ ≡m ∅†, and that for a c.e. set A, ∅′ ≤wtt A† ≤wtt (∅′)†. Moreover if
X is ∆0

2, X† is also ∆0
2.

The analog of the idea of lowness for the bounded jump can be defined as follows.
A set A is bounded low if A† ≤wtt ∅′ (or, equivalently, A† ≤tt ∅′). Variations of
bounded lowness - all of them wtt-equivalent to this notion - have been studied
by Anderson and Csima [2], Ambos-Spies, Downey and Monath [1], and Wu and
Wu [18]. It is easy to see that all classically superlow sets A (i.e. A′ ≤wtt ∅′) are
bounded low, but in [1], we proved that there are Turing complete bounded low
c.e. sets. (This result was independently obtained by Wu and Wu [18].)

2. Arithmetical characterizations

Anderson and Csima [2] proved that if X ≥wtt ∅′ then there is a set A with
A† ≡wtt X. We will be concerned with an analog of Sacks’ Jump Theorem [16],
and hence we will need an analog of the arithmetical hierarchy. The classical Sacks’
Jump Theorem [16] says that if X is Σ0

2 then there is a c.e. set A with A′ ≡T ∅′⊕X.

The problem is that relativization is not so straightforward. What should Σ0
2

mean in this setting? Here are some candidates:

Definition 2.1. (1) A set X is Σ̂B1 iff there is a partial computable function
g and a relation R which is g-bounded computable with

x ∈ X iff ∃sRB(x, s).

Here by R being g-bounded computable we mean that RB(x, s) holds re-
quires that g(x) is defined and any query in the computation of RB(x, s) is
bounded by g(x).

(2) If the function g above can be chosen to be total computable then we say

that X is Σ̃B1 .

SOME NOTES ON THE wtt-JUMP 3

Correspondingly, we say that X is Π̂B
1 iff X is Σ̂B1 , and X is ∆̂B

1 iff X ∈ Π̂B
1 ∩Σ̂B1 .

Similarly, X is Π̃B
1 iff X is Σ̃B1 , and X is ∆̃B

1 iff X ∈ Π̃B
1 ∩Σ̃B1 . Obviously, Σ̃B1 ⊆ Σ̂B1 ,

Π̃B
1 ⊆ Π̂B

1 and ∆̃B
1 ⊆ ∆̂B

1 . In the following proposition we give some properties of
the bounded Σ1-, Π1- and ∆1-classes. In particular we show that, for some oracle
sets B, the latter inclusions are proper. On the other hand note that, for the empty

oracle, obviously Σ̃∅1 = Σ̂∅1 = Σ∅1 etc.

Proposition 2.2. (i) X ∈ Σ̂B1 iff X = dom(Φ̂Be) for some e ≥ 0, and X ∈ Σ̃B1
iff X = dom(Φ̂Be) for some e ≥ 0 such that ϕe is total.

(ii) X ∈ Σ̂B1 iff X ≤m B†.

(iii) X ∈ ∆̃B
1 iff X ≤wtt B.

(iv) There is a c.e. set B such that ∆̃B
1 ⊂ ∆̂B

1 , Σ̃B1 ⊂ Σ̂B1 and Π̃B
1 ⊂ Π̂B

1 .

Proof. (i) We prove the first part. The proof of the second part is similar.

First assume that X ∈ Σ̂B1 . Fix a partial computable function g and a g-bounded
computable relation R such that x ∈ X iff RB(x, s) for some s. Then X is the
domain of the wtt-functional Ψ where ΨB(x) is defined iff there is a number s such
that RB(x, s) holds (note that the use of Ψ is bounded by g). So, for any e, such

that Ψ = Φ̂e, X = dom(Φ̂Be).

For the converse direction, assume that X = dom(Φ̂Be). Fix R such that RB(x, s)

holds iff Φ̂Be,s(x) is defined. Then R is g-bounded computable for the partial com-

putable function g = ϕe and x ∈ X iff RB(x, s) holds for some s. So X is Σ̂B1 .

(ii) First assume that X ∈ Σ̂B1 . By (i) fix e such that X = dom(Φ̂Be). Then, for a

total computable function f such that Φ̂Bf(x)(z) = Φ̂Be (x) for all x and z, X ≤m B†

via f .

For the converse direction, assume that X ≤m B† via f . Then x ∈ X iff

Φ̂Bf(x)(f(x)) is defined. So, for R such that RB(x, s) holds iff Φ̂Bf(x),s(f(x)) is defined

and for g(x) = ϕf(x)(f(x)), g is partial computable, R is g-bounded computable,

and x ∈ X iff RB(x, s) holds for some s. So X is Σ̂B1 .

(iii) First assume that X ∈ ∆̃B
1 , i.e., X ∈ Σ̃B1 and X ∈ Σ̃B1 . Fix total computable

functions g0 and g1 and relations R0 and R1 such that R0 is g0-bounded computable
and x ∈ X iff RB0 (x, s) for some s and R1 is g1-bounded computable and x ∈ X iff

RB1 (x, s) for some s. Then X ≤wtt B via the wtt-functional Ψ̂ where Ψ̂B(x) = 1 if

for the least s such that RB0 (x, s) or RB1 (x, s) holds, RB0 (x, s) holds, and Ψ̂B(x) = 0

otherwise (note that Ψ̂ is g-bounded for g(x) = max{g0(x), g1(x)}).

