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Abstract

We study a class of permitting arguments in which each positive requirement
needs multiple permissions to succeed. Three natural examples of such construc-
tions are given. We introduce a class of r. e. sets, the array nonrecursive sets,
which consists of precisely those sets which allow enough permission for these con-
structions be performed. We classify the degrees of array nonrecursive sets and so
classify the degrees in which each of these constructions can be performed.

1 Introduction

Permitting is the name given to a class of techniques for constructing an r. e. set B which
is recursive is some fixed r. e. set A. In a permitting argument, enumeration into B is
allowed or “permitted” only if some event related to the enumeration of A occurs. For
example, in Yates permitting (often called permitting or simple permitting), we allow
z to be enumerated in B at stage s+ 1 only if some integer y < z is enumerated in A at
‘stage s + 1. It is obvious that this ensures that B <y A. Various notions of permitting
can be found in the literature corresponding to various classes of sets A and various
types of requirements which appear in the specification of B. Obviously, permitting
functions as a negative requirement on B and a notion of permitting may or may not
cohere with a positive requirement desired for the enumeration of B. For example, Yates -
permitting deséribed above and the standard positive requirements for constructing a
simple set are compatible, producing the theorem that every r. e. degree bounds an
1. e. degree containing a simple set. The most common notions of permitting are Yates -
permitting, Martin (or high) permitting, and prompt permitting. Each corresponds to
a natural class of r. e. degrees and for each there is a large class of constructions that
can be done precisely in those degrees.
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In this paper we analyze a class of permitting arguments which are characterized
by the fact that each positive requirement requires multiple permissions to succeed.
To see how our notion of multiple permitting differs from other standard notions of
permitting, and to place all these methods in a common framework, we now review
the basic (Yates) permitting method and make some remarks about it. We do this by
means of the following theorem.

Theorem 1.1 If A i3 r. e. and nonrecursive, then there is a simple set B such that
B <y A.

Proof. We construct B to be coinfinite and to meet for every e € N the requirement
P.: W, infinite = W, NB # 0.

Given an enumeration {A,},eny of A, we enumerate B in stages. The requirement
that B <t A is met as follows. We say that a number z is permitted by A at stage
s+ 1i (Jy < z)ly € Asp1 — A,]. We enumerate z into B at stage s + 1 only if z is
permitted by A at stage s + 1. This guarantees that B <rp A for if s is a stage such
that (Vy < z)ly€ 4, «~+y€ A),thenz € B, & z € B.

CONSTRUCTION.

Stage s +1
For every e < s,1f W, , N B, = §, and (3z)[z € W, ,,z > 2e, and z is permitted by
A at s + 1], enumerate the least such z in B.

By permitting, B <t A. The clause z > 2e guarantees that B is coinfinite. To see
that P, is satisfied, suppose that W, is infinite but that W, N B = §. We argue that A
is recursive, contrary to hypothesis. To determine if y € A, enumerate W, until a stage
s and integer = are discovered such that z > y, z > 2e, and z € W, ,. Since P, is not
satisfied, z is never enumerated in B. This implies that z is never permitted by A after
stage s. In particular, y€ Aoy € A;. u

We notice the following key features of P, which allows the above permitting argu-
ment to succeed.

(1) If W, is infinite, there are infinitely many potential witnesses for P.. (Any z € W,
such that z > 2e will do.) '

(2) The construction requires that only one witness for P, needs to be permitted only
once for P, to succeed.

(3) Witnesses, once discovered, do not disappear and are available at any later stage.
(In this case, if £ € W,,, then z € W, for all ¢ > s.)

Any set of positive requirements satisfying these three properties can be combined
with simple permitting in the manner of Theorem 1.1. Different notions of permitting
arise from positive requirements which do not have one or the other of the features
above. The two most important examples are high permitting and prompt permitting.-

The high permitting method of Martin [M] results from replacing (2) above by
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(2)nign The construction requires that cofinitely many of the witnesses for P, be per-
mitted each once.

As the name suggests, the method of permitting which results from (1), (2)nign, and (3)
can only be used with sets of high r. e. degree. Martin used it to show that maximal
r. e. sets exist in all high r. e. degrees.

The prompt permitting method of Maass, [MSS,AJSS] results from keeping (1) and
(2) but replacing (3) by

(3)prompt Witnesses, once discovered, need to be permitted immediately (promptly) if
they are to be used in satisfying P..

The method of permitting which results from (1), (2), and (3)prompt can only be
used with 1. e. sets of promptly simple degree. The class of promptly simple degrees is
a filter in the upper semilattice of all r. e. degrees which contains low degrees but not
all high degrees. Thus prompt permitting is up to degree a different notion than high
permitting or standard Yates permitting.

