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ORBITS OF CREATIVE SUBSPACES

R. G. DOWNEY

ABSTRACT. It is shown that the creative r.e. subapaces fall into infinitely
many distinct elementary classes. The techniques also extend to give some
new results about orbits of creative subspaces and subfields in L*(Va) and
L*(Feo) respectively. Finally within each of these new elementary classes we
construct infinitely many further orbits in the automorphism group of L(Voo).

1. Introduction. We assume that the reader is already familiar with L(V,),
the lattice of r.e. subspaces, and (for one result) its subsequent generalization to
Steinitz closure systems as exposited in, for example, [MN1, MN2, NR1, NR2,
Gu]. Recall that V € L(Voo) is called creative with productive function f if f is

partial recursive, dim(V /V) = oo, and if W.NV = {-6)} then f(e) € Voo~ (W.0V)
for all W, € L(V,,). This definition from [MN1] is the obvious analogue of a
creative set. Now Myhill’s theorem [My] states that any pair of creative sets differ
by a recursive permutation of w. The analogous statement in L(V,,) fails by, for
example, [MN1, Corollary 6.9]: There are creative subspaces C1, Cz such that no
recursive automorphism F of L{V,,) takes Cy to 5. Indeed, in view of Guichard’s
[Gu] classification of the automorphisms of L(V) as those induced by recursive
invertible semilinear transformations of V, it follows that C1 and C; of [MN1,
Corollary 6.9] are not even in the same orbit,

The purpose of this paper is to prove some significantly stronger results. For
L(Vis) we show the creative subspaces fall into infinitely many distinct elementary
classes. To do this we introduce a new variety of creative subspace, creative of type
n (for n € w), such that for each n there is a formula &, satisfied by subspaces
which are creative of type n, but not of type m for m # n.

Our next results concern automorphisms of L*(V, ), that is, L(Vy) modulo finite
dimensional subspaces. Very little is known about automorphisms of L* (Voo). Our
results enable us to show that there are creative subspaces C1,Cy such that no
automorphism of L*(V,) takes C; to Oy and indeed, C; and C2 again fall into
different elementary classes.

We extend some of these results to the general setting of a Steinitz closure system.
This includes, for example, L(F,), the lattice of r.e. algebraically closed fields.

Finally we construct infinitely many orbits of the automorphism group of L(Vyo)
within each of our new classes.
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2. Results.

(2.1) DEFINITION. Let V € L(Vio). We say V is creative of type n if

(1) V' is creative,

(ii) there is a decidable D € L(Voo) such that V' C D and dim{(V/D) = n,

(iti) for all decidable subspaces @, if Q2OVithen@2D.

REMARK. We remark that there is some mild conflict with the terminology of
[MN1]. In keeping with subsequent papers, “recursive = recursive as a set’ and
“decidable = complemented” (cf. [NR3]).

(2.2) THEOREM. Letn € w. There emists V € L(Vy) such that V s creative
of type n.

PROOF. We build an independent r.e. set @ = |J, @s in stages so that V =(Q)*,
and a partial recursive function f so that we meet the requirements

P,: W.NV = {0} implies f(e) | and f(e) ¢ (We @ V).

We must also ensure that dim(Veo/V) = co. This makes V creative. Now let
B = {ag < a3 < +--} list in order a recursive basis of V. Let n be given. Let
D = {do,ds,...}, where d; = anq; for all @. Let K. be the eth r.e. independent
r.e. set such that suppg(z) C D for all z € K,,. Here suppg(z) denotes the
support of z relative to B. Now form J, as follows: set Je s = K 1(s), Where

t(s) = max{¥i < #(d: € (Ke,)")}:

Observe that card(J,) = ooiff(K.)* = (D)*. To ensure (ii) and (iii) of (2.1) we
meet the requirements )