For the converse direction, assume that X ≤wtt B, say X = Φ̂Be where ϕe is

total. Then, for R0 and R1 such that R0(x, s) holds if Φ̂Be,s(x) = 1 and R1(x, s)

holds if Φ̂Be,s(x) = 0 and for g = ϕe, g is total computable, R0 and R1 are g-bounded

computable, x ∈ X iff R0(x, s) holds for some s, and x ∈ X iff R1(x, s) holds for

some s. So X ∈ Σ̃B1 and X ∈ Σ̃B1 hence X ∈ ∆̃B
1 .

4 KLAUS AMBOS-SPIES, ROD DOWNEY, AND MARTIN MONATH

(iv) By Downey and Greenberg [8], Proposition 3.1, there is a c.e. set B and a

set X such that X ∈ ∆̂B
1 and X 6≤wtt B. So, by (iii), X ∈ ∆̂B

1 \ ∆̃B
1 . This implies

the first part of the claim. Moreover, by definition, X ∈ Σ̂B1 and X ∈ Σ̂B1 (hence

X ∈ Π̂B
1 and X ∈ Π̂B

1) whereas X 6∈ Σ̃B1 or X 6∈ Σ̃B1 (hence X 6∈ Π̃B
1 or X 6∈ Π̃B

1).
Obviously this implies the second and third parts of the claim. �

The most natural guess for an analog of ΣB1 is Σ̂B1 . By Proposition 2.2 (i) the
sets in this class are just the sets which are bounded-c.e. in B in the sense of
[8]. As (ii) shows, the characterization of the classical ΣB1 classes as the classes

of the sets which are many-one reducible to the jump of B carries over to Σ̂B1 if
we replace the jump by the bounded jump. But (iii) together with (iv) shows a

serious drawback to this definition: for some sets B, there are ∆̂B
1 sets which are

not bounded computable from B. The more limited definition of Σ̃B1 does not share

this problem, but here the analog of (ii) fails. In particular, since Σ̃B1 is downward
closed under many-one reducibility, there is a set B such that the bounded jump

B† is not in Σ̃B1 (by (ii) and (iv)).

Exactly as in the arithmetical hierarchy, we can now define Σ̂Bn and Σ̃Bn for all

n ≥ 1. For example, X is Σ̂B2 means that there is a Π̂B
1 set Q such that X is Σ̂Q1 .

If B = ∅ we say that X is Σ̂0
2.

The following proposition is a straightforward analog of the corresponding fact
in classical computability theory.

Proposition 2.3. (i) X is Σ̂0
2 iff X is Σ̂∅

′

1 .

(ii) X is Σ̃0
2 iff X is Σ̃∅

′

1 .

Proof. For the following recall that the classes Σ̂0
1 and Σ̃0

1 coincide with the class
of the c.e. sets.

(i) First suppose that X is Σ̂0
2. Then there is a Π̂0

1 set Q with X ∈ Σ̂Q1 . Since

Σ̂Q1 = Σ̂Q1 there is a partial computable function g and a g-bounded computable
relation R such that

x ∈ X iff ∃sRQ(x, s).

Since Q is in Σ̂0
1 hence c.e., Q ≤m ∅′; say via h. So any g-bounded query to Q can be

replaced by an h(g)-bounded query to ∅′. So there is an h(g)-bounded computable

relation R̂ such that

x ∈ X iff ∃sR̂∅
′
(x, s).

Hence X is Σ̂∅
′

1 .

For the opposite direction, suppose that X is Σ̂∅
′

1 . Then X is Σ̂∅
′

1 too. Since ∅′
is c.e. and the class of the c.e. sets coincides with Σ̂0

1, it follows that ∅′ is in Π̂0
1. So

X is Σ̂0
2 by definition.

SOME NOTES ON THE wtt-JUMP 5

(ii) The proof is similar to the proof of part (i). For the first direction it suffices
to note that if g is total then, by totality of h, h(g) is total too. For the second

direction, it suffices to use the observation that Π̃0
1 = Π̂0

1 hence ∅′ ∈ Π̃0
1. �

3. Potential Analogs of the Sacks’ Jump Theorem

We have pointed out that wtt-superlow sets are useful in classifying the internal
combinatorics of constructions. In this section, we will explore how the wtt-jump
operator operates as an analog of the normal jump operator. As mentioned above,
one such result was by Anderson and Csima [2] who proved that the natural analog
of the Friedberg Jump Theorem holds. There have been earlier studies looking
at the relationship between the classical jump and strong reducibilities, such as
Mohrherr [14] and Csima, Downey and Ng [7]. Solving an open question raised
in [2], here we examine bounded versions of the Sacks’ Jump Theorem [16]. Note
that, by ∅′ ≡m ∅†, we may replace ∅′ by ∅† in the following results.

For any c.e. set A, A† ∈ Σ̂0
2 (namely A† ∈ Σ̂A1 hence, by A ≤wtt ∅′ and by

Proposition 2.3, A† ∈ Σ̂∅
′

1 = Σ̂0
2). So, by ∅′ ≤m A†, A† ≡wtt ∅′ ⊕ S for the Σ̂0

2-set
S = A†. This suggest that the full analog of the Sacks’ Jump Theorem for the

bounded jump should be the statement that, for any Σ̂0
2-set S, there is a c.e. set A

such that A† ≡wtt ∅′ ⊕ S. As the following theorem shows, this strong analog fails.

Theorem 3.1. There exists S ∈ Σ̂0
2 such that, for no c.e. set W , W † ≡wtt ∅′ ⊕ S.

