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AUTOMORPHISMS OF SUPERMAXIMAL SUBSPACES

R. G. DOWNEY AND G. R. HIRD

§1. Introduction. An infinite-dimensional vector space V,, over a recursive field F
is called fully effective if V,, is a recursive set identified with w upon which the
operations of vector addition and scalar multiplication are recursive functions,
identity is a recursive relation, and V_ has a dependence algorithm, that is a uniformly
effective procedure which when applied to x,a,,...,a, € V,, determines whether or
not x is an element of {a,,...,a,}* (the subspace generated by {a,,...,a,}). The
study of V,, and of its lattice of r.e. subspaces L(V., ), was introduced in Metakides
and Nerode [15]. Since then both V, and L(V,,) (and many other effective algebraic
systems) have been studied quite intensively. The reader is directed to [5] and [17]
for a good bibliography in this area, and to [15] for any unexplained notation and
terminology.

In[15] Metakides and Nerode observed that a study of L(V,_) may in some'ways
be modelled upon a study of L{w), the lattice of r.e. sets. For example, they showed
how an e-state construction could be modified to produce an r.e. maximal subspace,
where M e L(V,) is maximal if dim{V_ /M) = o« and, for all We L(V_),if W o M
then either dim(W/M) < oo or dim(V_/W) < .

However, some of the most interesting features of L(V,,) are those which do not
have analogues in L(w). Our concern here, which is probably one of the most
striking characteristics of L(V,), falls into this category. We say M e L(V,,) is
supermaximal if dim(V_ /M)=c0 and for all WeL(V,), if W>o M then
dim(W/M) < co or W = V. These subspaces were discovered by Kalantari and
Retzlaff [13].

These subspacés appeared to be the true analogue of maximal sets in the sense

that they have the thinnest lattice of r.e. superspaces. However, it has since become

clear that their behavior differs markedly from that of maximal sets. For example,
Remmel showed that there exist r.e. supermaximal subspaces of arbitrary nonzero
Turing degrees and dependence degrees, whereas Martin [14] observed that
maximal sets may only have high degrees. One of the major results for L(w)is that of
Soare [197, where he shows that for each pair M,, M, of maximal sets there exists an
automorphism @ of L(w) with ®(M,) = M,.

However, in his Ph.D. thesis [11] Guichard showed that each automorphism of
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L(V,)isinduced by a recursive semilinear transformation® of ¥,. Thus the result of
Remmel [18] implies that there exist supermaximal M,, M, € L(V, ) such that no
automorphism & of L(V,,) takes M, to M,. By diagonalizing over all the recursive
semilinear transformations of V,,, Guichard [10] then modified Remmel [18] to
show that there exist supermaximal M, and M, such that no automorphism takes
M, to M, and d(M,) = d(M,) = d(D(M,)) = d(D(M,)). Nerode and Remmel [17],
[17a] have proved similar results with M, and M, having a specified dependence
degree “structure”; also Downey [7] has shown that M, and M, may have the same
co-T.¢., complementary subspace.

In this paper we examine strengthenings of the concept of supermaximality, We
examine classes of supermaximal subspaces with clear lattice-theoretic distinctions,
and thus may deduce Guichard’s results above without appealing to the dia-
gonalization methods of Guichard. We also blend certain “effectivity” conditions
with the notion of supermaximality with a view to perhaps producing a notion of
supermaximality which defines a single orbit of the group of automorphisms of
L{V,). In particular, this allows us to show that the analogue of Cohen and
Jockusch’s main result in [4] (namely that no strongly effectively simple set is
contained in a maximal set) fails to hold in L(V,).

Finally, we observe that a result of this work is a new and an extremely easy
construction of an r.e. supermaximal subspace, namely that if we are somewhat
careful with an analogue of the usual simple set construction we immediately
construct an r.e. supermaximal subspace,

The authors wish to thank C. J. Ash for many helpful discussions. We also wish to
thank the referee for numerous suggestions which led to a much simpler and clearer
presentation of these results, which were originally reported in [9]. '

§2. Preliminaries. In {12] Hird proved a general recursive model-theoretic result,
one of whose consequences was the existence of a new type of supermaximal
subspace:

Dermirion 2.1 (HIRD). We say Ve L(V,) is strongly supermaximal if
dim(V,/V)= oo and for all re. independent sets I if In V=g then
dim(I*/V) < 0. .

