I}

NEW ZEALAND JOURNAL OF MATHEMATICS
Volume 21 (1992), 33-89

AN INVITATION TO STRUCTURAL COMPLEXITY*

Rop DowNEy
(Received May 1991)

1. Introduction

In this article I plan to give the reader a (hopefully) appetizing taste of what I feel
is one of the most interesting, important and fascinating areas of mathematics {and
computer science). Because of space limitations, the presentation will be necessarily
sketchy. The audience is assumed to be mathematically mature, yet probably
unfamiliar with the basic concepts and techniques in the area. Because of this I will
include quite a lot of background material. Finally I should stress that this is not a
survey of the area, merely an idiosyncratic view of a number of topics that I feel fit
the description of “appetizing taste”. For a more comprehensive account the reader
should refer to Balcazar, Diaz and Gabarro [1988, 1990], as well as the classic
text of Garey and Johnson [1979]. What is structural complexity? Complexity
theory is concerned with understanding the algorithmic nature of mathematical
structures and processes. This area grew out of recursion theory which is also
concerned with the algorithmic nature of mathematics. The crucial difference is
that in complexity theory, we are concerned with the amount of resource needed
to perform an algorithm (or process) whereas in recursion theory we are concerned
as to whether .a process can be performed by an algorithm at all. While there is
no general agreement as to what defines structural complexity (“I know it when I
see it”) the area does seem to be delineated by certain aspects. The key ones seem
to be that we are concerned with algorithms “in the abstract” and try to reduce
the central issues (such as (e.g.) nondeterminism) to their basics. The situation is
analogous to Post’s realization that a simple diagonalization argument lay at the
heart of Gédel’s incompleteness theorem (Post [1944]). Anyhow, aside from these
vague comments, I hope the present article will give the reader some idea of the
area.

The principle issues of the area are trying to understand the relationship be-
tween ‘complexity classes’ of different resources. The most well known of these
is the infamous P = NP? question, or its cousin P = PSPACE? (see §3 for all
relevant definitions). These famous questions are illustrated as follows: Given an
(undirected) graph G, a Hamilton path is a path through each of the vertices of G,
passing through each vertex ezactly once. This is an extremely important. problem
related to many practical situations (ask your students doing operations research!).
Suppose you are asked to dream up an algorithm A to do the following : given a
graph G, A(G) computes a Hamilton path in G, or tells us one does not exist.

One algorithm is the following : use trial and error. Alas, this is not a very
nice algorithm in terms of time since in the worst case it may take > O(2") many

*This is an expanded version of an invited address presented to the New Zealand Mathematics
Colloquium, University of Otago, Dunedin, May 1991. The author wishes to thank Ewan Tempero
for various corrections.

34 ROD DOWNEY

steps where n is the mumber of edges of G. So for any reasonable size (say > 1000
vertices) its performance is woeful. What we would desire is an algorithm that ran
in “polynomial time” say O(n®) or O(n*). So would we alll Despite the combined
efforts of a huge number of mathematicians over a long period, no polynomial time
algorithm for the problem above has been found. Furthermore, the problem above
lies in a large class of diverse practical problems which we have shown to be egually
difficult in the sense that if we can solve any of them fast then we can solve all of
them fast.

One of the things I hope to do in the present article is to make precise what I
mean in the discussion above. Staying at the informal level, note that as far as the
recourse of space is concerned, the problem above is tractable. Space is reusable.
So we can, one at a time, in the same space try each possible path. Thus we see
that the Hamilton path problem lies in PSPACE (polynomial space). We believe
that the Hamilton path problem does not liein P (polynomial time) nor is it the
‘most difficult problem’ in PSPACE. But note the general structural complexity
question here: DOES P = PSPACE? That is, is there any problem we can do in
polynomial space that needs more than polynomial time?

In fact, the situation is even more intriguing. We assume our data is input in base
n some n # 1. (It turns out that n = 2 is representative in a robust sense). So we
can define LOGSPACE to be the collection of problems that can be solved in space
log of the length of the input. Now we can prove that LOGSPACE = PSPACE.
And we know that LOGSPACE C P C NP C PSPACE. But we don’t know which
inclusions are proper.

In the initial sections we will look at some of the basic notions and definitions
of the area. We will see that sometimes one can prove separation results and
sometimes we can prove coincidence. Often we don’t know and, indeed can show
that ‘known techniques will fail’ in a strong sense. We do this by examining the
effect of varying the model of computation and “oracle” results, as we see in later
sections.

For reasons of simplicity we concentrate on the complexity classes above. Any-
how, they seem the most important classes. We do try to mention the relationship
between a number of models such as Turing machines, RAMs and circuit models.
We will also look more deeply into the question of whether questions such as “does
P = NP” matter in “real life”. While there are many issues here, in essence this
questions has to do with ‘approximate solutions’ in some sense or another. We look
at whether it is possible always to give good approximate solutions (and what we
mean by this). We also look at the interactive proofs systems: going back to the
Hamilton path example, is it possible to give someone overwhelming evidence that
(3 has a Hamilton path in such a way that they cannot find a path. (These are the
subset of the so-called zero-knowledge proofs.)

We will briefly look at delicate separation results using Ramsey type arguments
and Kolmogorov complexity as well as the probabilistic separation arguments via
cirenit complexity. These are all model dependent.

We finish with some fascinating recent work related to the Robertson-Seymour
theorem which challenges the notion of P-time as a good measure of complexity.

AN INVITATION TO STRUCTURAL COMPLEXITY 35

Finally, I will try to give a small sample of the easier proof techniques although
even for these space will not allow more than a general outline in many cases. Of
course most results are stated without proof.

There are so many other interesting questions we will not look at. Here is one
to try {Hartmanis and Stearns [1965)] : is there any irrational number g for which
there is an algorithm such that for some constant n the algorithm will compute the
next member ¢'s decimal expansion once every n steps?

Finally, I would like to dedicate this paper to Juris Hartmanis who fired my
interest in the area when I heard him give a truly exciting talk at Monash (in 1984,
I think). Whilst I don’t have the same inspirational talents of Hartmanis, I do hope
this article will convince some of you to look more deeply into this fascinating and
important area.

2. Preliminaries

Many mathematicians and computer scientists do not even have a basic training
in recursion/complexity theory. There are several reasons for this. Some have to
do with fashions and the evolution of the subjects, but mainly it is because the
importance of the area has come to the fore in only the last 20 or so years. I hope
this section will give the reader some rudiments of the area. The reader should see,
say, Salomaa [1985], Rogers [1967], Soare [1987] or Davis and Weyuker [1983]
for more details.

Qur concern will be functions f : A — B with B,A C IN. These are called
partial functions and if A = IN then we call them total. It may seem restric-
tive to look only at IN, but from an algorithmic point of view, we can consider
algorithmic structures as coded into IN in some way. For instance if we consider
{0,1}*, the set of all (finite) binary strings, then we can assign codes called {(Gédel
numbers) as follows: let n(0} = 1, n(1) = 2. Then if ¢ = a;...a, we can assign
#(s) = 2nlagnles) p(e=) where P, denotes the ith prime. Incidentally, this
gives a generic way of showing countability of many well known structures. I find
it useful when teaching such matters. The reader should try the trick with the
collection of finite subset of IN, or with@ (e.g. write if r = (—1)°% with a,b € N
in lowest terms and § = 0 or 1, then #(r) = 293%5%). I should point out that
there are many other ways of proving (e.g.) {0,1}* is countable. For instance
let f(o) = n(a;)...n(a,). Later, when we study resource bounded algorithms,
the representation of & will be very important. The reader should also note that
the coding procedures described above are algorithmic since we give an ‘effective
procedure’ for the relevant embedding.

While we are on the subject of algorithms, what do we mean? Here we come to
the famous thesis of Church: paraphrased in modern terminology this thesis states
the collection of algorithmic partial functions coincide precisely with those that can
be computed by (Fortran)(Basic) (Pascal) programs. Clearly Church didn’t express
his thesis this way. There have been many formulations claiming to capture the
class of “intuitively computable” functions. These all turn out to be equivalent,
thus providing strong evidence for Church’s thesis. We will call this class the class
of partial recursive functions. If f is a partial recursive total function, we simply
say that f is recursive.

36 ROD DOWNEY

For our purposes, we will here describe only one model and only later will we
describe some others (when we look at complexity issues). A Turing machine
(T.M.) M can be visualized as a device as follows

\

LI LT T I T ITTTd

M can scan a square on an infinite two way tape. This machine has a finite number
of internal states {go,... ,¢n} say and can print/read symbols from an alphabet
{b,1,2} say where b denotes a blank square. According to a given (state, symbol
currently scanned), M will go into a potentially new state and perform one of the
following operations: move left, move right, or (over) print a symbol on the current
square. Thus a T.M. is simply a finite set of quadruples of the form {g;, S, Pijy @ig)
where Pj; € {Si;, R,L}. For instance (g;,S;, Sk, q:) is read as if M is in state
¢; reading S; then 1t prints Sy in place of S; and goes to state ¢;. We say M
is determjnistic if for each (g;, ;) conﬁguration there corresponds without loss of
generality exactly one quadruple. M is nondeterministic otherwise. We set aside
go as the initial state and g, as the stop one. Finally we can code z as a block
of & ones and say that a deterministic M simulates a partial function f if for all
¢ € domf, M when started on the leftmost one of a block of # ones stops on
the leftmost one of a block of f(x) ones (i.e. on an otherwise blank tape), and if
x ¢ domf, then M does not halt when started on the leftmost one of a block of z
ones. The following example may be instructive:

Example. f(z) = 2z is recursive. A T.M. to compute f is

{(Q'O, b: b: QS)a ((10:]-a 2: Q1): (91: 2: L: QI): (Q‘l; b, 2: Q'2), (Q2, 2: R: QZ):
<Q21 13 2: QI)) (Q2s b: L: q3>) <Q37 21 1: q3>1 (‘2‘3, 1) L? 9'3): (Q?n b: R: q.s'>}-

The reader might like to ponder how one would go about proving that the class
of (say) Pascal-computable functions coincide with those computed by Turing Ma-
chines. For the purposes of this section, the model is not all that 1mportant but
two properties of this class are:

Theorem 2.1. (Enumeration Theorem — Universal Turing Machine). There is
an algorithmic way of enumerating all partial recursive functions. That is, there is
a-partial recursive function f{z,y) of two variables with

f(z,y) = ¢:r:(y)

where ¢ (y) denotes the result, if any, of the z-th Turing machine on mput y, and
this makes sense.

AN INVITATION TO STRUCTURAL COMPLEXITY 37

Proof Sketch. Use Godel numbering. A T.M. is a finite set of quadruples. Each
quadruple @ can be given a number #(Q). If Q; = (g;, S5, Pij, ¢i;), then #(Q;) =
2n(@)3n(S) 5P 7nles), Let M = {Qn,... ,Qm} with #(Q;) < #(Qi41). Then
assign #(M) = 2#(@:)3#(Q2) | (P, }#(@m). Now enumerate the M’s in increasing
order. |

The point of (2.1) is that we can pretend we have the machines do,¢1,... in
front of us and to compute 10 steps of the computation of ¢y, on input 30 (Written
¢$°(30)) we can pretend to walk to ¢g, put 30 on the tape and run it for 10
steps. This property is the most important one of this class since it allows us to
diagonalize over the class of partial recursive functions without leaving the class.
As an example we have the following.

Theorem 2.2. (The Halting problem). There is no algorithm which, given z and
y decides if ¢dz(y) | (z e. ¢z(y) halis}. Indeed there is no algorithm to decide if

Proof. This is similar to Cantor’s proof that the reals are uncountable. Suppose
such an algorithm exists. Then g below is (total) recursive

(@_{1 if ¢s(2) 1
T= bal@) +1 i ulz) |

Now by (2.1) there is a y with g = ¢,. As g is total, ¢y(y) |. So ¢, () = g(y) =
¢y (y) + 1, a contradiction. ¥

Remark 2.3. Notice that the same proof shows that there is no algorithm to
enumerate all the tofal recursive functions. Note that we can define a partial
recursive g via g(z) = ¢, (z) + 1. All this means is that for any indez y of g, (i.e.
¢y = g) we have g(y) 7. The reader is invited to prove that g so defined has no
(total) recursive extension. :

This brings us to an important idea: reducibility. We often prove that problem
A is unsolvable by showing that ‘A is as hard as B’ and B is unsolvable. This
describes what we call a reduction B <7 A. We will define this more formally, but
first an example.

Theorem 2.4. There is no algorithm to decide if dom ¢y = @

Proof. We show that if we could decide if dom¢, = @ then we solve the halting
problem. This is written as {z : ¢.(z) |} <7 {z : dom¢, = &}. Define a partial
recursive function g via

1 if ¢u(z) |

9@w={Tﬁ%@T

To see that g is partial recursive, we describe an algorithm for it. We compute
g in stages. At stage s, we compute g°(z,y) as 1 if ¢5(z) | and to not as yet halt
if ¢5(x) 1. We can consider g(z,y) as a recursive collection of partial recursive
functions. That is, there is a recursive s(z) with ¢ey() =g(z,).

IN if ¢g(z) |

Then dom(qbs(m))= { & if ¢u(z) 1

38 ROD DOWNEY

So if we can decide if dom ¢g(5) = &, we could decide the halting problem.]

A couple more definitions. First we code problems as subsets of IN. (e.g. K* =
{2737 : ¢2(y) L})
Definition 2.5. Wecall ACIN

(i) recursive enumerable (r.e.) iff A = dom¢, for some .

(i) recursive if both A and A =IN — A are r.c.

Let W, = dom¢. dencte the e-th r.e. set with W, ; = dom¢Z. The following re-
sult (i) explains the name recursively {or “computably”) enumerable and (i)
provides a very useful tool.

Theorem 2.6.

(i) An infinite set A is r.e. iff there is a recursive injective function f with
FIN) = A.

(ii) (Kleene). B is r.e. iff there is a recursive relation R such thet x € B iff
(Fy)R(z,y).

Thus an r.e. set is a “listable” one. Note that recursive sets correspond to
decidable questions: If A is recursive, then to decide if n € A, let f(IN) = A,
g(IN) = A. List f(0),9(0), f(1),9(1),... and wait till n» occurs. If n occurs on
the g-list, n ¢ A. Otherwise n occurs on the f-list and so n € A. Note that
K = {z : ¢z(z)} is an r.e. but not recursive set. We can push the reasoning of
(2.4) a lot further: we call A an indez set if z € A and ¢, = ¢, implies y-€ A.

Theorem 2.7. (Rice). An index set A is recursive (and so the problem it codes is
decidable) iff A=IN or A= 0.

Of course many problems are decidable so are not coded by index sets. Now to
formalize the notion of reducibility. We can say A <7 B (A is Turing reducible to
B) if we can decide z € A given that we can ask a finite number of questions of B
(for free}). 'This can be made precise by the notion of an oracle Turing Machine. We
augment the normal model by putting a further infinite (oracle) tape upon which
we write the members of B in order, and allow the question is & on the oracle tape?
to be asked in the process of a computation. In modern terminology, the oracle
tape is a read only memory (containing B). Again there is an enumeration of all
oracle T.M.’s, and we let ®. ;(C;z) denote the effect of computing s steps in the
computation of the e-th oracle T.M. with C on the oracle tape with input x. The
analogue of (2.2) is that for any set A, the set A’ = {z : ®,(A;z) |} is not recursive
in A, that is A" £r A. We refer to A’ as “K relativized to A” or the jump of A and
the process above as relativisation. Finally the relation < is a partial ordering
and generates equivalence classes that measure “equality of complexity”. These are
called degrees (of unsolvability). We let 0 denote the degree of the recursive sets
and 0’ the degree of the halting problem, 0” the degree of K’ etc. We call a degree
r.e. if it contains an r.e. set. It is not difficult to show that if @ is an r.e. degree
then e < 0/, but it can be shown that the converse does not hold. Also since the
collection of oracle T.M.’s is countable, there are uncountably many degrees. The
proof of (2.7)-which is similar to (2.4) - shows that if A is an r.e. index set then A €

AN INVITATION TO STRUCTURAL COMPLEXITY 39

0 or A € /. Post [1944] asked if there exists an r.e. degree @ with 0 < a < 0.
Post’s problem was finally solved via an ingenious method now called the priority
method, independently by Friedberg [1957] and Muchnik [1956]. They showed:

Theorem 2.8. (Friedberg, Muchnik). There exist r.e. degrees @ | b. That is @ £
b and b £ a.

There have been many extensions to (2.8). For instance, Sacks [1964] showed
that the r.e. degrees are dense and Lachlan [1966], Yates [1966] showed they do
not form a lattice, yet these are @ | b with greatest lower bound 0. Soare [1987]
has a lot of information on r.e. degree, r.e. sets and related matters. These results
lead us a little far afield, but there is one important ingredient we need from the
proofs.

Lemma 2.9. (Use principle). Suppose ®(A;z) |. Let u= u(®(A;x)) denote the
mazimal n such that “n € A” is asked in the computation. Suppose that Clu] = Alul
(where B[z] = {p:p < z and p € B}). Then ®(4A;z) = ®(C;x).

Proof. A and C give the same answers so the computations are identical.]

We remark that r.e. sets and degrees occur everywhere once one starts looking at
mathematics and asking if algorithms to perform our theorems exist. For instance,
every vector space has a basis. This fails recursively: there are recursive vector
spaces with no recursive basis. (Metakides — Nerode [1977]). The word problem
for groups: if @ is an r.e. degree there is a finitely presented group G such that
{z =1 and z € G) has degree a. (Boone [1966]), Hilbert’s tenth problem: if A is
an r.e. set, there is a polynomial P{z1, ... ,zn,y) with integer coefficients such that
y € Aiff (z1,... ,%n > 0)(P(21,... ,Zn,y) = 0) (Matajeseivic [1970]). This last
result has the amazing consequence that (e.g.) the primes are the exact positive
solutions of some polynomial equation.

We finish the section with an amusing illustration due to Conway [1972].

Conway considered the following question: Those familiar with number theory
and/or famous unsolved problems in intuitive mathematics will recognise the Col-

latz function:
2 if n even
e(n) = { 2

3n+1 ifnodd

The infamous conjecture is that for all n there is a & with c*(n) = 1.. Now ¢(n)
behaves in an apparently unpredictable way. For instance ¢’ (27) = 9232.