Proof. The argument is finite injury. We will build a Σ̂0
2 set S to meet the require-

ments

Re : ¬(∆
W †e
e = ∅′ ⊕ S & Γ∅

′⊕S
e = W †e).

Here, in the context of this proof, {(We,∆e,Γe)}e≥0 is an enumeration of all triples
of a c.e. set and two wtt-functionals. Moreover, we assume that δe and γe are partial
computable bounds on the uses of ∆e and Γe, respectively, and we fix computable
enumerations We,s etc. of We etc. Moreover, we let δ∗e (n) = maxn′≤n δe(n

′) and
γ∗e (n) = maxn′≤n γe(n

′), (where δ∗e (n) ↑ if δe(n
′) ↑ for some n′ ≤ n, and similarly

for γ∗e (n)) and, w.l.o.g. we assume that δe(n) ≥ n if defined, and similarly for γe(n).

Before we can describe our strategy for meeting the requirements, we have to
present some of the fundamentals of the construction first.

The format of the definition of S is as follows. Besides a computable approxima-
tion {Ss}s≥0 of S we give a computable enumeration {Bs}s≥0 of a c.e. set B and
define a partial computable function ψ such that the approximation {Ss}s≥0 of S is
ψ-bounded controlled by B via {Bs}s≥0 in the following sense. For any number z,
S0(z) = 0, ψ(z) is defined if St(z) = 1 for some stage t, and Bs+1 � ψ(z) 6= Bs � ψ(z)
for any s such that z is extracted from S at stage s+ 1, i.e., z ∈ Ss \ Ss+1. Obvi-
ously this ensures that S = dom(ΨB) for some ψ-bounded wtt-functional Ψ whence

S ∈ Σ̂B1 . Since Σ̂B1 = Σ̂B1 and B ∈ Π0
1 = Π̂0

1, this guarantees that S is in Σ̂0
2.

In addition, we define uniformly computable approximations {Ce,s}s≥0 of aux-
iliary sets Ce together with uniformly partial computable functions ξe such that

6 KLAUS AMBOS-SPIES, ROD DOWNEY, AND MARTIN MONATH

{Ce,s}s≥0 is ξe-bounded controlled by We via {We,s}s≥0 (in the above sense). So
there are uniformly computable ξe-bounded wtt-functionals Ξe such that Ce =
dom(ΞWe

e). It follows that there are total uniformly computable functions fe such
that Ce(x) = W †e (fe(x)), and, by the Recursion Theorem, we may assume that the
functions fe are given in advance.

We work with the standard approximation {W †e,s}s≥0 of W †e where W †e,s(m) = 1

iff Φ̂
We,s
m,s (m) ↓. So, if m is extracted from W †e at stage s+1, i.e., m ∈W †e,s \W

†
e,s+1,

then ϕm(m) is defined at stage s and a number < ϕm(m) is enumerated into We

at stage s+ 1, i.e., ϕm,s(m) ↓ and We,s+1 � ϕm(m) 6= We,s � ϕm(m). Finally, recall
that we assume that any given functional defined at stage s has use < s and any
given partial computable function defined at stage s has value < s.

Now, for a single requirement Re, we work as follows. For readability we will
drop the index “e” in the following.

In order to monitor the ”controlled” length of agreement of the equations in Re
at stage s we define the length functions

l∆(s) = max{n : ∀n′ < n(∆
W †s
s (n′) = (∅′s⊕Ss)(n′) & Γ

∅′s⊕Ss
s � δ(n′) = W †s � δ(n′))}

and

lΓ(s) = max{n : ∀n′ < n(Γ
∅′s⊕Ss
s (n′) = W †s (n′) & ∆

W †s
s � γ(n′) = (∅′s⊕Ss) � γ(n′))},

let

l(s) = min{l∆(s), lΓ(s)},
and call a stage s expansionary if l(s) > l(t) for all stages t < s. Note that the limit
of l exists (since the functionals involved in the definition are bounded) and the
limit is finite iff there are only finitely many expansionary stages iff the requirement
Re is met.

We will work with a number z and a finite sequence of numbers xi under our
control, where z is targeted for S while the numbers xi are targeted for C (hence
f(xi) is targeted for W † implicitly). The numbers z and f(xi) are potential diago-
nalization witnesses for the first equation and the second equation, respectively, in
Re. In the first phase of the attack we define the set up to be used in the second
phase of the attack.

First pick an unused number z (above the restraint of the higher priority re-
quirements) and wait for an expansionary stage s such that l(s) > 2z + 1 (note
that S(z) = (∅′ ⊕ S)(2z + 1)). Then δ∗(2z + 1) is defined at stage s and we may
pick δ∗(2z + 1) unused numbers xi such that z < x1 < · · · < xδ∗(2z+1). Finally,
wait for the least expansionary stage s0 > s + 1 (hence s0 ≥ δ∗(2z + 1) + 2 and
l(s0) > 2z + 1) such that, for 1 ≤ n ≤ δ∗(2z + 1), γ∗(f(xn)) is defined at stage s0,
s0 > γ∗(f(xn)), and l(s0) > f(xn). Then let ψ(z) = s3

0 thereby completing the set
up of the attack. (Note that if the set up cannot be completed then there are only
finitely many expansionary stages. So Re is met.)