Subsequently, the authors observed that there is a very easy and natural
construction of a strongly supermaximal subspace:

THEOREM 2.2 (HIRD, 1981). There exists an r.e. strongly supermaximal sub-
space V.

PROOF. Let {I,|e € w} enumerate the r.e. independent subsets of V. We build
V=_J,V, and an re set J={J,J, with ¥, = J¥ in stages. Let B = {a, < a,
< -++} list in order a recursive basis of ¥,,. At each stage s we enumerate in order
{b3]i e w}, a subset of B and a basis of .V, over ¥.. Define, for convenience,

'We say €:V,, =V, is a semilinear transformation of ¥, if ®u+ v) = &{u) + P(v) and
P(iu) = F(4)$2(u), where F is a field automorphism and Q is a group automorphism of V- In his Ph.D,
thesis [13a], Kalantari showed that each automorphism of L(V,) is induced by a semilinear
transformation, and Guichard modified a technique [rom Kalantari's thesis (namely that if an
automorphism is induced by a permutation P of an r.. basis, then P is recursive) to show that each
automorphism is induced by a recursive invertible semilinear transformation.
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g(s, x) = max,{b] e supp,(x)} if x ¢ V¥ and g(5,x) = — 1 otherwise, where supp,(x)
denotes the support of x relative to J, U {b} | i € w}. Our requirements are

PloV=@->IclVu/b,....bD%5

N,:lim b} = b, exists.

We say P requires attention at stage s+ 1 if 3Ixeli such that
x¢ (Voo {b,.... b5}y and I{ n V, = & and e is the least such.

Construction. Stage 0. Set b? = g, for all i ¢ w, and set J, = (.

Stage s + 1. If no P, requires attention, do nothing. If B, requires attention, find
the least x for this e, set J,., = J, u {x} and set

bs+1 _ bf fOI’ I < g(S,X),
T b,y fori = gls,x).

Set J = [ ), J, and V = J*. This completes the construction.

To complete the proof we observe that (as in the simple set construction) each
b; changes at most e times, so lim b} = b, exists. That all the P, are met is
immediate. [

ReMARK 2.3. We observe that the space V we constructed in Theorem 2.8 has the
following property. If W,nV = {0} = I}, the eth r.e. subspace), then
dim(W,) <e.

ReMARK 24. In fact, if [,n V=g then I,c(Vu{ap,...,a;.})* and if
W.nV= {0} then W, < {ay,...,a,.}*. We build on these observations later.

THEOREM 2.5. If V € L(V_) is strongly supermaximal then V is supermaximal.

ProOOF. Suppose V is not supermaximal. Choose Qe L(V,) with @ oV,
dim(Q/V) = o0 and Q # V,,. Now find some ae V,, — Q, and a recursive (or r.e.)
basis {g;|i € w} of Q. Then I ={a+ g;|ie w} is an re. independent set with
INnV=ganddim{I/V)=1c0. [J

It is not too difficult to show that if ¥ e L(V,), dim(V,,/V) = co, and V is a
recursive set, then -there exists a recursive basis B of ¥, with Bn V % (.
Consequently, no strongly supermaximal r.e. subspace is a recursive.set. Now
Metakides and Nerode [16] have shown that if F (the field of scalars) is infinite then
V,, contains a recursive supermaximal subspace; thus there are r.e. supermaximal
subspaces which are not strongly supermaximal. In §3 we observe that this result
implies that not all are supermaximal automorphic. If F was finite it may be the case
that the types of supermaximality may coincide; however we have:

THEOREM 2.6. For any field of scalars F, V contains an r.e. supermaximal subspace
V which is not strongly supermaximal. Moreover, given any r.e. degree § # 0 we may
construct V to have dependence degree <& and ensure that B n V # (& for some
recursive basis B of V.

We leave the proof of this result to the reader (cf. [9]), remarking only that it may
be obtained by direct modification of the Kalantari-Retzlaff {13] construction, and
that the only difficulties are when the field F is finite.

