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1. Introduction

A set is called n-generic if it is Cohen generic for n-quantifier arithmetic. A (Turing)
degree iz n-generic if it contains an n-generic set. Our interest in this paper is the
relationship between #n-generic (indeed i-generic) degrees and minimal degrees, i.e.
degrees which are non-recursive and which bound no degrees intermediate between
them and the recursive degree. It is known that n-generic degrees and minimal
degrees have a complex relationship since Cohen foreing and Sacks forcing are
mutually incompatible. The goal of this paper is to show.

THeorEM A. There is a minimal degree a < 0’ recursive in no 1-generic degree,

Theorem A concludes a sequence of results. Jockusch[7] showed that for n > 2 no
n-generic degree bounds a minimal degree. In Chong and Jockusch[3] it is
established that if 0 <a <b < 0" and b is 1-generic then a is not minimal (indeed
bounds a 1-generic degree), and Haught[6] has improved this to show that if b < 0’
is 1-generic then a is 1-generic also. Finally it is shown in [1] that there is, however,
a minimal degree a < 0" recursive in a 1-generic degree below 0”. This left open the
question whether every minimal degree below 0 is recursive in a 1-generic degree.
This is answered by Theorem A.

The main ingredient of the proof of Theorem A is a slight generalization of the
notion of a X, dense sel of strings introduced in [1] which is defined there as follows.
If @ is recursive in ', then by the limit lemma there is a recursive set of strings
{o}new such that Qx) =lim, o, (2) for all 2. Let X = {¢,},., be a recursive
sequence converging to @ and closed under initial segments. Then an r.e. subsequence
Y = X is Z,-dense if no initial segment of @ belongs to ¥, and if for all infinite r.e.
Z < X, there is a string o€ £ which extends one in Y.

For our purposes we need the following generalization of this notion:

Definition. Let B be any set and P be an r.e. set of strings. We say that P is
I, dense for B if the following conditions are satisfied:

(1) o P implies that o is not an initial segment of B;

{2) for any r.e. set of strings @, if INQ)) = {o| o < 7 for some 7@} (the downward
closure of ) contains arbitrarily long initial segments of B, then

(FreQ)@oeP)[r = a].
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Observe that our definition of £, density here is stronger than that given in [1]. For
AJ sets the two definitions turn out to be equivalent, since the existence of a Z, dense
set for one recursive approximation to a AJ set automatically implies its existence for
every other recursive approximation, a fact which follows from the main result of
(1.

In §2 we shall first prove

Lemma B. If B has a I, dense sel of strings, then B is not recursive an any 1-generic
set.

This is mainly given for the sake of completeness, since the proof is essentially the
same as in Chong{2]. In [1] it is shown that if 4 has no X, dense set of strings and
A <5 ¢ then A is recursive in a 1-generic set, and furthermore there exist sets of
minimal degree below ¢J’ with no X, dense set of strings.

Thus the property of having a %, dense set of strings is degree-theoretically
invariant for degrees below 0’. {The first author has recently shown that this
property holds for all degrees.) We feel that this (and similar) notions promise further
applications since they reduce the global property of being recursive in 1-generic sets
to & local one of having a certain “simple’ set of strings. Furthermore the notion of
L, density is useful in « recursion theory where for example in [2] it is exploited to
establish that no minimal degree below 0" is recursive in a f-generic degree for
ordinals such as NRZ,

In view of Lemma B, Theorem A follows once we establish

Turorem C. There is @ set M of minimal degree below &' with a 5, dense sef of
strings.

Our terminology and notation are fairly standard. The reader is assumed to be
familiar with the usual tree constructions of minimal degrees (Shoenfield[13],
Soare[14], Lerman [8], Epstein[4, 5]). Sets of natural numbers are identified with
their characteristic functions, and the language of strings {elements of 2<%} is used
throughout.

2. Proofs
We first establish Lemma B.

Lemma B. If M has a T, dense set of strings P, then M is recursive in no I-generic
seb.