The notion of permitting that we study here arises from positive requirements that
satisfy (1) and (3) but in which we modify (2) to

(2)mp At least one witness  needs to be permitted f(z) times; f is some fixed recursive
function.

Note that (2)mp is a stronger requirement than
(2), At least one witness = needs to be permitted n times; n a fixed positive integer.

It is easily seen that (2), is no harder to guarantee than (2).

We study arguments which have positive requirements with the characteristics (1),
(2)mp, and (3) in a somewhat indirect manner. We first introduce a class of 1. e. sets,
the array nonrecursive sets.

The array nonrecursive sets are defined as follows. Recall that a sequence of finite sets
{F,}nen is called a strong arraey if there is a recursive function f such that F,, = Dy,
for every n € N where D, denotes the finite set with canonical index y.

Definition 1.2 A strong array {F, }.cn is a very strong erray (v. s. a.) if

(4) UnEN Fﬂ- = N:
(5) F.NF,=0ifn#m, and
(6) 0 < |Fu| < |Faga| for all n € N.

Definition 1.3 Anr. e. set A is array nonrecursive with respect to {F,}nen (F-a. n.1.)
if
(7) (Ve)(Fn)W.NF, = AN E,].

Definition 1.4 An r. e. set A is array nonrecursive (a. n. r.) if there is a v. s. a.
{F,}nen such that A is F-a. n. r.
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Definition 1.5 An r. e. degree a is array nonrecursive if there is an r. e. set A € a
such that A is array nonrecursive.

We note the following facts about these definitions. First, if A is a. n. r., then
A is nonrecursive. Second, F-a. n. r. sets exist for any v. s. a. {F},}.en, since 4 =
Ueen We N F is F-a. n. 1. Finally, (7) is equivalent to

(8) (Ve)(3 n)[W. N F, = ANF,).

The condition (7) translates to a notion of multiple permitting in roughly the follow-
ing way. Suppose that A is F-a. n. r. and that we are constructing an r. e. set B <1 4
using Yates permitting. If we enumerate an r. e. set V we are entitled to assume that
(An)[V N F, = AN F,]. Since we enumerate V, for this n equality implies that we can
force up to |Fy,| many integers all less than max(F,) to enter A, This gives several Yates
permissions for a large enough number. (If all that is assumed is that A is nonrecur-
stve, Yates permitting guarantees a single permission on a large enough number.) The
simplest example of such a multiple permitting argument is Theorem 2.5 below.

We show in Section 4 that such multiple permitting arguments arise naturally in
recursion theory by showing that three constructions from elsewhere in recursion theory
can be carried out precisely below those r. e. degrees which are array nonrecursive. These
theorems are as follows.

Theorem 1.6 Let f be a strictly increasing recursive function. Then an 7. e. degree a
is a. n. v. iff there is a degree b < a (not necessarily r. ¢.) such that some set B of
degree b is not f-r. e. (A Aj set is f-r. e. if it has a recursive approzimation {B,},en
as a A} set such that |{s|B,(z) # Beya(z)}| < f(z) for all z.)

The next theorem arises from a construction performed by Jockusch and Soare [JS,
Theorem 1} to show that every degree which contains a consistent extension of Peano
arithmetic bounds an incomparable pair of degrees. In that proof, sets By, Cy, By, C;
were constructed satisfying the conditions in part (c) of Theorem 1.7.

Theorem 1.7 For r.e. sets A, the following are equivalent:

(e) A has a. n. . degree,

(b) there are disjoint r.e. sets B and C each recursive in A such that BUC is coinfinite
and no set of degree 0' separates B and C,

(¢) there exist two disjoint pairs of r.e. sets By,Co and By, C; such that B; U C;
is coinfinite for ¢ = 0,1, each set B;,C; is recursive in A, and each set which
separates (Bo, Co) 18 Turing incomparable with each which separates (By,Cy).

The third major theorem concerns a class of r. e. theories called the Martin Pour-El
theories. To define this class let @ be the free countable, atomless Boolean algebra and
let {pn|n € N} be a set of generators for it. Then a theory T can be identified with a
filter of (). We call such a theory well-generaied if there are sets B and C such that
T is generated by a set of the form {p,|n € B} U {-p.|n € C}. Anr. e. theory T is
Martin-Pour-El if it is well-generated, essentially undecidable, and every r. e. theory
W 2 T is principal over T'. The existence of such theories is due to Martin and Pour-El
(MP, Theorem I]. They have been extensively studied by Downey [D1].
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' Theorem 1.8 An r. e. degree a i3 a. n. r. iff there i3 a theory T of degree a which s
Martin Pour-El

In sections 2 and 3 we initiate an investigation into the properties of a. n. r. sets and
degrees. Of particular interest because of Theorems 1.6, 1.7, and 1.8 is the classification
of a. n. r. degrees. Our principal results are as follows.

e The array nonrecursive degrees are closed upwards in R, the class of all r. e.
degrees (Corollary 2.8).