Conway observed that ¢{n) is but an example of a family of more general ques-
tions. Consider g(n) = a;n + b; if n =4 (mod p) where ag,... ,8p—1,b0,... ,bp—1
are chosen to make g(n) € IN. Conway’s question was:

2.10. Given a system {ao,... ,bp_1} as above. What can be predicted about g¥(n)?

Perhaps surprisingly, the answer is “nothing, in general”. Indeed, this is true
even if b; = 0 for all 4 so that g®(n)/n is periodic.

40 ROD DOWNEY

Theorem 2.11. {Conway [1972]). Given a partial recursive function ¢, there is
a system {aqg, ... ,0p-1}, aS above, such that

(i) ifn € dom¢ then 22(™ is the first power of 2 in the sequence g*(2"), and

(ii) ifn¢domg, g*¢(2"), k=0,1,2,... contains no power of 2.

An immediate consequence is that there is no algorithm to decide if (3k) (¢"(2") =
1) . The ingenious proof of this result uses another model of computation well suited
to coding recursive functions into algebraic structures.

A register (or Minsky) machine M is a machine with n registers that we write
as an n-tuple. We say M computes f if given (z,0,0,...,0) it halts with output
(f(x),0,0,... ,0) for z € dom f, and does not halt otherwise. M can perform only
two labelled instructions as follows

Instruction m

- (2 n add one to register a and move to
% instruction n.

If the content of register ¢ is > 0

m @ & subtract one from register ¢ and go

™~ & to the instruction labelled n; other’

wise go to instruction k.

For instance, the machine below simulates f(z) = 2z:.

TN

—~O OO~ O~O~O
GRG

-In fact, it is not difficult to show that the class of functions that can be simulated
by Minsky machines consists of exactly the partial recursive functions. The beauty
of Minsky machines is that they can often be easily coded into (e.g.} algebraic
structures.

Conway codes Minsky machines into Collatz-like functions as follows:

AN INVITATION TO STRUCTURAL COMPLEXITY 41

A wector game is played on a finite (ordered) list of vectors L = {vy,... ,vp}
with v; € R, For example

v = (0,0,0;1,—1)
v = (—1,0,0;-3,1)
vs = (0,0,0;—3,0)
—mor—zm
=(0,1,0;~1,2)
(~1,0,0;0,1)
= (0,0,0;0,0)

Upon L we play the following game. Starting with a vector v with non-negative
integer coordinates, add v to the first vector on the list that preserves the property
of having non-negative integer coordinates. That is v becomes replaced by the
least ¢ with v 4+ v; € IN%. Repeat. Call this m('u) define gr,(v) = ¢ if (k,0) is
first of the form ($,0) in the sequence m{(k,0)), m?((k,0))... . For instance, if
v = (3,0,0;0,0) and L is as given above m{v) = (2,0,0;0, 1), m?(v) = (2,0,0;1,0).

Theorem 2.12. (Conway [1972]). For any partial recursive ¢, there is a list L
such that g1, = &.

Proof Sketch. Simulate Minsky machines:

For an instruction m—> @—>n have a vector of length

d(o,...,0,1,...,0;;—m,n) and m%—)n
X&k
mth position
0,...,0,-1,0,...,0;;—m,n) and (0,...,0; —m, k) where d — 2 is the number

sth position
of registers. These instructions are then ordered in decreasing order of m and
preceded by (0,...,0;1,—1). The machine

m»() ()

corresponds to the game L above.
" It is easy to prove by induction that for L so construed, gz, = ¢.]

Finally we replace vector game by rational games; these using primes to code
vector locations. For a rational game L = {r1,...,r,} is a finite list of rationals.
We let my(n) = nr; if 4 is least with nr; an integer. We define hz(n) = k if 2% is
the first power of 2 in the list m(27), m?(2"),... .

42 ROD DOWNEY

Now if we replace (a,b,¢,d,...) by 223°5°7% .., we replace a vector game by
the corresponding rational game, and these compute the same partial recursive
function (an easy induction). It is not too difficult to see that a rational game can
be represented as a generalized Collatz question by picking the r; appropriately
and using congruences. This concludes our sketch of the proof. |

3. Complexity Theory — Basics

When we begin to worry about the amount of resources we use in a computa-
tion, it seems that the device we use for computation might be important. Some
computers are faster than others. This is true in some ways and false in others. It
depends on the robustness of the measure we use. First we should clarify what we
mean by a complexity measure.

Definition 3.1. (M. Blum [1967]). Let {¢. : ¢ € IN} list all the partial recursive
functions. We say a set {I'. : ¢ € IN} is a complezity measure if for all z,

(i) Te(z) | iff ¢e(2) |, and
(i) the relation “T'e(z) = y” is recursive.
The classical examples are (i) time: T'e{(z) = y means ¢.(z) | in exactly y steps,

and (i) space: T'e(z) = y means that ¢.(z) | and uses exactly y squares of tape
{or memory) in the computation.

Remark. Note that in (ii) the reason I'¢(z) = y is recursive since we can sim-
ulate ¢.(x) until either the space y is exceeded, or ¢.(x) | or we get a repeated
configuration (in which case ¢.(z) 7).

Up to a recursive cost function, all measures are the same: Blum [1967] observed
that if {I'z: e € IN} and {A. : e € IN} are two measures, there is a recursive
function g such that for all e and almost all z, T'e(z) < g{z,A.) and A (z) <

9(z, Te(z)).

For any partial recursive f, there are infinitely many ways to compute it. The
natural question then arises : how should we measure the “best” complexity of a
function. Unfortunately, there is no simple answer to this. The obvious way is to
take the ¢, which equals f and runs in the least number of steps. Alas, no such ¢,
may exist.

Theorem 3.2. (Speedup theorem, Blum [1967]). For oll increasing recursive
g(,) and complezily measure {T'. : € € w}, there is a recursive {0, 1}-valued
function f such that if ¢. equals f, then there is an ¢ with ¢. = f and such that,
for almost all z,g(z,Ti(x)) < Te(x). That is, f has no g-fastest algorithm.

The proof of (3.2) is a quite involved priority argument which we omit. For
more on the abstract axiomatically defined complexity the reader should see Blum
and Marques [1973] and Soare [1977]. One can also use “confinal sequence” to
measure complexity see Maass-Slaman [ta].

Rather than study the general implications of complexity measures, the real
depth of the subject comes from studying well defined classes of functions of the
same complexity. So suppose we have a total recursive function f and a fixed
model and measure. We define the complexity class with same f to be Cy = {¢:

AN INVITATION TO STRUCTURAL COMPLEXITY 43

(Se)(¢e = ¢ and (aoz)(Te(x) < f(|z])}} where |z| denotes the length of z. If we
fix the model as that of a deterministic Turing machine we write C}" as DTIME

(£(jz])). Here we must be careful how to present z. Two standard representations
are as z ones (tally notation, written z € {1}*) and = € {0,1}*, (i.e. in binary
notation). We have the following standard classes

C{,y = real time = DTIME(|x|)
U Cfnier = exponential time, EXT = UDTIME(2™*])
EXPTIME = DTIME (2m).
UCjy = polynomial time, P or PTIME.

We remark that it is not altogether clear if P or EXPTIME are complexity classes
in the sense of the definition above. Why should there be a single recursive f such
that ¢. € P = Te(z) < f(|z|) for almost all z. That such an f exists follows from
the following,.

Theorem 3.3. (Union theorem — McCreight — Meyer [1969]). If {f; :i € N} are
uniformolly recursive increasing functions (z’.e. (Vn,z)(falz) < fn+1(m))) then
there is a recursive f such that Cy = UpCy,

Corollary 3.4. P, EXPTIME aond EXT are complezity classes in the sense above.
Proof (of 3.3). We build f to meet the requirements (for e € IN)

P (aa) (fe(e) < £(2)).

For simplicity we work with # € {1}*. These have priority order Py, Py, P, ... and
note that if we satisfy all the P, then U.Cy, C Cy.

Let d(z) = fz(x). Note that Cyrp) 2 Cyiel and so Catzy # P. To keep Cy C
UeC'y,, we need also satisfy the requirements.

Ne : (aaz)(Te(z) < f(z) = de € UnCy,).

We always keep f(x) < d(z) and ensure that if ¢. ¢ U,Cy, then (¥n)(3%z)
(fulz) < Le(z)).

We set aside {f. .y : 2 € IN} for the sake of N.. Here { ,) is a bijection from
IN x IN — IN. We build f in stages. At stage x, search for the least (e, 2) < z not
yet cancelled with fi,)(z) < Te(z) < d(z). If {e,2) exists, set f(z) = fi,z(7)
and cancel (e, z). If no (e, z) exists set f(x) = d(z). Note that f(z) < d(z) in
either case.

First all the P, are met (that is fo(z) < f(z)) for aaz. To see this we need only
show f(z) < fe(z) only finitely often. After stage z, f(2) < f.(2) only if (1, z) is
cancelled for {(7,z) < e. Thus f(x) < fe(z) at most e further times.

Finally all the N, are met. For suppose not. Then there is ¢, € Cy with
pe & UnCy,. As ¢e € Cy, and for all z, f(z) < d(z) so (aaz) (Te(z) < d(z)).
Hence (3%°z)(fe, () < (Te(z) < d(z))).

44 ROD DOWNEY

By construction, it follows that for each z, there is an z with f(z) = fi. ,\(2) <
I'.(z), and hence ¢, ¢ C; after all.]

For the rest of our studies we will fix some model of computation (Turing ma-
chine unless otherwise specified), although it is not necessary in all cases. It is
appropriate at this point to mention why we study classes like PTIME and EXP-
TIME. It has been observed that for all reasonable models of computation these
classes are invariant in the sense that if Dy and D> are two devices, then for some
polynomial p, D; computes g(z) in f(jz|) steps then Da computes g(z) in p(f(|z|))-
This is essentially a refinement of the Church-Turing thesis, namely that feasible
computations are those that can be done in PTIME and this class is invariani.

We should remark that this idea has a pragmatic component. The general princi-
ple that practising algorithm builders tend to use is that “if a process } is natural
and occurs in practice (i.e. not dreamed up by some theoretician) and it is in
PTIME, then there is a reasonable polynomial to do . Namely one where the
polynomial is of low degree and the constants-of proportionality small”. As we
will see in §6 a number of recent results challenge this belief (although they do not
yet refute it). We should mention that for practical purposes (i.e. modelling actual
computation of a “real computer”), the Turing machine model is not really accurate
since the trade off is O(|z|?). There are models more suited to modelling actual
computation. These include the RAM (random access model) that we look at later
§6. For that model, we wish to lock at lower bounds for problems such as (e.g.)
matrix manipulation. The techniques tend to be rather intricate combinatorial
ones.

Returning to our story, we can prove a number of general basic results about
complexity classes. This work really begins with the ground breaking paper of
Hartmanis and Stearns [1965] from which the area derives its name. First we will
need a slight change of notation. Rather than looking at performing a computation
of a function (i.e. z — f(z)) we will speak of accepting a string y (i.e. machine M’
on input y outputs 1 rather than 0). Obviously accepting (z, f{x)) is identifiable
with computing f(z) from 2 so we will not lose any generality by this procedure.
Yet it does make the following definitions easier. First we will augment the Turing
machine model by adding a work tape. Such a machine M has an input and a work
tape. The input tape is a read only tape, and all the computation must be done on
the work tape. If the input tape is one way we call M online and two way offline.
With this model we can define the following.

Definition 3.5. DSPACE (f(]z|)) is the class of sets for which there is a machine
M such that, for almost all z,z € A iff M accepts z and uses at most f(|z|) spaces
of work tape.

Some typical classes are
PSPACE = UDSPACE(|z|™)

EXPSPACE = UDSPACE(2"®)
LOGSPACE = UDSPACE(nrLOG(|z[)).

We remark that the last example (which turns up in practice) shows why the

AN INVITATION TO STRUCTURAL COMPLEXITY 45

separate work tape is desirable.

Definition 3.6. We say a set A is in the nondeterministic time class with name
f» NTIME (f(|z])), if there is a nondeterministic machine M such that for all
Y,y € A iff some computation of M accepts y.

Note that since a given {(g;,S;) may correspond to many quadruples, it follows
that M has potentially exponentially many computation paths of length f(|z|). In
a similar way we can define NSPACE (f(|z[)}, etc.

Theorem 3.7. (Linear Speedup, Hartmanis and Stearns [1965]). Let d > 0 be a
real constant. Then

(i) DSPACE (df(|z|)) = DSPACE(f(]z|))

(ii) I 1|1'1;n % — oo implies DTIME (f(|z])) = DTIME(df (|x|))

The proof of (3.7) is not difficult and entails essentially a change of basis. {One
also needs to be careful with other models eg RAM’s).

Actually, there are a lot of interesting results about varying the model of compu-
tation slightly: for instance suppose one allows 2 work tapes rather than one. Using
the fact that space is reusable and by direct simulation, Hartmanis and Stearns
[1963] showed.

Theorem 3.8. (1) Any 2-tape T.M. computable in space f{|z|} and in time g{|z|)
can be simulated by a 1-tape T.M. in the same space f(|z[) and in time (g(|a:|))2

The problem of whether the (g(|x|))2 was sharp for (e.g.) online Turing ma-
chines was open for quite a while. Paul [1979] was the first to show that two tapes
were better than one. The complete answer was given for DTIME(|z|?) by Ming
Li [1985] and Maass (1984, 1985]. We look at this in §6. For nondeterministic
machines, the (g(|a:|))2 bound is not known to be sharp, but using a very clever
combinatorial argument based on “Kolmogorov Complexity” Maass [1985) showed
that there were sets acceptable in time |z| by a 2-tape online nondeterministic
T.M. that were not acceptable in time (n?/(logn)?loglogn) by a 1-tape nonde-

termistic T.M. Using Maass’s language, this was improved to 2(n?/log®) n) (any
k, where log(k) n denotes k iterations of the log function) by Galil, Kannan and
Szemeredi [1986].

‘The reader should note that since, by the union theorem there is a recursive
function f such that PTIME = DTIME(f(|z|)), there must be functions such that
no Turing machine (or even computation device) has running time exactly f(iz).
(Since otherwise f(]z|) would need to be a polynomial). Following Hartmanis and
Stearns, we call a function f space (time) constructable if there is a machine M
that runs in space (time) exactly f(|z|) on input z.

46 ROD DOWNEY

Theorem 3.9. (Hierarchy theorems).
(i) (Hartmanis — Lewis —~ Stearns [1965]). If t» is space constructable and

tim it 22D 0 then

DSPACE(t1(|z])) # DSPACE (t2(]z)).

(ii) (Hartmanis) (Probably suboptimal). If fo is time constructable and

o n(a) o o)
|$1|1~1:+r1oo inf a]) — 0 then DTIME (¢ (|z])) # DTIME (t2(|z[)?)

(iii) (Hopcroft-Ullman [1969]) (again probably suboptimal). If ty is time con-

structable then lim inf ta(jzl) log 1 (|=[)
el o0 ta([a)

= 0 then implies

DTIME (1(J2])) # DTIME (¢2(|2])).

Proof Sketch. (i) The idea is to diagonalize against all Turing machines running
in space < £;(|z]). First use ¢2(]z|) to map out the allowable work space. Then
run each currently unsatisfied (ie. not yet diagonalized) ¢.(z) in space to(|z|) until
either run out of space or ¢.(z) |, or a configuration is repeated. In the case
that ¢e(z) |, we cancel e the least such e define g(z) = @o(z) + 1. If no e is
cancelled set g(z) = 0. Note that g(z) € DSPACE(t2(|z])) by construction, and if
¢. € DSPACE(t1(|z|)) then eventually we get to diagonalize it, by the hypothesis
that the liminf — O.

We remark that (it} and (ili) are proven by analysing time simulatations of
the methods above. |

Probably the most important questions in complexity theory are the costs
of time-space, determinism-nondeterminism trade offs. There are some obvious
things:

Observations 3.10. (Space tradeoff).
(a) DTIME(f(lzl)) S DSPACE(f(|zl))
(b) If t(jz|) > log|z| then DSPACE(i(z)) C déJNDTIME(df(I:cD).

Proof Sketch. To see that (b) holds count the total number of possible config-
urations a Turing machine can generate in space ¢(|z|). [

We remark that the precise relationship between DSPACE (t(|z|)} and DTIME

(t(jz])) seems to vary as ¢ varies, and is of fundamental importance. For some ¢
. . zl=l

they coincide: Call f elementarily time (computable) if f € U,DTIME(22)
(a tower of n twos). Then the result above shows that ELEMENTARY TIME =
ELEMENTARY SPACE. With respect to the other basic tradeoff we have the
following beautiful result of Savitch [1970].

AN INVITATION TO STRUCTURAL COMPLEXITY 47

Theorem 3.11. (Deterministic-Nondeterministic trade-off).

(1) If t is space constructable, then NSPACE(t(|z])) C DSPACE((t(|m|))2),
and
(i) NTIME(H{|z])) € dgNDTIME(dt“ED)-

Proof Sketch. Notethat (i} = (ii) by the last theorem. The idea of the following
is that of “divide and conquer”, where we keep guessing and testing half way points
of a computation. So suppose M accepts A nondeterministically in space f(lz]).
So there is a d € IN such that the number of possible configurations is < dtl=l), If
(1 and Cs are configurations we write if Cy I; Cy if C9 can be obtained from € in

< 2% steps. 1> 1 then C I: Cs iff (3C)(Cy itl C and C «;t1 C2). (Here C is a
half way point.}

To see if x € A we,

1. Take Cp and initial input z, and

2. for each possible final configuration C. of M of length < #(|z|) we see if
Co L: C. for n. = (logd)(t|z|) (note that 2™ = gllced) (s0=) — dtl=D) as follows:

If C, is really correct Cp I C,. How to test this is in a small space? We do this
inductively: "

(i) Fori=0, CyF C, iff Cy = C, or can be gotten in 1 step.

(i) Fori> 1, Cy I: C. iff Cy n;|—_1 C and C il_—l C. for some C of length t|z|.

Call an i-module as above | Cy | Ca | © | C | Now Cy, Cy have length < ¢(|z])
and ¢ < n we then do inductive guessing so the tape at any stage appears as

a || i |Ccla|cli-1|c|e|cli-2|c"

i-module i — 1 module i — 2 module

Then the idea is to start with Cf, Cs, 4, C and in the next module cycle through all
the possible C’ to see if C1,C,C —1,C" is alegal i — 1 module. To do this cycle for
each C' we look at all possible C — 2 modules etc. If we get to show C7,C,i — 1,
via C" then we need to show C’,C5,% — 1, D for some D. This can be done in the
same way. There are n modules with n = (log d)¢(|z|) and each module of length
< O(log d) (¢(|[)} the total length is O(t(|a:|))2. Hence by linear speed-up, DSPACE

(t(|)))® 2 NSPACE(¢(lz))). I

Note that it is an immediate corollary to (3.11) (i) that PSPACE is NPSPACE.
Another corollary to the hierarchy theorem is that LOGSPACE & PSPACE.
Putting all of the facts together we have the following fundamental picture.