Progf. We follow {2}, Let  be a 1-generic set with () = M, and let M, P satisfy
the hypothesis of the lemma. Let

R = {o| ®{r) extends some string in P}.

Then Risr.e. and contaius no initial segment of @, since P contains no initial segment
of M. Thus, as G is 1-generic, there is an initial segment 7 of & such that for all ¢
in K, o does not extend 7. This follows from Posner’s[10] characterization of 1-
genericity (see [7], lemma 2-7). It follows from the definition of R that no extension
of 7 is mapped by @ to a string extending one in P. Now let

@ = {o|c < O(y) for some v extending 7}.
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Then Q is r.e., and D(Q) = @ contains arbitrarily long initial segments of M. As P is
%, dense, there are strings 0,0, with ¢, €@ and o, &P such that ¢, = ¢,. Now as
o, €Q, we have o, < ®(y) for some y extending 7. Therefore o, < ®(y) for some y
extending 7. As 7,€P and O(y) = o,, we see that ye I by definition. But this is
impossible since y = 7.

We now return to the proof of Theorem C, namely the construction of a set M of
minimal degree below @J° with & £, densc set of strings P. We shall simultaneously
build M = lim, M, and P = U, P, by a full approximation method along the lines of,
for example, Epstein[4,5]. We shall construct nested sequences of recursive trees
7,27 ,2... 27, for each stage s. Bach node o with {2{c) € s has an e-state
o€ {0, 1}5* for certain ¢ < IA(o}. In this case « is a string of length e+ 1.

The following requirements are to be satisfied:

N_,: g &P implies that ¢ is not an initial segment of M;

N,: ®,(M) total implies ((®,(M) =, M) v (@ (M) =, &)

R,: If D(V,) contains arbitrarily long initial segments of M, then ¢ <7 for some
geP and TeV,. '

Here V, denotes the eth r.e. collection of strings in 2% under some standard
enumeration. The reader should note that the R, requirements will automatically
make M non-recursive. To see this, supposc otherwise. Let W, be r.e. with W, =M.
Let ¥, = V,, be the recursive collection of strings consisting of all initial segments of
W.. That is, V, = {r]7 < W, = M}. Note that ¥, is recursive as W, is recursive. Now, as
R, is met, for some 7€V, and some o <7 in P, we have o <M. But N_, says that
o 4 M, contradicting the definition of V.

A string ¢ may or may not be forbidden. Once o is forbidden at stage s, we ensure
that ¢ is never chosen to be an initial segment of M, for all t > s. Only forbidden
strings are put in 2. This ensures that the requirement N_, is met, since, once o is
forbidden, all extensions of ¢ are forbidden as well. Also we adopt the following
Sforbiddenness condition : if o x 0 and o * 1 are forbidden, then so is . Similarly if & and
7 are forbidden and on T, | (for some ¢, s} with 7}, (5 *0) = cand 7, (9 1) =7, then
we forbid T, ,(#) as well. One ramification of this condition will be that if o is on
T, , and o is non-forbidden, then there will be at least one non-forbidden path
through 7', ,. (In fact, the construction will ensure that there is 2 non-forbidden full
subtree of T, ,, and so many non-forbidden paths.) :

As usual, we shall satisfy the condition N, by building, at each stage s, a collection
of recursive trees 7} ,2...27,, ‘fully approximating’ a minimal degree con-
struction by maximizing the appropriate e-states. There are two basic problems in
the attempt to implement the forbidding idea in the presence of the requirements 2,
Both of these problems stem from the fact that the requirement &, tends to kill off
vast portions of the trees 7. This means that we lose tho complete freedom we usually
have to argue (in the standard construction) that if we see an e-splitting, then we
automatically take it.