¢ There are low a. n. r. degrees (Theorem 2.1).
e Allr. e. degrees a such that a” > 0” are a. n. r. (Corollary 4.3).

' There exist promptly simple degrees which are not a. n. r. Thus, since promptly
simple degrees are noncappable and the non-a. n. r. degrees are closed upwards,
every nonzero 1. e. degree bounds a nonzero r. e. degree which is not a. n. r.

(Corollary 2.11).

¢ Every a. n. r. degree bounds a low a. n. r. degree (Corollary 3.8, due to Cameron

Smith).

¢ The r. e. weak-truth-table degrees containing no a. n. r. set form an ideal in the
upper-semilattice of r. e. wtt-degrees (Corollary 3.14).

Our notation is standard; a reference is Soare [S]. All sets and degrees are r. e. unless
otherwise noted. The principal exceptions to this convention are in Theorems 1.6 and

1.7.

2 Basic Existence Theorems

Given a very strong array {Fp}nen, the F-a. n. r. set A = Upey Wo N Fy is clearly
Turing-complete and, in fact, is creative. The next theorem shows that low F-a. n. r.
sets exist. It also clearly exhibits the construction of an a. n. r. set as a finite injury
priority argument.

Theorem 2.1 Let {F,}.en be a very strong array. Then there is an r. e. set A of low
degree such that A is F-a. n. 7.

Proof. To make A F-a. n. r., it suffices to meet for every e € N the requirement
R.: (In)[W.N F, = ANF,].

The requirements to make A of low degree are

Ne: (T s){eXd(e) ] = {e}i(e) |

Recall that the requirement N, is met by preserving the restraint function r(e,s) =
u(As, e,e,3) at all but finitely many stages s. Let ¢(e,s) = max{r(¢,s)li < e}. To
meet R,, we reserve the sets Fi. oy, Fie,1),. ... The construction assigns priority to the
requirements in the order Ny, Ry, N3, Ry, ..
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CONSTRUCTION.

Stage s+ 1

Requirement R, requires attention at stage s + 1 if there is ¢ € N such that
(9) min(F.») > g(e, s), and
(10) © (V5 S9)[Weorr N Fle,jy # As N Fiey].

Let e be least such that R, requires attention and let 7 be least such that (9) and (10)
hold. Enumerate all of W, ,4; N Fles) into A. This ends the construction.

Note that the construction ensures that A, N Fleqy © W e N Fieyy for every e, ¢, and
s, so that if R, receives attention at stage s + 1 and 7 is the least integer satisfying (9)
and (10), then W, .41 N Flesy = Asp1 N Fiegy. It is now easy to show by simultaneous
induction on e that

(a) N, is satisfied,
(b) lim, g(e, s) < oo,
(c) R, is satisfied, and

(d) R, receives attention only finitely often. m

A. Kuéera has pointed out that the following extension of Theorem 2.1 holds: For
any very strong array {F, }nen, there is a complete extension T of Peano arithmetic of
low degree such that there is an F-a. n. r. set A recursive in T

The next two results, Theorems 2.2 and 2.5, clarify the role of the very strong array
{F.}nen in the definition of array nonrecursive sets. In particular, Theorem 2.5 shows
that up to degree, the notion of array nonrecursveness is independent of the choice of
very strong array. It will also be used in the proof of many subsequent results.

Theorem 2.2 For every r. e. set A there is a very strong array {F,},en such that A
18 not F-¢. n. 1.

Proof. If A is recursive, then A is not F-a. n. r. for any F. If 4 is not recursive, let
R be an infinite recursive subset of A. Choose a v. s. a. {Fy}nen such that F, N R # 0
for every n € N. Let W = R. Then for every n € N, WN F, # AN F, witnessing that
Aisnot F-a.n.r. ®

The following definition and lemma will be used in the proof of Theorem 2.5 and
elsewhere.

Definition 2.3 Suppose that A is r. e. with a given enumeration {4, },eny and {F, }nen
is a strong array. A F-permits y at stage s + 1 if

(3z £ y)(Fr < max(F,))[z € A1 — A4
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Lemma 2.4 Suppose that A is r. e. with a given enumeration {A,}sen and {Fp}nen
13 a strong array. Suppose that f is a recursive funclion. Suppose that B is an r. e.
set with enumeration {B,}.en such that for every x, 2 € Byyy — B, only if A F-permits
f(z) at stage s+ 1. Then B <t A. In fact B <qu A.