3.12. LOGSPACE C P C NP C PSPACE.

48 ROD DOWNEY

We know only that LOGSPACE # PSPACE, no other containment is known to
be proper. In the next section we will lock at this in detail.

To finish this section we will look at another space result. If @ is any class, then
co-(is the class of sets whose complement is in ¢. So co-NP is the class of sets
A such that z ¢ A is NP. It is easy to see that co-P = P. It is not known, as we
shall see, if NP = co-NP. Space is rather more tractable as the following recent
results of Immerman [1988] and Szelepscenyi [1988] shows:

Theorem 3.13. (Immerman — Szelepscenyi). For any space constructable f with

F(lz]) > log |z,
co-NSPACE(f(|2|)) = NSPACE(f(jx])).

Remarks 3.14. The result above solves a 25 year old question and has a delightful
short and subtle proof using the idea of a census function. This allows us to non-
deterministically compute a number rather than accept a string. The proof is quite
elementary and can be taught to a beginning graduate or advanced undegraduate
class. For those who know some formal language theory, A € NSPACE(|z|) iff A
is context free. Hence context free languages are closed under complementation.

Proof of (3.13). (Sketch). Let f(|z]) = |z|. Let M be a machine (acceptor)
running in NSPACE (|z|) and accepting A. We desire to build a machine M in
NSPACE (|z|) that accepts A. The thing the reader must keep in mind in the
following is that it does not hurt us for some computation path of M to reject z
although = ¢ A provided that

(i) some computation path of M accepts such an z, and
(ii) no computation path accepts y € A.

Suppose there was a machine M, in NSPACE (|z|) such that, for each z, M could
compute the number n(x) of configurations M could reach. Then we could build M
to be accept A as follows. For a given z, first use M1 to compute n(z). Then cycle
successively through each configuration ¢ and see if M has some computation path
to get to o. That is, to see if x is accepted by M start running through all possible
(trial) configurations and keep a counter. To see if a given oy is a final one, guess
a computation path and see if this is a valid one leading to 1. If it does increment
the counter by one. If the path accepts = declare = ¢ A. If we get through all the
configurations and the counter is not yet at n(z) then we made some wrong guess.
Declare z ¢ A. However for some correct sequence of nondeterministic guesses
we will have the counter at n(z) and we will then know we have seen all the final
configurations from xz. Therefore we can say z € A, as we have not seen z € A.
Note that (i) and (ii) above are preserved by this procedure.

To complete the proof we need only say how to compute the ‘census function’
n(xz). This is done inductively. Let d(z,t) be the number of configurations com-
putable by M in ¢ steps. We can compute d(z, 1) deterministically in |z|. Suppose
M can compute d{z,t). We can get to ¢ in ¢ + 1 steps only if we can get to some
o1 in T steps and then & in one more. To compute d{z,t + 1) as we did before
we cycle through all the sequences o1,03,... of length |z| and guess computation
paths of length ¢ to see if they can be reached in lerigth ¢. If we find that oy is so
obtainable, we cycle through each of the strings of length |z| and see which can be

AN INVITATION TO STRUCTURAL COMPLEXITY 49

reached from o3 in one (more) step. For each with a yes, increment d(x,t 4+ 1) by
one. Using d(z,?) and a counter we will know (at the end) if we d(z,t) of them
and hence all the sequences reachable in ¢ steps. If we don’t get them all reject z.
If the counter agrees with d(z,t) we know d(z,¢+ 1) is correct too.

Finally n(z) is the value of d(z,t) for the first ¢t with d(z,t) = d(z,# + 1). [

4. P, NP, LOGSPACE and PSPACE

No doubt many of you have heard of the “famous” P vs NP problem, perhaps
(before reading the present article!) without knowing what exactly was meant by it.
One of the reasons it is so famous is because it seems very hard and fundamental.
The other reason is that it seems so important in ‘practical’ applied mathematics.

From a pure mathematics point of view P vs NP strikes at the heart of our
profession : consider a proof as a series of lines each an axiom or a consequence of
proceeding lines. It makes sense, under appropriate coding, to speak of a polyno-
mial size proof. P vs NP then boils down to the difference (if any) between finding
a (polynomial size) proof and verifying a proof which is exhibited. If P = NP they
are the same. At a more down to earth level, we also know of hundreds of practical
problems that are in NP yet not in P if P # NP. Indeed, we can, in a precise
way, argue for most of these that if any of them are in P then all of them are. To
make this precise we return to our recursion theory model, and look at resource
bounded reducibilities between (codes of) combinatorial problems.

Definition 4.1. We say A Sg B, A is p-time Turing reducible to B if there exists
an oracle machine M and a polynomial ¢ such that for all «,

(i) z € Aiff M with oracle B accepts z, and

(ii) the computation for z runs in time bounded by ¢(|z|) where if the question
y € B? is asked, we take it to take |y| many steps to answer. (Alternatively, one can
use time 1 here. The current one is more natural if we look at space reducibility).

Actually, as with normal Turing reducibility, we often can use a far simpler, and
stronger reducibility:

Definition 4.2.

(i) We say A <, B (A is many-one reducible to B) iff there is a recursive
function f withz € A iff f(z) e B

(i) Analogously, for p-time, we say A <I B iff there is a polynomial time
computable function f such that z € A iff f(z) € B.

There are several other reducibilities we will later look at, but for the moment
we will concentrate on <% and <Z. Clearly A <,, B implies A <¢ B and it is
not difficult to devise examples to show each converse fails. For the corresponding
resource bounded reducibilities, to show that < and S? differ on NP sets would
imply P # NFP. On the other hand, if there is ‘enough time’ to diagonalize, we can
show that these reducibilities really do differ.

Theorem 4.3. (Ladner, Lynch, and Selman [1975]). <% and < differ on EX-
PTIME.

50 ROD DOWNEY

Proof Sketch. One needs to build C <£ B with C £, B and C, B in EXPTIME.
We diagonalize meeting the requirements.

R.: _’(C S'f; B)Via’)fe

with -y, the e-th p-time unary function. To keep C <% B we declare that 0" € C
iff 02* € B or 02"*! ¢ B. Then to meet one R, alone we see what ,(0") is. If
ve(0™) is already in B, keep 0" out of C. Otherwise put 0" into C, and put 0*
into C with 0% € {0%",02"11) and 0F # 7.(0™). It is easy to convert this into an
argument that meets R, for all e. 1

Now for the r.e. sets we can define
Ko ={(z,y) : x € Wy}.

It is clear that if A is r.e. then by the enumeration Theorem (2.1), A = W, for
some y. Hence z € A iff (z,y) € Ko. It follows that Ky is m-complete (for r.e. sets)
in the sense that if A is re., A <., Kp. (Actually it is not difficult to show that
Ky = K where K = {2 : ¢z(z) 1}).

Now let us begin looking at analogues for NP, modelling NP on ‘re.’ and P
on ‘recursive’. First we know by (2.6) that an infinite 4 is r.e. iff A is the range of
a (1 — 1) recursive function iff there is a recursive R with z € A iff (3y) (R(z,y)).
The analogy for NP is as follows. Call a partial p-time function f honest p-time if
there is a polynomial g such that for all z € dom f, ¢(|f()|) > |z|. The intuition
here is that f cannot shrink the input more than a polynomial amount.

Remark. We already know f cannot stretch the input more than a polynomial
amount as f is p-time. The reason for taking this definition is that one can show
that for any infinite r.e. set W there is a polynomial time computable function with
ra g = W. This uses the idea of padding : we know there is a recursive function f
with ra f = W. Now g is a ‘slow’ version of f compute f(0). Define g(z) = f(0)
for all z with |z| < s until a stage s occurs with f(1) |. Note as fis 1 — 1,
F(0) # ¢(1). Now define f(y) = t(1) for all ¥y with s < |y| < ¢ until ¢ > s is found
with f*(2) |. Continue in the obvious way. Note that this p-time function g can
be very dishonest. We have:

Theorem 4.4. (Karp, Cook). The following are equivalent:
(i) AeNP _
(ii) There is a partial honest p-time function g such that x € A iff x € rag.

(iif) There is a polynomial time relation R and a polynomial g such that z € A
iff Gy)(lyl < a(|z|) and R(z,y)). (This last condition is written 3FyR(z,y).)

Proof Sketch. (i) = (ii). A € NP if we have a p-time machine M such that some
computation path of M accepts z in < P(|z|) steps. So with a p-time bijection
{ , Y:INxIN — N, define f({z,y)) = z if ¥y codes an accepting computation
path of M of length < p(|z|), and (z,y) ¢ dom f otherwise. Then f is polynomial
honest and ra f = A.

AN INVITATION TO STRUCTURAL COMPLEXITY 51

(i) = (iii}. Let A =raf with f p-honest. So z € A iff (Iy)(f(y) = x). This
is of the form (3y)(R(=z,y)) as f is p-honest.

(itl) = (1) z € Aiff (37y)(R(z,y)). Then build the nondeterministic T.M. M
to accept A as follows:

(a) guess y with |y| < p(|z]).
(b) see if R(z,y) holds and accept iff R(z,y) holds.

Definition 4.5. (Cook, Karp).
(i) We say aset Ais NP-T-complete if A € NP and for all B € NP, B <% A.
(ii) We say Ais NP-m-complete if A € NP and for all B € NP, B < A.

Again following the r.e. vs recursive analogy we have.

Theorem 4.6. (Cook [1971]). NP-m-complete sets exists. That is, there is K, €
NP such that B € NP = B < K,,.

Proof. Define, as with the T.e. sets.

K, = {{z,e,0™); some computation of ®. on z accepts in < n steps}.

Here {®.}, .1y lists all nondeterministic machines. Now K, € NP: to see if
y € K, first check if y is of the form (z,e,0"). This is p-time. If so, guess a
computation z of length < n and see if it accepts z. To see that K, is m-complete,
A € NP iff for some &, and polynomial ¢,z € A iff some computation of ®, halts
in < g{|z|) steps. Thus = € A iff (z,¢,0%7)) ¢ K, s0 A <L K, [

Usually the phrase NP-complete means NP-m-complete and we adopt this con-
vention.

We will now look at practical instances of the structural results above. In many
ways it is the fact that NP-complete problems are so common in real life that makes
the P vs NP question so compelling. If any of these NP-complete problemsisin P
so too are all of them. It should be remarked that the milestone papers in this area
were the fundamental one of Cook [1971] who proved the first real NP complete
result, and of Karp [1973] who discovered a “compelling mass” of NP problems.
We remark that the class NP also implicit in earlier work of Edmonds [1965] and
Cook’s Theorem 4.7 below is also implicit in the work of Levin [1973] where it was
called perebor, and a number of Russians’ work tried to show that there were some
NP problems that could only be solved via trial and error (exhaustive search) (see
Trachtenbrot [1984]). We also know that in 1957, Gédel raised this issue in a letter
to John von Neumann (see Hartmanis [198+ (in particular EATCS, 1989))).

The first practical problem proven to be NP-complete was that of SAT or
satisfiability of a propositional formula. We recall that a formula ¢ of propositional
calculus is built up from connectives, say, V (or), A (and), — (not) and variables
Z1,%2,... . Then ¢ is satisfiable if there is an assignment of its variables that makes
it true. The obvious way to check if ¢ is satisfiable is to draw up its truth table.
This takes exponential time in the number of variables. Note that being satisfiable
is in NP, since we can guess a verifying line of the truth table. So to summarize,
in the notation of Garey and Johnson [1979]:

52 ROD DOWNEY

Problem SAT
Instance: A formula ¢(zy, ... ,Z,)
Question: Is ¢ satisflable?

Cook’s Theorem 4.7. (Cook {1971]). SAT is NP-complete.

Proof. Let M be a N.T.M. computing K, with bound p(|z|). We come up with
a formula ¢ that “simulates M”. Clearly we need only specify the tape contents
from —p{|z|) to p(|z|) + 1 where we take as the origin the initial head position.
Let M have states {go, ... ,¢r} and symbols {so, ... ,s¢}. We use these to generate
propositional variables defined on M : Let n = |z|

Variable Range Meaning

Qi, k) 0 Ossz 3 g&n) } 0(P(w) i;s;n;zM is in
HGR S et) PO e
St P a1 fo(pto)? 1 e e

The idea is to derive a formula based on the above such that M has an accepting
computation iff ¢ is satisfiable. To do this we need to write down a formula saying
what it means to be a valid computation of M. These we divided into 6 groups
which say. -

(i) At each step M is in one and only one state eg: for 0 <i < P(n), Q(:,0) V
...... Q(i,t) and k/#\z_—'(Q(z', h) AQ(i, k)).

(ii) At step ¢ the head is scanning one and only one square.

(iif) At step ¢ the content of square 7 is exactly one symbol.

(iv) The initial set up is gp reading the leftmost symbol k; and z =k, ...k, is
written on the tape.

(v) What it means to be an accepting computation.

(vi} How can we get the next move? That is

_ (a) If the head at time ¢ is not reading square j, do nothing to it. (e.g.
S(i,3,k) A~ (H(E,4)) — S(i+1,4,k)) for each 4, 5, k.

(b) If the head at ¢ is reading § and the state at ¢ is k and the symbol on

7 is £, then do one of what the relevant quadruples tells you to do.

When the above is all written out, we see the ¢(z) so derived is O(|z}*), and
¢(z) is satisfiable iff M accepts z. |

AN INVITATION TO STRUCTURAL COMPLEXITY 53

In many ways SAT is the basis for most practical NP-completeness results. The
above techniques are called generic reduction. Usually if we want to show B is
NP-complete we show some known NP-complete 4, A <2 B. We illustrate this
by a couple of examples. First we need a refinement of (4.7). We say ¢ is in
conjunction normal form (CNF), if j = v1 A ... A+, with each 7; a disjunction of
literals (i.e. variables or their negations). For example, ¢ = (z1 V 22) A (21 V22 V
—z3) A (22 V ~z3) is in CNF. By de Morgan’s laws all v can be written in CNF.
Finally we say that ¢ is in n-CNF if the largest disjunction in ¢ has size n. The ¢
given above is in 3-CNF. While it can be shown that to decide if a ¢ in 2-CNF is
satisfiable is in P, Cook found a reduction from SAT to show

Corollary 4.8. (Cook [1971]). The following problem, 3-CNFSAT or 3-SAT, is
NP-m-complete.

Instance: A given ¢ in 3-SNF

Question: is ¢ satisfiable?

Let G be an (undirected) graph. We say G is complete if for all vertices z,y € G,
(z,y) is an edge of G. The following is a well known problem called CLIQUE.
Instance: A graph G and an integer k
Question: Does G have a clique of size > k7 (That is, a complete

subgraph on > k vertices).

Theorem 4.9. {(Cook [1971]). CLIQUE is NP-m-complete.

k
Proof Sketch. We show 3-SAT <F CLIQUE. Let ¢ = A \3/1 0;; be an instance
=] U=

of 3-SAT, with ¢4; € {®1,%1,... ,Tm, "Trm }, We generate an instance of CLIQUE
as follows:

Graph: G(¢)
Vertices: {(0;;1):1<i<k,1<j<3}
Edges: {((0,%),(7,9)) : o # —vy and i # j}
Clique size k

It is not too hard to show that ¢ is satisfiable iff G(¢) has a clique of size > k. |

Some other natural NP-m-complete problems are given below.

HAMILTON CIRCUIT. (Karp [1972]).
Instance: A graph ¢
Question: Does G have a Hamilton cycle? That is, is there a closed path

passing through all the vertices of & exactly once?

TRAVELLING SALESPERSON. (Karp [1972]).
Instance: Graph G with weighted edges
Question: Find a minimum cost tour
Remark: This is not a decision problem, but is NP-complete by iterated

use of the NP-complete decision problem: Does G have a tour of weight m?

54 ROD DOWNEY

KNAPSACK. (Karp [1972]).
Instance: Given {z1,...,2,} CIN and m € IN
Question: 3AC{l,...,n} with } ;.4 &y =m?
PLANAR GRAPH 3-COLORABILITY . (Stockmeyer [1973]).
Instance: A planar graph G
Question: Can G be 3-coloured?

Note that recent work of Appel and Haken shows that any planar G can be 4
coloured in polynomial time.

QUADRATIC DIOPHANTINE EQUATION. (Manders and Adleman [1978]).
Instance: Positive integers a,b,c.
Question: Do there exist positive integers z,y with az® + by = c.

COSINE PRODUCT INTEGRATION. (Plaisted [1976]).
Instance: Sequence (a1, ... ,an) of integers.
Question: Does f021T [Ti; cos(a:6)dg = 07

It should be noted that all proofs of NP-completeness above show that in fact
the sets are NP-m-complete. Indeed, the phrase NP-complete is now taken to
mean NP-m-complete as we mentioned earlier. Furthermore all of the known NP-
complete sets exhibit deep similarities. This leads to a conjecture of Berman and
Hartmanis [1977): If A and B are NP-complete then A = B. That is there
is a polynomial time bijection of {0,1}* taking A to B (we say A end B are p-
isomorphic).

Of course since P = NP implies that there are finite NP-complete sets, the
Berman-Hartmanis conjecture implies P # NP. Again despite a lot of work, very
little progress has been made on this question. It is not known if the conjecture
and P = NP are equivalent. We do know that the failure of a weaker incarnation of
this conjecture does imply P = NP. We call a set A sparse if there is a polynomial
p such that for all n > 0, |{z € 4 : |z| £ n}| < p(n). For various technical reasons,
sparse sets occupy a central place in structural complexity. One such reason for
this is the following.

Theorem 4.10.
(i) (Berman and Hartmanis [1977]). No sparse set is p-isomorphic to SAT.
(i) (Berman [1977]). If NP has a sparse complete set, then P = NP.

The intuition here is that a sparse set cannot confain enough information to
decode all NP sets. The proofs are a little technical so we omit them. We can
pursue the notion of m- and T'- completeness quite a bit further, and see if analogues
of the Berman — Hartmanis conjecture hold for other classes. Here the best results
so far are

Theorem 4.11.

