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Abstract. We investigate the complexity of a computable Banach space hav-
ing a Schauder basis, and of related properties, such as the approximation
property, and having a local basis structure.

1. Introduction

Vladimir V’yugin made extensive contributions to computability theory, an area
concerned with the algorithmic content of mathematics. It asks what processes
and theorems can be performed on an idealised machine, and if they cannot, how
complex are they? This paper lies under the umbrella of computable analysis, which
applies this critique to continuous processes. Computable analysis goes back to the
dawn of modern studies in computability via Turing [Tur36, Tur37] and is an area
of significant current interest. V’yugin contributed to the computability of analytic
structures (for example, [V’y97, V’y98]), so we feel that the paper is appropriate
for this special issue.

Our focus in this paper is the geometry of computable Banach spaces, in par-
ticular, questions concerning bases. Answering a long-standing question of Banach
himself, Enflo [Enf73] constructed a separable Banach space without a basis. In
his Ph.D. thesis, Bosserhof ([Bos08], see also [Bos09]) showed that Enflo’s example
has a computable copy. This raises the natural question: how hard is it to tell
whether a given Banach space has a basis? A closely related question is: assuming
a given Banach space has a basis, what does it take to build one? Can it be done
inductively, step by step, as in the familiar construction of bases of vector spaces?
Similar questions were answered in the setting of discrete structures, for example
for countable vector spaces [MN77a], countable free abelian groups [DM13], and
uncountable such groups [GTW18].

The question is much harder in the context of Banach spaces. Indeed, we will
present evidence that standard techniques in Banach space theory are not sufficient
for answering this question. This is because the common constructions of Banach
spaces with no bases produce spaces in which properties weaker than having a
basis fail, for example, the bounded approximation property, or having a local basis
structure. These properties are known to be simpler than the expected complexity
of having a basis. Thus, new techniques need to be developed.

This paper is a sequel of the paper [DGQ24], which was the basis for Downey’s
invited lecture for his S.B. Cooper Prize. That paper gives a overview of current
knowledge, and lists some open questions. In the current paper we will give some
full proofs as well as new results. As we shall see below, the theory of Banach spaces
provides a number of genuine challenges to someone wishing to study the effective
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content of mathematical structures. We hope that together, the current paper
and [DGQ24] can serve as the basis for future studies. For more on computable
analysis, the classic texts are [PER89] and [Wei00]. For more recent treatments,
that concentrate on computability of metric structures, see, for example, [DM25],
and the upcoming [FGM].

1.1. Computable Banach spaces. Recall that a normed vector space has asso-
ciated with it a distance dpx, yq “ ∥x ´ y∥. If this is a complete metric space, it is
called a Banach space. For simplicity, we will consider Banach spaces over F “ R,
but most results work just as well for complex spaces. Banach spaces are fundamen-
tal to the field of functional analysis, and have extensive applications particularly
in physics. The study of the pure theory of Banach spaces in their own right began
with the work of Banach, Haar, Schauder, and others in the early 20th century
(See e.g. Banach [Ban32]). The classical theory has proven very challenging with
many open questions apparently far from resolution, some of which are pertinent
to the present paper (see e.g. Megginson [Meg98]). Banach spaces provide a rich
resource for workers in descriptive set theory (e.g. Ferenczi, Louveau and Rosendal
[FLR09]).

We wish to understand and classify algorithmic properties of Banach spaces, and
hence will be using the lens of computability theory for our studies. The modern
theory of computable Banach spaces, the effective content the theory, likely began
with the work of Pour-El and Richards [PER83], who showed how the effective
theory gave insight into issues from classical physics. They motivated their studies
as follows:

”Which processes in analysis and physics preserve computability,
and which do not?. . . Among the processes of physics we expect to
include are those associated with the wave equation, the heat equa-
tion, Laplace’s equation and many others. Among the processes of
analysis we expect to consider are Fourier series, Fourier transform
and others. . . Hence we will be concerned with linear operators on
Banach spaces of functions. They will be our ‘processes’.” [PER83,
p.77]

Metakides-Nerode-Shore [MNS85] and others studied the computable content of the
Hahn-Banach theorem. For example, they showed that the Theorem is computably
true for finite-dimensional Banach spaces, but not uniformly so. The infinite di-
mensional Hahn-Banach theorem fails to be effective in general. Brattka [Bra16]
further studied the Hahn-Banach theorem, as well as the open mapping theorem,
the closed graph theorem, and the Banach-Steinhaus theorem.

In this paper we will highlight some recent work concerning the algorithmic
content of work around the geometry and topology of Banach spaces, specifically
those associated with bases, and decompositions.

We remark that the questions provide a fascinating “logician’s eye view” of clas-
sical constructions, in that it seems that all of the classical constructions are in-
sufficient to answer some of the basic questions such as the complexity of finding a
Schauder basis.

Basic definitions. For the definition, recall that a computable metric space is a
complete metric space pM, dq equipped with a dense sequence x̄ “ pxiqiPN of points,
on which the metric is uniformly computable. This uses Turing’s definition of a
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computable real number r, as one that is the limit of a computable fast Cauchy
sequence — a computable sequence pqnq of rationals satisfying |qn ´r| ď 2´n. Such
a sequence is also called a Cauchy name of r (this naming scheme is called the
Cauchy representation of R). This notion of representation can be extended to
any computable metric space, replacing rational numbers by the dense sequence x̄
specifying the computable structure of the space (the points xi are sometimes called
“special points”). Thus, a name of a point y in the space pM, d, x̄q is a sequence
pinq P NN such that for all n, dpy, xin q ď 2´n. A point is computable if it has a
computable name.

For computable functions between computable spaces, we use the “type 2” defini-
tion, that requires computability (rather than constructivist approaches that focus
on functions only defined on the computable points). A subset of a computable
metric space pM, d, x̄q is effectively open if it is the union of a c.e. collection of
open balls whose centre is a special point and whose radius is rational. That is, a
set of the form

Ť

tBpxi, qq : pi, qq P W u for some c.e. set W Ď N ˆ Q`. A func-
tion f : X Ñ Y between computable metric spaces is computable if the pull-backs
f´1rW s of effectively open subsets W Ď Y are effectively open in X, uniformly.
An equivalent characterisation of computable functions is: uniformly, given a name
q̄ of a point x P X, we can compute a name p̄ of fpxq. Since the effectively open
sets form a basis for the topology of a computable metric space, every computable
function is continuous. Indeed, a function between computable metric spaces is
continuous if and only if it is computable relative to some oracle.

With the notion of computable functions on computable metric spaces, we can
endow computable metric spaces with extra structure, making them computable
metric structures. For our purpose:
Definition 1.1. A computable Banach space is a Banach space X “ pX, ∥¨∥, `, ¨q

endowed with a dense sequence of points x̄ which makes X a computable metric
space using the metric determined by the norm, for which the norm, vector addition,
and scalar multiplication, are all computable functions.

Note that we are only considering complete spaces. Some authors have extended
the theory to incomplete computable normed spaces; we will not discuss there here.
For basic properties and equivalent characterisation of computable Banach spaces
see [Bra16] and [DM25, §2.4.3].
Remark 1.2. In [DGQ24, §1.3] we mention the notion of a generalised computable
Banach space, due to Brattka [Bra16]. The issue is that a computable Banach space
is necessarily separable, however many interesting Banach spaces, such as ℓ8 and
many other dual spaces, are not separable, and so their effective content remains
to be explored. In the classical literature on Banach spaces, duality is the principal
tool. As a consequence of non-seperability, this technique is not available when we
study computable Banach spaces, and so alternative arguments must be found. The
concept of a generalised computable space is an attempt to overcome this problem.
In such a space, the computable metric structure and norm are replaced by an
effective convergence condition. This concept hasn’t been thoroughly explored.
1.2. Bases, complexity, and index sets. As mentioned above, a main motivat-
ing question is: “how hard is it to tell whether a given Banach space has a basis?”
Here we use the following definition, which is a generalisation of the notion of an
orthonormal basis in a Hilbert space.



4 ROD DOWNEY, NOAM GREENBERG, LONG QIAN, AND RUOFEI XIE

Definition 1.3 (Schauder [Sch28]). Let X be a Banach space. A sequence x̄ “

pxiq P XN is a Schauder basis of X if for all x P X there is a unique sequence of
coefficients paiq P RN such that

8
ÿ

i“0
aixi “ x.

We emphasise that a Schauder basis is a sequence: order counts, as convergence
may be conditional. This notion of basis is preferred to that of a Hamel basis, for
which we only take finite linear combinations. A Hamel basis ignores the metric
structure of the space. Further, outside the finite-dimensional case, Hamel bases
are uncountable, and not Borel. Below we refer to a Schauder basis simply as a
basis. Examples are the standard unit vectors in the sequence spaces ℓp, and Haar
systems [Haa10] in the spaces Lpp0, 1q.

A Banach space with a basis must be separable, as the collection of finite linear
combinations of basis elements is dense in the space. As discussed, Banach asked
in [Ban32] whether every separable Banach space has a basis. It was only after
40 years that Banach’s question was solved, in the negative, by Per Enflo [Enf73].
Thus, the motivating question above is non-trivial.

How is the question formalised? In this paper we will use the point of view of
computability theory, and so investigate the complexity of the index set of com-
putable Banach spaces with bases; this complexity will be measured with respect
to the arithmetic and analytic hierarchies. To motivate these notions, for readers
who are not familiar with these concepts, we will first discuss how the “complexity
of having a basis” question is formalised in descriptive set theory. The computable
tools that we shall use are, in a fundamental way, a refinement of the following.

Polish spaces, and the Borel and projective hierarchies. Descriptive set theory pro-
vides tools for measuring the complexity of subsets of Polish spaces, which are
separable and completely metrizable topological spaces. To apply these tools to
the motivating question, we start with a space of separable Banach spaces. That is,
a Polish space B, in which every point codes a space in some natural way, so that
every separable Banach space is coded (up to isomorphism). One way is to take a
universal separable Banach space (say Cr0, 1s), and use the collection of all of its
closed subspaces, equipped with the Effros topology (see [Kec95, Thm. 12.6]). Us-
ing this space, we can examine the subset consisting of the points that code spaces
that have bases.

Complexity of subsets of Polish spaces is measured using the Borel and the
projective hierarchies. Recall that the Borel sets of a space are those in the σ-
algebra generated by the open sets. The Borel hierarchy measures complexity of
Borel sets by how many operations of countable unions or intersections are needed
to obtain the set if we start with the open and closed sets. Thus, Σ0

1 denotes the
collection of open sets, Π0

1 the closed sets, Σ0
2 the unions of countably many closed

sets (also known as Fσ sets), Π0
2 the intersections of countably many open sets (the

Gδ), Σ0
3 the unions of countably many Π0

2 sets, and so on. Beyond the Borel, the
class Σ1

1 denotes the continuous images of Borel sets (also called analytic sets), Π1
1

their complements, Σ1
2 the continuous images of Π1

1 sets, and so on. These classes
are semi well-ordered by inclusion: Σ0

n Y Π0
n Ď Σ0

n`1 X Π0
n`1, and all Borel sets

are Σ1
1.
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To measure the complexity of a set A, we try to find the simplest (=smallest)
class Γ that it belongs to. This involves two calculations. An upper bound calcula-
tion is an argument showing that A belongs to a class Γ. A lower bound calculation
is an argument showing that A cannot belong to a class strictly contained in Γ.
The latter is done by showing that A is hard for Γ, which means that every B P Γ
is continuously reducible to A, meaning that B is a continuous pre-image of A:
B “ f´1rAs for some continuous function f , called the reduction. If A is Γ-hard
then it is not an element of the dual class of complements of sets in Γ, and so is not
in any smaller class. This is because the classes we are using are non-self-dual (are
not equal to their dual), and have universal sets. In the happy case that A is both
in Γ and is Γ-hard, then we say that A is Γ-complete; this completely determines
the complexity of A.