Theorem 2.5 Suppose that {F,}neny and {E,}nen are very strong arrays, that A is
F-a. n. 1., and that b is an r. e. degree such that deg(A) < b. Then there ts B € b
such that B 13 E-a. n. .

Proof. Fix a set B € b. To ensure that B <t B, we will reserve the sets E 3,
i € N, for coding B. Namely, we will enumerate all of By in B ifand only if 7 € B.
The requirements R, to make B F-a. n. r. are similar to those of Theorem 2.1:

R.: (In)[W.NE,=BnNE,).

We will reserve the sets Eyei1,0), Fles1,1), -+ - for meeting R.. To aid in meeting R. we
shall also enumerate an r. e. set V, and since A is F-a. n. r., (8) guarantees that

(11) G n)V.nF, = AnF,).

For each e, let n(e) be the least integer n such that || > |Eq1,0]. For each
n 2> n(e) let g(e,n) be the greatest pair of the form {e + 1, ) such that

(12) |Fal > [Eglem-

Note that if e # f, then g(e,n) # g(f,m) for all n,m. However it is possible that

g(e,n) = g{e,m) for some n # m. However, for every z, the set {n | g(e,n) = z} is

finite (uniformly in z).
We will replace the requirement R, with the following requirements R.,, for n >
n(e):
Ren: VenNE,=ANE, = W.N Eg(em) =BnN Eg(e,n)-

To ensure that action taken for R., does not interfere with the requirement to make -

B <1 B we will allow z € Eg(emn) to enter B at stage s 4+ 1 only if A F-permits n at
stage s + 1. By Lemma 2.4, we have that U, ;eny Ee41,5 N B <1 A <t B. -

Before giving the construction, which is quite simple, we describe the strategy for
one requirement. This strategy is the same one that is used throughout the paper when
it is necessary to construct a set recursive in some given a. n, r, set 4. It essentially
captures the notion of multiple permitting allowed by an a. n. r. set.

Fix e and n 2 n(e). R, is met if either V.NF, # ANF, or W.NEy(.n) = BﬂEg(m)
We view our attempts to establish this disjunction as a two-state finite automaton.

At any stage s of the construction, we say that requirement R., is in state Sy if -

We,s N Ey(en) = Bs N Ey(e,n) and in state S; otherwise. The construction is intended fo
ensure that if R., is in state Sy at stage s then V., N F, # A, N F,, as indicated in
Figure 1.

Suppose that stage s + 1 is such that R, , is in state S; at stage s but not at stage

s+ 1. Since we enumerate B, this is because an element of E (. , is enumerated in W,
at stage s +1 (and thus there are at most |Ey( )| such stages). To guarantee that the
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S S
@y : W, changes on Ey(n

We,s n Eg(e,ﬁ) = -Bs n Eg(e,n) 1-'/.‘3,‘9 N Fn :)'-L' As n Fn
ay A changes on F,

Figure 1: State diagram of the construction

condition of state S; holds at stage s+ 1, we enumerate, if necessary, one element of F,
into V, to cause V, .41 N F, # 4,41 N F,. This constitutes the action of arrow a;. Since
this is the only action which causes us to enumerate elements of F,, into V, and since
|Fo] > |Egiem|, it is always possible to perform this action at such a stage s + 1.

We also need to guarantee that while R, , remains in state S,, the condition V,, N
F, # A, N F, continues to hold. Thus, let s be a stage such that Ves NE, £ A;NE,
but Ve s41 NF, = A,;p1 N F,. It must be the case that an element of F,, is enumerated in
A at stage s + 1. This is just the condition that A F-permits n at stage s + 1. Thus at
stage s + 1 we may enumerate all of W, ,41 N Ey(.n) into B, thereby guaranteeing that
R. is in state 5; at stage s + 1. This constitutes the action of arrow a;. Note that
to perform such action, we must require that B, N Bylem) © We,s N Eg(e,qy for all e,n,s.
This is guaranteed by the construction described above and by the fact that Eyem) 18
disjoint from Egy; ) if € # f. Because of this stipulation, there are no conflicts between
the various requirements. We now give the formal details of the construction.

CONSTRUCTION.

Stage s + 1

Step 1. (Coding.) If 1 € R.,H — B,, enumerate all of E,q into B.

Step 2. (Arrow a,.) For every e and n > n(e), if A F-permits n, enumerate all of
We,,+1 n Eg(e,n) into B.