§3. Automorphisms. In this section we examine automorphisms of L({V_). We
shall use the following result:

THEOREM 3.1 (GUICHARD [10]). Every automorphism of L(V,) is induced by an
invertible recursive semilinear transformation of V.
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By producing a pair of r.e. supermaximal subspaces of the same Turing degree
and dependence degree, one of which is strongly supermaximal and one not, we
infer:

THEOREM 3.2 {GUICHARD [10]). There exist r.e. supermaximal subspaces M,, M,
with d(M,) = d(D(M,)) = d{(D(M,)) = d(M,) such that no automorphism of L(V,)
takes M, to M,.

Theorems 2.2 and 2.6 depended only on the fact that V, is a regular (federated)
Steinitz system (cf. Metakides and Nerode [16] or Baldwin [3]). Thus, for example,
if we can show that automorphisms of L(F,) are recursive in nature, Theorem 2.2
and 2.6 will combine to produce supermax1mal algebraically closed subﬁelds with
the same degree structure while not in the same orbit.

We may extend Theorem 3.2 to r.e. supermaximai subspaces which have recursive
bases of V, in their (set theoretic) complement by using the fact that every
automorphism of L(V,;) is induced by a recursive semilinear transformation. For
example i the field is finite, in which case the Turing degree and dependence degree
of an r.e. subspace are equal, we may use Theorem 2.6 to produce N, re.
supermaximal subspaces of different Turing and dependence degrees. If the field is
infinite, we can also produce N, recursive supermaximal subspaces (with bases in
their complements) each with a differing dependence degree. In each of these
degrees, we may diagonalize (as in Guichard [10]) to produce nonautomorphic
spaces with the same degree structure. We note that at this stage, however, it is
unclear how to impose finer degree restrictions. In the case of strongly super-
maximal we have the following.

THEOREM 3.3. Suppose 8 # 0 is any r.e. degree. There exist My, My e L(V ) and a
‘co-r.e. subset R of a recursive basis B such that

(i) d(M,) = d(M,) = d(D(M,)) = d(D(M,)) = 9,

(i) M@ R=M,@®R=1V,,

(i) both M, and M, are strongly supermaximal, and

(iv) no automorphism ¢ of L(V.,) has #(M;) = M,.

Proor. We modify the construction of Theorem 2.2. We build K = [ J; J; and
K = | J, K,in stages. At each stage s we ensure that {b{|i € w} is a co-basis for both
J*and K*. We have a recursive one-to-one total function f with f(w) =1 6. Ateach
stage s we enumerate one of bj ., b3 ris)+ 10 Disisy + 25 P sis + 3 into both J; and K to
ensure that J, K1 = f(w). '

We enumerate x into J, (or K,) only if supp; (x) = 4/(s) (resp. suppg,(x) 2
4f(s)), where supp, (x) denotes the support of x relative to J; u {bj|i € w}. This
controls the dependence degree of J, and K. Our requirements are:

N Jp > f@),Kp 2 f(w)

N2:d(D(J*)) < f(w), dID(K*)) <1 f(w),

N,:lim b3 = b, exists,

QJ*@{b!eew}*—K*@{b lee w}* = V,,

pE LnJ* =g —3nfe) < wll, = (J v {b;|i < nle)})*)

KLAK*=g -3me) <oll, c (K i{bli< m(e)})*

We have the final requirement concerning the automorphisms of L(V,,). Suppose
{®e}ecwis an enumeration of the partial recursive functions. We meet the following
requirements (as in Guichard [10]):
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R, If ¢, is a recursive semilinear transformation of V., then either
3j < w(p.(b;) € K*) or Ic € J(¢.(c) ¢ K*).

During the construction we place markers upon elements of {b lie w},
associated with the @,. We denote these by H(e, s). At each stage s there are only a
finite number of markers. Define the following restraint function:

r(e, s) = max({j| b3 = H(i,s) for i < e} U {e,4r(s)}).

Our priority ranking is N, N2, @, Ny, P§, P§., R, Ny,....