Now in the second phase of the attack, a state is assigned to any stage s ≥ s0.
Here the state of s is the number of m < δ∗(2z + 1) such that ϕm(m) is defined at

SOME NOTES ON THE wtt-JUMP 7

stage s but is not yet defined at stage s0, i.e.,

|{m < δ∗(2z + 1) : ϕm,s(m) ↓ and ϕm,s0(m) ↑}|,
and we let sn be the least expansionary stage s ≥ s0 of state n (if any). Note that
any state is ≤ δ∗(2z + 1) < s0 − 1 and the state is nondecreasing in the stage. So,
eventually, all stages have the same state, called the final state. Now, for any state
n we have a procedure which is active at the stages of state n, i.e., it is started at
stage sn + 1 (if sn is defined) and it becomes abandoned at stage sn+1 (if defined).
Each n-procedure may change the approximative value of S(z), but we guarantee
that for each n the number of changes is bounded by s2

0. Since the number of states
is bounded by s0, it follows that the total number of S(z)-changes is bounded by
ψ(z) = s3

0. So we may witness any extraction of z out of S by a change of B
below ψ(z). For n ≥ 1, the n-procedure may also change the value of C(xn) hence
W †(f(xn)). Again we will guarantee that these changes are conform with making
C uniformly bounded c.e. in W . We will show that a procedure which is never
abandoned will guarantee that there are only finitely many expansionary stages.
Since, for the final state n, the n-procedure is never abandoned, this shows that
our strategy meets requirement Re.

The 0-procedure. For any expansionary stage t ≥ s0, let St+1(z) 6= St(z). If
z ∈ St then enumerate the least y < ψ(z) which is not yet in B into Bt+1 (we will
argue below that such a y must exist).

Note that, for any two consecutive expansionary stages t < t′ of state 0, this

ensures that W †t′ � δ
∗(2z+1) 6= W †t � δ∗(2z+1). Since there are δ∗(2z+1) numbers

m less than δ∗(2z+ 1) and since W †s (m) is 0-1-valued, for any set of δ∗(2z+ 1) + 2
consecutive such stages there must be at least one pair of consecutive expansionary

stages t < t′ in the set such that m ∈ W †t \W
†
t′ for some number m < δ∗(2z + 1).

So Wt′ � ϕm(m) 6= Wt � ϕm(m). But since t′ has state 0, ϕm(m) is defined at stage
s0 hence less than s0. So Wt′ � s0 6= Wt � s0. It follows that, if the 0-procedure is
never abandoned then the number of expansionary stages ≥ s0 is bounded by

#0 = (δ∗(2z + 1) + 2) · s0 ≤ s2
0,

hence Re is met. Moreover, the 0-procedure enumerates at most #0 many numbers
(hence at most s2

0 many numbers) ≤ ψ(z) into B.

The n-procedure (n ≥ 1). At stage sn + 1 (if sn exists) let ξ(xn) = sn be the
W -use of xn and proceed as follows (note that xn 6∈ Csn).

(*) Wait for the next expansionary stage t such that xn 6∈ Ct and Ct(xn) =

W †t (f(xn)). Put xn into C at stage t+ 1, and go to (**).

(**) At the first expansionary stage t′ > t such that Ct′(xn) = W †t′(f(xn)) let
St′+1(z) 6= St′(z). If z ∈ St′ then enumerate the least y < ψ(z) which is
not yet in B into Bt′+1 (we will argue below that such a y must exist).

At the first stage t′′ > t′ such that Wt′′+1 � sn 6= Wt′′ � sn (if any)
remove xn from C at stage t′′ + 1, i.e., let Ct′′+1(xn) = 0, and return to
(*). While waiting for such a stage t′′, at any expansionary stage u > t′ let
Su+1(z) 6= Su(z). If z ∈ Su then enumerate the least y < ψ(z) which is not
yet in B into Bu+1 (we will argue below that such a y must exist).

8 KLAUS AMBOS-SPIES, ROD DOWNEY, AND MARTIN MONATH

The success of the n-procedure, provided that it is never abandoned, and its
conformity with the required features of the definitions of C(xn) and S(z) are
shown as follows. First note that xn is extracted from C only at stages t′′ + 1 such
that Wt′′+1 � sn 6= Wt′′ � sn. Since ξ(xn) = sn, this shows that the approximation
of C(xn) is as required. This justifies the assumption that C(xn) = W †(f(xn)), and
we may conclude that Cs(xn) = W †s (f(xn)) for all sufficiently large stages s. Next
observe that, for any stage t as in (*) and the corresponding stage t′ > t in (**),

Ct(xn) = W †t (f(xn)) = 0 whereas Ct′(xn) = W †t′(f(xn)) = 1. Moreover, since the

stages t and t′ are expansionary and greater than s0, W †t (f(xn)) = Γ
∅′t⊕St
t (f(xn))

and W †t′(f(xn)) = Γ
∅′
t′⊕St′
t′ (f(xn)). Since S is not changed at any stage t̂ with

t < t̂ ≤ t′, this implies that ∅′t′ � γ∗(f(xn)) 6= ∅′t � γ∗(f(xn)). So, by γ∗(f(xn)) < s0,
we may conclude that the procedure (*) is called < s0 times. Since (*) and (**)
are run alternatingly, (**) is called < s0 times, too. Moreover, for any such call,
we will change the approximation of S(z) at most δ∗(2z + 1) + 2 times. Namely,
just as in the analysis of the 0-procedure, we may argue that if we change S(z) so
many times then one of theses changes must result in a change of W below ϕm(m)
for a number m such that ϕm(m) is defined at stage sn hence is less than sn. So
we return to (*) at this stage. It follows that the total number of S(z)-changes
which may be caused by the n-procedure is bounded by s0 · (δ∗(2z + 1) + 2) < s2

0,
hence the required permittings by B will be provided. Finally, if the n-attack is not
abandoned, then Re is met since the above bounds on the calls of the subprocedures
(*) and (**) and the bounds on the S(z)-changes imply that there are only finitely
many expansionary stages.