Rieqy: Y€ Je and card(J.) = co implies that for some z € V, y € supp(e, ),

where supp(e, ) denotes the support of z relative to J.. We say Ry, is satisfied
at state s if there exists z € (Q,)* with 2z € (Je,s)* such that y € supp(e, z). Notice
that z € (J.,.)* means supp(e,y) is well defined. We meet the R,y by witnesses,
which we denote by xz(e,v), and define at stage 0. We say R,y requires attention
at stage s + 1 if

(i} Rye,y) is not satisfied at stage s,

(ii) y € Je,s,

(if) 2(e, ) € ()"
Finally, in the construction we have a set M which will witness that dim (Ve /V) =
0.
CONSTRUCTION.
Stage 0. For all ¢ € w set fe) = dae+1. Set M = {d3e: ¢ € w} and P =
MU {f(e): e € w}.

We now perform the first stage of the construction by defining the z(e,y). It is
simplest to view this as a subconstruction, as follows.

Subconstruction, stage 0. Find k(0) to be the least k such that for 0 = (e, ),
{y+d3k+2, d3k+2}ﬂ(P)* = J. Set a:(e,y) = d3k+2, and By = PU{y+d3k+2, d3k+2}.

Subconstruction, stage s + 1. Find k(s + 1) to be the least k' > k(s) such that
for s +1={e,y")

{y + dakry2, daer 2} N (Bs)* = 9.

Set z(e', ') = daw+2 and Esy1 = Es U{y' + dawr+2, darr+2}-
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This completes the subconstruction. Notice each stage is effective since P is de-
cidable and by dimension arguments we can find k(s). The sequence k(0), k(1),...
has the following key property.

(2.3) Let 2(0),2(1),... be any sequence of integers with z(z) € {y(¢
digiea) with i = (e(i), y(0); s0 26) € {u(0) + alels), ¥(0), 2(eli),
P U{z(%): i € w} is an independent set.

We refurn to the main construction.

Stage s + 1.

Step 1. Find the least (e,y) < s (if any) such that Ry, requires attention. If
no such {e, y) exists, set Q(s) = Qs, and go to Step 2. If {e,y) exists, there are two
cases.

Case 1. y € supp(e, z(e, y)). Set Q(s) = Qs U {z(e,y)}.

Case 2. y ¢ supp(e,z(e,y)). Set Q(s) U {y + z(e,y)}. (Notice that since y ¢
supp(e, z(e,y)), y € supple,y + z(e,y)) and hence Ry, is now satisfied.)

Step 2. Find the least e < s (if any) such that f(e) € (Q(s))* & (We,s)* and

(Q(s))* N(We,s)* = {0'}. If such an e exists set Qopy = Q(s) U {f(€)}. Otherwise
set Qo1 = Q(S)

Now set Q =|J, @, and V = (Q)*.

END OF CONSTRUCTION.

VERIFICATION. Evidently each P, or R, receives attention at most once and
is met by this action. For the R, this is obvious. In the P, case, if f(e) € (Q(s))* @

(We,s)*, (Q(s))* N(We o)* = {0}, and P, receives attention, we add f (€) to Qa1 ~

Q(s). Now f(e) = g+w where g € (Q(s))* w € (W,,5)*, and w # 0 by construction
and (2.3). Hence w € (@31, N (We,s)*.

It is easy to see that all the P, and Ry ) are met, and that (M)* NV = {ﬁ}
by (2.3) and selection of f(e). Thus V is creative, and since when R, ) receives
attention some z € (D)* is put into @, it follows that @ C (D)*.