The first problem is that we might kill off far too much of the tree making M
recursive. Perhaps 3 is the unique non-forbidden path on some 7). In order to carry
out our strategy for meeting R, we must allow many possible choices for M. Thus,
to make sure that &, is met, we make sure that there are certain non-forbidden cones
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of strings available for R,, should it desire them. The basic problem is that when
R, forbids some string o this is an irrevocable decision. Now it is not difficult to make
sure that our approximation M, is not forbidden at any stage (by, roughly speaking,
defining M, first, before the forbidding procedure, never forbidding M, and never
cutting off all paths on 7} , by the reshaping of the trees due to the ‘meximizing e-
state’ machinery). There is a fiming ¢lement involved in the definition of the high e-
state o « 1. This timing element means, roughly, e-splitting before forbidding. That is,
once a string is forbidden we no longer consider it as & possible e-split (if it is not
already an e-split). The principal conflict that ocours is that we might make all
strings except M, forbidden, making M recursive.

Thus for the sake of R, we shall have a number n(e, s) such that lim n{e, s} exists,
and such that, once we see a string 7€ ¥, , with 7 ‘appearing like” M at stage s, and
T, (o +0) <7 for some o with Ih{c) = n{e,s) (of course we must argue that this
happens if D{V,) contains arbitrarily long initial segments of M), we shall e-abandon
7 in favour of some new M, extending 7} (o« 1}. This will be permissible sinee we
shall argue that all extensions of T, [(o*1) on 7, ; will be non-forbidden. The
extensions of 7, (o= 1) on T, ; give the "non-forbidden cone of strings set aside for
R,’. This cone is given by a I1, argument and in the limit depends both on e-states
and initialization by R, for j < e. If 7 is e-held (i.e. on T, and 7> T, (o * 1)), then
7 cannot be forbidden except by R, for k < e. If for example &, where k <ee, forbids
T, Jo+1}, we initialize the entire e-held cone (and n{e, s)). We argue that B, fork <e
act only finitely often (as does initialization by e-states) and so both lim n(e, 8) =
nle) exists and eventually the e-cones become stable (stringwise).

All of this serves no purpose unless we eventually meet R, by forbidding
something. Note that, should 7, (o i) = T,(o*i) for i = 0,1 and should we ensure
M > Tyo » 1), then we will meet R, if we forbid 7, (o #0) (since then T}, (o*0) <7
and 7eV, with T (0 «0)eP). In fact this works provided that we keep M not
extending T(c*0), although we have not explicitly incorporated this in the
construction.

However, the whole preblem is that we may not be able to forbid 7 immediately
we e-ahandon it, again due to timing difficulties. The point is that forbidden strings
canmnot be chosen as e-splits. Suppose that the final ‘well resided’ e-state is cc* 0 and
®,(M) is total. We aim to conclude that ®,(M) is recursive. In the usual argument we
reason as follows. Let 6 €7, with ¢ having e-state a » 0, and let: 5, be the stage where
M, > dforall s > 5. Then to compute ® (M ; z} we simply find any stage s > s, where
®, (M, 2)|. Now we know that, although perhaps M,| M, for some stage ¢ > s, it
must be that @, (M,;2) = &, (M,;2) if O, J{M,; 2), since otherwise we would use
M, and M, to e-split & on 7,  and hence & must have e-state a* 1.

In our construction we do not look at all strings for e-splits, but only at non-
forbidden ones. The difficulty is that perhaps @, (,; 2)} and that at stage ¢ > s,
again M,| M. But perhaps ®,(M,; z) converges very slowly, and @, ,(M,; z}t. Then
M, might now get forbidden if we are careless. Indeed, there may be a situation where
M, is e-abandoned and M, > T, (o *1), and some ¢ € T, ,(0) has e-state axC. The
point is that perhaps ©, (Mg 2)} + @, (M,;2) at stage f>t But now M, is
forbidden so we cannot use M and M, to e-split &.