We attack the requirement of highest priority which requires attention at stage
s + 1according to this priority ranking and the following rules. (In this case we say a
requirement demands attention if it is one of R,, P{ or P{) We say P] requires
attention at stage s + 1if 3x € I¥(g(s, x) = r(e, s)),and e s the least number less than s
with this property. Similarly, P¥ requires attention. Finally we say R, requires
attention at stage s + 1if (i) H{e, s} is undefined, (i) 3k > r(e, s) (¢3(b)] and either

S(bf) € K¥* or ¢3(b5) € J¥), and (iii) e is least with respect to (i) and (ii).

Construction. Stage 0. Set Jy = K, = &, bY = a; for all i € w, and declare H(e,0)
as being undefined for all e € w.

Stage s + 1. If no PZ, P¥ or R, for e < s demands attention, define J; = J, and
K! =K, If P! demands attention via x with x least for e, set J{ = J U {x}
and K! = K, U {bi(s,x)}. I PX demands attention via x, set J; = J, u {b3(s, )}
and K! = K, u {x}. rinally if R, demands attention via k, if ¢3(b;) € K* set
J!=J and K! = K,. If ¢5(b}) ¢ K¥ there are two cases. .

Case (). ¢5(b5) ¢ (K, U {bi})*. In this case set Ji=J u {bj} and K; =
K, v {bj}. .

Case (i), (b3} e (K, u {bi})*. In this case find m > r(e,s) + k + 3 such that
¢3(b}) ¢ (K, u {bj + b5 })* and set J} = J, U {bi} and K} = K U {b}, + b},}.

In all of the cases where R, demands attention define H(e, 5) = b} and declare as
undefined all the H(}j, s) forj > e, and set H(i,s + 1) = H(i,s) for i < e. Now we add
one of b3 i+ 35 b s> Dise+1 OF B+ to J3 and K for J, ) and K4, If any
requirement P, PX or R, demands attention at stage s + 1 via y = x or y = bj (as
above) we say g(s,y) is poisoned at stage s+ 1. Find the least j satisfying the
following; ;

() j=4f(s), 4f () + 1, 4f(s) + 2 or 4f(s) + 3,

(ii) j is not poisoned, and

(iti) if defining J.,, = J! U {b5} and K, ,, = K} U {b}} injures any requirement
R, it injures the requirement R, with the largest ¢ (define this ¢ as t.y) (i.e. the one of
lowest priority).

NowsetK,,, = K} u {b3}and J,,., = J} U {b5} and declare as undefined H(i,s)
for all i > &, (if t;;, in (iii) exists). As in Guichard [10] we observe that we do not
injure the requirement of highest priority which is threatened. This completes the
construction.

Now, we can show that lim b5 = b, exists, as a b may only changeif i > 4f(s)and
i > e, which can happen at most finitely often. It is easy to show by induction that
each R, isinjured at most finitely often; as each R, may only be injured by a Pl or PX
oran R, for t < e and k < e, each PJ or P{ requires attention at most once and
the coding strategy specifically protects the requirement of highest priority which
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is threatened. That is, either each H(i,s) is undefined for all s > ¢ for some t, or
lim, H(i,s) = H(i) exists. We show that each R, is met as follows: Suppose e is least
such that R, is not met. Go to a stage s’ wheré ' > ¢ and Vi < e Vs > s’ [(b; =
b for i<e)&(f(s)=e)&(Vt>5 (H (i,t) is undefined) v (H(i,s) = H(i,s') =
H(i))&Yj < e(P{and P} and R, do not demand attention at stage 5))]. Find a stage
§" > 5’ such that

Vs > s"(((bi = H(j)forsomej < i) — bS = bi") & (f(s) > max;., {ilbi = H(H})).
Then it follows by construction that as R, is not met
Vs > 5" (¢e(b) — x < rle, s))
and so Vs > 5" (¢p3(b1)| — x < 4f(s)) and thus by the usual permitting argument
L Ys>(@MBI > Ve > s(x < 4f(0)

and so f{w) is recursive contrary to hypothesis. Therefore all the R, are met. Similar
arguments will show all the P{ and PX are met, and as in Remmel [18] or Guichard
[10] we ensure that § <;J and & <, K by the coding and that d{D(J*)) <, 5 and
d(D(K*)) <yd by the fact that b° only changes at stages if ¢ > f(s) and so
{bjlie w} <6 (see, in particular, Remmel [18]), and the result follows. [J

§4. Effective strong supermaximality. In this section we examine other classes of
supermaximal subspaces. In particular we examine subspaces with properties
stronger than that of strong supermaximality. Our starting points are Remarks 2.3
and 2.4 of §2. These suggest the following definitions analagous to those of L{w):

DEFINITON 4.1. (i) Suppose We L(Vy), dim(V /W) = co and there exists a
recursive function f such thatif W, n W = {0} then dim (W) < f(e). Then we say
that W is effectively simple.