Finally, let H be decidable and suppose H D V. Let H' = HN(D)*. Then H' is
decidable since the intersection of two decidable subspaces is"decidable (cf. [AD]).
Now if H 2 (D)*, then V'C H' ¢ (D)*. Let R be a recursive basis of H'. Extend
R to a recursive basis T of (D)* so that T = RUG with G # &. Let y € G. By the
s—m—n theorem let K, = T'. Now card(J,) = oo since K, is a basis of (D)*. Hence
Re,y) Teceives attention. In either case some z € {y + z(e,y), z(e,¥)} is put into V
and furthermore y € supp(e, z). But then it cannot be that V C H' C (J. — {y})*.
Therefore if H is decidable and H DV, then H > D. O

) + digiy+2,
2))}. Then

(2.4) COROLLARY. There are infinstely many distinct elementary classes of
creative subspaces.

PROOF. Consider {C;}:c.,, where C; is creative of type ¢. O

Now let [V] denote the equivalence class of V € L(Vy) under =*, where V =*
Wiff for some finite set F, (V U F)* = (W U F)*. Recall L*(V) = L(Vo)
mod =*. We have '

(2.5) COROLLARY. There exist creative subspaces Cy,Ca such that [Cy] and
[Ca] are in different elementary classes (for L* (V).
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PROOF. Let V be as constructed in (2.1). Let W = (C)*, where C is an
r.e. creative subset of a recursive basis. As in [MIN1], (C)* is creative. In [AD] it
is observed that (C)* has the property that given any decidable D with (C)* C D,
there exists a decidable D’ with (C)* C D' C D and dim(D/D’) — co. Clearly
C1 =V and C; = W suffice. O

Actually, Corollary (2.5) may be deduced from the following result of Remmel
(in [NR3]): There is a simple subset of a recursive basis generating a creative
subspace. To see this, we shall say a creative subspace V has type < w if V' is not
of type n for any n, but if D is decidable and D D V then dim(V/D) < co. We
have

(2.6) THEOREM. LetS be a simple subset of a recursive basis B of V', gener-
ating a creative subspace. Then (S)* is of type < w.

PROOF. Obviously (5)* is not of type n for any n. Now, let D be decidable with
(§)* € D and dim(V,,/(D)*) = co. Form a cobasis B’ = {bg,b1,...} as follows.
Let bp=py (y€ Bandy ¢ D). Let by, =py (yc Band y ¢ (DU {b;: 5 < s})*).
If dim(V,, /D) = 0o, then B’ is an infinite recursive subset of B (as D is decidable).
" Evidently, as § C D, 8 N B’ = &. This contradicts the simplicity of S in B. [

Thus we can see that (§)* cannot be automorphic with (C)* of (2.5) in either
L(Veo) or L*(Vuo)- It is also possible to modify our technique to comstruct yet
another orbit: we can also construct a creative V' € L(V,,) such that there is a
decidable D with V C D, dim(V,/D) = oo, and for all decidable D' 2V, D’ 2 D.
We leave this modification to the reader. We ask if there are any other elementary
classes or orbits of creative subspaces in L*(Vw) apart from these three types.

Before continuing, we would like to address some comments to generalizations
of these results to abstract dependence settings. We assume the reader is already
familiar with the setting of a recursive Steinitz closure system, and the analogous
definition of creativity there (cf. [NR1,2, MIN2]). For the reader familiar with
this setting, we state the following results which can be obtained by standard
modification of our arguments.

(2.6) THEOREM. Let (M,cl) be a recursive Steinitz closure system satisfying
either Aziom I or Aziom II below. Then there exist creative V1,Va € L{M) such
that Vi and Va lie in different elementary clasess in either L{M) or L*(M).

Axiom 1. If I is an infinite independent set and n € w, there ezists y € cl()
such that card(supp;(y)) > n.

Axiom II (Nerode and Remmel [NR1,2}). If I is an infinite set independent in
(M, cly), where V s closed, then in (M, cly) the dimension of cl(I U {z}) — cl(I)
18 nfinite.