Step 3. (Arrow a;.) For every e and n > n(e) if

(13) B, N Ey(en) = We,s N Eyemy and B, N Egem) #£ Wes1 N Ey(em)

then enumerate one element of F, — V., into V;, if necessary, to cause A, N F, #
Ve,s+1 N E,. There is such an element since |F,| > |Eg(e,n)l and an element of F,, is
enumerated in V; only if (13) holds; i. e., if arrow a, is traversed.

Lemma 2.6 B =g B.

Proof. B <t B since B restricted to UienEyo,) is recursive in B by step 1 of the
construction and B restricted to UeieN Elet1,) 1s recursive in A by step 2 and Lemma
2.4 (applied to the array {F,}.cn and the function f where f(z) is the greatest n such
that ¢ € Eg(e,n))- O

Lemma 2.7 For each e € N, R, is satisfied.
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Proof. It is enough to show that for every e and n > n(e), that R, is satisfied.
At every stage of the construction, R, is either in state S or state S;. Thus, since
R.,» changes state finitely often, R, is in state Si at cofinitely many stages of the
construction or R, is in state 5; at cofinitely many stages of the construction. If the
former holds, W, N Eyen) = B N Eye,n). If the latter holds V. N F,, # AN F, since the
¢onstruction guarantees that if R, , is in state S; at stage s, then V, ,NF, # A,NF,. m

The following are easy corollaries of Theorem 2.5.

Corollary 2.8 Suppose that a 18 a. n. . and thetb > a. Then b i3 ¢. n. r. That 13,
the a. n. r. degrees form o filter in the upper semilattice of the r. e. degrees. Since the
Turing reductions employed in Theorem 2.5 are weak-truth-table reductions, this result
holds also for the weak-truth-table degrees.

Corollary 2.9 Suppose that {F,}nen i3 a very strong array and that A is a. n. v. Then
there i3 a set B of the same weak-truth-table degree as A such that B 13 F-a. n. r. That
i3, up to (weak-truth-table) degree, the notion of array nonrecursiveness i3 independent
of array.

We turn now to existence theorems for array recursive sets and degrees; a set (degree)
is array recursive just in case it is not array nonrecursive. The following result shows that
our notion of multiple permitting is strictly stronger than ordinary (Yates) permitting.

Theorem 2.10 There is an 7. e. degree a > O such that a is array recursive.

Proof. Fix a very strong array {F,}nen. By Corollary 2.9, it suffices to prove that
no set of degree a is F-a. n. r. (We will actually prove that no set of degree less than or
equal to that of a is F-a. n. r., which is equivalent by Corollary 2.9.)

Let (®.,B.)cen be an effective listing of all pairs (@, B) of recursive functionals
® and r. e. sets B. We will enumerate r. e. sets V., e € N, satisfying the following
requirement for every ¢ € N and for every n > e:

R.,: @.A4)=B.=V.nF,+# B.NF,

Requirements R., for n > e suffice to make B not F-a. n. r. by (8). To make A
nonrecursive we have for every e € N the requirement

P, AL W,.

We use the following priority ordering of the requirements: Roi, Po, Roz, Ri2, P1, Roa,
Ris, Rys, Py, .... The key fact about this priority ordering is that R., can only be
injured by P; for : < n — 2 or at most n — 1 times.

The strategy for meeting R, , is as follows. Wait until {(e,s) > max(F,) (where
I(e, 8) measures the length of agreement between the computation &, ,(A,) and the set
Be.). Cause V, 11N F, to be unequal to B, NF, (by enumerating at most one element
of F, into V). Restrain A on the use of the computations involved in establishing that
length of agreement. Thus, if R, , is not injured by a higher priority requirement, either
V.NF, #£ B.NF, or ®.(A) # B, and, in either case, R, imposes only a fixed finite
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restraint on A for the rest of the construction. Since R, , can be injured at most n — 1
times, at most n — 1 attempts of the above form need be made and this can be done
since |F,| > n. Note that the requirements R, , are purely negative requirements on
A (although positive on V,) and so do not conflict with each other. We omit further.
details of the construction and its verification. m

The next two corollaries follow By making the obvious modifications to the con-
struction suggested in the proof above. Alternatively, the second follows from the first,

Corollary 2.8, and the fact that no promptly simple degree is half of a minimal pair
[MSS, Theorem 1.11].

Corollary 2.11 There is a promptly simple degreec a which is array recursive.

Corollary 2.12 For every r. e. degree b > 0, there is an 1. e. degree a such that
0 < a <b end a is array recursive.

To state the final theorem of this section, we need the following definition.