(i) (Berman [1977], Watanabe [85]). Let D be any ‘reasonable’ complezity
class that is specified by deterministic Turing machines and has the property that
1
for some k > 0, U{DTIME(2¢(**) : n ¢ IN} C D. Then all <F complete sets for
D are =¥), equivalent where A =1 ,; B means that there ezist <P, reductions from
A to B and B to A that are both one to one and length increasing).

AN INVITATION TO STRUCTURAL COMPLEXITY 55

(ii) (Ganesan and Homer [1989]). If D is any reasonable class specified by
nondeterministic machines and has DEXT C D, then all gﬁ—complete sets for D
are =1 ¢; equivalent.

We should remark that quite aside from problems such as Travelling Salesper-
son which need to be constantly solved for many real life applications of operations
research, there is a whole hosi of other applications which have NP-complete prob-
lems at their hearts. We will keep ourselves to one further example. The readers
may be aware of various “public key” and other encryption technigues. The basic
idea is that we wish to send a message from A to B so that it cannot be decoded
unless one possesses “a key”. One of the main ideas in many such codes is to use
an NP complete problem (or, rather one similar to an NP-complete problem) as
the device so that the key is the solution to some NP problem which, if P # NP
cannot be found quickly but can be used (checked) quickly. Space does not permit
discussion of how this is achieved and the reader is referred to the excellent text
Salomaa [1985, Chapter 7} for a leisurely account of the basics of the area. In
particular there the author discusses systems based on the KNAPSACK problem.
Recently it has been shown that — in some strong sense — safe encryption systems
exist iff P = NP.

It should be remarked that this application of the theory basically relies on the
assumption P # NP, or at least on the assumption that if P = NP then there is no
[really] computer-feasible algorithm to do the relevant NP-complete problem. (For
instance if the algorithm is O(nlom) although polynomial it wouldn’t be much
good!). Applications include, for instance, encryption systems used for sending
cable T.V. channels from satellites. Here the code is changed very quickly and
often, and the “pseudo intractability” of the techniques used means that, in theory
at least, no pirate decoding device can be used.

Turning to PSPACE, again we find several natural PSPACE complete problems.
In the place of SATISFIABILITY,

QUANTIFIED BOOLEAN FORMULA. (QBFSAT) (Stockmeyer & Meyer (1973]).

Instance: A quantified boolean formula of the form
¢ = {Ghz1)...(Qnzn)E where E is a Boolean expression involving variables
T1,...,%, and Q; is either V¥ or 3F (n arbitrary here).

Question: Is ¢ valid? .
Actually the above is related to a refinement of PSPACE called the POLYNO-
MIAL HIERARCHY . We know that A is NP if there is a p-time relation R such
that z € A iff (3¥y)(R(z,y)) (Theorem (4.4)).

We say that an NP set is Ef. This indicates one alternation of quantifiers
beginning with an existential one. Similarly a co-NP set is one of the form
(vFy)R(z,y). This is called II¥. In general we can continue the definition so

that a Z}f expression would be of the form

LEIP:T:}VP:T:'QEIP:E’%R(:E, .’ﬁl, .’,1_3‘2, 53)

3 alternations
or by coding
PV 293 23 R (2, 21, 23, 23).

56 ROD DOWNEY

If an expression is both Ef: and IIY we call it AY. This allows us to define the
polynomial hierarchy as '

Note that PSPACE D PH =U, 37,

Now we don’t know if any of the inclusions above are proper, but we do know
that if Z,fH = AF =TIF | then for all m > n, ET}; = Zf (collapse propagates
upwards). Nevertheless, most workers believe that the polynomial hierarchy is

infinite with essentially the same conviction they believe P £ NP.

Quite a number of PSPACE complete problems have been discovered. These
occur in for instance, game theory (e.g. the so-called “pebble games” Pippenger
[1980]), automata theory and logical theories. As an example, for the readers
familiar with automata theory the following is PSPACE-complete.

REGULAR EXPRESSION NON-UNIVERSALITY. (Aho, Hopcroft, Ullman
[1974]).

Instance: A regular expression o over alphabet

Question: Is L{a) # 3"

For the other classes we have looked at so far (P and LOGSPACE), the situation
is slightly different. Here the reduction §§ or even 5,,}; is rather useless since it is
too coarse a measure of complexity. We refine our reduction to <poq, LOGSPACE
— reducibility. This turns out to be a reducibility (transitivity is not obvious) and
seems the appropriate measure for P. The first log space complete problem (for
P) found was

PATH SYSTEM ACCESSIBILITY . (Cook [1974]).
Instance: A relation R C X x X x X and two sets 5,7 C X.
Question: Is there an ‘accessible’ member of T7

Here z € X is accessible iff x € S or there exist accessible y, z with {z,y, z) € R.

We will not look at the structure of P under LOGSPACE reducibility in detail,
but mention that <jo¢ is strongly related to circuit complexity. We look briefly at
circuit complexity in §6. Ladner [1975b], for instance, showed the natural circuit
evaluation problem is LOGSPACE complete for P. (See also Minyano, Shiraishi,
and Shoudai [ta]). Also by Goldschlager, Shaw and Staples [1982] the maximum
flow .problem is LOGPACE complete for P. As a final comment on LOGSPACE
and P, we remark that as an analogy with the polynomial time hierarchy, we can
define a LOGSPACE hierarchy, and NL (nondeterministic LOGSPACE). Again, it
is open if NL € LOGSPACE, but as Cook observed, we have the following.

Theorem 4.12. (Cook [1974]). NL C P.

AN INVITATION TO STRUCTURAL COMPLEXITY 57

Proof. Suppose f is accepted by a N.T.M. in space #(|z|) < log(jz|). There as at
most ¢t} many configurations for some constant ¢, and in polynomial time we
can enumerate all of them since ¢(|z|) < log(|z]). |

We remark that it is open if DSPACE ((LOG|z|)2) C P. Again, we note that if

NL is Ef and we thus get the logspace hierarchy. However, by the Immerman-
Szelepcsenyi result, we know that NL = co — NL, so the heirarchy behaves quite
differently from the space one. (Assuming NP # co-NP).

At this stage we’d also like to mention that there are many other approaches to
studying the structure of P. Most of these depend on specifying a model of com-
putation. For instance, Maass and Slaman [ta] fix the model as a RAM (random
access machine). This is similar to a Minsky machine. The memory of a RAM
consists of a sequence 7o, ... ,7n,... of registers each capable of holding an arbi-
trary integer. Let (i) denote the current contents of r;. All arithmetical operations
take place in ro9. Then n input numbers are located in r1,... ,7,. Then a RAM
consists of a finite set of instructions of the form: put % into ro, put (k) into ro,
put |(k)| into ro, put (rg) into 4, put (ro) into r; where i = |(rg)|, (0) := (0) + (k),
(0) := (0) — (k) and, if (0) > 0, go to j.

As we said earlier, a RAM is a very good model for practical purposes as it has
running time quite similar to that of a real machine. Maass [1988] has proven
nonlinear bounds for some NP-complete-problems on a RAM.

Maass and Slaman [ta] define A =¢ B (“A and B have the same time complex-
ity”) iff for all time constructable ¢, A € DTIMEgam(t) © B € DTIMEganm(?).
The equivalence classes are called complexity types. Maass and Slaman observe
that =¢ provides an incisive tool with which to analyse, for instance, the structure
of P. They show, among other things that

Theorem 4.13. (Maass and Slaman [ta]). A complexity type Q contains sets A, B
incomparable with respect to =¢ iff Q € P.

They also use =¢ to analyse the structure of P and indeed show that each
complexity type @ € DTIMEganm(n) has a very rich structure. Furthermore Maass
and Slaman establish that not all complexity types are isomorphic. The proofs are
very sophisticated arguments along the lines of the Blum speedup theorem. Much
work remains to be done here.

We finish this section with a brief discussion of ‘upward translation’ theo-

rems: namely those that show that collapse of nondeterminism propagates up-
2¢cl= -

wards. Define for n > 1,DEXT,, = UC>ODTIME(22")(n times) and similarly
EXP,SPACE and NEXT,, etc. We have the following relationships. ’
P — NP — PSPACE — EXT; — NEXT; — EXP,SPACE — ..
1 l ! l ! !
EXP — NEXT — EXSPACE — EXT; — NEXT; — EXP,SPACE — ...

PSPACE G EXPSPACE G EXT,SPACE C ...
PGEXT S EXT, C ...
NP C NEXT G NEXT; G ...

58 ROD DOWNEY

we have

Theorem 4.14. (Book [1974]). P = NP implies EXT,, = NEXT, alln > 1 and
NP C EXT.

Proof. Suffices to show that P = NP = EXT = NEXT. So suppose EXT #
NEXT, and let A € NEXT —EXT. Let 2* € B iff z € A. It is not hard to see that
B € NP since A € NEXT. Now if B € P then A € EXT, since then z € A can be
settled in time polynomial in |2/®l| = 2/#| and hence exponential in |z|.]

Hartmanis, Immerman and Sewelson [1985] have shown that there are sparse sets
in NP — P iff EXT # NEXT and Selman [1979) observed that if EXT # NEXT
then <P and <% differ nontrivially on NP. Finally, Book observed that via the
same technique as (4.14).

Theorem 4.15. (Book [1974al).
(a) P = PSPACE = EXP,SPACE for all n>0
= PSPACE C EXT

(b) NP = NPSPACE = NEXT, = NEXTP,SPACE
= PSPACE C NEXT.

As we see later, there is no known ‘downward translation’ result and we have
evidence that it is possible for (e.g.) EXT = NEXT yet P # NP. We return to
this when we discuss relativisations.

5. The Structure of NP (REC, <F) and Recursion-Theoretic
Techniques

If we pursue our earlier analogy, we see that r.e. corresponds to NP and recursive
corresponds to P. The fundamental problem P = NP? shows us how we don’t as
yet have an analogy for the halting problem. Nevertheless we should pursue the
formal analogy rather further. First equivalence classes under < P (resp <) would
be call polynomial time m-(resp T) degrees. We have seen that if P #£ NP as we
believe, there are at least two degrees of NP sets. Namely the degree of the NP-
complete sets and that of the p-time sets. Ladner [1975a] introduced a fundamental
technique (delayed diagonalization} that yields a plethora of other degrees (in NP,
if P # NP).

Theorem 5.1. (Ladner [1975a]). The p-T-degrees and the p-m-degrees of recur-
sive sets are dense. That is zf A and B are recursive with A <& B(A <P B) then
there is a C with A <L C <& B. (resp. A<}, C <} B).

Proof Sketch. We prove this for p-T-degrees. Let A and B be recursive with p-
time functions f(IN) = A and ¢(IN) = B (IN in unary notation). We can write A; =

{f(O),:..,f(s)} and Bs = {g(0),...,9(s)}. Let {(®¢,p.) : € € IN} enumerate all
pairs consisting of an oracle T.M. and a polynomial. By convention we will assume

that ®.(;z) | in < p.(|z|) many steps. We need to meet for all ¢ € IN

e @3(0) '7"é B
R23+1 . @e(A) 7"é C

AN INVITATION TO STRUCTURAL COMPLEXITY 59

Now we meet these in order. We begin with Ry. We therefore desire to build C
so that ®.(C) # B. We know how to do this : if C = A then it must be that
®.(C) # A as A <E B. The basic action is then as follows at stage 0, we declare
that C(z) = A(z) for all with |z| = 0. At stage 1 we declare C(z) = A(z) for
all z with |2| = 1. We continue in the obvious way. Note that at stage 10, say
we may have declared that C(z) = A(z) for all z with |z| < 10 we may not know
what A(11°), for instance, is until a much later stage. This is because A may be
only enumerated “slowly”. Nevertheless the reduction is p-time. Now the idea is
to wait till we see a stage tp and a string such that

5.2. ©0,4,(Ct, 1 y) 1# Biy(y), and furthermore p.(|y|) < ¢p and for all z if |z| <
max{{y|,po(|y])} then z € Ciff z € Cy;, and 2z € B iff z € By,.

Such a stage must occur and we can recognise it. At this stage, we realize, by the
use principle, that if we don’t change Clpo(|y!)] then we must have diagonalized
against B forever. So now we can move on to R;. For the sake of R; we now
make C' “look like” B (instead of A). So for stages ¢ > tg + 1, we now declare
Ci(z) = By(z) for all z with |z| = ¢, till “looking back” we see a stage #; there is a
y with

5.3. ®,:(At;y) # By, (y) = C, (y) and A, is now correct on pe(Jy|) and By(y) =
B(y)-

Again a stage ¢; occurs eventually lest B <E A. After t; is found we are free to
move on to Ry and so go back to setting C(z) = A(z).

The final set C we get is this broken into pieces Py, Py, Ps, P, ... which alterna-
tively look “like A” or “like B”. It is easy to see that this set will have a strictly
intermediate degree between A and B by construction. |

A large number of variations of the construction above have been analysed. Lader
[1975a] showed how to embed various lattices into the p-T-degrees of recursive sets
and Ambos-Spies [1984] observed that the method extends to all finite distribute
lattices. However Ambos-Spies [1984] observed that there are limitations to the
technique since it must give a distributive embedding due to technical consider-
ations. The true complexity of the structure of the p-T-degrees of recursive sets
was found by Shinoda and Slaman [1990] who extended an earlier technique of
Ambos-Spies [1984] to show that the structure of the p-T-degrees is “as compli-
cated as possible”. (Namely its theory is as complex as first order arithmetic).
The technique is to combine the Il priority method with a ‘speedup’ technique
along the lines of Blum’s theorem. It was also used by Downey [ta]. A limitation
of this technique is that it involves the construction of nonelementary sets and so
has nothing to say about the structure of NP assuming P # NP It seems hard
to reduce this to smaller complexity classes such as EXT, say. Ambos-Spies and
Nies [ta] have recently obtained similar information about the structure of the
p-m-degrees, using earlier work of Herrmann on the lattice of r.e. sets.

The result above leads to the question of the existence of ‘natural’ intermediate
problems. That is is there any natural problem which, assuming NP # P, is neither
p-time nor NP-complete? The answer is, “we think so”. To make our notions
precise, we need the analogue of another concept from recursion theory. Let NP4

60 ROD DOWNEY

denote the sets B with B accepted by some nondeterministic p-time machine with
oracle A. Clearly NP € NP4, We can'similarly define Zf’A for any level of the
p-time hierarchy.

Definition 5.4. {Schéning [1983]).
We call a set A low; if Ef’A = Z?. In particular if 1 = 1 we call A low.

2

Similarly we call a set A high; if Zf’A =3 ;11 The structure low; Clowg C ...
(in NP) called the low hierarchy for NP.

Now while it is easy to show that if A is r.e. and co-r.e. then A is recursive, we
do not believe that the analogous statement is true for NP. Namely we believe
that co-NP N NP # P. What we do know is

Theorem 5.5. (Schéning [1983], Ko and Schéning [1985]).
(i) If A is <E complete for NP, then A is Highg.
(ii) If A is sparse and in NP then A is lows.
(iii) If B <% A and A is sparse in NP, then B is lows.

Long [1985] extended (i} to show that if A is sparse in 37 then 5_7 4 CAF
Pushing these ideas a lot further, Balcazar, Book and Schéning [1986] proved that
the polynomial time hierarchy is infinite iff there is a sparse set relative to which
it is infinite iff it is infinite relative to all sparse sets.

We remark that if we look at other operators we do have absolute results. For
instance, call A exponentially low if EXT(A) = EXT. It has been shown that there
exists a sparse set in EXT-P that is exponentially low (Book, Orponen, Russo and
Watanabe [1988]).

What does (5.5) have to do with practical problems? One of the classical prob-
lems listed as an open problem in Garey and Johnson [1979] is the following.

GRAPH ISOMORPHISM.
Instance: Two graphs Gy and Go
Question: Are G; and G2 isomorphic?
It is easy to see that this problem is in NP: just guess an isomorphism and verify
it in p-time. The reason we do not believe it is NP-complete is:

Theorem 5.6. (Schoning [1987a]). GRAPH ISOMORPHISM is Lows. Hence
if GRAPH ISOMORPHISM is NP-complete, then the polynomial time hierarchy
collapses to the second level.

We remark that there are a number of other well known open problems here.
Two of them are
PRIME NUMBER.
Instance: n € IN.
Question: Is n prime?

FACTORIZATION.
Instance: nelN
Question: Find nontrivial factors if n is composite.

AN INVITATION TO STRUCTURAL COMPLEXITY 61

It has been shown that PRIME NUMBER is in NP N co-NP and hence in low;
(Pratt [1975]). In Miller [1976] it is shown that this problem is in P if one
assumes the extended Riemann hypothesis.. The other problem is the basis of
many public key encryption systems (e.g. “Trapdoor ones”) and is widely believed
to be intractable. It is really interesting that so much security is based on a problem
not even known to be NP-complete.

We next look at some results that perhaps point at why P = NP is so hard. One
of the basic principles of recursion theory is that of relativisation. Recall from §2
this meant roughly, for most statements true of oracle-free machines, they remain
true of machines with oracles. An archetype here is the result that @ <+ @’ and
the relativisation is that A <7 A’ for any A. Roughly this says that “normal
diagonalization arguments” relativize, as do “normal simulation arguments”. We
will show that this principle fails for resource bounded complexity and hence, in
particular, P =7NP cannot be seitled by arguments that relativise.

Theorem 5.7. (Baker, Gill and Solovay [1975]). There exist recursive oracles
B, A such that

(i) PA+# NPA
(i) PE = NP?
Proof.

(i) We build a recursive set A and define a set C = {z: (Gy)(ly| = |z| and y €
A)}. Thus C € NP4, We meet the requirements, for e € IN,

R : ®.(A) #C.

Here @, is the e-th p-time reduction with polynomial |z]® 4+ e = p,.

Assume we have already met R; for j < e. To meet R., we find a number m
much bigger than any seen so far in the construction, such that 2™ > p.(m). Now
we will have specified Ae (where A = U;A;). Now compute &.(Ag; 0™).

Case 1. ®.(A. : 0™) = 1. Then we win by asking that for all z if |2| < pe(m)
then 2z € A iff z € A, and thus keeping 0™ out of C.

Case 2. ®,(A, : 0™) = 0. During the computation of ®.(A.) on imput 0™ we
can address at most p.(|z|) may strings. Now as there are 2 strings of length m,

.and 2™ > p.(|z]). It follows that there is at least one string o of length m not

addressed in this computation. We add ¢ to A. to make A.y1, but otherwise add
nothing. This puts 0™ into C, yet note that it will not affect the computations
since ¢ was not addressed in the computation (by the use principle).