Our solution is to squeeze @,. After all, we really do not need to do anything for N,
if ®,(M) is not total. Thus we put an e-delay in the construction. Roughly speaking,
in the situation outlined above, we shall declare M, as e-frozen and keep it e-frozen
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until a stage ¢ > s occurs where for all z and for all £ < 2, if @, (M, £)} then so too
does @, (M,; z)|. Strictly speaking this is not quite correct, in the sense that M, must
be available for the relevant e-gplitting and so must have the appropriate (e—1)-
state. Furthermore, in the actual construction 3, will be o-frozen for various é-states
o rather than simply e-frozen. Thus if 1 is on T, and e-frozen then t will blame some
node ¢ < 7. This will necessitate both v and & having the same e-state o % 0. That is,
this node ¢ will be the shortest one with e-state & » 0 for which, as above, we are
waiting for proof that @,(M) is total. Now we do not e-thaw (i.e. unfreeze) r until we
see 7 < M, 80 that for all z, if @, .(7; 2) then &, ,(7; 2){ and furthermore 7 has e-state
a*0. _

This strategy, in turn, creates problems with the satisfaction of the £, since
perhaps some e-abandoned 7 is never g-thawed. Our solution is the obvious one: we
start doing work on R, anew ‘higher up’ on the tree. The point is that whilst some
potential witness for R, is e-frozen it is a temporary witness to either the well-resided
{¢e—1)-state not being « or O,{M;z)t for some z. The next such version (if
permanent) higher up on the e-tree is similarly a witness either for @,(M) not being
total or for the final (e— 1)-state not heing & for some lower (e— l)-state 4. Thus
eventuaily some version of K, must get a string 7 that, at worst, becomes e-thawed,
If r blamed & (as above) and if when 7 was thawed, the e-state of & remained o %90,
then we can attack R, by forbidding r and win, since we know &,(}, ; 2} agrees with
D r; 2) = DM, 2}. The final confliet we muat resolve is that if the e-state of &
improves to «+1 then perhaps it uses splitfings (for example} 7,7, > 7, and we
cannot forbid = without killing both 7, and 7,. Now the driving force behind our
construction is to try to be very conservative as to when to forbid. In particular if
we forbid say 7, (o *0) in the situation above, we would obviously try not to forbid
T, s(o # 1), since we want M > T, (o*1). This would happen if ¢ =T, (o) and 7,,
7, > 7. The situation might be even worse. If ¢ =7, (&) =T, (&) and 7,7, > T
{so that v was 0-frozen} then if we were to forbid 7 we would kill all extensions of &
on all the 7}, This might injure K, since perhaps n(e,s) = 1 {in combination, R, for
j> 0 could ensure R, is never met).

QOur solution is simply to initialize {nor forbid 7) and reset n{e,t) back to nle, s).
Roughly speaking, since we argue that lim,n(e, s) = n(e) exists, we ensure that such
initialization occurs finitely often. For the cognoscenti, we are guaranteeing that
E, is met by the appropriate ‘a * l-strategy’. This waits for T, ;(o) to achieve the
high e-state & * 1 and then attacks R,. The aim, of course, is fo ensure the existence
of lim,n(e, 8) = n(e). The point is that =(e, s+ 1) > nle, s) at the stage s when we e-
abandoned 7. Of course the reset version of R, working above n(e, s+ 1) is essentially
guessing that either o +( is too high an e-state or ©,(M) is not total, Should we find
out at a stage £ > s that in fact the blamed & ¢-splits, then these versions of B, must
be wrong. It makes sense then to reset nle,t+1) = n(e, 8). What we have gained by
doing this is the knowledge that & has now the high e-state, and we need only worry
about ¢’ > ¢. Hence this all can happen only finitely often.

We now turn to the formal details of the argument. We say that E, is satisfied at
stage s if

(Ho,7)[ceP, & 1V, & o < 7).

We say that B, requires aftention at substage e of stage s+ 1 if R, is unsatisfied at
stage s and that there exists re V, , with 7 > T, (o * 0) where lh{c) = #(e, s+ 1) and
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T, o0y < Mle,8+ 1). (M(e,s+1) is an approximation to M, defined in the
construction ; similarly #(e, s+ 1) is an approximation to n(e, s).)

We use the convention that &V, , implies l(r) < s. In the construction to follow,
it is convenient to treat the 7] ,, forj < s, as being infinite trees, and M as an infinite
branch on 7 ,. This does no harm since we use the convention that above some level
(say 5) T}, , is simply the identity tree. This will be done automatically.

Construction at sfage s+1.
Substage ¢ € s+ 1.