This completes the description of the strategy to meet a single requirement Re
and the proof of its correctness. The result follows by a standard application of the
finite injury method. We leave this to the reader. �

Given the above failure of the potential strong analog of the Sacks’ Jump The-
orem for the bounded jump, we may look for some weaker analogs. The following
seems a good candidate, but this is illusory.

Proposition 3.2 (Tilde Sacks’ Jump Theorem). Let S be Σ̃0
2. There is a c.e. set

A with A† ≡wtt ∅′ ⊕ S.

Originally we had a direct proof, but subsequently realized that the “tilde”
version of the jump theorem is of limited interest as the jump hierarchy collapses,
and Proposition 3.2 follows easily from the material below.

Proposition 3.3. (i) For any set X, X is in Σ̃0
2 iff X is in Σ̃∅

′

1 iff X is in

∆̃∅
′

1 iff X ≤wtt ∅′.
(ii) For any n ≥ 2, Σ̃0

n = Π̃0
n = ∆̃0

n = ∆̃0
2 = {X : X ≤wtt ∅′}.

Proof. (i) By Proposition 2.3 (ii) and Proposition 2.2 (iii), it suffices to show that

any set in Σ̃∅
′

1 is wtt-reducible to ∅′. So fix X ∈ Σ̃∅
′

1 . By Proposition 2.2 (i) there is

an index e such that X = dom(Φ̂∅
′

e) where the bound ϕe on the use of Φ̂e is total.

SOME NOTES ON THE wtt-JUMP 9

Define the c.e. set D by

D = {〈x, σ〉 : |σ| = ϕe(x) & Φ̂σe (x) ↓},

and fix a total computable function f such that D ≤m ∅′ via f . Then, for any
x ≥ 0,

x ∈ X ⇔ Φ̂∅
′

e (x) ↓ ⇔ Φ̂∅
′�ϕe(x)
e (x) ↓ ⇔ f(〈x, ∅′ � ϕe(x)〉) ∈ ∅′.

Obviously, this implies X ≤wtt ∅′ where the use of the reduction is bounded by the
total computable function

g(x) = max{ϕe(x), 1 + max
|σ|=ϕe(x)

f(〈x, σ〉)}.

(ii) The proof is by induction on n. For n = 2 the claim is immediate by part (i)
of the proposition since X ≤wtt ∅′ iff X ≤wtt ∅′. So fix n + 1 > 2 and assume (ii)

for n. By symmetry and by (i), given X ∈ Σ̃0
n+1 it suffices to show that X ≤wtt ∅′.

Fix Y ∈ Π̃0
n such that X ∈ Σ̃Y1 . Note that Σ̃A1 ⊆ Σ̃B1 for any sets A and B such

that A ≤wtt B. So, since Y ≤wtt ∅′ by inductive hypothesis, it follows that X is in

Σ̃∅
′

1 . By (i) this implies X ≤wtt ∅′. �

Note that Proposition 3.3 immediately implies Proposition 3.2 above if we let

A = ∅. Namely, for S ∈ Σ̃0
2, it follows by Proposition 3.3 that S ≤wtt ∅′ hence

A† = ∅† ≡wtt ∅′ ≡wtt ∅′⊕S. This shows that we can hardly claim that Proposition
3.2 is an analog of the Sacks’ Jump Theorem for the bounded jump.

In order to get stronger and more satisfying analogs we have to consider natural
extensions of the tilde classes. One possible extension to Definition 2.1 (ii), more
based on the complexity of approximations akin to the hierarchies of Downey and
Greenberg [8], would be again to take g to be total but to relax the requirement
that g is computable by having g wtt-reducible to the oracle.

Definition 3.4. A set X is Σ̆B1 iff there is a function g and a relation R such that
g ≤wtt B, R is g-bounded computable and

x ∈ X iff ∃sRB(x, s).

Unfortunately, this does little for us as the following shows.

Proposition 3.5. (1) Σ̂∅
′

1 ⊆ Σ̆∅
′

1 .

(2) For all X ∈ Σ̆∅
′

1 , there exists Y ∈ Σ̂∅
′

1 such that X ≤tt Y .

(3) Σ̂∅
′

1 is a proper subclass of Σ̆∅
′

1 .

Proof. For 1. Suppose that X ∈ Σ̂∅
′

1 . Fix a partial computable function g and

a g-bounded computable relation R such that x ∈ X iff ∃sR∅′(x, s). Then, for h
defined by h(x) = 0 if g(x) ↑ and h(x) = g(x) if g(x) ↓, R is h-bounded computable.
So it suffices to show that h ≤wtt ∅′. But this is immediate by the s-m-n Theorem:
for computable f such that g(x) ↓ iff ϕf(x)(f(x)) ↓ (i.e., f(x) ∈ ∅′), h(x) can be
computed from ∅′ � f(x) + 1.