Index sets, and the arithmetic and analytic hirerarchies. As mentioned above, Bosser-
hof [Bos08, Bos09] showed that Enflo’s example has a computable copy. This en-
ables us to apply techniques of computability theory to formalise the question of
complexity of having a basis. The key notion here is of an index set. This notion
goes back to the dawn of computability theory. Fixing some acceptable numbering
pφeq of the partial computable functions, an index set is simply a set of indices
of partial computable functions that depends only on the function and not on the
choice of algorithm for computing the function (coded by the index). In other
words, a set I Ď N such that for all i and j, if φi “ φj then i P I ðñ j P I.
For example, the totality set te : dom φe “ Nu is an index set. For the purposes
of our question, we use indices of partial computable functions to code computable
structures, and so obtain an effective list pMeq of all partial metric structures in the
signature of Banach spaces. We can then ask about the complexity of the index set

Basis “ te : Me is a total Banach space which has a basisu .

The complexity of subsets of N, such as index sets, is measured using the (hy-
per)arithmetic and analytic hierarchies. These are effective analogues of the Borel
and projective hierarchies. We work in the setting of computable metric spaces,
and use “lightface” notation for the computable parts of the classes introduced
above. So Σ0

1 denotes the collection of effectively open sets, defined above; and Π0
1

denotes the collection of their complements, the effectively closed sets. Then, Σ0
2

denotes the collection of effective unions of Π0
1 sets; these are unions

Ť

n Pn where
pPnq are uniformly Π0

1, meaning
À

n Pn “ tpn, aq : a P Pnu is a Π0
1 subset of the

product space. Using these ideas we can then define Σ0
n and Π0

n sets for all n. We
can then define the class Σ1

1 of images of arithmetic (equivalently, Π0
1) sets under

computable functions between spaces, and Π1
1 their complements. Another way of

characterising these hierarchies is by definability in the two-sorted structure pN,NNq

for second-order arithmetic. An existential number quantifier corresponds to effec-
tive countable unions, and so the Σ0

n sets are those that are defined by formulas
in the language of arithmetic of the form Dx1@x2Dx3 ¨ ¨ ¨ Qxn φ, where φ contains
only bounded quantifiers, and xi are number variables; a Σ1

1 set is one defined by
a formula Df@x φ where f is a function quantifier. Analogously with the point-
classes of descriptive set theory, the “lighface” classes Σ0

n and Σ1
n are closed under

taking computable pre-images, i.e., under computable reductions. The notions of
Γ-hardness and Γ-completeness are defined using computable reductions; as in the
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“boldface” case above, Γ-hardness of a set A ensures that A does not belong to any
class simpler than Γ.

The set of natural numbers N, equipped with the discrete topology, is a com-
putable metric space. Descriptive set theory cannot distinguish between subsets
of N, since they are all both closed and open. The classes in the arithmetic hi-
erarchy, on the other hand, have interesting characterisations, when we consider
subsets of N, via Post’s theorem: a subset of N is Σ0

1 if and only if it is computably
enumerable, and in general, Σ0

n`1 if and only if it is computably enumerable relative
to Hpnq, the nth iteration of the Turing jump.

We recall that Rice’s Theorem [Ric53] states that the computable index sets are
the trivial ones H and N, and in general, we will usually only consider complexities
starting at the level Π0

2, since the index set of indices e for which Me is a total
structure and is a Banach space is Π0

2.
We remark that complexity as measured by the Borel hierarchy on the one hand,

and the effective complexity of index sets on the other hand, are closely related
but not always perfectly aligned, because they depend on the particular choice of
coding Banach spaces by points in a space of Banach spaces, or by algorithms
(indices) computing Banach spaces. For example, in the set-theoretic setting, we
cannot always obtain a dense sequence from a point coding a space. In some
instances, completeness results for index sets do rely on the fact that the space
of indices N is naturally well-ordered. Thus, such results do not always translate
between the settings, and the two ways of calculating complexities should be seen
as complementary.

We should emphasise though that the gulf between the arithmetic classes Σ0
n and

the analytic class Σ1
1 should be considered as vast. In particular, a Σ1

1-hardness re-
sult for a class of structures indicates that it is not possible to give computationally
useful invariants. For example, Downey and Montalbán [DM08] showed that the in-
dex set of pairs of isomorphic torsion free computable abelian groups is Σ1

1-complete.
Hence no classification of isomorphism is possible which is simpler that saying that
an isomorphism exists. Similarly, Downey and Melnikov proved the following:
Theorem 1.4 ([DM23]). The isomorphism problem for computable Banach spaces
is Σ1

1-complete.
So again, there are no useful invariants that capture isomorphism of computable

Banach spaces. Ferenczi, Louveau and Rosendal [FLR09] showed a similar result
in the context of Borel equivalence relations.

Regarding our original question, we will show that the index set Basis of com-
putable Banach space with bases is Σ1

1, and is not simpler than Π0
3. This leaves a

large gap. As indicated above, we believe that known constructions are insufficient
for closing this gap. This is because these constructions are in some sense “too
strong”. For example, Enflo’s construction gives a space that lacks what is called
the bounded approximation property. Every space with a basis has this property,
however, we know that the reverse implication does not hold. As we will see, the
index-set BAP of spaces with the bounded approximation property is arithmetic,
indeed, it is Σ0

4. Thus, Enflo’s construction cannot be used to prove that sets more
complicated than Σ0

4 are reducible to Basis. Similarly, a different construction due
to Szarek [Sza87] gives a space that lacks a local basis structure, another property
weaker than having a basis, and whose index set is Σ0

3-complete; so Szarek’s con-
struction cannot show hardness of Basis beyond Σ0

3. For Σ1
1-completeness of Basis,
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we will need a fine construction — a construction of a space that has no basis, but
has the bounded approximation property, and a local basis structure, and similar
properties. In turn, the complexity of having each of these properties is interesting
in its own right, and in most cases is still open.
Remark 1.5. Often, a reduction that shows that a set A is hard for a class Γ, yields
a function that gives a stronger result, if the image of f outside A is contained in
a set B smaller than the complement of A. This shows that B is hard for the dual
class Γ̌ (of complements of sets in Γ), but also that any set C with A Ď C Ď BA is
hard for Γ. If D is a set complete for Γ, A and B are disjoint sets, and there is a
computable function f with f rDs Ď A and f rDAs Ď B, we write pΓ, Γ̌q ď pA, Bq.
For an example, see Remark 3.8 below.
1.3. Further areas of study. In this paper we focus on the complexity of index
sets such as Basis, and related properties of computable Banach spaces. This
is only one part of recent investigations into the structure of computable Banach
spaces. Another example is the (Anderson-)Kadets’ (Kadec) theorem [Kad66] which
states that any two infinite dimensional separable Banach spaces are homeomorphic
(as topological spaces), and hence homeomorphic to RN. The result is also true for
a more general class called Fréchet spaces. A recent result by Downey, Franklin
and Melnikov [DFM] shows that this theorem is close to effective, in that the
halting problem H1 is sufficiently strong to compute a homeomorphism between two
infinite-dimensional computable Banach spaces. It is unknown if the oracle H1 can
be removed, to obtain computable homeomorphisms. Other questions go beyond
the class of Banach spaces, for example, to ask about complexity of isomorphisms
between computable topological groups.

1.4. Preliminaries: located and computably compact sets. We list here
some basic definitions and facts about computable metric spaces. Above, we de-
fined the notion of an effectively open subset of a computable metric space. The
complement of such a set is called effectively closed, or sometimes co-c.e. closed.
This is equivalent to the distant function from the set being lower semi-computable.
We will need a dual notion. A closed subset P of a computable metric spaces is
called located, or c.e. closed, if the collection of basic open balls that intersect P is
c.e.; equivalently, if the distance function dp´, P q is upper semi-computable. We
will use the following characterisation by Brattka and Presser, see [BP03, Cor. 3.14]:
Lemma 1.6. Let X be a computable metric space. A closed set P Ď X is located
if and only if there is a computable sequence pxnq of points such that txnu Ď P and
txnu is dense in P .

A consequence is that if P Ď X is a located set, then P is a computable metric
space in its own right. Further, this extends to a normed vector space structure,
yielding:
Lemma 1.7. Let X be a computable Banach space. If x̄ is a computable sequence
of points in X, then the closure of the linear span of x̄ is a computable Banach
space, uniformly given x̄.

We will use is the:
Lemma 1.8. For any computable Banach space X, the closed unit ball of X is
both effectively closed and located.
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The next, key notion that we will use is that of computable compactness. This
notion has many equivalent definitions. We mention two; the following equivalent
conditions are the definition of a space being computably compact.

Proposition 1.9. The following are equivalent for a computable metric space X:
(1) Uniformly, given ε ą 0, we can produce a finite collection of basic open

balls, each of radius ď ε, which together cover X.
(2) Uniformly, given a c.e. collection of basic open balls that cover X, we can

produce a finite sub-cover.

Computable compactness guarantees the effective analogues of classical proper-
ties of compact sets. For example:

‚ If X is computably compact, then any computable f : X Ñ Y has a
computable modulus of uniform continuity: there is a computable func-
tion g : Qą0 Ñ Qą0 such that for all rational ε ą 0, for all x, z P X, if
dXpx, zq ă gpεq then dY pfpxq, fpzqq ă ε.

‚ If X is computably compact and f : X Ñ Y is computable and surjective,
then Y is computably compact.

‚ If X is computably compact and P Ď X is effectively closed and located,
then P is computably compact. (see Brattka and Presser [BP03, Cor. 4.14]).

The most useful for us will be the following, due to Pour-El and Richards
[PER83]:

Proposition 1.10. If X is computably compact and f : X Ñ R is computable
then max range f is computable. This is uniform: for example, If X is computably
compact, Y is a computable metric space, and f : Y ˆ X Ñ R is computable, then
the function

y ÞÑ max tfpy, xq : x P Xu

from Y to R is computable.

Of course, the proposition applies to minima as well.

Proof. This is standard; we give some details, as a reader unfamiliar with this area
may find the ideas instructive. If you are only familiar with algorithms over finite
objects you anticipate an algorithm which halts in finite time and gives the out-
put. As we are in the continuous setting, our goal is to give a Cauchy name for
max range f . That is, find better and better approximations to the value; equiva-
lently, build a collection of quickly shrinking balls whose limit is the desired value.

As mentioned, since X is computably compact, f is uniformly continuous with
a computable modulus of uniform continuity. Now to compute max range f to
within 2´n, we first compute some δ sufficiently small so that ∥x ´ y∥ ă δ implies
∥fpxq ´ fpyq∥ ă 2´n´1 for all x, y P X. Then we find a finite cover of X by balls
of radius δ (Proposition 1.9(1)). For each ball Bpx, rq in this cover, we compute
fpxq with precision 2´n´1. The maximum of these values will be within 2´n of
max range f . □

Proposition 1.10 will often be utilised in conjunction with the following.