We remark that Axiom I suffices to get creative r.e. closed sets generated by
simple subsets of recursive bases modifying Remmel’s argument, and Axiom II
suffices for getting type 0 creative r.e. closed sets using our argument. It is easy
to construct a creative subset of a recursive basis generating a creative closed set,
and so the analogue of (2.5) or {2.6) applies. Of course, we do not seem to get
the full analogue (that is, for n > 0) of (2.1) since the proof relies heavily on the
modularity of L{V,,) which does not hold for L(Fs). Whether or not (even) type
1 creative subfields exist is thus still open.
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For our final result, we return to L(V,,). The natural question to ask is whether
or not any of our new varieties of creative subspaces form orbits in the automor-
phism group of L*(V, ). For simplicity we concentrate on type n creative subspaces.
We shall need the following.

(2.8) THEOREM (GUICHARD [Gu]). Buvery automorphism of L(Vs) is in-
duced by a recursive invertible semilinear transformation.

We shall construct Cy, Ca, creative subspaces of type n, that are nonautomor-
phic by diagonalization over all recursive semilinear transformations. (It is easy
to extend this to construct infinitely many nonautomorphic C;.) From a technical
point of view, we remark that this is a somewhat more delicate construction than
the diagonalizations in [Gu, DH or NR2]. In those papers, nonautomorphic sub-
spaces V1,V (of certain types) are constructed; but the diagonalizations in those
papers actually ensure that no recursive permutation of Vy, (as a set) takes V) to
V2. This is not possible in our case since by Myhill’s theorem [My] any pair of
creative sets differ by a recursive permutation of w, and because TeKolste [MN1,
Theorem 5.2] has shown that every creative subspace is a creative subset of V...

(2.9) THEOREM. Letn € w. There exist creative V,W € L(V.o) such that no
automorphism ® of L(Vy,) takes V to W.

PROOF. We build Q(V) = |J, Q:(V) and QW) = [J, Qs(W) so that V =
(Q(V))* and W = (Q(W))* have the desired properties. The intention is that we
read Q( ) in place of Q in the proof of (2.2). Thus we have requirements

PY:W.NV = {0} implies f(e) | and f(e) ¢ (W, & V),
PY.W.nW = {ﬁ} implies ‘f(e) | and f(e) ¢ (W. @& W),

where we use the same f(e) for both constructions, with f(e) as in the proof of
(2.2). We similarly have R&’m and Rg,y). Finally, we have the nonautomorphism
requirements

N, : If ®. is a recursive invertible semilinear transformation,
then for some z, either € V and ®.(x) 15 W, or
¢V and O (z) € W.

Here {®.}ce., is a list of all partial recursive semilinear transformations; that is,
when defined, they are semilinear. This can be easily achieved by halting the
enumeration of the eth partial recursive function when it becomes nonsemilinear
on its currently defined domain.

Injury of requirements necessistates the use of a potentially infinite sequence of

witnesses {z(e,y,s): s € w} in place of z(e,y) for the satisfaction of the R};’y) and

Ry - Thus, RY, . or RY  Tequires attention at stage s+ 1 if (i) and (ii) hold as
before, and

(i) ale,5,5) € (Jo)*.

It will be a feature of the construction that the same witnesses are used for both
{e,y) requirements. Our priority ranking is

RY,RY,No,RY,RY,....
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For the sake of the N, we shall place markers ['(e, s), 2{e, s), and A(e, s) which may
be defined or undefined. These are intended to witness the failure of @, to be an
automorphism. With the appropriate meaning, we say ®. is consistent at state s
if it currently believes (at stage s) that is a semilinear transformation taking V; to
W, (that is, where it is defined). At stage s we need only attack consistent ®.’s.
We say N, requires attention at stage s if ®. is consistent and either

(2.10) (i) N, is waiting, and

(ii) for some z(e,y, s) with {e,y) > e+ 1 there exists z such that &, (2) | and
&, .(z) = z(e,y,s), or

(2.11) (i) N, is active, and

(i) @.,s(T(e,8)) | and &, s(T{e, s) + 2(e, 8)) .

CONSTRUCTION.