Step 1 (improving e-states). In order of j and then in order of ce2<¥ (forj € s+1
and [h{c) = j) we shall define 7, ,,,(¢) and simultaneously the e-state of 7€T, 4, (i-e.
7 on T, ,,). For convenience set T.,,=2% for all ¢ and assign to all oe2<
the (—1)-state @ (the empty string). (The reader should note that changing
e-states in this step will ‘probably’ mean cancellation of attacks on R, for k= e¢in
Step 2.)

Let T, , = 2°“ and assign to all 7€T, the e-state 0¢. Set nie,0) = e+ 1 for all
e. We use nle, s) to define the relevant cone of e-held strings. If we denote this by
Cle, 8), it will be

‘ Ole,s) = {rl7e?, , & 7 2T, Jlo* 1)},

where Ih{c) = n{e, s) and 7, ,(c} is an initial segment of the left-most non-forbidden
path of T, .. Thus at stage 0, (e, 0} is simply {r|re0<¥ & 7 = 051}
For stages s 2 0, implement one of the following which pertains to o

Case 1. Th{c) < nle,s)+ 1. Let T, ;o () = Ty 55a{0) Such & =7, ,(¢) only has
j-states for j < e.

Case 2. Wh{g) = nle,s)+ 1. If h{o) = nle,8)+ 1, set T, ,41(0) = Terp, 41 (0) and define
ole,s+ 1) = ¢. In general o(e, s+ 1) is the node in the domain of T,_, ., corresponding
to 1, oi(0) (Le. ole,s+1) = T2 sia(Th sealo)). Let o denote the (e— 1)-state of
Tpoy smloe st 1)y on Ty 4.

We shall define the e-state of & =T, .. (o) together with T, ,..(0 %) and
o *ife, s+ 1) for i = 0, 1. In general, we assume that we are given g(e,3-+1) and the
(e— 1)-state of & on 7., .., We adopt the first case below which applies to o.

Case A. For all o < o, o'le, s+ 1) = o'(e, 8) (if defined), the e-state of T, ,,,(o) at
the end of stage s was e x 1 and T, ;. (0 *i(e,8)) = T,_, Ao wile,s)) for i=0,1. In
this case we claim that nothing has changed since stage s and furthermore since
T, o1(0) has already the high e-state ax1 (for {e—1)-state & via the e-splittings
7,1, sea(0 % (e, 8)), the obvious action is to change nothing. Thus, for <= 0,1, we set

cxile,s+1) =crile,s) and T, (o +i) =T, (o*i)
Hence T, ,,, remains locally unchanged and keeps the e-state ax1.
Case B. Case A does not apply, and there exist extensions 7,,7, of
Toy smfole s+ 1)) on Loy s such that
{3) both 7, and 7, have {¢—1)-state a;
(4) neither 7, nor 7, is forbidden;
(5} 7, is ‘left’ of 7, and the two strings e-split.
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In this case, define 7, (o %) = 7, for ¢ = 0,1 and define 7, ,, (o) to have e-state
ax* 1. Now define

o*0(e,s+1) =10 4a(r1) and oxlie,s+1) =17 .. ().

The reader should note the “time element’ involved in (4). To achieve the high e-
state we must see the relevant splitting before the string is forbidden. Of course, later
we might forbid such a string, but we never select such strings due to improving e-
states. This also means (cf. Case D) that once some y is forbidden its state is ‘fixed .
Observe also that R, for j > e cannot forbid such strings 7 at this stage since R,
becomes ‘completely initialized’. (In Lemma 1 below, we shall see that since both
7, and 7, are non-forbidden, they have a perfect non-forbidden subtree of extensions
on 7y, suq-) It will follow that we will choose these extensions when defining the rest
of T, ,., because either this case or Case D will apply. Thus in fact the full subtree of
T, 441 above T, .. (o) will be non-forbidden at the end of Step 1.)