Proposition 1.11. If X is a computable, finite-dimensional Banach space, then
any bounded, effectively closed and located subset of X is computably compact. In
particular, the unit ball BX of X is computably compact.



THE GEOMETRY OF COMPUTABLE BANACH SPACES 9

We give an application.

Lemma 1.12. Let X be a computable Banach space. For each n ě 1, the collection
of n-tuples py1, . . . , ynq P Xn which are linearly independent in X is an effectively
open subset of Xn (uniformly in n).

Proof. A tuple py1, . . . , ynq is linearly independent if and only if

inf
#

∥
ÿ

iďn

∥λiyi : λi P R,
ÿ

iďn

|λi| “ 1
+

ą 0.

The function pλiq, pyiq Ñ ∥
ř

∥iďnλiyi is a computable function from Rn ˆ Xn

to R, and the set tpλiq :
ř

i |λi| “ 1u is an effectively compact subset of Rn, and so
pyiq ÞÑ min

␣

∥
ř

iďn∥λiyi : λi P R,
ř

iďn |λi| “ 1
(

is computable. The inverse image
of the effectively open set p0, 8q Ď R under this computable function is effectively
open. □

Proposition 1.13. Let X be a computable Banach space. There is a computable
sequence ē “ peiq P XN which is linearly independent, and such that the linear span
of ē is dense in X. The sequence ē can be chosen as a computable subsequence of
the sequence of special points that determines the computable structure on X.

Proof. Let x̄ be the sequence of special points. We will choose ē “ pe0, e1, . . . q as a
subsequence of x̄ by recursion. At step s, suppose that we have already determined
pe0, . . . , es´1q. For each i, in turn, we run the enumeration of the collection of inde-
pendent tuples in Xs`1 given by Lemma 1.12, as well as an enumeration of the ra-
tional linear combinations of e0, . . . , es´1, until we find that either pe0, . . . , es´1, xiq

is linearly independent, or we find a rational linear combination w of pe0, . . . , es´1q

such that ∥w ´ xi∥ ă 2´s. In the latter case, we repeat the process with xi`1. In
the former case, we set es “ xi, and move to step s ` 1. □

We emphasise that a sequence ē as in Proposition 1.13 need not be a basis.
The point is that for any y P X, for all k P N there is some sequence of scalars
λ̄k “ pλk

i qiPN, almost all 0, such that ∥y ´
ř

i λk
i ei∥ ă 2´k. But we cannot put these

together to obtain some fixed sequence pλiq such that y “
ř

i λiei; for a fixed i,
as k increases, the “coefficient” λk

i does not converge to a limit, and can very well
be unbounded with k, so we cannot even choose a convergent subsequence. Fur-
thermore, the linear independence of ē is finitely-based, and so does not ensure the
uniqueness of presentations of points as infinite sums even when such presentations
exist: we can have

ř

λiei “ 0 without λ̄ “ 0̄, since every finite partial sum may be
nonzero.

This cautionary tale should give the reader the beginning of an appreciation of
the subtlety of some of the notions in the theory of Banach spaces, and see why we
need to abandon using finitely dimensional spaces, or Hilbert spaces, for intuition.
This “deviation from intuition” is encapsulated in the concept of a basis constant,
which we introduce shortly.

2. The basis constant

To establish a non-trivial upper bound on the complexity of the index set Basis,
we use the following characterisation of bases.
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Lemma 2.1 (Banach). Let X be a Banach space. A sequence pxiq of nonzero
elements of X is a basis of X if and only if:

(i) There is a constant K such that for all n ă m in N, for all sequences of
scalars pλiqiďm, we have

›

›

›

n
ÿ

i“0
λixi

›

›

›
ď K

›

›

›

m
ÿ

i“0
λixi

›

›

›
.

(ii) The finite linear span of pxiq is dense in X.

The proof (originally in [Ban32]) is relatively straightforward, see for example
[LT77, Prop. 1.a.3]. Let us sketch briefly a more constructive argument, in light
of the discussion above regarding Proposition 1.13. Suppose that the conditions of
the lemma hold for x̄ “ pxiq. Let z P X. For each k find some λ̄k (almost all zero)
such that ∥z ´ wk∥ ă 2´k, where wk “

ř

i λk
i xi. Since ∥wk∥ Ñ ∥z∥, there is a

bound M on all ∥wk∥. This implies that |λk
0 | are all bounded by KM (where K is

the constant from the lemma). In turn, compactness implies that tλk
0u has a limit

point, λ0. Restricting to a subsequence of k such that λk
0 Ñ λ0, we now repeat the

argument with λ1, then λ2, etc., to build a representation z “
ř

λkxk. Uniqueness
of representation is also immediately implied by (i).
Corollary 2.2. Basis is Σ1

1.

Proof. Both conditions of Lemma 2.1 are arithmetic properties of the sequence pxiq.
To see this, observe that by continuity, in (i) we may restrict to rational scalars paiq.
Similarly, for (ii), with the countable dense sequence pyiq given by the presentation
of the space X, it suffices to show that each ball Bpyi, rq for rational r ą 0 contains
a finite linear combination of the xi’s. □

The characterisation of bases given by Lemma 2.1 indicates why Basis is not
“obviously” simpler than Σ1

1. If we try to build a basis step-by-step, in the same way
that bases of vector spaces are constructed, then we may run into “dead ends”: finite
sequences satisfying (i) (for some fixed constant K) that cannot be further extended
to sequences satisfying the same, and the collection of finite sequences extendible to
infinite ones may be Σ1

1, and not simpler. This, however, is speculation. For all we
know, there may be some other property that will allow us to build bases recursively.
This would be ruled out by a proof that Basis is Σ1

1-complete. However, we will
see that currently known lower bounds are much lower than Σ1

1.

2.1. The associated projections. If pxiq is a basis of X, then for n P N we let
Sn : X Ñ X be the projection mapping

ř8

i“0 aixi to
řn

i“0 aixi. Then Lemma 2.1(i)
implies that each Sk is a bounded operator, in fact uniformly.

A linear operator on a Banach space is continuous if and only if it is bounded.
Thus, if x̄ “ pxiq is a basis of a Banach space X, then Lemma 2.1 implies that the
associated projections Sk are all continuous. This is effective; Brattka and Dillhage
[BD07, Prop. 3.3] showed that if x̄ is a computable basis of a computable Banach
space X, then the associated projections are all computable (uniformly). Indeed,
they can be computed by a simple search: given a (name of a) point z P X and
ε ą 0, we search for a finite sequence of rationals pαiq such that ∥z ´

ř

i αixi∥ ă ε.
Then letting y “

ř

i αixi, the point Skpyq “
řk

i“0 αixi is computable given the
data, and ∥Skpzq ´ Skpyq∥ ď K∥z ´ y∥ ă Kε, where K is as in Lemma 2.1(i), so
Skpyq is a good approximation of Skpzq.
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Note that this implies that if x̄ is a computable basis, then the coordinate func-
tions

ř

αixi ÞÑ αk are computable as well (uniformly), as αkxk “ Skpzq ´ Sk´1pzq

where z “
ř

i αixi.

2.2. The basis constant. The following concept, of a basis constant, turns out to
be important.

Definition 2.3. Let X be a Banach space.
(a) If x̄ is a basis of X, then bcpx̄q is supk∥Sk∥, where Sk are the associated

projections.
(b) We let bcpXq be inf bcpx̄q as x̄ ranges over all bases of X. If X has no basis

then we let bcpXq “ 8.

Note that for a basis x̄, bcpx̄q is the infimum of the constants K satisfying (i) of
Lemma 2.1. If x̄ is an orthonormal basis of a Hilbert space, then its basis constant
is 1. A basis with constant 1 is called monotone. It is difficult to visualise spaces
with larger basis constants, however they do exist, even in the finite dimensional
case. In general, if X is a Banach space of dimension n, then bcpXq ď

?
n (this

follows from John’s theorem [Joh48]). Spaces realising this upper bound (asymp-
totically) were first constructed by Gluskin [Glu81]. We will later observe that such
examples can be made computable.

Before we return to the complexity of having a basis, and of related properties, we
recall some work on the possible complexity of the basis constant itself. Bosserhof
[Bos09, Lem. 8] showed that the basis constant of a computable basis in a finite-
dimensional space is computable (see [DGQ24, Lem. 2]), and in [DGQ24, Lem. 3] it
is shown that the basis constant of a finite-dimensional computable Banach space
is computable. It follows that for an infinite-dimensional computable space X, the
basis constant of a computable basis is left-c.e. However, the general question about
the complexity of a basis constant of a computable Banach space (that has a basis)
is open.

This is made complicated by the fact that there are computable Banach spaces
that have a basis, but do not have any computable basis. Such a space was con-
structed by Bosserhof [Bos09]. We will examine his construction in the next section.
The result leaves a general question: what is an upper bound on the complexity
of some basis, in a computable Banach space with a basis? This can affect the
complexity of the index set Basis. For suppose, for example, that we could show
that if a computable Banach space has a basis, then it has a basis computable from,
say, H2. Then Basis is arithmetic, since the function quantifier can be replaced
by a number quantifier ranging over the reductions to H2.

2.3. Basic sequences. Bosserhof’s result stands in contrast with the situation
concerning basic sequences.

Definition 2.4. Let X be a Banach space. A sequence x̄ “ px0, x1, . . . q of elements
of X is basic if it is a basis of the closure of its linear span.

A theorem attributed to Mazur states that that every infinite-dimensional Ba-
nach space (separable or otherwise) has a an infinite-dimensional subspace with a
Schauder basis. In other words, that every infinite-dimensional Banach space con-
tains an infinite basic sequence. In the setting without norms, that is, of (countable)
computable vector spaces, the computable analogue of Mazur’s theorem fails: there
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is a computable, infinite-dimensional vector space, all of whose computable indepen-
dent subsets are finite (Metakides and Nerode [MN77b]); indeed Simpson [Sim09]
showed that there is a computable infinite dimensional vector space in which every
infinite independent set computes 01. However, in the normed context, Mazur’s
theorem has a computable version: every infinite-dimensional Banach space con-
tains an infinite, computable basic sequence. See [DGQ24, Thm. 7]. This can be
extended to all Turing degrees:
Proposition 2.5. Let X be an infinite-dimensional computable Banach space. For
any Turing degree a, there is a basic sequence ȳ in X of Turing degree a.

Proof. Let A P 2ω have degree a. By [DGQ24, Thm. 7], let x̄ “ pxkq be a com-
putable basic sequence in X. Let c be a rational upper bound on bcpx̄q. Let
ū “ pujq be the sequence of special points giving the presentation of X. For each k,
let yk,0 and yk,1 be the first two distinct elements of ū with ∥xk ´ yk,i∥ ă 2´k´1{2c
for both i “ ´0, 1; let zk “ yk,Apkq. Since x̄ is computable, z̄ ďT A; an in the
other direction, given any name for zk we can tell which yk,i is closer to zk, and so
compute Apkq; so z̄ has Turing degree a.