10 KLAUS AMBOS-SPIES, ROD DOWNEY, AND MARTIN MONATH

For 2. Let X ∈ Σ̆∅
′

1 via g(x) = lims g(x, s) and R∅
′
(x, s). which changes at most

h(x)− 1 many times. (Recall that g ≤wtt ∅′ iff g is ω-c.a. by the proof of the Limit
Lemma.) We define a tt-reduction ΓY = X via auxilary elements x1, . . . , xh(x)

and y1, . . . , yh(x) separate elements from (∅′)r(x) whose indices are given by the
Recursion Theorem, and these are controlled by ∅′ and partial computable functions
q〈x,1〉, . . . , q〈x,h(x), whose indices are also given by the Recursion Theorem.

The reduction is that x ∈ X iff xi ∈ Y where i is the least index with yi ∈ ∅′
and yi+1 6∈ ∅′. The plan is that we let q(x1) ↓ [0] = g(x, 0), and we put y1 into

∅′[0]. While g(x, s) = g(x, 0) we will observe R∅
′
(x, s) with this value for g, and we

keep x1 ∈ Ys iff x ∈ x ∈ Xs. If ever we see g(x, t + 1) 6= g(x, t) we will enumerate
y2 ∈ ∅′[t+1]1 We would also define q〈x,2〉(x2) ↓ [t+1] = g(x, t+1), and now begin the

simulation of R∅
′
(x, s) with this new value for g. Again until g(x, u) 6= g(x, t+ 1),

we would use x2 as a representation of x, and have x1 ∈ Ys iff x ∈ x ∈ Xs, for
s ≥ t+ 1. The pattern continues, and each time a new value of g(x, u) is given we

put the next value of yj into ∅′ and use xj and q〈x,j〉 for simulation of R∅
′
(x, s) with

this value for g. Since there are at most h(x)− 1 many changes for g(x, s we won’t
run out of yi, q〈x,i〉 and xi, and the last one we use gives the correct simulation,

and validates the tt-reduction ΓY = X.

For 3. We build X ∈ Σ̆∅
′

1 such that X 6∈ Σ̂0
2. To do this we will meet

Qe : X 6= Ye where z ∈ Ye iff ϕe(x) ↓ ∧∃sR∅
′

e (z, s).

Without loss of generality we can choose Re to be an enumeration if primitive
recursive relations. we build our own computable R and ω-c.a. function g(x, s).
For a single Qe we will pick a follower x. We initially have g(x, s) = 0 and continue
with this until ϕe(x) ↓ [s]. At this stage, we would define g(x, s + 1) = d a
large number bigger than (e.g.) 2ϕe(x) many numbers under our control for this
requirement, whose indices are given by ther Recursion Theorem. We will have
x ∈ Xu (for u > s) iff the number of elements from this list in ∅′ is odd. Then using
these elements it is easy to make sure that x ∈ Ye,u iff x 6∈ Xu.

There is no injury so this works by putting the modules together. �

4. The Low Basis Theorem

A classical result on Π0
1-classes is the superlow basis theorem of Jockusch and

Soare [12] which states that a nonempty Π0
1 class has a member of superlow degree,

and hence a member A for which A† ≡wtt ∅′ in particular. One of the corollaries to
the proof is that coding can also be used. Hence, as stated in [12], if P is a special
Π0

1 class (i.e., P is nonempty and has no computable members) then, for any set S
with ∅′ ≤T S, P contains a member A with A′ ≡T S. We will see in this section
that this generalization fails for the wtt-jump. Recall the proof of the Generalized
Low Basis Theorem.

1Strictly speaking this would go into ∅′[t′] where t′ ≥ t + 1 is given by the overhead of the
Recursion Theorem, but we can pretend that this primitive recursive overhead is for the sake of

readability.

SOME NOTES ON THE wtt-JUMP 11

Let T be a computable tree with P = [T]. Of course T has 2ℵ0 many paths as
it has no computable paths. We inductively define computable trees Tn such that
T = T0 ⊇ T1 ⊇ In the first step, given T2e, as usual let U2e = {σ ∈ T2e :
Φσe (e)[|σ|] ↑}. If U2e is finite let T2e+1 = T2e else T2e+1 = U2e which also has 2ℵ0

many paths. Note that this decision is ≤wtt ∅′, which is the reason why the Low
Basis Theorem actually gives a superlow member.

The second step is to find the lex-least pair (σ0, σ1) of incomparable strings in
T2e+1 with σ0 <L σ1, and let T2e+2 be the full subtree of T2e+1 above σS(e), and
then let A ∈

⋂
e[Te].

It is this second step which fails to work for the bounded jump A† since we seem
to need the full power of a Turing reduction to ∅′ to find these two strings. This is
a fatal problem:

Theorem 4.1. There is a set S with ∅′ <wtt S and a computable tree T with
[T] 6= ∅ and no computable path such that, for all A ∈ [T], A† 6≡wtt S.

Proof. The argument is finite injury. It suffices to define a ∆0
2 set D and a com-

putable tree T such that the following hold.

(1) |[T]| = 2ℵ0 (hence, in particular, [T] 6= ∅)

(2) ∀ A ∈ [T] (A is not computable)

(3) ∀ A ∈ [T] (D 6≤wtt A†)

(Then, for instance, the set S = ∅′′ ⊕D has the required properties.)

The scheme for defining T is as follows. We give a computable approximation
ι : 2<ω × ω → 2<ω (where λσ.ι(σ, s) is defined at stage s of the construction) of a
function ι∗ : 2<ω → 2<ω which induces an isomorphism from 2ω onto [T] for the
desired tree T .