(i) We say W e L(V,.) is effectively supermaximal if dim(V,_/W) = co and there

exists a recursive function f such that if I, ~n W = J then dim((I, o WY*/W) < fle).

DEFINITION 4.2 (ANALOGUE OF COHEN AND JOCKUSCH [4]). Wesay We L(V, )is
strongly effectively simple if dim(V,_/W) = oo and there exists a recursive function f
such thatif W, n W= {0} then W, < {v|ve V,, & v < f(e)}*. Finally We L(V,)is
strongly effectively supermaximal if dim(V,/W)=co and there exists a total
recursive function f such thatif I, n W = ¥ then Le(WuiveV,|v< fle)})*

Henceforth, we will write V, [] for {x e ¥, [x < v}* In Remarks 2.3 and 2.4 we
observed that the object constructed in the proof of Theorem 2.2 was not only
strongly supermaximal but, in fact, strongly effectively supermaximal. The existence
of such a space shows that the natural analogue of the following theorem
concerning L{w) fails for L(V,).

THEOREM 4.3 (COHEN AND JOCKUSCH [4]). An r.e. strongly effectively simple ser is
contained in no r.e. maximal ser.

We show that, in general, strong supermaximality does not imply strong effective
supermaximality via the following;

THeOREM 4.4. Suppose W is effectivel y simple; then d(D(W)) = 0', that is, W has
complete dependence degree.
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Proor. Let B = {b, < b, < '} be a recursive basis of V.- Let K be a complete
subset of B, and define m(s) = us(xe K,) if xe K and let m(s) be undefined
otherwise. Suppose W is effectively simple via fiwith W = | J; W,. Inductively define
a sequence R, = {af|i e w} by the following:

Stage 0. a? = b;for all i e w.

Stage s + 1. ag*' = paj(aj ¢ W¥,,), and in general

a5 = pai(af ¢ (Wy 0 (o |k < jh¥)

Define R = [, R,.
By the recursion theorem define a recursive function A by

Io= {ag™,...,a73) ifxek,
"9 TP otherwise.

Now set r(x) = us(ajyy = Arye) then clearly r <R and by construction
R =7d(D(W)). Now if x & K and r{x) < m(x) then Wiy 0 W = {0} (as then I, is
independent over W and I}, = W,,,). Therefore dim(W,,,) < fh{x) by definition of
S and the fact that W is effectively simple. However then, by construction,
dim(W, ) = fh(x) + 1, a contradiction. Therefore for all x e K, r{x) > m(x), ie.
xeKoxekK,,,s0K < dDW)). O

CoRrOLLARY 4.5. Not every strongly supermaximal subspace is effectively simple,
and so, in particular, there exists a strongly supermaximal subspace which is not
effectively supermaximal.

PROOF. In Theorem 2.6 we observed that there exists a strongly supermaximal
subspace of arbitrary low dependence degree D. However, for it to be effectively
simple, D must be complete. []

Theorem 4.4 might lead one to believe that every re. “effectively non-
complemented” subspace is complete, as is in the L(w) case. H owever, it is fairly easy
to show that if F {the field of scalars) is infinite, then ¥, contains a recursive
effectively simple subspace.

We may hope that strong effective supermaximality for r.e. subspaces may be
sufficient to guarantee that they are in the same orbit of the group of automorph-
isms of L(V,,). However, this is not the case (even if Fis finite).

THEOREM 4.6. There exists a pair My, M, of r.e. strongly effectively supermaximal
subspaces such that no automorphism ® of L( Vo) has d(M,) = M,.