Now a classic lemma ([KMR40], see also [LT77, Prop. 1.a.9]) gives that z̄ is
basic, using the fact that

ř

k∥zk ´ xk∥ ă 1{2c. The argument is brief so we give
it. Let Y be the closure of the span of x̄. Let u “

ř

k αkxk in Y . For each n, let
un “

ř

kďn αkxk and vn “
ř

kďn αkzk. Since c ě bcpx̄q, for all k, |αk| ď 2c∥u∥.
Then for all n ă m,

∥vm ´ vn∥ ď ∥um ´ un∥ `

m
ÿ

k“n

|αk| ¨ ∥zk ´ xk∥ ď ∥um ´ un∥ ` 2c∥u∥ ¨ 2´n{2c,

showing that pvnq is a Cauchy sequence, and so converges to some v P X. A similar
calculation shows that ∥v ´ u∥ ă 1. The map T sending u to v is linear, and
∥T ´ I∥ ă 1 (where I is the identity map on Y ), so T is injective, and so maps the
basic sequence x̄ to a basic sequence. □

We remark that not all infinite sequences of elements of X will have a Turing
degree. That is, the Turing degrees of the names of the sequence will not contain
a least degree. This is even true for points in infinite-dimensional spaces such as
RN. To measure the complexity of such points, J. Miller introduced continuous
reducibility ([Mil04]). It would be interesting to extend Proposition 2.5 to all
continuous degrees.

3. Schauder decompositions and the approximation property

Following Enflo [Enf73], Davie [Dav73] constructed a separable Banach space
that does not have a basis. For a detailed exposition see, for example, [Lou05].
Bosserhof [Bos09, § 2] showed that Davie’s space has a computable copy. We fix
such a copy Z. We use the following property:
Lemma 3.1. There is a computable sequence z̄ “ pzkq in Z such that:

(i) The linear span of z̄ is dense in Z; and
(ii) There is an infinite computable set L Ď N and a constant C such that for all

n P L, the linear span rz0, . . . , zns of tz0, . . . , znu has basis constant ă C.

The second fact we will need regards the approximation property. Recall that
a bounded operator T : X Ñ Y between Banach spaces is finite rank if the image
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of T has finite dimension; it is compact if the image T rBX s under T of the unit ball
of X is a compact subset of Y . Every finite-rank operator is compact.

Definition 3.2 (Banach). A Banach space X has the approximation property if for
any space Y , every compact operator T : Y Ñ X is the limit of finite-rank operators
(in the operator norm).

Grothendieck ([Gro55], see also [LT77, Thm. 1.e.4]) gave a characterisation that
is easier to work with.

Proposition 3.3. A Banach space X has the approximation property if and only if
the identity operator can be approximated by finite rank operators on compact sets:
for every compact set K Ă X, for every ε ą 0, there is a finite rank operator T
on X such that ∥Tx ´ x∥ ă ε for all x P K.

Every Banach space that has a basis has the approximation property. Davie
used the following to show that Z does not have a basis:

Lemma 3.4. Z does not have the approximation property.

In this section we use these tools to give a lower bound on the complexity of the
index set Basis, and study a generalisation of having a basis. The results are from
[Qia21].

3.1. Sums of spaces. Let X0, X1, . . . be a sequence of Banach spaces. We let
p
À

k Xkqc0 denote the collection of sequences x̄ P
ś

k Xk such that ∥xk∥Xk
Ñ 0.

This set is endowed with the expected vector space structure, and the norm ∥x̄∥ “

supk∥xk∥Xk
, making it a Banach space. Note that we can also use this construction

to define a direct sum of finitely many spaces. For two spaces we write X ‘c0 Y
to specify the norm, however other choices of norms on R2 will result in equivalent
structures, and so we usually just write X ‘ Y . Observe that for all n,

´

à

k

Xk

¯

c0
– Xn ‘

´

à

k‰n

Xk

¯

c0
,

so Xn is complemented in p
À

k Xkqc0 .1

Lemma 3.5. Let X0, X1, . . . be Banach spaces, and suppose that supk bcpXkq ă 8.
Then p

À

k Xkqc0 has a basis.

Proof. Let M “ supk bcpXkq; for each k, let b̄k “ pbk,iq be a basis of M with
bcpb̄kq ď M ; note that Xk may be finite or infinite-dimensional. Using the usual
pairing function, we assume that

Ť

k b̄k is ordered in order-type ω; to avoid confu-
sion, we write β̄ “ pβiq, and the important property is that for all k, the elements
of b̄k are listed in β̄ in order. We show that β̄ is a basis for p

À

k Xkqc0 . To do so,
we apply Lemma 2.1.

It is clear that the linear span of β̄ is dense in p
À

k Xkqc0 . We show that bcpβ̄q ď

M . Let n ď m, and let pλiqiďm be scalars. Let v “
ř

iďm λiβi and u “
ř

iďn λiβi.
We need to show that ∥u∥ ď M∥v∥. Write u “

ř

k uk with uk P Xk (all but finitely
many uk will be finite); similarly write v “

ř

vk. By the ordering requirement

1Recall that a subspace Y of a Banach space X is complemeneted in X if and only if there
is a bounded projection P : X Ñ Y , meaning a bounded operator satisfying P æY “ idY . The
Hahn-Banach theorem implies that every finite-dimensional subspace of a Banach space X is
complemented in X.
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on β̄, each uk is the result of applying to vk a projection associated with the basis
b̄k, so ∥uk∥ ď M∥vk∥. The result follows. □

There is a Banach space X with a basis, which has a complemented subspace
that does not have a basis. This is why we need the approximation property.

Lemma 3.6. If a Banach space X has the approximation property, then every
complemented subspace of X has the approximation property.

Proof. Let Q : X Ñ Y be a projection showing that Y is complemented in X; let
J : Y Ñ X be the inclusion map. Let K be a compact subset of Y . Then JrKs

is a compact subset of X. Let ε ą 0. Let T be a finite rank operator on X with
∥T pxq ´ x∥ ă ε for all x P JrKs. Then PTJ is as required for K and ε∥P∥. □

3.2. A lower bound for Basis.

Proposition 3.7. The index set Basis is Π0
3-hard.

Proof. Let C be the constant, z̄ be the sequence, and L be the computable set, all
from Lemma 3.1. Let σ : N Ñ N be the increasing enumeration of L. For each n let
Zn “ rz0, z1, . . . , zσpnqs (the subspace spanned by these elements). So bcpZnq ď C
for all n.

A complete Π0
3 set is the collection of indices e such that for every n, the section

(column) W
rns
e of the eth c.e. set We is finite. Thus, to show the proposition, it

suffices to show how to uniformly, given a c.e. set W , produce a computable Banach
space X such that X has a basis if and only if for all n, W

rns
e is finite. Fix a c.e.

set W .
For each n, let Xn “ Zk if |W

rns
e | “ k; if W

rns
e is infinite, let Xn “ Z (the original

Davie space, which recall is rz0, z1, . . . s). Then the spaces pXnq are uniformly
computable, as we can produce, given n, a computable sequence of points in Z
whose closure is Xn (then use Lemma 1.7).

We then let X “ p
À

n Xnqc0 , which is computable, uniformly given and index
for W . If every W

rns
e is finite, then for all n, bcpXnq ď C; by Lemma 3.5, X has

a basis. Suppose that some W
rns
e is infinite; so Xn “ Z. By Lemma 3.4, Z does

not have the approximation property. Since Z “ Xn is complemented in X, by
Lemma 3.6, X does not have the approximation property, and so does not have a
basis. □

Remark 3.8. In the proof of Proposition 3.7, in the Σ0
3 case (some W

rns
e is infinite),

we produced a space X that not only does not have a basis, it lacks the approx-
imation property. Using the notation mentioned in Remark 1.5, we showed that
pΠ0

3, Σ0
3q ď pBasis, APAq, where AP is the index set of computable Banach spaces

that have the approximation property. Thus, AP is Π0
3-hard, and every intermediate

property between having a basis and having the approximation property is Π0
3-hard

as well.
For a constant C, let BasisC be the index set of computable Banach spaces

that have basis constant ď C. In the proof above we implicitly used the fact that
pΣ0

2, Π0
2q ď pBasisC , APAq to show, in fact, that pΠ0

3, Σ0
3q ď pBasisC , APAq. The

argument shows that for any n, if for some C, pΣ0
n, Π0

nq ď pBasisC , APAq, then
pΠ0

n`1, Σ0
n`1q ď pBasisC , APAq, and in particular, that Basis is Π0

n`1-hard.
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3.3. Schauder decompositions.

Definition 3.9. Let X be a Banach space. A Schauder decomposition of X is an
infinite sequence Z̄ “ pZiq of closed subspaces of X such that for all x P X, there
exists an unique sequence z̄ “ pziq with zi P Zi such that x “

ř8

i“1 zi.
A Schauder decomposition where the spaces Zi are all finite dimensional is called

a finite dimensional Schauder decomposition (FDD).
If a Banach space X has a basis pxiq, then it has a finite dimensional Schauder

decomposition, as witnessed by the 1-dimensional spaces Zi “ rxis. A Schauder
decomposition presents X as the sum

À

i Zi, i.e., as decomposed into closed sub-
spaces that are not necessarily 1-dimensional. Szarek [Sza87] showed that there is a
space with a finite-dimensional Schauder decomposition that does not have a basis.
On the other hand, every space with FDD as the approximation property. Hence,
as discussed in Remark 3.8:
Proposition 3.10. The index set FDD of computable Banach spaces that have finite-
dimensional Schauder decompositions is Π0

3-hard.

An analogue of Banach’s Lemma 2.1 holds for FDDs. See, for example, [Mar69,
P. 93].

Lemma 3.11. A sequence Z̄ “ pZiq of closed subspaces of a Banach space X is a
Schauder decomposition of X if and only if:

(i) There is a constant K such that for all n ă m in N, for any sequence
pziqiďm with zi P Zi, ∥

ř

iďn zi∥ ď K∥
ř

iďm zi∥.
(ii) The linear span of

Ť

i Zi is dense in X.

As for Corollary 2.2, we obtain:
Corollary 3.12. FDD is Σ1

1.

3.4. Computable bases and decompositions. Bosserhof [Bos09] constructed a
computable Banach space that has a basis, but has no computable basis. Elabo-
rating on his construction, Qian [Qia21] showed that the index set CompBasis of
Banach spaces that have a computable basis is Σ0

3-complete; the proof was also
given in [DGQ24, Thm. 8].

Qian showed that a similar argument gives the Σ0
3-completeness of having a com-

putable FDD. We give some details here, however first, we need to define the notion
of a computable FDD. The “natural” definition is not immediately obvious. Cer-
tainly we require the spaces pZiq in a computable decomposition to be uniformly
computable. However, this condition is not quite as strong as would appear, recall-
ing (Lemma 1.7) that closed subspaces that are not necessarily effectively closed
can form computable spaces, and this was used in the arguments above: in some
sense, we can describe computable spaces in a c.e. way. The following definition
requires that the spaces pZiq are given in a computable way, in that their bases are
given as finite sets (sometimes known as “strong indices”).
Definition 3.13. Let X be a computable Banach space. A finite-dimensional
Schauder decomposition pZiq of X is computable if there is a computable sequence
pBiq of finite sets such that each Bi is a basis of Zi.