To be more precise, for any string σ and any stage s we guarantee

(4) ∀ i ≤ 1 (ι(σ, s) ≺ ι(σi, s))

and

(5) ι(σ0, s) and ι(σ1, s) are incomparable,

and we ensure that

(6) ι∗(σ) = lim
s→ω

ι(σ, s) exists.

Initially we let ι(σ, 0) = σ for any string σ. Then, at stage s+ 1, we guarantee

(7) range(λσ.ι(σ, s+ 1)) ⊆ range(λσ.ι(σ, s)).

So, if we let

Ts = {τ : ∃σ(τ � ι(σ, s))}

12 KLAUS AMBOS-SPIES, ROD DOWNEY, AND MARTIN MONATH

then T0 = 2<ω and, by computability of ι and by (4) and (5), Ts, s ≥ 0, are
uniformly computable trees such that [Ts] is isomorphic to 2ω. Moreover, by (7),
Ts+1 ⊆ Ts and, by (6),

(8) T = lim
s→∞

Ts

exists and satisfies (1). Note that the tree T might be not computable. But, by
(4) and (5), a node τ has an extension in [Ts] iff τ � ι(σ, s) for some string σ of
length |τ |, and, by (6) and (7), τ has an extension in [T] iff τ has extensions in [Ts]
for all s ≥ 0. So the set of nodes which do not have extensions in [T] is c.e., hence

[T] is a Σ0
1-class. It follows that there is a computable tree T̂ with [T] = [T̂]. So it

suffices to ensure that the tree T defined by (8) satisfies (2) and (3). (Note that,
as observed above already, T satisfies (1).)

For this sake it suffices to meet the requirements

R2e : ∀ A ∈ [T] (A 6= ϕe)

and

R2e+1 : ∀ A ∈ [T] (Φ̂A
†

e 6= D),

respectively (e ≥ 0).

The requirement Rn is allowed to change the approximations to ι∗(σ) only for
the nodes σ of length ≥ n. Since the requirements will be finitary, this guarantees
(6). The requirement Rn is split into the subrequirements Rn,σ where |σ| = n and
where Rn,σ guarantees that Rn is met for all sets A such that ι∗(σ) is an initial
segment of A. By definition of T this ensures that Rn is met. Moreover, whenever
Rn,σ changes the approximation ι at a stage s + 1, then it moves ι(σ, s + 1) to
ι(στ, σ) for a proper extension στ of σ and simultaneously moves ι(σ′, s+ 1) to the
corresponding extension ι(σ′τ, s) of ι(σ′, s) for any proper extension σ′ of σ (and
leaves ι(σ′′, s) unchanged for nodes σ′′ not extending σ). Obviously, this ensures
that ι has the required properties (4), (5) and (7).

The strategy to meet the noncomputability requirement R2e,σ for any node σ
with |σ| = 2e is as follows. Wait for a stage s+1, such that ϕe,s(x) is defined for the
least x such that ι(σ0, s)(x) 6= ι(σ1, s)(x) (note that, by (5) and (4), such an x exists
and x ≥ |ι(σ, s)|; also note that if there is no such stage s then, by (6), ϕe is not
total and R2e is trivially met). Then fix i ≤ 1 minimal such that ι(σi, s)(x) 6= ϕe(x)
and let ι(στ, s+ 1) = ι(σiτ, s) for all strings τ (and let ι(σ̃, s+ 1) = ι(σ̃, s) for any
node σ̃ such that σ 6� σ̃). If no higher priority requirement Rn (n < 2e) acts after
stage s this will guarantee that ι∗(σ) = ι(σi, s) hence A(x) 6= ϕe(x) for all sets A
extending ι∗(σ).

The strategy to meet the jump requirement R2e+1,σ for any node σ with |σ| =
2e+1 is as follows. First we fix a number xσ to be reserved for this subrequirement.
Next we will define ι∗(σ) in such a way that if there is a set A such that ι∗(σ) ≺ A
and Φ̂A

†

e (xσ) is defined then, for all such sets A, the value of Φ̂A
†

e (xσ) depends only
on ι∗(σ). So, finally, we will meet R2e+1 for A extending ι∗(σ) by letting D(xσ)
diagonalize against this value. The details are as follows.

SOME NOTES ON THE wtt-JUMP 13

Wait for a stage sσ such that ϕe,sσ (xσ) ↓ (if there is no such stage then Φ̂A
†

e (xσ) ↑
for all sets A hence R2e+1 is trivially met). Then, for any stage s ≥ sσ, let

U(σ, s) = {z : z < ϕe(xσ) & ϕz,s(z) ↓} and u(σ, s) = max{ϕz(z) : z ∈ U(σ, s)}.
If |ι(σ, s)| < u(σ, s) then fix the least (in the sense of the length-lexicographic order)
σ′ extending σ such that |ι(σ′, s)| ≥ u(σ, s) and let ι(στ, s + 1) = ι(σ′τ, s) for all
strings τ (and let ι(σ̃, s+ 1) = ι(σ̃, s) for any node σ̃ such that σ 6� σ̃). Note that
there are at most ϕe(xσ) stages s at which u(σ, s) may grow. So this action is
finitary (hence compatible with (6)). Finally, define the computable approximation
D(xσ, s+ 1) of D(xσ) at stage s+ 1 > sσ as follows (and let D(xσ, s) = 0 if s ≤ sσ
or sσ is not defined). For any set A let A†s = {z : ϕz,s(z) ↓ & Φ̂Az,s(z) ↓}. Then

D(xσ, s+ 1) = 1 if Φ̂
(ι(σ,s+1))†

e,s (xσ) ↓= 0 and D(xσ, s+ 1) = 0 otherwise (where we
view ι(σ, s+1) as the set of the numbers y < |ι(σ, s+1)| such that ι(σ, s+1)(y) = 1).