Thus in either case we can ensure that ®.(A4;0™) 5= C(0™), and hence meet all
R, by diagonalization, simply by making sure m = m{e) is sufficiently large so as
not to affect the R; for 7 <e.

(ii) The set Kf = {{z,e,0™) : some computation of ®.(B;z) of length < n
accepts z} is NPZ-m-complete. Thus it suffices to construct B with K7 € P5.
Thus, we define B via {z,e,0™) € B iff some computation of ®.(B;z) accepts in
< 1 steps.

62 ROD DOWNEY

It suffices to show that B is (inductively) well defined. Given z = (z,¢,0?) to
see if z € B, we run ®.(B;z) only for fewer than n steps, and hence no string of
length > n is queried of B. Now since |z]| > n it follows that to decide if z € B we
only use strings of length < |z| and hence B is well defined. Thus Kf = B hence

NPZ = P&, i

Hartmanis has always noted that in some sense (that we don’t yet understand)
the above constitute weak independence results; asserting that P = NP is not prov-
able in some (weak) proof system (For Logicians. It would be very interesting if,
for instance, it would be shown that P = NP is independent of say IZF. Hartma-
nis and Hopcroft [1976] noted that {B : B is recursive and PF # NP5} is I19
complete, but that {B : P? = NP?Z is provable in ZFC} and {4 : P4 # NP4 is
provable in ZFC} are both Z? From this we can conclude that there are recursive
sets A and B with P4 # NP4 and P? # NP2, yet neither result is provable in
ZFC).

Bennet and Gill extended (5.7) as follows:

Theorem 5.8. (Bennet and Gill [1981]). If A is a random oracle, then PA £
NPA. That is PA # NP* with probability one.

Theorem (5.8) led to the random oracle conjecture: This asserted that if Q was
a property which held for oracles with probability one, then Q in fact held without
oracles. This conjecture if true, clearly implied P # NP. However, using “double
oracles”, Kurtz [1983] showed that the random oracle conjecture fails. We now
know of many ‘natural’ results that refute this conjecture. Nevertheless, it is felt
that there is something to be salvaged from the conjecture.

The Baker-Gill-Solovay result leads to a rather general approach. Given some
separation result we are attempting, if we find we cannot solve it, then often we try
to find contradictory relativizations. If nothing else, this is a fair indication that the
question is very hard indeed. For instance, we know that for P, PSPACE, NP, co-
NP, LOGSPACE, EXPTIME any consistent combination is possible (we must keep
LOGSPACE# # PSPACE“ as the argument relativises). Thus for instance, we
can have P4 # co-NP# N NP4, or P® # NPZ yet co-NPE N NP? = PB or
PC¢ # NPC yet EXPTIMEC = NEXTPTIMEC. (We cannot have P? = NPP
unless EXPTIME? = NEXTPTIME? by upward translation).

One of the most difficult oracle separations is due to Yao [1985] who showed
that there was an oracle that separated the whole polynomial time hierarchy. This
impressive result used the very clever idea first proposed by Furst, Saxé and Sipser
[1984], of replacing combinatorial counting arguments by probabilistic ones, and
used results from “small depth circuits”. Recently, I am told, it has been announced
that there is a probability one separation.

We mention that not all results relativise. For instance, Cook’s theorern that
NL C P and Shamir’s result that IP = PSPACE (which we look at later) do not
always hold true in relativised worlds. It is important for us to understand why
this is the case, if we are to understand what the Bgker-Gill-Solovay results mean
in terms of approaches to P = NP.

AN INVITATION TO STRUCTURAL COMPLEXITY 63

We now turn to some related material on probabilistic methods. Whilst we will
not be able to do justice to this material, it is hoped that we can give the reader
some flavour of it.

One of the key issues related to NP is whether it “really” matters. For instance
suppose NP # P yet hard instances occurred only exponentially often. Then for all
practical purposes, P = NP. One is reminded here of the simplex method for linear
programming. As we all know, in worst case this is Q(2171} yet in real life it almost
always takes nearly linear time. Smale and others eventually gave an explanation
that the “average time” behavior of this algorithm really is polynomial.

There are many issues here. Do we want algorithms that are always fast and
give good approximate solutions? We can formalize this interpretation in several
ways, but for many sharp interpretations, we can show that the existence of such a
good approzimation algorithm itself implies P = NP. For a good discussion of the
issues here, see Garey and Johnson [1979, §6].

If, on the other hand, one asked for the good behavior “on average” then
the answer will depend on the probability distribution. For instance, if all
graphs with n vertices are equally likely, then a backtracking algorithm solves
3-COLOURABILITY in 197 steps on average (i.e. in constant time) (Wilf [1985]).
Similarly if the event ‘(z,y) is an edge’ is random and of constant probability, then
the expected computation time for Hamilton circuit is linear on average (Gurevich-
Shelah [1987]). Even for CNFSAT, it has been shown that for certain probability
distributions, the Davis-Putnam procedure (see Davis, Lagemann, and Loveland
[1962]) is polynomial time on average (Goldberg, Purdam, and Brown [1982])

Another well-known form of approximation algorithm is the so-called Monte-
Carlo methods whose origins go back to Ulam and others. A classic instance of
this is for PRIME NUMBER. Here the algorithm of Solovay-Strassen [1977] does
the following. Given a number n using a random number as a “seed”, it will use a
test to see if n is prime. Now if the test says ‘n'is composite’, n really is composite,
if the test says ‘n is prime’ it will be composite with probability at most % Now
if we use really random seeds, then each trial is independent. Also the trial runs

(always) in linear time. So if we trial n say 2000 times and we are always told

‘n is prime’ then the probability that n is composite is < (%)2000. Incidentally,

this all revolves around being able to generate random numbers, or as we do in
practice pseudo-random numbers. Again this is related to NP as foliows. We call
a function one way if f is polynomial time and honest, yet f —1 is not polynomial
time. Note that if P = NP there are no one way functions. Homer and Long
[1981] have proven that P = NP iff there s a function no restriction of which is
one way. What is really interesting is that Impagliazzo, Levin and Luby [1989]
have proven that if one way functions exist (as we believe) then there exist perfect
psedo-random number generations (again this is related to cryptography). It should
be remarked that Levin [1984] has developed an analogue of NP-completeness for
random problems.

For a leisurely account of these and related matters, the reader should look at
Johnson [1984] or Gurevich [1989).

64 ROD DOWNEY

We finish this section with a brief discussion of three related classes #P, IP and
PP. PP is the class of probabilistically polynomial time accepters. To make this
precise, we can say a NTM M probabilistically accepts z if more than half of the
computation paths accept z. With this we define the class PP as the collection
of sets B for which there is a p-time NTM M which probabilistically accepts B.
The class PP is closely related to Valiant’s counting class #P which is the class
of functions which compute the number of accepting paths of a NTM M. It is
easy to see that, for instance, PRIME NUMBER is in #P. Let #SAT be the set
{{k,F): Fisa boolean formula. with > k satisfying assignments}. Then Gill [1977]
showed that #SAT is < -complete for #P. It has been shown that computation
of the Jones polynonnal for certain classes of knots is #P-hard (that is, it is at
least as hard as a #P-complete set). We have the following results:

Theorem 5.9. (Gill [1972]). NP C PP C PSPACE.

Proof. The inclusion PP C PSPACE is by the direct simulation. Let A € NP. Let
M be a NTM accepting A. We need a machine M’ that accepts on input z on more
than 1 5 of the paths iff M accepts = on at least one path. Let M’ be the machine
that runs the following algorithm. At each step it chooses nondeterministically to
either accept z or torun M on z.

Now we extend the “do nothing but accept” computation paths to have length
that of those of M. Now if z ¢ A, then exactly half of the paths accept z, and if
% € A then as some computation path of M accepts z, more than half will accept
x, 80 A € PP. |

The class PP has interesting closure properties. For instance, by changing
accept and reject we see that PP is closed under complementation, i.e. PP =
co-PP. It is also true (Gill [1977]) that PP is closed under <Z. Using intricate
arguments about rational functions and simulation, the closure properties (5.10)
and (5.11)were proven.

Theorem 5.10. (Biegel, Reingold and Spielman [1990]). PP is closed under
intersection.

The argument of (5.10) was subsequently extended. We say A <[B if there is
a number & such that at most & questions are asked during the computamon of A
from B. This is called a polynomial truth table reduction.

Theorem 5.11. (Fortnow and Reingold [ta FOCS, Structures [1991]]) PP is
closed under truth table reductions.

Ultimately one would like to prove that PP is closed under <Z, that is PFP =
PP. Again there are oracles that give conflicting answers in relativised worlds here,
o the problem seems very hard. JIt should be remarked that our intuition here is
not that good since recent results shown that PFT seems quite large. Let PH
denote the polynomial time hierarchy.

Theorem 5.12. (Toda [1989]). PPPH C PFP,

AN INVITATION TO STRUCTURAL COMPLEXITY 65

There are a number of refinements of PP depending on the amount of errors
one allows. The class PP is usually identified with the Monte Carlo methods, since
errors are allowed. Another class of algorithms where no error is allowed are known
as “Las Vegas” algorithms. This is often identified with the zero error probabilistic
p-time machines (ZPP) defined below.

Now we allow 3 states, accept, reject and “I don’t know”. For such machines, the
error probability is defined as the probability of halting on reject when we should
accept plus that of halting on accept when we should reject. Let ZPP be the class |
accepted by such machines where the probability of an error is zero. Then ZPP
is closed under complementation, union and intersection, and Gill [1977] showed.

Theorem 5.13, P C ZPP C PN CO-NP.

Adleman and Huang have shown that PRIME NUMBER isin ZPP. It is believed
that ZPP = P is quite possible.

Finally, we will turn to the class IP of those sets with “Interactive proofs”.
The first thing to realize is that the name is a slight misnomer. They really ought
to be called “Interactive arguments that convince with high probability”. The
idea originated in Goldwasser, Micali and Rackoff [1985]. They conceived an
interactive system as two communicating Turing machines called a prover and a
verifier. The prover has no resource bounds except that there is a polynomial
bound on the length of a string it sends to the verifier. The verifier must act in
a fixed polynomial time bound. This is a way of viewing NP. The prover can
convince the verifier by communicating an accepting configuration to the verifier
who then verifies it. The idea is generalised as follows. Now we only require that
for a set A, if z € A the prover convmce the verifier with probability at least 2
to accept x, and with probablhty only 3 can the prover persuade the verifier to
accept z if z € A. (Of course the 1 3 3 are only arbitrary here, and by amplification
techniques can be chosen arbitrarily). We then let IP be the collection of sets
accepted by an interactive protocol described as above where there is a polynomial
number of rounds (communications between the prover and the verifier).

Another related class is IP[k]. This is the subclass of IP where at most & com-
munications occur between the prover and the verifier. By the work of Goldwasser
and Sipser [1986] another characterisation of IP[%] is a set A is in ITP[k] if there is a
set B in NP, and a polynomial p such that for all z, Prob[(z,y) € Biff z € A] > 3
where y is chosen at random from the strings of length {|z|); (and in partlcula.r
IP[2] = IP[k] for all k).

It is not difficult to see that ZPP C IP[2] and it was shown that a slightly larger
class containing NP (called BPP) was contained in IP[2]. Goldreich, Micali and
Wigderson [1986] showed that IP[2] contained language believed not to be in NP,
namely NON-ISOMORPHIC GRAPHS: The protocol is as follows: Let G and G
be given graphs. The verifier randomly picks a graph @ isomorphic to one of G5 or
Gz say G; obtained by a random permutation of the G;’s vertices, and sends this to
the prover. The prover then checks to see if one of Gy or G is isomorphic to H, and
if s0, communicates this G; to the verifier. Repeat the procedure twice, and the
verifier accepts if j = 4 on both rounds. Note that if G; 2 G5 then j = ¢ on both
rounds hence the verifier accepts with probability 1. Otherwise the verifier accepts

66 ROD DOWNEY

with probability at most %. We remark that in Goldreich, Mansour, and Sipser
[1987] it is proven that as above it is always possible to replace the % acceptance
probability, by ‘perfect acceptance’ probability : that is, if x € A then the verifier
accepts with probability one.

The above was the state of play until the breakthrough paper of Lund, Fortnow,
Karloff and Ganesi [1990] who built on earlier work of Toda, Valiant and others to
show surprisingly that PH C IP. It was then not long that the ‘algebraic’ methods
introduced by these authors were extended and simplified by Shamir who proved
the following remarkable result:

Theorem 5.14. (Shamir [1990]). IP = PSPACE.

Proof. (following Shamir [1990]). We build on interactive protocol for a variant
of QBFSAT, which is PSPACE complete as we saw in §4. A closed QBF formula
is called simple in the given representation if every occurrence of each variable is
separated from its point of qualification by at most one universal quantifier.
Examples.

(1) Va:lV:czEIa:l((xl A 332) FAN V$4(:2:2 Nzxg A 924)) is simple,

(i) Vx1V$g((:n1 Vo) AVz3(Z1 A 353)) is not simple.

By an easy indication, Shamir observed that all QBF formulae can be trans-

formed into equivalent simple QBF formulae with only a polynomial increase in
size. Now we come to the decisive idea of Lund et al [{1990].

Definition 5.15. Given a QBF formulae ¢, the arithmetization A{(¢) of ¢ is de-
fined via

(i) Replace each variable z; by one z; that ranges over Z.

(ii) Replace Z; by 1 — 2.

(iii) Replace A by multiplication; replace V by +, replace Vz; by the integer
product [, e101y 2nd 32i by 3, 10,13

For instance, ¢ = Vz13wa(z1 A2 V 323(T2 A 23)) becomes

A(¢5) = H Z (2122 - Z (1 — 22)23).

z1€{0,1} z2€{0,1} za€{0,1}

It is easy to show that ¢ is true iff the value of A($) = 0, and that if size of ¢
is n then the value of A($) cannot exceed 0(22"). This last result would seem a
restriction on p-time proofs, but Shamir found a device to get around. this.

Lemma 5.16. Let ¢ be a QBF of size n. Then there exists a prime p of length
polynomial in n such that A(¢) £ 0(mod p) iff ¢ is true.

Proof. Suppose A(¢) = @. If A(é) = 0(mod p) for all polynomial size primes,

then by the Chinese remainder theorem, it is = 0 modulo their product. By the
nd

prime number theorem, this product is 0(22), for any desired constant d; this

contradicts the assumption A(¢) # 0 and A(¢) is 0(2%"). If ¢ is false then A(¢) =0

for any p. |

AN INVITATION TO STRUCTURAL COMPLEXITY 67

Now given an arithmetical form A(¢) we can define the functional form F(e),
as the result of deleting the outermost 3 or] and considering the result as a
polynomial in one variable. Also, define the randomized form A(@)(z = 7) to
be the result of setting 2 to be the random number 7 (mod p) supplied by the
verifier. It is not hard to see that the polynomial g(z;) representing’ /'(¢)} can have
exponentially high degree, yet Shamir observed that if ¢ is simple, F(¢) grows at
most linearly in the size of ¢ (this is the key reason for simple forms). Now we can
finish with the interactive protocol to prove A # 0 (mod p): ’

The prover sends the claimed value a of A = A(¢) (mod p) to the verifier, and
Justifies this claim by considering successively smaller subexpressions of A. Thus
at any stage, the current expression for A is given as A; + Ay or A; Ay, where A;
is a polynomial with fully instantiated variables, {whose value a; can be computed
by the verifier; this is crucial) and A, starts with the leftmost 3 or [] of A(d).
'The prover and verifier then repeat the following:

1. If Ay = @, the verifier stops and accepts the claim iff a = a;.

2. If Ay # o, the verifier replaces A by Az and replaces ¢ by a — a; (mod p) or
+ (mod p) (depending on the operator between A; and As). If the verifier tries
to divide by a; =0 (mod p) he stops and accepts if o = 0 (mod p).

3. Otherwise, the prover sends the polynomial ¢(z;) describing F(A) to the
verifier. The verifier checks that a = ¢(0) + ¢(1) (mod p) (resp. ¢ = ¢(0) - a(1))
(mod p) and sends random 7 € Z,, to the prover. He then replaces A by A(z; =)
(mod p) and a by ¢(r) (mod p).

Example.

We write], for IL..c01; etc. Let ¢ = (Vz)(F1 V AzaVza(zs A zp V z3))
Alp) = 1L, (1 ~ 2z + 2oz Mag(z122 + 23)). Now F(¢) = ¢(z1) = 22 + 1 and
A(@)(z1 =3)= ((1 - 8)+ >z, Nz (322 + 23)) = 10.

Now in the protocol above, suppose P(rover) claims the value is 2. Then P sends
2 and its polynomial g(z1) = 2741 to V (erifier). V checks that ¢(0)-¢(1) = 2 (here,
of course A1 = 1) sends 21 = 3 to P, replaces A by F(¢)(21 = 3) and replaces
a(= 2} by ¢(3) = 10.

The new A starts with nonempty A; whose value g, = (1 ~3) = —2 can be
computed by V' (the new A is of course of the + form). We now adjust A and a.

A= Z H(3zz + 23)

Zz Z3

a=10—(-2) =12

F(A) = [1(322 + 23) s0 g(22) = 928 + 3z5. This is sent to V who checks that
g(0) +¢(1) =0+ 12 = 12 = q, and picks a random 2, = 2. A and @ are adjusted
accordingly:

a=q(2) =42,

68 ROD DOWNEY

P now sends ¢(z3) = z3+ 6 to V and V checks that ¢(0) 4 ¢(1) = 42 = a. Finally,
V chooses 23 = 5 and V verifies that

A(zs =5) =11 = a =¢(5).

Shamir’s result follows from

Lemma 5.17.
(i) If ¢ is true and P is honest, V always accepts the proof.
(ii) If ¢ is false, V accepts the proof with negligible probability.

Proof Sketch. To see that (ii) holds, we note that a cheating P who supplies
a bad a must provide a false g(z1) to support his claim. By the interpolation
theorem, such an incorrect polynomial of degree t can agree with a correct one on
at most ¢ points of ZZ,. In fact this means that it is likely that we will pick up a
dishonest P on the first round.Thus when the value of p is exponential in the size
of ¢ and the value of ¢ is polynomial, there is only a negligible probability that
an incorrect g yields a correct value when computed at a random r. As a result
with overwhelming probability a false P is forced to provide false values for smaller
and smaller A until V' discovers this fact, and this concludes the proof of Shamir’s
theorem.]