Note that the definition implies that the sequence of dimensions pdim Ziq is
computable. If x̄ is a computable basis of X, then the 1-dimensional spaces rxis
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form a computable FDD of X. Just like for computable bases, Lemma 3.11 implies
that having a computable FDD is a Σ0

3 property.
Toward showing the Σ0

3-completeness of having a computable FDD, we recall the
tools giving the Σ0

3-completeness of having a computable basis. We again use the
computable copy Z of Davie’s space, and the associated constant C and sequence
z̄ given by Lemma 3.1; and again let σ be the increasing enumeration of the set L
given by that lemma. We again let Zn “ rz0, . . . , zσpnqs, so bcpZnq ď C. Following
Bosserhof, we let

Y8 “

´

‘k Z
¯

c0

be the sum of infinitely many copies of Z. For any function f : N Ñ N we let

Yf “

´

‘k Zfpkq

¯

c0
,

which we regard as a subspace of Y8. Note that Lemma 3.5 implies that each Yf has
a basis; Lemma 3.6 implies that Y8 does not have the approximation property, and
so does not have a basis. Bosserhof noted [Bos09, Lem. 13] that if f is lower semi-
computable (has a non-decreasing approximation) then Yf is a computable Banach
space, and the inclusion map of Yf in Y8 is computable. Bosserhof showed, by
direct diagonalisation, that there is some lower semi-computable f such that Yf

has no computable basis.
[Bos09, Cor. 12] holds for FDD. For each k, let θk be the embedding of Z as

the kth component of Y8. If X Ď Y8 is a subspace, then each θkrZs X X is
complemented in X, and so, if X has the approximation property, then θkrZs X X
cannot be all of θkrZs. If X has an FDD then it has the approximation property,
so the conclusion applies: if X Ď Y8 has an FDD then for all k, θkrZs Ę X.

In the following, let pφeq effectively list the partial computable functions; we
regard each value φepmq as a code giving a finite list q̄1, . . . , q̄ne,m

“ q̄e,m
1 , . . . , q̄e,m

ne,m

of partial computable sequences of special points of Y8. If q̄e,m
j is a total Cauchy

name for Y8 then we let ye,m
j denote the named point; if each q̄e,m

j is a total Cauchy
name, then we let Xe,m be the subspace rye,m

1 , . . . , ye,m
ne,m

s. If each Xe,m is defined,
then we let Xe be the closure of the linear span of

Ť

m Xe,m.
The following are all Σ0

1 properties of a triple pe, m, cq:
‚ Some q̄j “ q̄e,m

j fails to be a partial Cauchy sequence, i.e., for some i ă i1,
∥qj,i1 ´ qj,i∥ ą 2´i;

‚ There is enough convergence to ensure that if each Xe
m is defined, then the

decomposition constant of the sequence X̄e “ pXe
mqm is greater than c.

If neither condition above materialises, and each q̄e,m
j is total, then Xe is defined

and is a space with computable FDD, with constant ď c. If X is a subspace of
Y8 with computable FDD then X “ Xe for some e such that pXe,mqm has finite
decomposition constant (is an FDD of Xe).

Therefore, given e, c and k, if the two conditions above do not hold, then we can
iteratively, for l “ 1, 2, . . . , search for enough convergence of various q̄e,m

j to see
that each of θkpz0q, θkpz1q, dots, θkpzσplqq are within 2´l of a point in Xe. This
process does not allow l to go to 8, since that would ensure that Xe is defined, has
decomposition constant ď c, and that θkrZs Ď Xe, which as we noted is impossible.
We thus get an extension of [DGQ24, Lem. 10]:
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Lemma 3.14. There is a lower semi-computable function g such that for all e, c
and k, either

‚ Xe is undefined, or pXe,mq has decomposition constant ą c; or
‚ θkrZgpe,c,kqs Ę Xe.

The rest of the construction is as in [DGQ24]. Using a movable marker argument,
given a c.e. set W , we uniformly obtain a lower semi-computable function h such
that:

‚ If some W rns is infinite, then for all e and c there is some k such that
hpkq ą gpe, c, kq, and so Yh Ę Xe;

‚ If every W rns is finite, then h is computable.
By [DGQ24, Lem. 11], if h is computable then Yh has a computable basis, and

so computable FDD. We thus obtain:

Proposition 3.15. The index set CompFDD of computable Banach spaces that have
a computable FDD is Σ0

3-complete. In fact, pΣ0
3, Π0

3q ď pCompBasis, CompFDDAq.

3.5. The complexity of the approximation property. We now turn to an up-
per bound on the complexity of the index set AP of computable Banach spaces that
have the approximation property. We will show that AP is Π1

1. The main quantifier
is the quantification over all compact sets (in the formulation from Proposition 3.3).
To do that in a way that also allows us to uniformly enumerate dense subsets of said
compact sets, we use the following characterisation of compact subsets of Banach
spaces.

For a sequence ȳ “ pyiq of points in a Banach space, we let Convpȳq denote the
closure of the convex hull of ȳ. If yi Ñ 0, then

Convpȳq “

!

8
ÿ

i“0
λiyi : λi ě 0,

8
ÿ

i“0
λi ď 1

)

(the condition yi Ñ 0 ensures that each such sum
ř

i λiyi converges in X). The
following is [LT77, Prop. 1.e.2].

Lemma 3.16. Let X be a Banach space. A closed subset K Ď X is compact if and
only if there is a sequence ȳ of points in X such that yi Ñ 0 and K Ď Convpȳq.

Before we calculate the upper bound, we need to recall that if X and Z are
computable Banach spaces, and dim Z ă 8, then the space LpZ, Xq of bounded
linear operators T : Z Ñ X, equipped with the operator norm, is a computable
Banach space. Fixing a basis z1, . . . , zn of Z, the special points of LpZ, Xq are the
operators mapping each basis element zi to a special point of X, and so can be coded
by n-tuples of special points of X, and therefore by n-tuples of natural numbers.
What we need to note is that the operator norm is computable on these special
points. This is because the closed unit ball BZ of Z is computably compact (this is
where we use that Z is finite-dimensional), and each computable operator T defines
a computable function from Z to X, uniformly in T ; so we apply Propositions 1.10
and 1.11.

Proposition 3.17. The index set AP of computable Banach spaces that have the
approximation property is Π1

1.
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Proof. Let X be a computable Banach space. Let ē be a computable, linearly in-
dependent sequence given by Proposition 1.13. For each k, let Xk “ re0, e1, . . . , eks

be the subspace generated by e0, . . . , ek. So
Ť

k Xk is dense in X.
Consider the following statement:

(˚): For every compact set K Ă X and every ε ą 0 there is some m and some
bounded operator T : X Ñ Xm such that ∥T pxq ´ x∥ ď ε for all x P K.

We claim that X has the approximation property if and only if p˚q holds. In the
non-trivial direction, suppose that X has the approximation property. Let K Ă X
be compact, and let ε ą 0. Let C be a bound on ∥y∥ for all y P K. Let Z Ď X be
a finite-dimensional subspace, and let T : X Ñ Z be a bounded operator satisfying
∥T ´I∥K ă ε, that is, ∥T pxq´x∥ ă ε for all x P K. Since Z is finite-dimensional and
Ť

m Xm is dense in X, for each δ ą 0 there is some m and some linear Q : Z Ñ Xm

such that ∥Qpxq ´ x∥ ď δ∥x∥ for all x P Z. We choose δ “ ε{pC ` εq. Let y P K.
Then ∥T pyq∥ ď C `ε, and so ∥QT pyq´y∥ ď ε`δpC `εq ď 2ε, so QT is as required
for p˚q.

To obtain the complexity bound, we need to explain why the quantifier over T is
equivalent to an arithmetic property. For m and k, call a linear S : Xk Ñ Xm special
if it is one of the special points of the computable structure we gave LpXk, Xmq.
For each k, let Ak be the collection of rational linear combinations of e0, . . . , ek (so
is dense in Xk). If ȳ P XN and yi Ñ 0, then we let Bpȳq be the collection of all
points of the form

ř

λiyi P Convpȳq such that the λi are all rational and all but
finitely many are 0. So Bpȳq is dense in Convpȳq, and is countable (and enumerable
given ȳ).

Consider the following property:
p˚˚q: For every sequence ȳ P XN such that yi Ñ 0, for every ε ą 0, there is some m

and some D P N such that for all k, there is some special S : Xk Ñ Xm

such that ∥S∥ ď D, and such that for every w P Ak and every u P Bpȳq,

∥Spwq ´ w∥ ď 2´k∥w∥ ` D∥w ´ u∥ ` ε.

The property p˚˚q is certainly Π1
1, as other than the quantification over ȳ (which is of

course quantification over sequences of names for points of X), all other quantifiers
are number quantifiers, and involve arithmetic properties: for example, yi Ñ 0 is
an arithmetic property of ȳ, and ∥S∥ ď D is an arithmetic (indeed, Π0

1) property
of S and D). So it remains to show that p˚q and p˚˚q are equivalent.

First, suppose that p˚q holds. Let ȳ P XN with yi Ñ 0, and let ε ą 0. Let
K “ Convpȳq, which is compact by Lemma 3.16. Let m and T be given by p˚q

for K and ε. Let D “ ∥T∥ ` 1. Fix k. Then T æXk P LpXk, Xmq; there is a
special S P LpXk, Xmq such that ∥S ´ T æXk∥ ď 2´k. Since ∥T æXk∥ ď ∥T∥ and
∥S ´ T æXk∥ ď 1, ∥S∥ ď D. Let w P Xk and u P K. Then

∥Spwq ´ w∥ ď ∥Spwq ´ T pwq∥ ` ∥T pwq ´ T puq∥ ` ∥T puq ´ u∥ ` ∥u ´ w∥ ď

2´k∥w∥ ` ∥T∥ ¨ ∥w ´ u∥ ` ε ` ∥u ´ w∥ “ 2´k∥w∥ ` D∥w ´ u∥ ` ε,

as required for p˚˚q.
In the other direction, suppose that p˚˚q holds. Let K Ă X be compact, and let

ε ą 0. By Lemma 3.16, let ȳ P XN with yi Ñ 0 such that K Ď Convpȳq. Let m
and D be given by p˚˚q for ȳ and ε. For each k, fix some Sk : Xk Ñ Xm with the
properties guaranteed by p˚˚q.
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Now by induction on k, we define infinite sequences n̄k “ pnk
i qiPN of natural

numbers, starting with n0
i “ i, so that each n̄k`1 is a subsequence of n̄k; these

are chosen so that limi Snk
i
æXk is an operator Tk : Xk Ñ Xm with ∥Tk∥ ď D, and

Tk`1 extends Tk. Suppose that these have been defined for k. Since ∥Si∥ ď D for
all i,

␣

Snk
i
pek`1q : i P N

(

is bounded; since Xm is finite-dimensional, this set has
a limit point, and we choose n̄k`1 to be a subsequence of n̄k so that Snk`1

i
pek`1q

converges to some zk`1; we let Tk`1 extend Tk by setting Tk`1pek`1q “ zk`1. Since
n̄k`1 is a subsequence of n̄k, Tk`1 “ limi Snk`1

i
æXk`1 pointwise. Since Xk is finite-

dimensional, it follows that ∥Tk∥ ď D. We let T8 “
Ť

k Tk, which is a bounded
linear operator from

Ť

k Xk to Xm; we have ∥T8∥ ď D. Further, by continuity,
each Tk has the property that the Si have in p˚˚q. Since

Ť

k Xk is dense in X,
we let T : X Ñ Xm be the unique extension of T8 to a bounded operator on X;
∥T∥ ď D.