Proor. We satisfy similar requirements to Theorem 3.3 via Remarks 2.3 and 2.4.
Again set B = {a; < a; <-*-}. We build M, =  J, M5 and M, = | J, M3. At each
stage s, {bj.|e € w} lists in order a basis of Vo over M; (for j = 1,2). Our require-
ments are

Ny limgby , = b, , exists,

N, :limg b, = b, , exists,

PolnMy =@ > 1M vial|i<2e+ 1)+ 2%,

PBol,nMy=@ 1, (M, u{a|i<2e+1)+2%})* and

R, if ¢, is a recursive semilinear transformation of ¥, then for some
J < 2e + 1) + 2% either (i) ¢; = b, , for some k and @,(a;) € M5, or (i) a;€ M, and
bela)) ¢ M,.
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We modify the system of markers of 3.3. Those elements a ; with ¢.(a;) € M, we
mark with H(l,e,s). Otherwise we mark with. H (2,e,s). Define for j = 1,2 the
following: '

r(j.e,s) = max({i}| b} = H(j,i,s) for i < e} U {e}).

We say P, requires attention at stage s + 1 if P, has highest priority and (i)
Lo M;=g, (i) 3x e I(x ¢ (M5 v {b|i < r(j,e,5)})*). As in the earlier con-
structions, if Py, requires attention set M3*! = (M3 U {x})* and Mi*! = M3 for
i#j, and set (i) bi;' =bj, for all tew and (i) bsi! = b3, for t < gli,s,x);
biit = b3, fort = g(i, s, x) where g(j, 5, x) = max(t | b;. € supp; (x)} for x ¢ M3,
and g(j,s,x) = —1if x € M3 where supp; ;(x) denotes the support of x relative to
{b}.i]i e w} over M.

Finally we deal with the R,. We say R, requires attention if neither H (1,e,s) nor
H(2,e,s}is defined and ¢5(bI,)|. We describe the actions we take to meet R,. There
are three cases.

Case (i). ¢3(b1..) e M5. Define H(1,¢,5) = b5, and change nothing else,

Case (ii). ¢e(bi.) ¢ (M3 U {b5 |/ <e})*. Define H(i,e,s) = b, and set M5! =
(M3 U {$;(b..)})* In this case set M3*! = M3, b3 = b5, for all i e w and set

bs+.1 = b?l.i for i< g(2,s, :(b{.e)):
e 3i+1 Otherwise.

Case (iii). Otherwise. Set Mi*' = (M{ U {b},.})*. Define H(2,e,s) = 2(b1.),
change the appropriate b s similarly as in case (i) and otherwise do nothing. For
the construction we attack as destribed above. For the bounds on the a;’s in the
statement of the requirement, one can check on the number of times any positive
requirement may be injured. [

By modifying this construction (in a way similar that to that of Theorem 3.3) we
can ensure that both M, and M, have the same fully co-r.e. complement.

COROLLARY 4.7, There exist a pair (M;, M,) of r.e. strongly effectively super-
maximal subspaces and a co-r.e. subset R of a recursive basis of V,, such that

O M{@R*=M,®R*=V_, and

(ii) no automorphism ® of L(V,)) takes M, to M,.

PrOOF. By the remarks above, and Theorem 4.6. OO

We close with a couple of questions. The techniques of Guichard, Nerode and
Remmel, together with those used here, always seem to produce M ) hot of the same
l-degree as M,, or at least D,(M,) #, D,(M,) for some k. We ask if it is possible to
produce nonautomorphic supermaximal M, and M, of the same 1-degree
dependence structure? Perhaps the techniques introduced here may be useful in
answering this question. We remark that evidently this is a necessary condition for
M, and M, to be automorphic. A se¢ond question is to ask whether or not all (super)
maximals are automorphic under automorphisms of L*(V,), the lattice of re.
subspaces modulo finite-dimensional subspaces.

Finally, there is an essential difference between the results of Kalantari and -

Retzlaff [13] and other nonautomorphism results. In [13] the authors produced a
pair M, M, of maximal subspaces and a first order formula 7(x) such that M,
satisfied y and M, did not. s there a similar “elementary™ property distinguishing
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different orbits of supermaximal subspaces? We remark that this question has been

analysed in [8], and Downey has unpublished material extending {8]. However the
question remains open.
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