6. Separation Results and Other Topics

In this last section, we will look at some separation results we can prove, as well
as some other interesting results on circuit complexity and nonuniform algorithms.
First we look at separation results. Here, results are weak in the sense that they
depend on a specific model. Of course, to prove P # NP on a specific model would
suffice, but other classes such as linear time are not robust under change of models.
With the Turing machine model, using an intricate combinatorial argument, which
built on work of Paul and Reichuk [1981)], Paul et al showed

Theorem 6.1. (Paul, Pippenger, Szemeredi, and Trotter [1983]). DLIN # NLIN.
Here DLIN = Ugso DTIME (c.n) and NLIN = UysoNTIME (c.n).

It is perhaps noteworthy that at least two of the authors (Trotter and Szemeredi)
are classical combinatorialists, and Szemeredi is surely one of the best combinato-
rialists in the world. To me, this is a comment on the ‘Ramsey theoretical’ style of
the arguments. As another perhaps slightly easier example for Turing machines is
the old question of Hartmanis and Stearns [1965] of whether the bound Q(n?) for
simulating a two head Turing machine was optimal. As we mentioned earlier this
was solved for online deterministic machines by Li and by Maass, the latter also
proving that 2 heads are better than one for nondeterministic machines. (Here, as
we mentioned earlier, it is unknown if O(n?) is optimal). These results are quite
instructive to study in detail as they employ intricate combinatorial techniques in
combination with two ubiquitous ideas: crossing sequences and Kolmogorov comn-
plexity, so we sketch the ideas used in the proofs. Thus remember we have the
setting of a one way input tape with a work tape. We follow the presentation Ming
Li [1985].

AN INVITATION TO STRUCTURAL COMPLEXITY 69

Definition 6.2.

(1) Let A be a block of input tape and R a region of the work tape. We say
M maps A into R if, whilst reading A, the work head ho does not leave R. If ho
traverses all of R we say M maps A onto R.

(ii) A crossing sequence (c.s.) is a collection of instantaneous descriptions (ID)
of the form (state, hi’s position). Let |c.s.| be the amount of space needed to
represent a ¢.s.

As our machines only go right on A;, we can give the ith ID, ID; of a c.s. for M
can be represented as ID; = (state, h;’s current position — h;’s position of ID;_,),
with IDg = {...,0)

Lemma 6.2. (Li [1985], implicit in Maass [1984, 1985]).

(a) If a c.s. has d ID’s and the length of the input is n, then using the above
technique, |c.s| < d(|M|) + 2%, log ked with Y%, k; = n, where k; s the number
of squares between hy’s position in ID; — ID;—1. Consequently, as log is convexz,
|c.s| < d(|M]) + dlog (%).

(b) Let Ay,..., Ay be blocks of input tape of equal length ¢ and delete d of them,
then to represent the remainder (and still remember the relevant positions), we can
use mAy ... Ax(p1,d1)(p2,d2) . .. (Db, dp) where m denotes the number of nonempty
A;’s, and

A= A; if A;is not deleted and = @,

otherwise, and (p;,d;} means the nezt p; A;’s are in one group followed by d;
deleted A;’s (some technical conditions are needed here to sort out the (p;,d;). For
instance locally double and put 01 at beginning and end (01011 — 01001100111101))
(50 A1 As A Ay A Ag — 3A142A4(2,1)(1,2)). Then the space needed is

<314 + diog)

i=1

= mc+ dlog (g) .

The proof of the above is a straightforward analysis of the requirements. This
lemma allows a critical observation that says roughly, if the machine maps too
much of the input tape into a small region, then there is a small machine that
accepts the input tape. This is very important since we see that it implies the
input is not random. The instructive idea is surmmarized as

Lemma 6.3. (Jamming Lemma, Li [1985], implicit also in Maass [1985]).

Suppose on input A; ... Ag# with the A;’s of equal length c, M maps A;,,... , A;,-
into region R by the time hy reaches #. Then the contents of the work tape can be
reconstructed from {A1, ..., Ap}—{A;,,... , Ay, }, R and the two crossing sequences
on the left{l) and right(r) boundaries of R.

70 ROD DOWNEY

Proof. Put {A4i,...,Ax} — {Ai,,..., A} in their correct positions, and write R
on the work tape. As indicated by the c.s.’s we can run M with hy staying left of
R. If hg reaches ! interrupt the programme and move to the next ID of the c.s.
Do this on the left and right independently.]

We remark that, for obvious reasons, the above is called a cut and paste argu-
ment; and furthermore as we shall see, it implies that if

D A4 = 2(1R)) +2[c.s.| + | M]),

i=1

then Aj... A is not random. The critical notion that makes this precise is the
following.

Definition 6.4. (Chiatin [1966,1969], Kolmogorov [1965, 1968)).

(i) The Kolmogorov complexity K(y) of a string y is the size of the smallest
T.M. which accepts only v.

(i) y is called random if K(y) > |y| — 1.

There are many formulations of the notion above, but ultimately any notion
of randommness depends on computability theory. Without going into details, this
notion has a lot of applications and philosophical applications. The reader should
see Chiatin [1974] and Li and Vitanyi [1988], the latter for a good survey of
applications of Kolmogorov complexity to complexity theory. For our purposes, the
use will be that it will force ho to behave ‘honestly’ on a random input. Namely,
we force hy to have long traverses (and hence take a long time) on a random input,
by arguing that if it does not then the input is not random.

Define a language

L={A184:8.. . $A Y18 .. SV 4(1", 1%),.. . (1%1%) :
Ap=Y, for p=i1+.. . +iu,g=j1+...+j, and u=1,... s}

Example 6.5.
MSMSNSMSNSN#MIMIN#(13,13)(12,11)(23,1%) e L.
It is easy to see that a 2-tape online machine can accept L in time O(n).

Theorem 6.6. (Li [1985], Maass [1984, 1985]). For an online one tape machine
M to accept L requires Q(n?) time. Hence the Hartmanis and Stearns [1965] 2-tape
1-tape trade-off is optimal.

Proof Sketch. (After Li [1985]). Suppose each square of M’s work tape is coded
by ¢y bits. Fix an n and ¢ so that the inequalities below hold and .

2nloge n

¢ > 100¢| M |; 13

(loge) n
2 8

AN INVITATION TO STRUCTURAL COMPLEXITY 71

Now take A with |A| =n and K(A) > n. Break A into k = Z pieces each c long,
and call them Aj,...,Ar. Now consider M’s response to A1$42%... $AL#.

If more then % of the A;’s are mapped onto regions size > 5 then M requires

n®

Q(n?) time, since the time is then > % (&) = 2.

We can conclude that at least half of the A;’s are mapped into regions of size
< & on the work tape. Now order these A;’s by left boundary of the regions into
which they map. Let A,, be the median. There are two cases.

Case 1. (Jammed). There are > £ A;’s and a fixed R of length % on the work
tape with M mapping these A;’s into R. We claim that this cannot happen as then
there is a short programme accepting A contradicting the fact that K(A) > |z|.
Consider the 2 regions R; and R, of length |R| on the left and right of B. Let p, be
the position of R, with the shortest c.s. Both of these ¢.s. must have length <
lest M uses > (%) (%) time. Now cut and paste. Let RL(R]) be the positions of

R.(R;) to the left (right) of p,(p;) and B the regions from p; to p,.

R R,

R'| R | R

r
Yy Pr

i -

) <

We use the information
(i) There are < k — & A;’s not mapped into R
(ii) the 2 c.s. at p; and p,
(iii) R

To see if X = A first see if | X| = | A| via the jamming lemma we get the contents
of M’s work tape by the time we reach #. Divide X into X3$...8X) and run M
with input #£X:$...8Xp#(1,1)...(1,1) attached. Then M accepts iff X = A.

The crucial point is that the programme is short; namely by the lemmas (6.2)
we need '

O <n-(2)+ (@) Sn-2 forthe k-
(i) <2 for R
(i) (&) (|M]+ 3logc) for the 2 c.s.

{(iv) O(logn) for counters

which is < n as n dominates the above.

72 ROD DOWNEY

Case 2. (Unjammed). For each region R with |R| = % there are < £ A;’s mapped
into R.

Fix a region R,, of size - that A, maps into, with R,, the median region.
Then there exist > % Aj’s say, Sy = {44, ,4; %} all mapped right of R,, and
similarly S; = {A4,,,... ,Aj%} all mapped left of R,,. Order as i; < ... < tx and
g1 < .. <j§. Now let Y be generated as Y1 = A4;,, Yo = Aj,Ys=A,, ... sothat
the partial input is read as

ArS.. SAHY:S.. SV

The idea is that we argue that we must cross Ry, a lot and hence take a lot of
time.

If there are not at least Ikﬁ pairs Y2;.18Y5;$ such that hy traverses > 1, then
we use > n? time. If there are £ pairs such that hy traverses < 2 for each
then there is a region R C R,, and 2—’1Ai’s from either S, or S; mapped onto
one side of R and the corresponding Y;’s mapped onto the other side of R. Call
these sets S4 and Sy with indices a; < ... < @ ks by <...<b e Now append

#(1a1, 1b1)(1a1+a2’ lb1+bz) L.

Now one finishes as follows: if the shortest c.s. of R is big then the run time is
Q(n?). If the shortest c.s. of R is small we can, as before, use the jamming lemma
to accept A.]

"The situation for off line T.M’s is not so clear. The only concrete results I am
aware of is that of Dietzfelbinger, Maass and Schnifger [ta] who proved an optimal
lower bound of Q(n.q.]'|10g(q)|p]%) for the problem of transposing an g x ¢-
matrix with elements of bit length p and input size n. This again uses Kolmogorov
complexity as well as clever combinatorial techniques.

There have been a number of other separation type result for other models such as
RAMS and decision trees/circuits. Many of these use delicate Ramsey-theoretical
arguments, or similar ideas. Here the reader should recall that Ramsey’s theorem
is a powerful generalization of the pigeonhole principle. Let [n]® denote the set of
k-subsets of {1,... ,n}. For a colouring x of [n]* a homogeneous set for y if H is
a subset of {1,...,n} such that [H]* is monochromatic. Ramsey’s theorem, which
we call H, asserts.

Theorem 6.7. (Ramsey [1930]). For all k,r,p there is an n so large that for any
r-colouring of [n]* there is a homogeneous set of size at least p. This is written as

n— (p)*.

As a point of explanation, let £ = r = 2, so are 2-colour pairs. Colour a pair red
if they are friends, and blue if nonfriends. Then Ramsey’s Theorem asserts that for
all p there is an n so large that in any party of size n, there is a group of p mutual
friends, or p mutual nonfriends. Ramsey’s Theorem is but a single example of a
large class of similar theorems asserting good behaved bits in seemingly chaotic

AN INVITATION TC STRUCTURAL COMPLEXITY 73

large numbers (see Graham, Rothschild and Spencer {1980], or (Downey [1989]
for a friendly survey aimed at college students)).

It is easy to see why Ramsey type theorems can be used in complexity theoretical
arguments. We have some process P we feel ought to take a long time. We have
another process @ we know takes a (fairly) long time. We use a Ramsey type
argument to show that to perform P we need to perform Q often. This type of
argument has been especially useful in RAMS, branching programmes and decision
tree complexity. The reader is referred to, for instance, Maass [1988], Pudlak
[1984], Alon and Maass [1986], and Ajtal, Babai, Hajnal, Komlos, Pudlak, Rodl,
Szemeredi and Turan [1986].

One last area where some fine results have been obtained is that of circuit com-
plezity. A boolean circuit is a directed cyclic graph with internal nodes labelled A;
(and), Vv (and), - (not). It has one sink called the oufput node and a number of
input nodes labelled with variables z; or —z;.

It is not hard to see that by de-Morgan’s law’s we need only consider A or V
as the only internal nodes, and by stretching we need only alternating rows of A
and then V gates. For a given input assignment of the variables as 0 or 1 we can
evaluate the circuit in the obvious way. The depih of the circuit is the length of the
longest path and the size of the circuit is the number of gates. We say a collection
of circuits {C; : ¢ € A} accepts a set A if for each input z of length n,z € A4 iff C,,
accepts = (i.e. Cp on input z output 1). It is easy to show that if A is accepted
by a T.M. M in time 0(f(n)) then we can uniformly construct a polynomial time
collection of circuits that accepts A in time 0(f(n)?). (Indeed this can beimproved

to 0(f(n)logf(n))).

Clearly if we could prove lower bounds on the size of circuits, we could prove
lower bounds on the running times of T.M’s. Alas, the best known lower bound
on the size of circuits for a NP-problem is 3n (N. Blum [1984]) so the situation is
not all that good, to say the least. (I should point out that if we do not demand
uniformity of the circuits, one gets a new class. This has been widely studied and
certainly includes sets not in P. We do not mention these results here due to lack
of space).

T4 ROD DOWNEY

Good results have been obtained by restricting the circuit models. The best
progress has been obtained for monotone and small depth circuits. A monotone
circuit has no negated inputs nor — gates. A key idea was supplied by Furst, Saxe,
and Sipser [1984]:

Definition 6.8. A restriction g is a mapping of the variables to {0,1,*} with
g(z;) = 7 (0 or 1) means we replace z; by the value j. If g(z;) = * then do nothing
to z;.

Now suppose we wish to argue that there is no small small depth circuit that
can compute some set A. We would like to argue by induction on the depth d.
For d = 2 we usually need an absolute argument, but this is not too hard. At
the induction level suppose we go from d to d 4 1. There is an obvious strategy.
Suppose the output circuit is an A gate. So the level below is a set of V gates.
If we could replace this portion of the circuit with an equivalent one where the
second layer is all A gates, we could collapse the top and second top into one layer
to get a depth d circuit. We can do this via de-Morgan’s laws. Unfortunately, the
trade-off in size by this approach is exponential. That is a small circuit of depth
d + 1 becomes a large circuit of size d. The key idea of Furst et al [1984] was
to obsefve that if, for instance, one input of an or gate has value 1 the gate has
value 1, or if one input of an and gate has value 0 the gate has value 0. Then
the idea is that using restrictions we should be able to perform the process and
still get a small circuit. The decisive idea is to use random restrictions, and then,
with high probability, nothing is lost. A classic example of this approach was an
improvement of Hastad who showed that

Theorem 6.9. (Hastad [1986]). The pairing function, f(x) = z; (mod 2), of
. : . . L k
n inputs and depth k requires size > 2°"%=1 for n > n;, where ¢ = 107 F-T,

Also Yao [1985] and Hastad {1986] built on earlier work of Sipser [1983] to
examine the power of depth k over depth k& — 1, and obtain suitable separation
results. This allowed Yao to construct an oracle separating PH (since Ef is closely
related to depth k + 1 circuits).

Finally another approach to P =7NP was suggested. We should study monotone
circuits. The idea was that if f could be computed by a small normal circuit then
it could be also by a small(ish) monotone one, for some suitable class of functions
f € NP. One then proves exponential lower bounds for the monotone circuit
complexity of some such f. In a major paper, Rasborov [1985] developed another
technique of approzimations where he replaces large V’s (A’s) by small V’s {A’s) and
gets a related circuit that computes the same vahie on most inputs. This technique
allowed Rasborov to settle the above conjectured approach to P =7NP by showing
exponential monotone complexity for several sets known to be in P, as well as
some NP complete problems such as CLIQUE. His work has been extended by,
for instance, Alon and Boppana [{1987]. It is not clear if it is possible to use his
ideas for more general circuits. It should be remarked that his technique improved
to exponential previous bounds known only to be linear.

To finish this article, we will briefly look at some lovely work applying a major
theorem from graph theory to complexity, and its philosophical implications.

AN INVITATION TO STRUCTURAL COMPLEXITY 75

The work we shall now study challenges the notion that tractable should be
identified as P and comes as a result of the magnificent theorem of Robertson and
Seymour [‘Graph Minors I-XVI’]. It has long been recognized that it is conceivable
that P = NP yet it may not be possible to ezhibit p-time algorithms for all members
of P due to lack of uniformity. The study of P is particularly driven by practical
computation where algorithm builders believe that if process @ has an algorithm
in P and ‘Q was a reasonably natural problem’ then @ would have an algorithm
that was feasible in the sense that the polynomial would have low degree and the
constants would be small; and furthermore if we could prove Q was in P, then we
could find the algorithm.

For the first time we have tools to challenge (but not yet refute) this long held
view. We have tools that allow us to prove that various processes are in P without
ever exhibiting an algorithm for them and furthermore the technique can yield al-
gorithms whose constants of proportionality ezceed the number of atoms in the
universe. As in Fellows [1989)], this can be likened to the situation with Hilbert’s
solution to Gordon’s problem of invariants, where as we know Hilbert used a non-
constructive proof to show any set of forms in a finite number of variables over Q(c)
has a finite basis, and Gordon’s famous reaction that “This is not mathematics this
is theology!”

Turning to some details, the Robertson-Seymour theorems concern finite (undi-
rected) graphs, under the immersion and minor orderings. Let G be a graph and
(z,1), (y, z) two edges of G, with y of degree 2. We say (' is a contraction of G
(via y) if we delete these edges and replace them with a single edge (z, z). We say
G’ is a minor of G(G' <, G) if ' results from G by repeated application of taking
subgraphs and then contracting edges. The notion of immersion (<;) is similar but
for our purposes it will suffice to concentrate on the minor ordering,

A famous theorem of Kuratowski says that G is planar (i.e. can be drawn on
the plane with no edges crossing) iff G has neither K5 nor K. 3,3 (below) as a minor
(actually it says something stronger, but this suffices)

Ky Kss

It was an old conjecture that there was a Kuratowski theorem for surfaces.
Namely if H is any surface of genus k there is a finite set of graphs Fy,..., F,
such that & is embeddable on H iff G does not have F; as a minor for any i. A
strengthening of this is another conjecture of Wagner: Define a set of graphs
to be closed under the minor (immersion) order if G € S and G’ <,, G implies
G' € 5. Note that if G embeds on a surface H then so does any minor so that the
collection of graphs embeddable on H is a closed set under <,,,. If S is a closed
set, under <, define an obstruction set O for S to be a set of graphs {F1, ... yFn}
such that G € S iff F; £,, G. Wagner conjectured the following:

76 ROD DOWNEY

Theorem 6.10. (Robertson — Seymour). Any set of graphs closed under the minor
ordering has o finite obstruction set.