Let y P K. We show that ∥T pyq ´ y∥ ď ε. Let C be a bound on ∥y∥ for all
y P Convpȳq. Let δ ą 0. There are u P Bpȳq, some k P N and some w P Ak such
that 2´k ă δ, ∥u ´ y∥ ă δ and ∥u ´ w∥ ă δ. Then

∥T pyq ´ y∥ ď ∥T pyq ´ T pwq∥ ` ∥T pwq ´ w∥ ` ∥w ´ y∥ ď

2δD ` 2´k∥w∥ ` D∥w ´ u∥ ` ε ` 2δ ď p4D ` 2qδ ` δpC ` δq ` ε;
since C and D are constant, we let δ Ñ 0 to obtain the required bound. □

3.6. The bounded approximation property. Proposition 3.17 shows that Davie’s
construction cannot be used to show the Σ1

1-completeness of Basis: suppose that
A is reducible to pBasis, APAq. Then both A and its complement are Σ1

1, meaning
that A is ∆1

1, and so hyperarithmetic. The bounded approximation property is a
property stronger than the approximation property and yet weaker than having a
basis; Proposition 3.20 will imply that Davie’s construction cannot be used to prove
anything more than Σ0

4-hardness of Basis.

Definition 3.18. A Banach space X has the bounded approximation property if
it has the approximation property with a uniform bound on the norms of the
witnessing operators. That is, there is some C such that for every compact K Ă X,
for every ε ą 0, there is a finite-rank T on X with ∥T∥ ď C and ∥T pyq ´ y∥ ă ε
for all y P K.

The norm bound allows us to simplify the definition quite a bit. For example,
we can replace “compact Y ” by “finite Y ”: if Y is compact and ε ą 0, we find some
finite Y0 Ď Y which is ε{C-dense in Y , that is, every point in Y is within ε{C-
distance from a point in Y0; if T witnesses the BAP for Y0 and ε, then it witnesses
the same for Y and 3ε, since if y P Y , y0 P Y0 and ∥y ´ y0∥ ď ε{C, then

∥T pyq ´ y∥ ď ∥T pyq ´ T py0q∥ ` ∥T py0q ´ y0∥ ` ∥y0 ´ y∥ ď C
ε

C
` ε `

ε

C
.

Because of the quantification over all ε ą 0, we can then “normalise” the property,
as follows:

Lemma 3.19. A Banach space X has the bounded approximation property if and
only if there is some C such that for every finite-dimensional W Ď X and every
ε ą 0 there is some finite-rank T on X with ∥T∥ ď C such that ∥T pwq ´ w∥ ď ε∥x∥
for all w P W .
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For more equivalent formulations of the bounded approximation property see
[JRZ71] or [LT77]; for example, we can require T pxq “ x for x P Z.

Let BAP be the index set of computable Banach spaces that have the bounded
approximation property. Since Basis Ď BAP Ď AP, Remark 3.8 shows that BAP is
Π0

3-hard. We cannot quite show completeness, but the gap for BAP is much smaller
than for the other two properties.

Proposition 3.20. BAP is Σ0
4.

Proof. The argument goes along the line of that of Proposition 3.17, however the
fact that we only need to check finite-dimensional subspaces simplifies things sig-
nificantly. Let X be a computable Banach space. Use a sequence ē as above
(Proposition 1.13); define Xk “ re0, . . . , eks as above. Consider:
p˚q: There is some C such that for every m and every ε ą 0 there is some k ě m

and some T : X Ñ Xk such that ∥T∥ ď C and ∥T pxq ´ x∥ ď ε∥x∥ for all
x P Xm.

We claim that X has the bounded approximation property if and only if (˚) holds.
In one direction, suppose that X has the bounded approximation property; let C
be a witness. Let m P N and ε ą 0. Let Z Ď X be finite-dimensional and let
T : X Ñ Z with ∥T∥ ď C and ∥T pxq ´ x∥ ď ε∥x∥ for all x P Xm. As in the
previous proof, there is some k ě m and some Q : Z Ñ Xk with ∥Qpzq ´ z∥ ď δ∥z∥
for all z P Z, where δ is as small as we require. Then ∥QT∥ ď Cp1 ` δq, and for
x P Xm,
∥QT pxq ´ x∥ ď ∥T pxq ´ x∥ ` ∥QT pxq ´ T pxq∥ ď ε∥x∥ ` δ∥T pxq∥ ď ε∥x∥ ` δC∥x∥,

so setting δ “ ε{C will give us QT which is as required by p˚q for Xm and 2ε.
In the other direction the argument is similar but simpler. Suppose that p˚q

holds; let C be a witness. Let W Ď X be finite-dimensional; let ε ą 0. Choosing
some small δ ą 0 later, find some m and some Q : W Ñ Xm such that ∥Qpwq´w∥ ď

δ∥w∥ for all w P W . Let T : X Ñ Xk be as given by p˚q for Xm and ε. Then since
∥Q∥ ď 1 ` δ, for all w P W ,
∥T pwq´w∥ ď ∥TQpwq´Qpwq∥`∥Qpwq´w∥ ď ε∥Qpwq∥`δ∥w∥ ď pεp1`δq`δq∥w∥,

showing that T itself can be taken for W and 2ε under an appropriate choice of δ.
Now we need to unpack the quantification over T , as above:

p˚˚q: There is some C such that for every m and every ε ą 0 there is some k ě m
such that for all k1 ě k there is some T : Xk1 Ñ Xk such that ∥T∥ ď C and
∥T pxq ´ x∥ ď ε∥x∥ for all x P Xm.

The equivalence of p˚q and p˚˚q is as in the previous proof, but simpler, since we
do not need to approximate elements of Convpȳq by elements of Xm. So it remains
to show that p˚˚q is Σ0

4. For that, we observe that the relation “there is some
T : Xk1 Ñ Xk such that ∥T∥ ď C and ∥T pxq ´ x∥ ď ε∥x∥ for all x P Xm” is Π0

1.
To see this, observe that since Xm Ď Xk when m ď k, the last condition on T is
∥pT ´IqæXm∥ ď ε. The map gptq “ ∥pT ´IqæXm∥ is computable (from LpXk1 , Xkq

to R), and so the condition holds if and only if
min tgpT q : ∥T∥ ď Cu ď ε.

The closed ball tT : ∥T∥ ď Cu is computably compact (uniformly in C), so the
desired result is given by Proposition 1.10. □
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4. Local basis structure

Enflo’s and Davie’s constructions left open the question whether the bounded
approximation property is equivalent to having a basis. This was answered in the
negative by Szarek [Sza87]. Szarek’s method yields a space which does not have
a basis because it fails yet another property weaker than having a basis: having a
local basis structure. Recall the notion of a basis constant of a space Definition 2.3.

Definition 4.1. A Banach space X has a local basis structure if there is some C
such that for every finite-dimensional W Ď X there is a finite-dimensional Z with
W Ď Z Ď X and bcpZq ď C.

Certainly every space with a basis has a local basis structure, as is witnessed by
the spaces spanned by initial segments of the basis (and mild perturbations thereof).
It would appear to the uninitiated that given a local basis structure for a separable
space X, we could build a basis for X step-by-step, always extending to a basis of a
larger space with a low basis constant. But here recall that the basis constant of a
space is the infimum over the basis constants of its various bases. So even if W Ď Z
both have basis constant ă C, a basis w̄ of W with basis constant ă C cannot
necessarily be extended to a basis of Z with a similar bound. And indeed, Enflo’s
and Davie’s spaces have a local basis structure (essentially by Lemma 3.1). Thus,
having a local basis structure is incomparable with the approximation property (or
the bounded version).

The hope that Szarek’s construction could be used to provide useful lower bounds
for the complexity of Basis is dealt a fatal blow by the main result of this section,
that the index set LBS of computable Banach spaces with a local basis structure is
Σ0

3-complete. We present the details of this not only as a negative result. First, it is
interesting to actually have an arithmetical completeness result for the properties
related to having a basis. Second, Szarek’s construction is of interest because
it is (by nature) finitely-based; the pathological space is built as the limit (or
sum) of finite-dimensional spaces. Szarek showed how the basis constant of finite-
dimensional spaces can be manipulated, increased or decreased on demand, and we
hope that this technology will be useful. Beyond that, as mentioned above, for a
long time, it was not known whether finite-dimensional spaces can have large basis
constants; this was answered by Gluskin [Glu81], whose technique (together with
Bourgain’s, see [Bou88]) is the basis of Szarek’s work. We will show that these
unusual finite-dimensional spaces can be chosen to be computable:

Theorem 4.2. For every k there is a computable, finite-dimensional Banach space X
with bcpXq ą k.

We will shortly present a proof of this result, as well as of the completeness result
for LBS. The proof relies on a presentation of Szarek’s work in [MTJ03]. We will
quote some results from that paper and concentrate on the effective aspects of the
argument. Some of these arguments given in [MTJ03] were expanded to be more
accessible to people not already well-versed in the area; these can be found in Xie’s
thesis [Xie24], but they would be too long to include here.

First, however, we dispense of the upper bound:

Proposition 4.3. The index set LBS is Σ0
3.
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Proof. The argument relies on a result implicit in the work of Pujara [Puj71] and
Bosserhof [Bos08], that for a computable Banach space, having a local basis struc-
ture implies having a computable version of the same property, and that the prop-
erty is essentially equivalent to the property we listed in Lemma 3.1. They proved
the following:

(a) A Banach space X has a local basis structure if and only if there is some
C, a sequence x̄ P XN that is dense in X, and an infinite set L such that
for all n P L, bcprx0, . . . , xnsq ă C.

(b) If a computable Banach space X has a local basis structure, then such a
sequence x̄ and set L can be chosen to be computable, in fact, x̄ can be
chosen to be a computable sequence of special points.

This gives the upper bound, since the quantification only needs to be performed
over (indices of) computable objects. The statement bcprx0, . . . , xnsq ă C is Σ0

1, as
the quantification over bases can be restricted to special points. □

4.1. Basic concepts. As the argument below is fairly complex, we present it in
a modular fashion. We will start with the completeness result for LBS, based on
an effectivity result that we will present later. We start by introducing the various
notions that are required for stating and proving the results.

The Banach-Mazur distance.

Definition 4.4. The Banach-Mazur distance dBMpX, Y q between Banach spaces X
and Y is

inf
␣

∥T∥LpX,Y q∥T ´1∥LpY,Xq : T : X Ñ Y is linear and invertible
(

.

We write dBMpX, Y q “ 8 if X and Y are not linearly isomorphic.
Note that this is a multiplicative distance: dpX, Y q ě 1, and dpX, Zq ď dpX, Y qdpY, Zq.

If X and Y are finite-dimensional, then the infimum is realised, and so in this case,
dpX, Y q “ 1 if and only if X and Y are isometric.

For the definition below and for later, recall that for n P N and p ě 1, ln
p

denotes the Banach space Rn, equipped with the p-norm ∥¨∥p. The adjective “Eu-
clidean” refers to the Hilbert space ln

2 ; we sometimes say that X is “D-Euclidean”
if dBMpX, ln

2 q ď D.
Definition 4.5. For a Banach space X and n P N, we let

BnpXq “ sup tdBMpE, ln
2 q : E Ď X is a subspace & dim E “ nu .