Stage 0. For all e € w, set f(e) = dgey1, M = {dsze: € € w}, and P = MU
{f(e): e € w}. Now define z(e,y,0) = d3k+2, where {e,y) = 0 and k is the least

number with {y + dax+2, dsk+2}* NA(P)* = {ﬁ)} For all g € w, declare I'(g,0),
#(g,0), and A(g,0) as undefined. (Our convention is they will stay undefined at
any future stage unless some action is taken to define them.} Also declare Ny as
waiting.

Stage s + 1.

Step 1. Find the requirement R of highest priority to require attention. If none
exists, set QL(V) = Qs(V), @,(W) = Qs(W) and go to Step 2. Otherwise, adopt
the appropriate case below.

(2.12) R = Ry, ,. Cancel all I'(g, s), 2(g,s), and A(g,s) markers for all g >
(e,y), and declare N, as waiting. Set Q,(W) = Qs(W). As before there are two
cases: If y € supp(e,z(e, ¥, s)), set @L(V) = Qs(V) U {z(e,y,5)}; otherwise, set
QW) = Qo(V) U {y +3(e,u,9)}.

(213) R= Rf:y). Same as (2.12) with the roles of V and W reversed.

(2.14) R = N,. Cancel all I'(g, s), #(g, ), and A(g, s) markers for all g > e, and
declare N, as waiting. Now there are several subcases.

Case 1. (2.10) holds. Mark z and z(e,y,s) by setting z(e,s +1) = z and
Ale, s+ 1) = (e, ,9).

Subcase (a). z ¢ (Qs(V)U{f(e): € € w})*. In this case, set Q{V) = Q.(V) and
set Q. (W) = Q,(W) U {z{e,¥,)}. Notice this makes @, no longer consistent. Go
to Step 2.

Subcase (b). z € (Qs(V)U{f(e): e € w})*. In this case, declare N, as active.
Now find the least & such that

{z(e, s) + dak+2, dak+2}
NQs(V) U QW)U PU{a(f,p,8): (f,p) < €}
U{z(g,9): g < e} U{A(g,5): g S e} U{T(g,8): g <e}]" = 2.
Set I'(e, s + 1) = dagr2, @4(V) = Qs(V), Q,(W) = Qs(W), and to to Step 2.

Case 2. (2.11) holds. There are two subcases.

Subcase (a). e s(T(e, ) ¢ (Qs(W)U{f(€): e € w})*. In this case set Q4(V) =
Qs(V) U {T'(e,5)}. Notice this temporarily satisfies N, since ['(e, s) is outside of V
and is being taken into W by ®.. Go to Step 2.

Subcase (b). B o(L(e,s)) € (Qs(W)U{f(e): e € w})*. Now as N, is active, by
Case 1(b) we also know that z(e, s) € (Qs(V) U {f(e): ¢ € w})*, and hence by the
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way we chose A(e, s), AiA(e, 8) + Xa®e s(T'(e, 5)) & (Qs(V) U {f(e): e € w})* for
A1, A2 # 0. (This will follow by induction in the verification.) Now it follows that
we can temporarily satisfy N, by setting QL (V) = Q.(V) U {z(e, s) +I'(e,s)} and
Q’s (W) = Qs (W)a and not adding (I)E,S(F(ea s) + z(e, s)) = Ad(e, '3) + u@e (P(ea s))
to Q(W), which is achieved by Step 3 and Step 1, Case 1, Subcase (b).

Step 2. Find the least ¢ < s (if any) such that fle) € (QL(V))* @ (W,,)*

with QL(V)* N (We,s)* = {0 }. If no e exists, set Qs+1(V) = QL(V). Otherwise,
Qs+1(V)U{f(e))}. Now proceed similarly for W.