Note that, by (6), Φ̂
(ι(σ,s+1))†

e,s (xσ) = Φ̂
(ι∗(σ))†

e (xσ) for all sufficiently large s, hence
D(xσ) = lims→ωD(xσ, s) exists.

In order to show that the above strategy succeeds to meet R2e+1,σ, w.l.o.g.

assume that ϕe(xσ) ↓ and that A is a set extending ι∗(σ) such that Φ̂A
†

e (xσ) ↓.
Since D(xσ) = lims→ωD(xσ, s), it suffices to show that D(xσ, s+ 1) 6= Φ̂A

†

e (xσ) for
all sufficiently large s. So fix s large enough such that s ≥ sσ, ι(σ, s + 1) = ι∗(σ),

U(σ, s) = {z < ϕe(xσ) : ϕz(z) ↓} and Φ̂A
†

e,s(xσ) ↓. Since, by s ≥ sσ and by

construction, D(xσ, s+ 1) 6= Φ̂
(ι(σ,s+1))†

e,s (xσ), it suffices to show that (ι(σ, s+ 1))† �
ϕe(xσ) = A† � ϕe(xσ). So fix z < ϕe(xσ). If ϕz(z) ↑ then (ι(σ, s + 1))†(z) =
A†(z) = 0. So we may assume ϕz(z) ↓. Then, by choice of s and by construction,
ϕz(z) ≤ u(σ, s) ≤ |ι(σ, s + 1)|. Since ι(σ, s + 1) = ι∗(σ) ≺ A, it follows that

ι(σ, s+ 1) � ϕz(z) = A � ϕz(z). So Φ̂
ι(σ,s+1)
z (z) ↓ iff Φ̂Az (z) ↓, i.e., (ι(σ, s+ 1))†(z) =

A†(z).

This completes the description of the individual strategies. The rest is a straight-
forward application of the finite injury method. �

References

[1] K. Ambos-Spies, R. Downey and M. Monath, On the computational power of maximal sets,

in preparation.
[2] B. Anderson and B. Csima, A bounded jump for the bounded Turing degrees, Notre Dame

J. Form. Log. 55 (2014), no. 2, 245–264.

[3] B. Afshari, G. Barmpalias, S. B. Cooper and F. Stephan, Post’s programme for the Ershov
hierarchy, J. Logic Comput. 17 (2007), no. 6, 1025–1040.

[4] G. Barmpalias, R. Downey and N. Greenberg, Working with strong reducibilities above totally

ω-c.e. and array computable degrees, Trans. Amer. Math. Soc. 362 (2010), no. 2, 777–813.
[5] J. Chisholm, J. Chubb, V. Harizanov, D. Hirschfeldt, C. Jockusch, Jr., T. McNicholl, and S.

Pingrey, Π0
1 classes and strong degree spectra of relations J. Symbolic Logic 72 (2007), no. 3,

1003–1018.
[6] R. Coles, R. Downey and G. LaForte, Notes on wtt-jump and ordinal notations. Manuscript,

1998.
[7] B. Csima, R. Downey and K. M. Ng, Limits on jump inversion for strong reducibilities, J.

Symbolic Logic 76 (2011), no. 4, 1287–1296.

[8] R. Downey and N. Greenberg, A Hierarchy of Turing Degrees, in Series: Annals of Mathe-
matics Studies, Princeton University Press, in press.

14 KLAUS AMBOS-SPIES, ROD DOWNEY, AND MARTIN MONATH

[9] R. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity, Springer-Verlag,

2010.

[10] Y. Ershov, A certain hierarchy of sets. I. (Russian), Algebra i Logika 7 (1968), no. 1, 47–74.
[11] G. Gerla, Una generalizzazione della gerarchia di Ershov, Bolletino U.M.I. (5) 16-B (1979),

no. 2 765–778.

[12] C. Jockusch and R. Soare, Degrees of members of Π0
1 classes, Pacific J. Math. 40 (1972),

605–616.

[13] S. Kleene and E. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of

Math. (2) 59 (1954), 379–407.
[14] J. Mohrherr, Density of a final segment of the truth-table degrees, Pacific J. Math. 115

(1984), no. 2, 409–419.

[15] P. Odifreddi, Classical Recursion Theory, Vol. II, North-Holland, 1999.
[16] G. Sacks, On the degrees less than 0′, Ann. of Math. (2) 77 (1963), no. 2, 211–231.

[17] A. Turing, Systems of logic based on ordinals, Proc. London Math. Soc. (2) 45 (1939), no. 3,
161–228.

[18] G. Wu and H. Wu, Bounded jump and the high/low hierarchy, in Theory and applications

of models of computation, Lecture Notes in Comput. Sci., 11436, Springer, Cham, 2019,
647–658.

University of Heidelberg

E-mail address: ambos@math.uni-heidelberg.de

Victoria University of Wellington

E-mail address: Rod.Downey@msor.vuw.ac.nz

University of Heidelberg

E-mail address: martin.monath@posteo.de