Computability of singular values. We will use the notion of the singular values of
an operator or matrix. For any linear map T : Rn Ñ Rm of rank k, there are
orthonormal systems u1, . . . , uk P Rn and v1, . . . , vk P Rm and positive scalars
σ1 ě σ2 ě ¨ ¨ ¨ ě σk ą 0 such that Tui “ σivi, and tu1, . . . , uku span the orthog-
onal complement of the kernel of T ; thus v1, . . . , vk span the image of T and T is
determined by this information. The orthonormal ū and v̄ are not unique, but the
singular values are; for i ą k we set σi “ σipT q “ 0. When m “ n we can also
choose uk`1, . . . un and vk`1, . . . , vn so that puiq and pviq are orthonormal bases
of Rn and Tui “ σivi. In other notation,

T “
ÿ

iďn

σixui, ¨yvi.

This is known as a polar decomposition of T .
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In terms of matrices, we use the singular value decomposition: For any pm ˆ nq-
matrix A there are orthogonal matrices U P OmpRq, V P OnpRq, and a rectangular
diagonal pmˆnq-matrix Σ with non-decreasing, non-negative values on its diagonal
such that A “ UΣV T ; these are the singular values of A, which are the same as
the singular values of the operator A ÞÑ Ax : Rn Ñ Rm.

Lemma 4.6. Let n, m ě 1. For all k ď mintn, mu, the map T ÞÑ σkpT q (from
LpRn,Rmq to R) is computable. This is uniform in n, m and k.

Indeed, there is a computable function that given a matrix A, produces a singu-
lar value decomposition of A. An easy way to see the computability of the singular
values, is to note that the singular values of T are the square roots of the eigen-
values of T ˚T . The latter is self-adjoint and positive semi-definite; so the matrix
representing it is symmetric and so diagonalizable.

Mixing operators. The argument that Szarek’s space does not have a basis relies on
norm estimates of projections (and differences of projections). It is easier to reason
about a wider family of operators.

Definition 4.7. Let β, γ ą 0. An operator T : Rn Ñ Rn is pβ, γq-mixing if there
is a subspace E Ă Rn satisfying:

(1) dim E ě βn;
(2) for all x P E, the Euclidean distance between Tx and E (namely ∥PEKTx∥2)

is at least γ∥x∥2

Here we are using the Euclidean structure on Rn; EK denotes the orthogonal
complement of E in Rn “ ln

2 , and PEK is the orthogonal projection onto EK. Thus,
the operator T is “mixing” in the sense that it moves elements of E “far away”
from E. Note that in this case PEKT æ E is invertible, and the distancing condition
is equivalent to saying that ∥pPEKT æ Eq´1∥Lpln

2 q ď 1{γ. In terms of singular values,
we observe that we are asking that σkpPEKT æ Eq ě γ.

The following indicates the connection between projections and mixing operators:

Proposition 4.8. Let Q : Rn Ñ Rn be a projection of rank k ď n{2. Then, Q is
pk{n, 1{2q-mixing.

For a proof see [MTJ03, p. 1213] or [Xie24, Prop. 5.1.4]. The following is Szarek’s
key to making spaces with large norms.

Definition 4.9. Let X “ pRn, ∥¨∥q be a Banach space. For β ą 0 we let
mpX, βq “ inf

␣

∥T∥LpXq : T : Rn Ñ Rn is pβ, 1q-mixing
(

.

We will let
mpXq “ mpX, 1{32q.

It is important to note that mpXq is not an invariant of the isometry-type of X;
the notion of a mixing operator relies on the Euclidean structure of Rn. More
abstractly, mpXq relies on both the norm of X and a choice of an inner product on
the underlying vector space of X.

We note that 4.8 implies:

Proposition 4.10. For any Banach space X, if dim X ě 32, then bcpXq ě

mpXq{2.
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The main result connecting all the notions introduced so far is the following,
which is [MTJ03, Thm. 48]. A detailed proof is given in [Xie24, § 5.3].

Theorem 4.11. Let X “ pRn, ∥¨∥q be a Banach space with n ě 8. For any Banach
space W ,

bcpX ‘ W q ě c

a

mpXq

BnpW q

(where c is a universal constant, and ‘ denotes the l2 sum).

4.2. The main results. The following is an effective version of [MTJ03, Prop. 41]).
It implies Theorem 4.2.

Proposition 4.12. For any n ě 128 and rational p ą 2 there is a computable
Banach space Xn,p “ pRn, ∥¨∥Xn,p

q satisfying:
(1) mpXn,pq ě αn1{2´1{p;
(2) Xn,p is a subspace of l2n

p .

Here α is a universal constant, and the computability is uniform: the norm
∥¨∥Xn,p

is computable, uniformly in n and p, and we can also uniformly obtain a
computable copy Yn,p of l2n

p such that Yn,p Ą Xn,p.
We delay the proof, and first show how we use it.

Theorem 4.13. The index set LBS of computable Banach spaces with a local basis
structure is Σ0

3-complete.

By Proposition 4.3, it suffices to show hardness. Following Szarek, we define
sequences pnkq and ppkq (with nk Ñ 8 and ppkq decreasing to 2) recursively:

‚ n0 “ 128 and p0 “ 3;
‚ For k ą 0, given nk´1 and pk´1, we choose pk ă pk´1 sufficiently close to 2

(from above) so that
n

1{2´1{pk

k´1 ď 2;
‚ Given nk´1 and pk, we choose nk ą nk´1 sufficiently large so that

n
1{2´1{pk

k ą k2nk´1.

Szarek [Sza86, Sza87] showed that the space
´

à

k

Xnk,pk

¯

2

has no basis. This space is the l2-sum of the spaces Xnk,pk
, defined similarly to the

c0-sum defined in Section 3 above, but taking those sequences x̄ P
ś

k Xnk,pk
with

ř

k∥xk∥2
Xnk,pk

ă 8 and using the l2 norm as expected. In general, all infinite sums
in this proof are l2 sums, so we will omit mentioning this.

To establish Σ0
3 completeness, we need an extension of Szarek’s result.

For a set A Ď N we define a Banach space ZpAq as follows. For brevity, we let
Xk “ Xnk,pk

, and we let Yk be a computable copy l2nk
pk

containing Xk as a subspace.
For each k,

‚ If k P A let ZpAqk “ Yk;
‚ If k R A let ZpAqk “ Xk.
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We then let
ZpAq “

à

k

ZpAqk.

For any k, we write ZpAqďk “
À

mďk ZpAqm, and similarly for ZpAqąk or
ZpAq‰k, all identified with subspaces of ZpAq.

Lemma 4.14. For all A and k, Bnk
pZpAq‰kq ď

?
2nk´1.

Proof. Let E Ď ZpAq‰k have dimension nk. For each m ‰ k, we let Em “

PZpAqm
rEs (the orthogonal projection of E onto the mth component of ZpAq),

and note that E Ď
À

m‰k Em. So it suffices to show that for every m ‰ k,
dBMpEm, ldim Em

2 q ď
?

2nk´1. Fix m ‰ k. There are two cases.
If m ă k, then we use John’s theorem ([Joh48], also see [Lew78]) that states

that for any N -dimensional Banach space U , dBMpU, lN
2 q ď

?
N . Since m ă k,

nm ď nk´1, and dim Em ď dim ZpAqm ď 2nm.
If m ą k, then we use Lewis’s elaboration [Lew78] on John’s theorem, which

states that if U is an N -dimensional subspace of some lM
p (for some p ą 2), then

dBMpU, lN
2 q ď N 1{2´1{p. In this case, pm ď pk`1 and so by the choice of the latter,

and the fact that dim Em ď dim E “ nk, we have

dBMpWm, l2q ď n
1{2´1{pm

k ď 2.

Since n0 ě 2, we have 2 ď
?

2nk´1. □

The completeness is then establishes with the following proposition.

Proposition 4.15.
(a) If A is c.e. then the space ZpAq is computable (uniformly in a c.e. index

of A).
(b) If A is cofinite then ZpAq has a basis.
(c) If A is not cofinite then ZpAq does not have a local basis structure.

This clearly suffices to prove Theorem 4.13, as te : We is cofiniteu is Σ0
3-complete,

and every space with a basis has a local basis structure. (In other words, we are
proving pΣ0

3, Π0
3q ď pBasis, LBSAq).

Proof. (a) is easy: we start with
À

k Xk; when k enters A we extend Xk to Yk and
update the sum accordingly.

(b): Let k˚ “ max AA. Then ZpAq “ ZpAqďk˚ ‘
À

kąk˚ Yk. The first compo-
nent ZpAqďk˚ is finite-dimensional, and so has a basis. The second component is
isometric with

À

kąk˚ l2nk
pk

. For each k, bcpl2nk
pk

q “ 1, and so we can build a basis
for ZpAqąk by combining bases of each Yk, each with basis constant 1 (as is done
in the proof of Lemma 3.5).

(c): Let k R A; let Z Ď ZpAq be a subspace with Xk Ď Z. Then Z “ Xk ‘ W ,
where W Ď ZpAq‰k. By Lemma 4.14,

Bnk
pW q ď

a

2nk´1.

By Theorem 4.11,
bcpZq ě c

a

mpXkq{
a

2nk´1.

By the choice of Xk and of nk, we have

mpXkq ě αn
1{2´1{pk

k ą αk2nk´1,
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so bcpZq ě
?

αck{
?

2. Since AA is infinite, the spaces Xk for k P AA witness
that ZpAq does not have a local basis structure. □

This completes the proof of Theorem 4.13, given Proposition 4.12.

4.3. Taking duals. We now start working toward the proof of Proposition 4.12.
Szarek’s method relies on quotients rather than subspaces, so we need to take duals.
We mention that we can handle quotients computably. Let X “ pRn, ∥¨∥Xq be a
Banach space, and let q : X Ñ Rm be linear and onto. Then Rm can be equipped
with the quotient norm ∥¨∥X{K (where K is the kernel of q), defined by

∥y∥X{K “ min t∥x∥X : qpxq “ yu .

Observe that the qrBX s “ BX{K (the quotient map q maps the unit ball of X onto
the unit ball of X{K.)

Lemma 4.16. If X and q are computable, then pRm, ∥¨∥X{Kq is a computable
Banach space.

Proof. BX is computably compact (Proposition 1.11), and so the image BX{K

under q is computably compact as well, and so is effectively closed and located. To
compute ∥x∥X{K , we approximate which scalar multiples of x are in BX{K . □

We will prove:

Proposition 4.17. For any n ě 128 and rational p P r1, 2q there is a computable
Banach space Xn,p “ pRn, ∥¨∥Xn,p

q satisfying:
(i) mpXn,pq ě αn1{p´1{2;
(ii) Xn,p is a quotient of l2n

p .
Again, all the spaces will be uniformly computable. In particular, the quotient maps
from l2n

p to Xn,p will be uniformly computable.

For the following, recalling that mpXq depends also on the Euclidean structure
of Rn, we use the natural duality between ln

2 and itself.

Lemma 4.18. For any finite-dimensional Banach space X over Rn, mpXq “

mpX˚q.