Definition 2.13 Anr. e. set is semirecursive if there is a recursive function f : N2 - N
such that '

(14) f(z,y) € {z,y}
(15) flz,y) e A= {2,y} C A

Thus, the function f of Definition 2.13 chooses of £ and y the one “least likely” to be
an element of A.

Theorem 2.14 If r. e. set A is semirecursive, then A is not a. n. 7.

Proof. Let {F,}.en be a very strong array and let A be semirecursive with f
the recursive function satisfying (14) and (15). We enumerate V so that if |F,| > 2,
VNF, # ANF,. To do this, for each n such that |F,| > 2, we wait for a stage such that
for some pair {z,,y,} C F,, we have that z, # y, and f(z,,y,) converges. We then
enumerate f(z,,y,) and no other element of F, into V. Thus VN F, = {f(s,y.)} but
if f(2n,yn) €A, ANF, D {2n,n} #VNF,. n

Corollary 2.15 Ewvery r. e. truth-table degree contains an array recursive set.

Proof. This is immediate from Theorem 2.14 since every r. e. truth-table degrée
contains a semirecursive r. e. set [J1, Corollary 3.7(ii)]. m
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3 Properties of a. n. r, sets and degrees

The first two theorems in this section locate the array nonrecursive sets in the hierarchy
of simplicity properties.

Theorem 3.1 If A i3 a. n. 7., then

(e) A is not dense simple, and

(b) A 1is not strongly hypersimple.

Proof. (a). An 1. e. set A is dense simple if pz, the principal function of the com-
plement of A, dominates every recursive function. We use an alternate characterization
of dense simplicity due to Robinson [R, Theorem 3]. Namely, A is dense simple if and
only if for every strong array {F, }nen of disjoint sets,

(16) (3m)(¥n > m)]|F, N A < n).

Now suppose that 4 is F-a. n. r. Using W, = 0 and the characterization of F-a. n. r. in
(8), we have

(17) (I n)ANF, =)
But for any such n, |F,, N A} > n, and thus by (16) A is not dense simple. O

(b). A is strongly hypersimple if for every weak array, {W(}nen, of disjoint sets
such that Upeny Wyin) = N there is an n such that Wy, C A. Now suppose again that
A is F-a. n. r. Define Wy, for all n € N as follows. Given F,,, enumerate the least
element of Fy,, in Wy (), the next least in Wyy), and so forth. Obviously because {F}, }nen
is a very strong array, U,ey Wim) = N and the sets Wy(,), n € N, are disjoint. By
(17), Wi(ny N A 5 @ for every n. (In fact, Wy(m) N A is infinite). Thus A is not strongly
hypersimple. m

Corollary 3.2 No arrey nonrecursive set is mazimal, hyperhypersimple, or r-mazimel.

The following theorem shows that Theorem 3.1 is the best possible as far as the
standard list of simplicity properties is concerned.

Theorem 3.3 There is an r. e. set A such that A is array nonrecursive and finitely
strongly hypersimple.

Proof. Fix a v. s. a. {F.}nen. As usual, the requirements to make A F-a. n. r. are
R. (En)[We NE,=ANF,.
The requirements to make A finitely strongly hypersimple are.

Q.: the sets Wiey(n),n € N are not disjoint or
Unenw Wigyn) # IV or
(3n)[Wiep(n) is infinite] or
En)[Wieym) S Al-
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For ease of notation, we will write V for Wi and V7, for Wiey,(m),s (where we
understand that Vg, = @ if {e}.(n) does not converge). The strategy for meeting Q.
while respecting Ro, Ra, ...Re_1 is as follows. Wait for a stage s so that Unen Vi,
contains all the elements of each set F, assigned to any requirement R;, i < e, If such-
a stage does not exist then U,exy Wieym) # N and Q. is satisfied. At stage s, choose n
such that V7, does not contain any element of any such F;,. Assign V¢ to Q.. We then
attempt to meet Qs by enumerating all of V)¢ into A. However this threatens to interfere
with requirements Ry, ¢ > e, as this V,* may contain elements from almost every F.,.
To avoid this conflict, we enumerate an element of ¥ into A only if we discover a new
F,,, which we can certify is disjoint from V¢ (by virtue of being entirely contained in the
union of other sets V? for ¢ # n). Thusif V! N A4 is infinite the requirement is met since
V. is infinite but also we are assured of having infinitely many sets F,, not interfered
with by Q. and so available for use by requirements R;, ¢ > e.

The details of combining the strategies for various Q. are straightforward and are
omitted. m

The next four theorems and their corollaries concern degree-theoretic and set-theoretic
splitting properties of array nonrecursive sets,

Theorem 3.4 For every array nonrecursive set A there are disjoint array nonrecursive
sets Ag and A; such that A = AgU A;.