Step 3. Now we must redefine the x{e, y, s+1) so as not to interfere with markers
etc. (of higher priority). Let E = (Qs41(V) U Qs1(W)U PUN)*, where N is the
collection of all markers, z(e,y,s) and their ®; images for § < s mentioned so
far. Now, if in Step 1 no requirement received attention, for all {e,) < s set
z(e, 9,5 + 1) = x(e,y,s). Find the least k such that for {¢/,y/) = s + 1, {y' +
dak+2,dakr2} N (E)* = 2. Set x(e’, ', s + 1) = dzi2, and go to stage s + 2.

Otherwise, some requirement R received attention in Step 1. If R = RY or RV,
set (s + 1) = e. If R = N, set M(s+1) = e+ 1. We now generate z(f,g,s + 1)
inductively in substages j for m(s +1) <7< s+ 1. Set Fy = E.

. Substage j. Find the unique (e,y) with (e,y) = 5. Now find the least k(;) with
1Y+ dsi(i)r2 dan(y+2} N (F5)" = @. Set z(e,y, s+ 1) = dagyro. Ej=5+1go
to stage s +2. Otherwise, set Fj 11 = F; U{y' +z(e,y, 5+ 1),z(e, 4,5+ 1)} and go
to substage 7 + 1.

END OF CONSTRUCTION.

We now sketch the verification. We need a simultaneous induction for all the RY,
RY, and N, and to show that lim, z(e,y, s) = z(e,y) exists. It is clear that Step 3
ensures that if £y is the least stage by which a requirement of priority higher than
R}’e’y) receives attention, then by Step 3 of the construction, z(e,y, s) can be reset
at most twice more: once for R&,y) and once for R?K,y) (since N; and R; 5 > (e, 1),
cannot interfere with z(e,y, s) by the way we define m(s + 1)). Thus it suffices to
- prove that the N, receives attention at most finitely often and is met, and then a
proof similar to that of (2.1) will do the rest. The key point is that if all requirements
R of higher priority than N, receive attention for the last time at stage ¢;, then if &,
really is a recursive invertible semilinear transformation (2.10) must apply at some
stage s; > t1. At stage s1, A(e,s1) and j{e, s1) become defined and by Step 3, the
z(g,y, s1) for {g,y) > e are all reset so that their activity cannot interfere with these
markers. In particular if Subcase (a) applies, z(e, 51 ) is permanently restrained from
(QV) U {f(e): e € w})*; by Step 3 if g € Qr s ~ (Qs, (V) U{f(e): e € w})*, then
q = z(g,9,8) or ¢ = x(g,y,s) +y for {g,y) > e and so by Step 3 is independent
of (Qs(V) U {f(e): e € w} U{z(e,s1)})*. Thus in Subcase (a), z(e,s1) ¢ V, and
®.(2(e,51)) = Ale, 81) with A(e,s;) e W. :

In Subcase (b), we define I'(e, 5,) and again in Step 3 reset the z(g,y,s1) to not
interfere with z{e, s1) + I'(e, s1) or ['(e, s1), or with A(e,s;). Thus when Case 2
occurs as we observed in the construction, we diagonalize forever ®, from being
a candidate, because ®, will no longer be consistent. The result now follows by
induction, and the arguments of (2.1). O

With similar arguments it is possible to construct orbits within other classes of
creaftive subspaces. We leave these to the reader. One final remark which we feel is
relevant to this topic is the following: By taking Remmel’s construction in [NR3]
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of a simple subset of a recursive basis generating a creative subspace, and blending
it with Martin’s construction of [So, Chapter X, Exercise 5.5], it is possible to
construct a simple subset S of a recursive basis B contained in no maximal subset
of B, with (S)* creative. We ask if such a subspace is contained in a maximal
subspace and, in general, its every creative subspace contained in a maximal (or
hh-simple) subspace. We believe this may be relevant to orbits of creative subspaces
for L* (Vo). '

ADDED IN PROOF. Jeff Remmel and the author have solved this last question
by constructing atomless creative subspaces.
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