For a proof see [Xie24, Lem. 5.2.2]. We can now explain why Proposition 4.17
implies Proposition 4.12. We observed above that for any finite-dimensional Banach
space X, if X is computable then so is X˚. Also note that if q : Rm Ñ Rn is linear
and computable, then the inclusion map q˚ : pRnq˚ Ñ pRmq˚ is computable; this
is independent of the norms chosen for Rn and Rm, i.e., this is pure linear algebra.
And of course, we recall that for p ă 2, plN

p q˚ is isometric with lN
q with q satisfying

1{p ´ 1{2 “ 1{2 ´ 1{q.

4.4. Reducing to p “ 1. Next, we observe that it suffices to prove Proposition 4.17
for p “ 1. Fix n, and suppose that q : R2n Ñ Rn is a (computable) quotient map,
mapping ∥¨∥1 to ∥¨∥Xn,1 . For p P p1, 2q, we simply let ∥¨∥Xn,p

be the quotient of
l2n
p “ pR2n, ∥¨∥pq under q.

Lemma 4.19. For p P p1, 2q, mpXn,pq ě p2nq
1
p ´1mpXn,1q.
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Proof. By the definition of mpXq, it suffices to prove that

}T }LpXn,pq ě p2nq
1
p ´1∥T∥LpXn,1q

for every operator T . We use the sequence of inclusions

p2nq
1{p´1∥¨∥1 ď ∥¨∥p ď ∥¨∥1

on R2n, equivalently, the sequence of inclusions of unit balls

Bl2n
1

Ă Bl2n
p

Ă p2nq1´1{pBl2n
1

.

Since the quotient map q is linear and maps the unit ball of l2n
1 to that of Xn,1,

and the unit ball of l2n
p to that of Xn,p, we get

BXn,1 Ď BXn,p Ď p2nq1´1{pBXn,1 ,

in other words,
p2nq

1{p´1∥¨∥Xn,1 ď ∥¨∥Xn,p
ď ∥¨∥Xn,1 .

This implies that for any operator T : Rn Ñ Rn,

∥T∥LpXn,pq “ max
x‰0

∥Tx∥Xn,p

∥x∥Xn,p

ě max
x‰0

p2nq
1
p ´1∥Tx∥Xn,1

∥x∥Xn,1

“ p2nq
1
p ´1∥T∥LpXn,1q.

□

Thus, it remains to prove:

Proposition 4.20. For each n ě 128 there is a computable Banach space Xn “

pRn, ∥¨∥Xn
q satisfying:

(i) mpXnq ě α
?

n (where α is a universal constant);
(ii) Xn is a quotient of l2n

1 .
The spaces Xn and the quotient maps qn : l2n

1 Ñ Xn are uniformly computable.

4.5. The set of mixing operators. We will need to quantify over mixing op-
erators, and so, we need some effective compactness. For the following proof, we
will use a computable structure on the orthogonal group. Recall that OnpRq is the
collection of pn ˆ nq-orthogonal matrices, which we also identified with operators
in LpRnq. For any invertible A P GLnpRq, let GSpAq be the result of applying
the Gram-Schmidt process to the columns of A. Then GS is a partial computable
function on LpRnq, as it is produced by composing partial computable functions
such as x ÞÑ x{∥x∥2 (defined for x ‰ 0) and px, yq ÞÑ xx, yy.

Now GLnpQq is a computable subset of the collection MnpQq of ideal points of
LpRnq, and so we can view its image under the Gram-Schmidt process as a com-
putable sequence of points in OnpRq. This image is dense because GS is continuous
on GLnpRq and OnpRq “ range GS (indeed, GS2

“ GS). Hence, we see that OnpRq

is an effectively closed and located subset of LpRnq. Since it is bounded, it is
computably compact.

Remark 4.21. OnpQq is actually dense in OnpRq, but this is a bit more complicated
to prove.

For an operator T P LpRnq and k ď n, let
MpT, kq “ sup tγ : T is pk{n, γq-mixingu .
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Lemma 4.22. The function T ÞÑ MpT, kq (from LpRnq to R) is computable, uni-
formly in n and k.

Proof. Recall that

MpT, kq “ sup tσkpPEKT æEq : E Ď Rn is k-dimensionalu .

To quantify over subspaces, we could give a computable metric structure to the
collection of all k-dimensional subspaces (known as the Grassmannian). This is
possible, but not necessary: we can use the orthogonal group instead. Given A P

OnpRq, let EA “ EA,k be the subspace of Rn spanned by the first k-columns of A.
This is of course k-dimensional, and comes equipped with a basis (those columns
of A). The last pn ´ kq-many columns of A are an orthonormal basis of EK

A , from
which we can find the matrix defining the orthogonal projection PEK

A
(using the

standard basis of Rn). Given a matrix defining T , we can now compute a matrix
defining PEK

A
T æEA (using the given basis for EA in the domain and the standard

basis of Rn for the range), and so we can compute σk of this operator (Lemma 4.6).
Of course, it is important to note that every k-dimensional subspace E is EA for
some A P OnpRq; we managed to quantify over all subspaces, and it does not matter
that we “repeated” subspaces (EA “ EB for distinct A, B). Note that we needed
something like OnpRq (rather than say MnpRq), since given a k-tuple of elements
of Rn, we cannot computably tell whether they span a k-dimensional subspace or
not.

Since the function pT, Aq ÞÑ σkpPEK
A

T æEAq is computable, and OnpRq is com-
putably compact, we can use Proposition 1.10 to show that T ÞÑ MpT, kq is com-
putable as well. □

4.6. Parameterized spaces. The construction of the spaces Xn guaranteed by
Proposition 4.20 is not direct. Rather, it is done by a computable search on a
collection of spaces (i.e., a collection of norms on Rn). This is because the existence
proof of such spaces is based on the probabilistic method.

Fixing n ě 128, let m “ mpnq “ tn{128u. We will build Xn as a quotient of ln`m
1 ,

which is itself a quotient of l2n
1 .

For g “ pg1, . . . , gmq P pRnqm, we define

qg : Rn`m Ñ Rn

be the linear map determined by mapping:
‚ For i “ 1, . . . , n, ei P Rn`m ÞÑ ei P Rn;
‚ For j “ 1, . . . , m, en`j P Rn`m ÞÑ gj P Rn.

We let ∥¨∥g be the quotient norm on Rn using this map. The space pRn, ∥¨∥gq

is denoted by Xg. The uniformity of Lemma 4.16 shows that the norm ∥¨∥g is
computable from g, that is, the map

pg, xq ÞÑ ∥x∥g

(from pRnqm ˆRn to R) is computable. In particular, if g is computable, then ∥¨∥g
and qg are computable, and this is uniform, in g and in n.

We let
L “ Ln “ tg P pRnqm : p@j ď mq 1{2 ď ∥gj∥2 ď 2u .

This set is computably compact.
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Lemma 4.23. for all g P L,
Bln

1
Ď BXg Ď 2Bln

2
Ď 2

?
nBln

1
.

Proof. The unit ball of any Banach space is absolutely convex: it is convex and
symmetric about the origin. The unit ball Bln

1
is the absolute convex hull of the

standard unit vectors te1, . . . , enu (the smallest absolutely convex subset of Rn

containing these vectors). This gives the first containment. Similarly, since Bln`m
1

is the absolutely convex hull of the unit vectors in Rn`m, the definition of qg
shows that BXg is the absolutely convex hull of te1, . . . , en, g1, . . . , gmu. Since
∥ei∥2, ∥gj∥2 ď 2 when g P L, and Bln

2
is absolutely convex, we obtain the second

containment. □

Lemma 4.23 implies that the closed unit ball BXg is g-computably compact,
uniformly in g. Also, as in the proof of Lemma 4.19, Lemma 4.23 implies:
Lemma 4.24. For all g P L, for every operator T P LpRnq,

∥T∥Lpln
1 q ě ∥T∥LpXgq ě

1
2

?
n

∥T∥Lpln
1 q.

What we need is:
Proposition 4.25 (Szarek [Sza86]). There is some α ą 0 such that for all n ě 128
there is some g P L “ Ln such that

mpXgq ą α
?

n.

We of course may take α be rational. The proof of Proposition 4.25, which
as mentioned relies on the probabilistic method, is complicated. For a detailed
argument see [Xie24, § 5.4].

We can now prove Proposition 4.20, and so Proposition 4.17, and so Proposi-
tion 4.12, and so Theorem 4.13 and Theorem 4.2.

Proof of Proposition 4.20. Fix n; let k “ rn{32s. Let B be the closed ball BLpln
1 qp0, αnq.

Since B is computably compact (uniformly in n), we have a computable mod-
ulus of uniform continuity of the computable function T ÞÑ MpT, kq on B; so
we can compute some ε ą 0 such that if T, S P B and ∥S ´ T∥Lpln

1 q ď ε then
|MpS, kq ´ MpT, kq| ď 1{2. We also ensure that ε ă α

?
n{4. Again since B is

computably compact, we can effectively find a finite ε-cover C of B.
We now let

W “

!

g P L : @T P C
´

MpT, kq ě 1{2 ùñ ∥T∥LpXgq ą α
?

n{2
¯)

.

We make three observations:
‚ W is an effectively open subset of L. This is because pg, T q ÞÑ ∥T∥LpXgq is

computable.
‚ W ‰ H. This follows from Proposition 4.25: suppose that g P L and

mpXgq ą α
?

n. Then for all T , if MpT, kq ě 1{2 then Mp2T, kq ě 1 and
then ∥2T∥LpXgq ą α

?
n.

‚ For all g P W , mpXgq ě α
?

n{4. For let T P LpRnq and suppose that
mpT, kq ě 1. We need to show that ∥T∥LpXgq ě α

?
n{4. There are two

cases.
If T P B, then we find some S P C with ∥S ´ T∥Lpln

1 q ď ε. Then by
the choice of ε, we have MpT, kq ě MpS, kq ´ 1{2 ě 1{2. Since g P W ,
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∥S∥LpXgq ě α
?

n{2. By Lemma 4.24, ∥S ´ T∥LpXgq ď ∥S ´ T∥Lpln
1 q ď ε ď

α
?

n{4, so ∥T∥LpXgq ě α
?

n{4 as required.
If T R B, i.e., if ∥T∥Lpln

1 q ě αn, then by Lemma 4.24, ∥T∥LpXgq ě α
?

n{2.
To produce g as required, effectively given n, we simply run the enumeration of W
until we see some special point enter that set. □

5. summary of results

We summarise the index set calculations in this paper.
(a) Π0

3 ď Basis ď Σ1
1: Definition 1.3, Proposition 3.7,Corollary 2.2.

(b) Π0
3 ď FDD ď Σ1

1: Definition 3.9, Proposition 3.10, Corollary 3.12.
(c) Π0

3 ď AP ď Π1
1: Definition 3.2, Remark 3.8, Proposition 3.17.

(d) Π0
3 ď BAP ď Σ0

4: Definition 3.18, Remark 3.8, Proposition 3.20.
(e) LBS is Σ0

3-complete: Definition 4.1, Proposition 4.3, Theorem 4.13.
We also showed that the index sets CompBasis and CompFDD (Definition 3.13)

are Σ0
3-complete (Proposition 3.15).

5.1. Further results. Qian studied further related properties, such as being a π-
space, having a local Π-basis structure, and the commuting bounded approximation
property. Qian also observed that a construction by Bossard [Bos02] shows that the
index set of reflexive spaces is Π1

1-complete. Reflexive spaces, interesting in their
own right, are related to strong notions of bases, such as shrinking bases, which are
in turn useful in constructing bases of dual spaces. For details, see [Qia21].
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