Proof. Suppose that A is array nonrecursive with respect to the very strong array
{Fr}nen. For each e € N and ¢ € {0,1} we have the requirement

R.;: (In}[W.NF, = A;NEF,].

To meet R.; we will enumerate a certain set V,; and use the fact that

(18) (3 n)[Ves N F, = ANF,].

During the course of the construction, we will reserve certain n for R, ;. Each n may
be reserved for at most one requirement R.; at any one stage, but the reservation
may be cancelled at a later stage for the purpose of reserving n for a requirement of
higher priority. (The intention of these reservations is that there will be some n which is
reserved for R, ; and for which W.NF,, = ANF,.) The priority order of the requirements
R.: is in order of increasing {e,z). '

CONSTRUCTION.

Stage s + 1

Step 1. For each z € A,;1 — A, let n be the integer such that x € F,. If n is
reserved for the requirement R.;, then enumerate z in A4;. If n is not reserved for any
requirement, enumerate x in Aj.

Step 2. For each z and e, if 2 € W, ;41 — W,,, # € F,,, and n is reserved for a
requirement R.;, then enumerate z in V,;.
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Step 3. R.; requires atiention at stage s + 1 if

(19) (Vn)[n is reserved for R,; = W, , N F, # A4;, N F,], and
(20) (In)[A, N F, = 0 and n is not reserved for any R;; such that {f,7) < (e, i}]

If such a pair e, exists, choose the pair such that (e,:) is least and let » be the least
integer satisfying (20) for e,i. Perform the following actions for these fixed e,i,n.
Reserve n for R, ;. Cancel any other reservation of n. Enumerate all of W, ,4; N F, into
Ve,i. This ends the construction.

Lemma 3.5 If n is reserved for R.;, and that reservation is never cancelled, then
WenFn - I/e,ann ﬂ-nd AinFn =AnFﬂ_-

Proof. The first clause of the conclusion is by steps (2) and (3) of the construction.
To see that A; N F,, = AN F,, notice that at the stage that n is first reserved for R, ,
A NF, =A,NE, (=) by (20). Step (1) guarantees that this equality is maintained
for all later stages. 0O

Lemma 3.6 If V.; N F, # 8, then n is reserved for R.; or some requirement of higher
priority at cofinitely many stages.

Lemma 3.7 Each requirement R, ; receives atiention only finitely often and is satisfied.

Proof. Given e, 1, let sy be such that if {f, j} < (e, 1), R;; does not receive attention
after so. By (18), there are infinitely many n such that V,; N F, = ANF,. Let n be
any such n which is not reserved for Ry ; for any (f,j) < (e,:). There are two cases.

Case (i): n is reserved for R.; at some stage of the construction. Then by Lemma
3.3, W.NF, =V,;NF, = ANF, = 4;NF,. Thus R, is satisfied. Let s, be a stage such
that W, ,, N F, = W, N F, and A; ,NF, = A; N F,. Then by (19), R.; never receives
attention after stage s;.

Case (ii): n is never reserved for R.;. Then by Lemma 3.6, V,; N F,, = §. Thus
ANF, =§. Thus (20) applies to n at cofinitely many stages of the construction. Since
n is never reserved for R, ;, it must be that R, ; receives attention only finitely often and
that at cofinitely many stages of the construction (19) fails. This implies the existence
of m such that W, N F,, = A; N F,, and hence that the requirement is satisfied. m

It is clear that the requirements to make each set Ay and A; of low r. e. degree can be
combined with the construction of Theorem 3.4. Thus we have the following corollary
which was first proved (directly) by Cameron Smith.

Corollary 3.8 For every array nonrecursive degree a there 15 an array nonrecursive
degree b < a such that b is low.

It is not true that if A is a. n. r. and A is the disjoint union of sets Ay and A;, then
at least one of A or A; is anr. However this result is true up to degree. In fact we have
the stronger result of the next theorem.
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Theorem 3.9 Suppose that A <y Ao ® Ay and that A 13 array nonrecursive. Then
there are r. e. sets By and By such thaet B; < A; and one of By or By is array
noONTECUTIIVE.

Proof. Let {Fo}nen and {E.}nen be very strong arrays such that |E,| > 2|F; |
for every : and n > i. We first show that we may assume that A is F-a. n. r. and
A = ApU A;. To see this we first notice that since A is array non-recursive, the wtt-
degree of A contains an array-nonrecursive set A. This follows from Corollary 2.9. We
next rely on the following lemma of Lachlan [L].