Similarly, they solved a conjecture of Nash-Williams:

Theorem 6.11. (Robertson — Seymour). Any set of graphs closed under the im-
mersion ordering has a finite obstruction set.

These theorems are the result of a very long series of papers (see the references}
where a deep and important structure theory is developed. I should point out that
we know that the finite sets are intrinsically non-constructive in various technical
senses (see Friedman-Robertson-Seymour [1985]). In particular, the finite sets can
be very large and grow faster than (e.g.) Ackermann’s function.

What has this to do with complexity? The crucial point is this: the problem of
determining if H <, G or H <; G is O(n?) so that we get the corollaries

Corollary 6.12. (Robertson-Seymour).
(i) If C is any class closed under <u or <; then membership of C is O(n®).
(ii) Indeed, if C excludes a planar graph, then membership of C is O(n?).

Nevertheless, the algorithms depend on (i} knowing the obstruction set and
(i) the constants inherited by the proof of the Robertson — Seymour Theorems.
In particular the size of the obstruction set in (i), and the notion of tree width in
(ii) give astronomically large constants. These algorithms, and (ii) also makes
the technique intrinsically nonconstructive in general.

To apply the above results in ‘real life’ one takes one’s favourite problem and
shows that it can be modelled by a class of graphs closed under <., or <;. Then
immediately we get O(n®) acceptance. Here are some examples of where this
methodology has been applied.

KNOTLESSNESS

Instance: A graph G

Question: Does G have a knotless embedding in 3-space.
Comment: It is not at all obvious that this is even decidable and there is no
known technique for proving decidability except the ‘RS-poset’ method.
GATE MATRIX LAYOUT (k)

Instance: A boolean Matrix B and

Question: Is there a permutation of the columns of B so that,
if we replace each 0 lying between arrows leftmost and rightmost ones,-no column
contains more than k ones and *’s.
Comment: If k varies, the problem is NP-complete. The problem comes from
problems in VLSI layout. This is O(n?) as it can be formulated so that we exclude
a planar graph.
CROSSING NUMBER (k)

Instance: A graph G
Question: Can G be drawn on the plane with at most & edges

crossing?

AN INVITATION TO STRUCTURAL COMPLEXITY 77

Comment: If k varies, the problem is NP-complete (Garey and Johnson [1978]).

We will not go into further details, but refer the reader to the slightly dated
survey paper of Fellows [1989]. Currently there are many issues in this area. One
is to try to make the algorithms ‘practical’. For instance, one idea is to develop
a finer theory for certain classes of minor closed sets which yield small constants.
This seems conceivable for small tree width problems. A very promising approach
is to look at approximate algorithms. For instance in Kuratowski’s theorem Kag
is a very good approximation to the obstruction set. Here we run into the usual
problems of using the appropriate distribution (that we saw earlier). Perhaps
Renyi’s theory of relative probabilities is appropriate here.

Finally, the approach above yields the following observation. Many classes of
problems can be parameterized by a parameter &k such that for each & the problem
is fixed time tractable. There are, of course, lots of other examples of this: For
example —

VERTEX COVER (k)
Instance: A graph G
Question: Does G have a vertex cover of size < k.

Comment: This is solvable in time O(n) and is NP-complete if k varies {Garey
and Johnson [1978]).

LINEAR INEQUALITIES (k)
Instance: A system of % linear inequalities
Question: Can this be made consistent over @ by deleting k of them.

Comment: For each k thereis an O(n‘"(k)) algorithm, but no known fixed a works.

The observation is that there seems no relation between the complexity of the
fixed parameter problems and the complexity as k varies. This leads one to study
reducibilities between classes of fixed parameter families. For instance, we consider
sets @ C IN x 5" so that Qr = {{k,0) : {(k,0) € @} represents the k-parameter
problem. For simplicity, assume the set @ is given in some uniform way. We can
define a number of reducibilities between such families. For instance Q < @ can
mean: :

There is a procedure ® and a recursive f and a fixed n such that for each

k,(k,z) € Q iff @(@(f(k}), (k,z)) = 1 where Q(f(k)) denotes Ui< sy @s and the
computation must run in time < f(k)|x|™.

The 0-degree for such classes is called the fized parameter tractable sets (and are
related to the PQT classes of Abrahamson, Ellis, Fellows, Mata [1989])} and are
those, such as those arising from RS posets, for which there is a fized o with an
O(n®) membership test for each slice @ (i.e. & is independent of k}. Abrahamson,
et al first proposed there should be a completeness theory for such objects. For
instance, the set representing {Linear inequalities (k)} is complete in this setting
(for the appropriate reduction). We generalized and developed a good completeness
theory, and have shown (Downey, Fellows and Slaman [ta]) that, for instance, the
degrees are dense, for certain reducibilities. Downey and Fellows had also refined
the notions of completeness, and developed several completeness theories related
to circuit complexity. Other work on this area can be found in Downey-Fellows [ta

78 ROD DOWNEY

1, 2, 3], Abrahamson, Downey Fellows [ta] and Fellows-Koblitz [ta].

Limitations of time and space (sic) do not allow me to present other very in-
teresting topics such as inductive learning theory (e.g. Blum and Blum [1975],
Gold [1967], Gasarch, Pleszkoch and Solovay [ta]). There one considers a T.M. as
the model of a “learner” who must eventually recognise the index for a recursive
function after a finite number of mistakes (consider language acquisition).

Another topic, I wish I could have included is looking at feasible analogues of
classical objects. For instance, Cenzer, Buss, Nerode and Remmel have investi-
gated ‘polynomial time’ logic and algebra. For instance, over GI*{2) the problem of
determining independence is a natural NP problem. One can then study polyno-
mial time presented structures and look at the feasibility of other processes on such
structures. Closely related is the theory of Ker-i-Ko and Friedman on the P-time
content of analysis whereas, say, Pour-El and Richards [1989] look at effectiveness
conditions, these authors ask what happens in P-time. A typical theorem is that
while there exists a p-time C? computable differential equation with no computable
solution, analytic ones do possess computable solutions.

Finally another very interesting topic I have not covered is that of bounded query
reducibilities. Here one examines the effect of circumscribing the allowable type
of questions (and their number) of an oracle in a reduction. This is a very lively
area with a lot of nice work. Key figures include Amir, Biegel, Gasach and others.
A particularly pretty illustration of this area is a recent result of Kummer [ta]:
Suppose that A and B are any sets, n € IN and suppose there is a reduction T,
that on input {z1,... ,22=) and oracle B computes |[{z1,... ,Zan }NA| by only < n
questions to B. Then A is recursive. (2" is sharp here). Gasach has a survey
article in the 1991 6th annual structures conference and we refer the reader to the
IEEE proceedings.

In any case we will stop with the work on fixed parameter sets. This seems
appropriate as we may be finishing with what we hope will be a very interesting
re-examination of NP-completeness that should yield much deeper insights, and is
still in its infancy.

References

1989. K. Abrahamson, J. Ellis, M. Fellows and M. Mata, Completeness for families
of fized parameter problems, in Proc. 29th IEEE FOCS.

ta. K. Abrahamson, M. Fellows and R. Downey, Fized Parameter %aétabz’h’ty and
Completeness IV: W[P] and PSPACE, (to appear).

1978. L. Adleman, Two theorems on random polynomial time, in Proc 19th [EEE,
FOCS, pp. 75-83.

1977. L. Adleman and K. Manders, Reducability, randomness and intractibility, in
Proc 9th ACM 5T0C, pp. 151-163.

1974. A. Aho, J. Hopcroft and J. Ullman, The Design and Andlysz’s of Compute
Algorithms, Addison-Wesley.

1986.

1987.

1986.

1988.

1984.

1985.

1986.

1986,

1988,

1975.

1986a..

1986b.

1988.
1990,
1988.

ta.

1989.

1981.

1976.
1977.

1977.

AN INVITATION TO STRUCTURAL COMPLEXITY 79

M. Ajtai, L. Babai, P. Hajnal, J. Komlos, P. Pudlak, V. Rodl, E. Szemeredi
and G. Turan, Two lower bounds for branching programmes, in Proc. 18th
ACM STOC, pp. 30-38.

N. Alon, and R. Boppana, The monotone circuit complezity of boolean func-
tions, Combinatorica 7, 1-22.

N. Alon, and W. Maass, Meanders, Ramsey theory and lower bounds for
branching programmes, in Proc 27th IEEE FOCS.

N. Alon and W Maass, Meanders and their applications in lower bound argu-
ments, J.C.S.5. 37, 118-129.

K. Ambos-Spies, On the Structure of the Polynomial Degrees of Recursive Sets,
Habilitationschrift, Universitat Dortmund.

K. Ambos-Spies, Three theorems on polynomial degrees of NP sets, in Proc.
26th IEEE FOCS.

K. Ambos-Spies, Inhomogeneities in the polynomial time degrees, Inf. Proc.
Letters 22, 113-117.

K. Ambos-Spies and A. Nies, The theory of polynomial many one degrees of
recursive sets is undecidable, (to appear). '

L. Babai and S. Moran, Arthur-Merlin games: A ramdomized proof system
and a hierarchy of complezity classes, JCSS 36, 254-276.

T. Baker, J. Gill and R. Solovay, Relativizations of the P =7NP question,
SIAM J. of Comput. 4, 431-442.

J. Balcazar, R. Book and U. Schéning, The polynomial time hierarchy and
sparse oracles, J.A.C.M. 33, 603-617.

J. Balcazar, R. Book and U. Schoéning, Sparse sets, lowness and highness,
SIAM J. of Comput. 15, 739-747.

J. Balcazar, J. Diaz and J. Gabarro, Structural Complexity I, Springer Verlag.
J. Balcazar, J. Diaz and J. Gabarro, Structural Complexity II, Springer-Verlag.

D. Barrington, Bounded width polynomial size branching programmes recognise
ezactly those languages in NC, in Proc. 18th ACM STOC, pp. 1-5.

R. Beigel, N. Reingold and D. Spielman, PP is closed under intersection,
Technical Report, Yale University, pp. 1990.

R. Beigel, L. Hemachandra and G. Wechsung, On the power of probabilistic
polynomial time; PNPIo8l C PP, in Proc. 4th Annual Structures in Complezity
theory, pp. 225-227.

C. Bennett and J. Gill, Relative to a random oracle A, P ¢ NPA #£ co-NPA
with probablity 1, SIAM J. of Comput. 10, 96-113.

L. Berman, On the structure of complete sets, in 17 IEEE FOCS, pp. 76-80.

L. Berman, Polynomial Time Reducibilities and Complete Sets, Ph.D. Dis.,
Cornell University.

L. Berman and J. Harmanis, On isomorphism and density of NP and other
complete sets, SIAM J. of Comput. 6, 305-322.

80

1975.

1967.

1986.

1973.

1984.

1972,

1974a.
1974b.
1976.

1984.

1988.

1966.

1984,

1987.

1987.

1973.

1971.

1982.

1939.

1986.

19€6.

ROD DOWNEY

L. Blum and M. Blum, Toward a mathematical theory of inductive inference,
Inf. Control 28, 125-155.

M. Blum, A machine independent theory of complexity of recursive functions,
J.A.C.M. 18, 322-336.

M. Blum, How to prove a theorem so that no one else can claim it, in Proc.
Int. Congress of Mathematicians, Berkeley.

M. Blum and I. Marques, On complezity properties of recursively enumerable
sets, J.S.1L.. 38, 579-593.

N. Blum, A boolean function requiring 3n network size, Theor. Comput. Sci.
28, 337-345.

R. Book, On languages accepted in polynomial time, SIAM J. of Comput. 1,
281-287.

R. Book, Comparing complezity classes, J.C.S.S. 9, 213-229.
R. Book, Tally languages and complexity classes, Inf. and control 26, 186-193.

R. Book, Translation lemmas, polynomial time and (logn)?-space, Theor.
Comput. Sci. 1, 215-226.

R. Book, J. Balcazar, T. Long, U. Schoning and A Selman, Sparse oracles and
uniform complexity classes, in Proc. 25th IEEE. FOCS, pp. 308-311.

R. Book, P. Orponen, D. Russo and D. Watanake, On exponential lowness,
SIAM J of Comput. 17, 50-56.

W.W. Boone, Word problems and recursively enumerable degrees of unsolv-
ability, Ann. of Math. 84, 49-84.

R. Boppana, Threshold functions and bounded depth monotone circuits, in
Proc. 16th STOC, pp. 475-479.

R. Boppana, J. Hastad and S. Zachas, Does co-NP have short interactive
proofs?, Inf. Proc. Letters 25, 127-132.

R. Boppana and J. Lagavias,, One way functions and circuit complexity,, in
Springer- Verlag Lecture Notes Computer Science, (ed A. Selman), pp. 51-65.

R. Borodin, Computational complexity: theory and practice, in Currents in the
Theory of Computing, (ed A. Aho), Prentice-Hall, pp. 35-89.

R. Borodin, On relating time and space to size and depth, SIAM J of Comput.
6, 733-744.

A. Borodin and S. Cook, A space time trade-off for sorting on a-general se-
quented model of computation, SIAM J of Comput. 11, 287-297.

A. Borodin, A, S. Cook, P. Dymond, W. Ruzzo and M. Tompa, Two appli-
cations of complementation vie inductive counting, SIAM J. of Comput. 18,
559-578.

J. Cai, With probability one, a random oracle separates PSPACE from the
polynomial-time hierarchy, in Proc. 18th ACM STOC, pp. 21-30.

G. Chaitin, On the length of programmes for computing finite binary se-
quences,, J.A.C.M. 13, 547-569.

1969

1974,

1984.
1981.

ta.

1936.

1964.

1972,

1971.

1973.

1985.

1987,

1976.

1962.

1962.

1988.

ta.

1989,

1991.

ta

AN INVITATION TO STRUCTURAL COMPLEXITY 81

. G. Chaitin, On the simplicity and speed of programmes for computing definite
sets of naturel numbers, J.A.C.M. 16, 407-412.

G. Chaitin, Information-theoretic limitations of formal systems, JLA.C.M 21,
403-424.

A. Chandra, D. Kozen and L. Stockmeyer, Alternation, J.A.C.M 28, 114-133.

P. Chew and M. Machtey, A note on structure and looking back applied to the
relative complezity of computable functions, J.C.5.S 22, 53-59.

P. Cholak and R. Downey, Undecidadility results for parameterized polynomial
time tractability, (to appear).

A. Church, An unsolvable problem of elementary number theory, Amer. J.
Math 58, 345-363.

A. Cobram, The intrinsic computational difficulty of functions, in Proc. Inf.
Congress for Logic, Methodology and Phil. of Science, Borth-Hollan, pp. 24-30.

J. Conway., Unpredictable iterations, in Number Theory Conference, Univ. of
Colorado, Proceedings, Springer-Verlag, pp. 49-52.

S.A. Cook, The computational complexity of theorem proving procedures, in
Proc. 8rd ACM STOC, pp. 151-158.

S.A. Cook, An observation of time-storage trade-off, in Proc. 5th ACM STOC,
pp. 29-33.

S.A. Cook, A taxonomy of problems with fast parallel algorithms, Inf. and
Control 64, 2-22.

S.A. Cook and P. McKenzie, Problems complete for deterministic logarithmic
space, J. Algorithms 8, 385-394.

S. Cook and R. Sethi, Storage requirements for deterministic time recognisable
languages, J.C.S.S. 13, 25-37.

M. Davis, G. Logemann and D. Loveland, A machine program for theorem
proving, Comm. ACM 5, 394-397.

M. Davis and E. Weyeuker, Computability Complezity and Languages, Aca-
demic Press.

M. Dietzfelbinger and W. Maass, Lower bounds via ‘inaccessible numbers’,
J.C.S.S. 36, 313-335.

M. Dietzfelbinger, W. Maass and G. Schnifger, The complexity of matriz trans-
position for one-tape off-line Turing machines, Theor. Comput. Sci. (to ap-
pear).

R.G. Downey, On Ramsey-type Theorems and their applications, Singapore
Math Medley 17, 58-78.

R.G. Doﬁrney, On computational complexity and honest polynomial degrees,
Theor. Comput. Sci. 78, 305-317.

. R.G. Downey, Nondiamond theorems for polynomial time reducibilities, J.C.S.S.
(to appear).

82

1989.

ta.

ta.

ta.

ta.

ta.

ta.

ta.

1965,

1989,

ta.

1987.

1989,

1989.

1979.

1987.

1987.

1991.

1857.

ROD DOWNEY

R.G. Downey, W. Gasarch, S. Homer and M. Moses, On honest polynomial
reductions, relativisations, and P = NP, in Proc. IEEE jth Structures in
Complexity, pp. 196-207.

R.G. Downey, W. Gasarch and M. Moses, On the structure of honest polyno-
mial m-degrees, (to appear).

R.G. Downey and M. Fellows, Fized Parameter Tractebility and Completeness
I: Basic Results, (to appear).

R.G. Downey and M. Fellows, Fized Parameter Tractability and Completeness
II: On Completeness for W1, (to appear).

R.G. Downey and M. Fellows, Fized Parameter Tractability and Completeness
III: Structural Aspects of the W-Hierarchy and Density, (to appear).

R.G. Downey and M. Fellows, Fized Parameter Tractability and Completeness,
monograph in preparation.

R.G. Downey and M. Fellows, Fized Parameter Tractability, monograph in
preparation, Congressus Numerantium (to appear).

R.G. Downey, M. Fellows, and T. Slaman, Fized Parameter Tractability and
Completeness V: a general density theorem, (to appear).

J. Edmonds, Mintmum partition of a matroid into independent sets, Res. Nat.
Bur. standards set B 69, 67-72.

M. Fellows, The Robertson-Seymour theorems; a survey of applications, in
Contempory Mathematics, Amer. Math. Soc. 89, 1-18.

M. Fellows and N. Koblitz, On security of small secret keys and parameterized
complezity, (to appear).

M. Fellows and M. Langston, Nonconstructive advances in polynomial time
complezity, Inf. Proc. Letters 26, 157-162. :

M. Fellows and M. Langston, Nonconstructive tools for proving polynomial
time decidability, J.A.C.M.

M. Fellows and M. Langston, Layout permutation problems and well-partially-
ordered sets, in Proc. 5th MIT. Conf. on Advanced Research in VLSI.