Lemma 3.10 Suppose that B, By, and By are r. e. sets such that B <.y Bo & Bj.
Then there are 1. e. sets Cy and C) such that Cy <,y By, C1 S By, and B = CoUC,.

Applying the lemma with B = A gives sets Ay and A; such that 4 = A4, U 4, and

A; <wit A;- The sets B; which result from the proof of the theorem satisfy B; <y A;
and thus B; <, A;. We shall also assume that A4, 4y, and A, are enumerated so that

(21) As = AO,s U Al,s-
We will meet the following requirements for every e, j € N:

R.;: (@n)W.NF,=B,NF,or W;NF, =B NF,]L

(These requirements suffice to make one of By or By F-a. n. r. since if e is such that
there is no n with W, N F,, = By N F,, then the satisfaction of R, ; for all j € N implies
that B; is F-a. n. r.) As in Theorem 2.5, we will reserve the sets Fuoy, Frigy, ... for
requirement R.; where ¢ = (e, j). We will use the fact that A is a. n. r. by enumerating
r. e. sets V; and assuming that

(G n)ViNE, = AN E,).

To insure that B; <u A; we will use permitting as follows. We allow y € Fliny to enter
By (B;) at stage s + 1 only Ay (A;) E-permits n at stage s + 1.

Fix e and j and let ¢ = (e,7). Requirement R, ; is split into the following subre-
quirements for all n > {e, 7).

Re,j,n : VinE,=ANE, = [We N .F(;,n) = ByN Ip(;'n> or T/VJ., N F(,"n) =B N F(i,n)].

We describe the construction for R. ;, as a two-state automaton as in Theorem 2.5.
As in Theorem 2.5, we say that R, ;, is in state S) at stage s if the condition for state
51 in Figure 2 holds. Otherwise R, is in state S; at stage s and the construction
guarantees that if this happens, the condition in the diagram for state S, holds. In order
to accomplish this, the action corresponding to arrow @, is the same as that of Theorem
2.5. That is, if R, ;, is in state S; at stage s but not at stage s + 1, we enumerate
an element of E, into V; if necessary to cause the condition of state S; to hold. Since
this happens only if an element of Fii ny is enumerated in W, or W; at stage s + 1, this
action need only be performed at most 2|F;»y| many times. Since |E,| > 2|Fj | if
n > 1, we will be able to perform this action. Similarly, if s is such that the condition
of state S holds at s but fails at s + 1, we must be able to ensure that the condition
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Sy S,
Wg,, N .F(,' n) = By, N F'(:' ) ay: Weor W; cha,nges -

or VisNE, #A,NE,
Wes N Flimy = B1s N Fupy ) 92 A changes on E,

Figure 2: State diagram of the construction.

of state Sy holds at stage s + 1. For such an s, it must be the case that an element of

E,, is enumerated into A at stage s + 1, and hence by (21), that element is enumerated

in either Ap or A; at stage s + 1. By our condition on permitting, this allows us to

enumerate elements of Fi;,) into either By or B, at stage s 4 1, thereby guaranteeing"
that R. ;. is in state ) at stage s + 1.

CONSTRUCTION.

Stage s+ 1
Step 1. (Arrow ay.) For every triple e, 7, n such that {e,j) < n, if W, N Fieiny #
Bo,s N Fie,i)ny and Ao E-permits n at stage s + 1, enumerate all of W ,41 N Fe, )0y into
By and similarly for W;, A, and B, in place of W, Ag and B,.
Step 2. (Arrow a,.) For each triple e, j, n, if
(8) Weat1 N Fiie,ipny # Bost1 N Fge,iyny, a0d
(b) Wiss1 N Fiejyny # Brotr N Fie,smyy but
(€) Wes N Fie,iymy = Bos N Fteiyny O Wis N Ftejymy = Br,s N Fieihnys

then enumerate one element of E, — Vje,j),s,if necessary, into Ve 5y so that Vie jy .41 N By #
Asp1NE,. (Such an element will exist by the construction.) This ends the construction.

The relevant lemmas, parallel in statement and proof (which is omitted), to those
of Theorem 2.5 are

Lemma 3.11 Bo Swtt Ao,‘ Bl Swtt. A1.

Lemma 3.12 For every e, j, R, ; is satisfied. m

The following cdrollary follows directly from the Theorem and Corollary 2.8.

. Corollary 3.13 Suppose that A <yu Ao ® A; end that A i3 array nonrecursive. Then

the weak-truth-table degree of either Ag or A; contains an array nonrecursive set.
An immediate consequence of the preceding corollary is the following.

Corollary 3.14 The array recursive wit-degrees form an ideal in the uppersemilaitice
of r. e. wit-degrees. '
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