J. Ferrante and C. Rackoff, Computational Complexity of Logical Theories,
Springer Lecture notes in Math, 718.

L. Fortnow, The complexity of perfect zero-knowledge, in Proc 18th ACM
STOC, pp. 204-209.

L. Fortnow and M. Sipser, Interactive proof systems with a log space verifier,
Preprint MIT.

L. Fortnow and N. Reingold, PP is closed under truth-table reductions, FOCS
(to appear).

R.M. Friedberg, Two recursively enumerable sets of incomparible degrees of
unsolvability Proc., Natl. Acad. Sci. USA 43, 236-238.

1985.

1984.

1986.

1989.

1978.

1983.

ta.

1972.

1977.

1931.

1967.
1982,

1982,

1988,

1987.

1986.

1983.

1986.

1980.
1989.

AN INVITATION TO STRUCTURAL COMPLEXITY 83

H. Friedman, N. Robertson and P. Segmour, The metamathematics of the
graph minor theorem, Amer. math. Soc. 65, 229-262, in Contempory Mathe-
matics, (ed S. Simpson}, pp..

M. Furst, J. Saxe and M. Sipser, Party, circuits and the polynomial time
hierarchy, Math. Sys. Theory 17, 13-27.

Z. Galil, R. Kannan and E. Szemeredi, On nontrivial separators for k-page

graphs and simulations by deterministic one tape Turing machines, in Proc.
18th ACM STOC, pp. 39-49.

K. Ganesan and S. Homer, Complete problems and strong polynomial time
reducibilities, in Proc 6th STOC.

M. Garey and D. Johnson, Computers and Intractability : a Guide to the
theory of NP Completeness, Freeman.

W. Gasarch and S. Homer, Relativisations comparing NP and exponential
time, Inf. Control 58, 88-100.

W. Gasarch, M. Pleszkoch and R. Solovary, Learning via queries in [+, <], (to
appear).

J. Gill, Probabilistic Turing Machines and Complexity of Computations, Ph.D.
Dis U.C. Berkeley.

J. Gill, Computational complexity of probabilistic Turing machines, SIAM J.
of Comput. 6, 675-695.

K. Godel, On formally undecidable propositions of Principia Mathematica and
related systems, Monat. fur Math. und Phys. 38, 173-198.

E. Gold, Language identification in the limit, Inf. Control 10, 447-474.

A. Goldberg, P. Purdam and C. Brown, Average time analysis of the simplified
Davis-Putram procedure, Inf. Proc. Letters 15, 72-75.

L. Goldschlager, R. Shaw and J. Staples, The maximum flow problem is
logspace complete for P, Theor. Comput. Sci. 21, 105-111.

S. Goldreich, Randomness, interactive proofs and zero-knowledge; o survey,
in The Universal Turing Machine : A Half Century Survey, (ed, R. Herken)
Kammerer and Unverzagt, Berlin, pp. 377-405.

3. Goldreich, Mansour and Sipser, Interactive proof systems: Provers that
never fail and random selection, in Proc 26th ACM FOCS, pp. 174-187.

S. Goldreich, S. Micali and A. Widgerson, Proofs that yield nothing but their
validity and a methodology for protocol design, in it Proc 27th IEEE FOCS,
pp. 174-187.

S. Goldwasser, S. Micali and C. Rackoff, The knowledge complexity of inter-
active proofs, in Proc 17th ACM STOC, pp. 291-305.

S. Goldwasser and M. Sipser, Private coins versus public coins in interactive
proof systems, 18th ACM STOC., 59-68.

R. Graham, B. Rothschild and J. Spencer, Ramsey Theory, Wiley.

V. Gurevich, The challanger-solver grame : variations on P= NP, in EATCS
Bulletin, pp. 122-121.

84

1987

1983

1984-.
1978.

1976.

1985.

1965.

1987.

1965.

1987.
1984.

19889.

1981.

1977.
1969.

1988.

198-+.
1989,

1972.

1975.

1976.

ROD DOWNEY

. V. Gurevich and S. Shelah, Ezpected computation time for the hamilton path
problem, STAM J. Comput. 16, 486-502.

- J. Hartmanis, On sparse sets in NP — P, Inf. Proc. Letters 16, 55-60.
J. Hartmanis, The Structual Complezity Column, in in the EATCS Bulletin.

J. Hartmanis and L. Berman, On polynomial time isomorphisms of some new
complete sets, J.C.S.8. 16, 418-422.

J. Hartmanis and J. Hopcroft, Independence results in computer science,
SIGACT news 8, 13-24.

J. Hartmanis, N. Immerman and V. Sewelson, Sparse sets in NP — P, Inf.
Control 65, 158-181.

J. Hartmanis, P. Lewis and R. Stearns, Classification of computations by time
and memory requirements, Proc. IFIP conf Spartan, New York, pp. 31-35.

J. Hartmanis and L. Hemachandra, One way functions, robustness, and the
nonisomorphism of N P-complete sets, in Proc. 2nd Structures in Complexity,
pp. 160-174. '

J. Hartmanis and R. Stearns, On the computational complezity of algorithms,
Trans A.M.S. 117, 285-306.

J. Hastad, Computational Limitations of Small Depth Circuits, MIT Press.

H. Heller, Relativized polynomial hierarchies extending two levels, Math. Sys.
theory 17, 71-84.

L. Hemachandra and G. Wechsung, Using randomness to characterise the
complexity of computation, in Information Processing, North-Holland, pp.
281-285.

S Homer and T. Long, Honest polynomial degrees and P = NP, Theor. Com-
put. Sci. 51, 265-280.

J. Hopcroft, W. Paul and L. Valiant, On time versus space, JACM 24, 322-337.

J. Hopcroft and J. Ullman, Formal Languages and Their Relation to Automata,
Addison-Wesley.

N. Immerman, Nondeterministic space is closed under complementation, SIAM
J. of Comput. 17, 935--938.

P. Johnson, The NP-completeness Column, in J. Algorithms.

L.Impagliazzo, L. Levin and M. Luby, Pseudo-random generators from one
way functions, in Proc. 21st ACM STOC, pp. 12-24.

R. Karp, Reducibility among combintorial problems, in Complexity of Com-
puter Computations, (ed R. Miller and W. Thatcher), Plenum Press, pp.
85-103.

R.M. Karp, The fact approzimate solution of hard combinatorial problems, in
Proc. 6th Southeastern Conf. on Combinatorics, Utilitas, Winnipey, pp. 15-31.

R. Karp, The probobilistic analysis of some combinatorial search algorithms,
in Algorithms and Comples:z’ty, (F. Traub, ed) Academic Press, pp. 1-19.

1985.
1985.
1985.

1988.
1965.

1968.
1986.

ta.
1983.
19754.

1975b.
1975.
1973.
1984.
1985.

1985.

1988.
1985.
1936.
1990.
1984.

1985.

AN INVITATION TO STRUCTURAL COMPLEXITY 85

Ko Ker-1, Continuous optimization problems and a polynomial hierarchy of
real functions, J. Complexity 1, 210-231.

Ko Ker-1, Relativized polynomial time hierarchy having ezactly k levels, Proc.
20th ACM STOC, 245-253.

Ko, Ker-I and U.Schoning, On circuit size complexity and the low hierarchy in
NP, SIAM J. Comput. 14, 41-51.

M. Krentel, The complexity of optimization problems, J.C.S.S. 36, 490-509.

A. Kolmogorov, Three approaches for dfining the concept of information quan-
tity, Probl. Inf. Transmission 1, 1-7.

A. Kolmogorov, Logical basis for information theory and probability theory,
IEEE Trans. on Inf. theory 14, 662-664.

E. Krankis, Primality and Cryptography,, Wiley-Teubner Series in Computer
Science, Stuttgart.

M. Kummer, A proof of Beigel’s cardinality conjecture, (to appear).

S.A. Kurtz, On the random oracle hypothesis, Inf. Control 57, 40-47.

A. Ladner, On the structure of polynomial time reducibility, J.A.C.M. 22,
155-171.

R. Ladner, The circuit value problem is log space complete for P. SIGACT
News.

R. Ladner, N. Lynch and A. Selman, A comparison of polynomial time re-
ducibilities, Theor. Comput. Sci. 1, 103-123.

L.A. Levin, Universal sorting problems, Problems of Information Transmission
9, 265-266.

L.A. Levin, Problems complete in “average” instance, in proc. 16th ACM
STOC..

L.A. Levin, One way functions and pseudo-random generators, Proc 17th ACM
STOC, 363-365.

Ming Li, Lower bounds by Kolomogorov complexity, in Proc. 12th Int. Coll. on
Antomata Languages and Programming, Springer Lecture notes in Computer
Science, pp. 383-393.

Ming Li and P. Vitanyi, Two decades of applied Kolmogorov complezity, in
Proc 8rd structures in complezity, pp. 80-101.

T. Long, On restricting the size of Oracles compared with restricting access to
oracles,, SIAM J. Comput. 14, 585-597.

T. Long and A. Selman, Relativising complezity classes with sparse sets,
J.A.C.M. 33, 618-628.

C. Lund, L Fortnow, H. Karloff and N. Nisan, Algebraic methods for interactive
proof systems, in Proc 81st IEEE, FOCS, pp. 2-10.

W. Maass, Quadratic lowr bounds for deterministic and non deterministic
one-tape Turing mohcines, in Proc. 16th ACM STOC, pp. 401-408.

W. Maass, Combinatorial lower bounds for deterministic and nondeterministic
Turing machines, Trans. Amer. Math. Soc. 293, 675-693.

86

1987.

1988.

ta.

1978,

1982.

1978.

1970.

1969.

1977,

1976.

1967.

ta.

1985.

1988.

1979.

1983.

1981.
1979.

1980.

1976.

1944.

1989,

ROD DOWNEY

W. Maass, G. Schnitger and E. Szemeredi, Two tapes are better than one for
off line Turing machines, in Proc. 19th ACM STOC, pp. 94-100.

W. Maass, On the use of inaccessible numbers and order indiscernables in
lower bound arguments for random access machines, JSL 53, 1098-1109. -

W. Maass and T'. Slaman, The complexity types of computable sets, (to appear).

M. Machtey and P. Young, An Introduction to the General Theory of Algo-
rithms, North-Holland.

S. Mahaney, sparse complete sets for NP : a solution to a conjecture by
Berman and Hartmanis, JCSS 25, 130-143.

K. Manders and L. Adleman, NP-complete problems for binary quadratics,
J.C.S.S. 16, 168-184.

Y. Matajeseivic, Enumerable sets are diophantine, Dok. Akad. Nauk, SSSR
191, 279-282.

M. McCreight and A. Meyer, Classes of computable functions defined by bounds
on computation, ACM STOC, 79-81.

G. Metakides and A. Nerode, Recursively enumerable vector spaces, Ann.
Math. Logic 11, 141-171.

G.L. Miller, Riemann’s hypothesis and tests for primality, J.C.8.S. 13,
300-317.

M. Minsky, Computation: Finite and Infinite Machines, Prentice-hall.

S. Minyano, S. Shiraishi and T. Shoudai, A list of P-complete problems,
Kyushu Univ. Tech. Report (to appear).

S. Moran, M. Snir and V. Manber, Applications of Ramsey’s theorem to deci-
sion tree complexity, J.A.C.M. 32, 938-949.

C. Papadimitrou and Y. Yannakakis, Optimization, approzimation and com-
plexity classes, Proc. 20th ACM STOC, 229-234.

W. Paul, Kolmogorov complexity and lower bounds, in Proc. 2nd Inf. Confer-
ence on fundamentals of computer theory, (ed. L. Budach), Akademie-Verlay,
pp. 325-335.

W. Paul, N. Pippenger, E. Szemeredi and W. Trotter, On determinism versus
nondeterminism and related problems, in Proc. 24th IEEE FOCS, pp. 429-438.

W. Paul and R. Reichuk, On time versus space IT, J.C.5.S. 22, 312-327.

N. Pippinger, On simultaneous resource bounds, in Proc. 20th IEEE, FOCS,
pp- 307-311. .

N. Pippinger, Pebbling, in Proc. of the 5th IBM Symp. on the Math. Founda-
tions of Computer Science, IBM, Japan, pp. 1-19.

D. Plaisted, Some polynomial and integer divisibility problems are NP-hard,
in Proc. 17th IEEE FOCS, pp. 264-267.

E. Post, Recursively enumerable sets of integers and their decision problems,
Bull. Amer. Math. Soc. 50, 284-316.

M. Pour-El and I. Richards, Computability in Anaysis and Physics, Springer
Verlag (Omega Series).

1975,

1976.

1930.
1985.

ta.

1983,

1983.

1983.

1983.

1983.

1983.

1983,

1983.

1983.

1983.

1967.

1985.
1970.

1970.
1987a.

1987hb.

AN INVITATION TO STRUCTURAL COMPLEXITY 87

V. Pratt, Bvery prime has a succinct certificate, SIAM. J. of Comput. 4,
214-220.

M. Rabin, Probabilistic algorithms, in Algorithms and Complexity, (J. Traub,
ed), Academic Press, pp. 21-39.

F. Ramsey, A problem in formal logic, Proc. London Math. soc 30, 264-286.

A. Razborov, Lower bounds for Monotone complexity of some boolean func-
tions, Dokl. Akad. Nauk SSSR. 281, 793-801.

A. Razaborov, Lower bounds for the size of circuits of bounded depth with basis
A, @, Mat. Zam (to appear).

N. Robertson and P.D. Seymour, Graph Minors I. Ezcluding a forest, J. Com-
binatorial Theory Ser. b 35, 39-61.

N. Robertson and P. D. Seymour, Graph Minors II. Algorithmic aspects of
tree-width, J. Algorithms 7, 309-322.

N. Robertson and P. D. Seymour, Graph Minors V. Ezcluding a planar graph,
J. Combinatorial Theory Ser. B 41, 92-114.

N. Robertson and P. D. Seymour, Graph Minors VIII. A Kuratowski theorem
for general surfaces, manuscript.

N. Robertson and P.D. Seymour, Graph Minors X . Obstructions to tree-decom-
positions, manuscript.

N. Robertson and P. D. Seymour, Graph Minors XII. FEzcluding a non-planar
graph, manuscript (June 1986).

N. Robertson and P.D. Seymour, Graph Minors XIII. The disjoint paths prob-
lem, manuscript (September 1986).

N. Robertson and P.D. Seymour, Graph Minors XIV. Taeming o vortez,
manuscript (1987).

N. Robertson and P. D. Seymour, Graph minors XV. Surface hypergraphs,
manuscript (1987).

N. Robertson and P.D. Seymour, Graph minors XVI. Wagner’s conjecture,
manuscript (1987).

H. Rogers, Theory of Recursive Functions and Effective Computability, Mc-
Graw-Hill.

A. Salomaa, Computation and Automata, Cambridge University Press.

W. Savitch, Relationships between nondeterministic and deterministic tape
complexities, JCSS 4, 177-192.

U. Schéning, A low and a high hierarchy within NP, JCSS 27, 14-28.

U. Schéning, Graph isomorphism is in the low hierarchy, in 4th Symp. on The-
oretical Aspects of Comput. Sci., Springer Lecture notes in Computer Science,
pPp. 114-124.

U. Schéning, Probabilistic complezity classes and lowness, Proc. 2nd Structures
in Complexity, 2-8.

88

1979.

1982.

1990.
1990.

ta.

1983.

1983.

1977.

1987.

1977,

1973.

1977.
1988.

1987.
1989.

1984.

1936.

1976.

1985.

1988.

1986.
1985.

ROD DOWNEY

A. Selman, P-selective sets, tally languages, and the behaviour of polynomial
time reductbility on NP, Math. Sys. Theory 52, 36-51.

A. Shamir, A polynomial algorithm for breaking the basic Merkle-Hellman
Cryptosystem, Proc. 23rd IEE FOCS, 145-152.

A. Shamir, IP = PSPACE, in 31st ACM FOCS, pp. 11-15.

J. Shinoda and J.A. Slaman, On the theory of PTIME degrees of recursive
sets, J.C.5.5. 41, 321-366.

R. Shore and T. Slaman, The p-T-degrees of the recursive sets; lattice embed-
dings, extensions of embeddings and two guantifier theory, (to appear).

M. Sipser, Boolean sets and circuit complexity, in Proc 15th ACM STOC, pp.
61-69.

S. Smale, On the average number of steps of the simplex method of linear
programming, Math. Programming 27, 241-262.

R.1. Soare, Computation complezity, speedability and levelable sets, J.S.L. 42,
545-563.

R.L Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag (Omega
Series).

R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. of
Comput. 6, 84-85; Errata, ibid 7 (1978), 118.

L. Stockmeyer, Planar 3-colourability is NP-complete, SIGACT News 5,
19-25.

L. Stockmeyer, The polynomial time hierarchy, Theor. Comp. Sci. 3, 1-22.

R. Szélepcsenyi, The method of forced enumeration for nondeterministic au-
tomata, Acta Info. 26, 279-284.

S. Toda,) ,-SPACE is closed under complementation, J.C.S.S. 35, 145-152.

S. Toda, PP is <PLLT _hard for the polynomial time hierarchy,, in Proc. 80th
IBEE STOC, pp. 514-519.

B. Trakhtenbrot, A survey of Russian approaches to perebor (brute force
search) algorithms, Ann. History of Comput. 6, 384—401.

A. Turing, On computable numbers with an application to the Enischeidungs
problem, Proc. London Math. Soc. 2, 230-265.

L. Valiant, Relative complezity of checking and evaluating, Inf. Proc. letters 5,
20-23.

L. Valiant and V. Vazirani, NP is as easy as detecting unique solutions, in
Proc 17th ACM STOC.

R. Venkatesan and 1. Levin, Random instances of a graph colouring problem
are hard, in Proc 20th ACM, STOC.

K. Wagner and G. Wechsung, Complezity Theory, Reidel.

0. Watanabe, On one-one polynomial time eguivalence relations, Theor. Com-
put. Sci. 38, 157-165.

AN INVITATION TO STRUCTURAL COMPLEXITY 839

1988. O. Watanabe, On hardness of one-way functions, Inf. Proc. Letter 27, 151-157.

1985. H. Wilf, Some examples of combinatorial averaging, Amer. Math. Monthly 92,
250-261.

1983. P. Young, Some structural properties of polynomial reducibilities and sets in
NP, in Proc. 15th ACM STOC, pp. 292-401.

1982. A. Yao, Theory and applications of trap door functions, in Proc. 23rd IEEE
FOCS, pp. 80-91.

1985. A. Yao, Separating the polynomial time hierarchy by oracles, in Proc 26th IEEE
FOCS, pp. 1-10.

Rod Downey

Department of Mathematics

Victoria University of Wellington
R PO Box 600

NEW ZEALAND