On the other hand, if this case applies and there was some string p which was e-
frozen and blamed 7, ,,,(7), we declare this string e-thawed. If R; was attached to p
(i.e. &, is waiting for p to be unfrozen) we completely initialize R;. This means that if
¢ is the stage where R, became attached to p, we set #(j, s+ 1} = u(4, ) and cancel all
attacks on R; using strings p” with #4(p") > Ih(p) (i.e. begun after stage ¢). We also
initialize all B, for k > j but set n{k, s+ 1) = n(k, &)+ s+ 1.

Case €. Neither Case A nor Case B applies, for all ¢’ < o we have o'(e,s+1)
= (¢, 5), the (e—1)-state of 7, (o} at stage s on 7)., , was «, the e-state of T, ,, (")
was the same at stage s, and T, ., (o *i(e,8)) = T}, (o *i(e,¢)). Asin Case A, we

set )
g*ile,s+1) = o *i(e, )

and define T, sralo*i} =T, (o*1).
Now T, ,,,(0) has e-state a*0 by necessity.

Case D. No previous case applies, so that some higher priority activity has
disturbed o(e,s+1). Also since Case B does not apply we cannot choose non-
forbidden e-splitting extensions of T, () on 7}_, ...

First see if there exist distinet non-forbidden extensions 7,, 7, of 7, () on Ty 44q
(we claim that these exist if and only if T, .., (o) is non-forbidden; sece Lemma 1), If
there exist such strings choose 7, and 7, of highest (e— 1)-state and set

T, oalo*0) =7 and' 7, ,(oxl)=T,
where 7, is left of 7,. Now define
o*ife,s+1) = .0y 14(7is)

for i = 0, 1. Declare T, ,,,{(o) to have e-state & *0 (Case B does not apply).
11 there do not exist such extensions (this will mean that 7, ,,,(c) is forbidden), we
simply define

T, serlo*) =Ty clofe,s+1)%%) and o *ile,s+1) = oe, s+ 1) *i

fori=0,1. Let 7, ,,,(¢) have e-state a * 0 unless it already has e-state a 1, in which
case leave it as « # {. The timing element means that this makes sense.
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Step 2. Having defined T, .., by defining T, ,.,(¢) for all o with lA{o) <5 and
extending accordingly, we define M(e, s++ 1) to be the left-most non-forbidden non-k&-
abandoned (k < e) path on T, ,,,. We define (e, s+ 1) = n(e, s) unless it is alrcady
defined by Case B. We claim (see Lemma 1) that this M{e,s+1) exists and
furthermore M{e,8+1) > 7, ,,(0 *0) where lh{o) = 7i(e, s+ 1)}, unless Case B applies,
in which case lh{r) = n{e, s+ 1) as given in that case.

For gach p currently attached to E,, see if we can now win with p (these p’s are,
of course, potential witnesses for £,). We enumerate the least p into P winning &,
if for all ¥ = p (Ik{y) < s+1) and Ih(x) <e, if ¥ is @+ 0-frozen for the sake of (ie.
blaming) some & < p then there exists 4 < M(e, s+ 1) such that

{6) n€e7, ,;

(7) for all z < z(y, ¢,1), we have Qy(y; 2},

where £ was the stage at which v was a*0-frozen and blamed &, and lh{a) = j. (Of
course z{y,6,1) is the relevant ‘length’ of computation nomber for the v,j
computations at stage ¢, to be explicitly defined later when strings become frozen (see
equation (11}.)

Case 1. If such a p exists, we set M, = M (e, s+ 1) and declare all such y > p as
no longer a*0-frozen, The reader should note that since this will mean ¢ had a %-
state o * 0 for some 4 < ¢, and since (ase B did not apply to & in substage k, it must
be that the y and 9 computations (which both involve those z € z(y, ¢, 1), as we will
aee later) must be the same. Any frozen nade f§ > p is now no longer frozen but is
instead forbidden. {Forbidden nodes are never frozen, and conversely.) Now initialize
all the T}, .o, =T, ,4, for all k> ¢ and initialize their k-states in the obvious way.
Reset

alk, s+ 1) = nlk,s)+84-k+ L.

The reader should note that, if + =17, (0} < M, and k(o) = n(k,s+1), then
above 7, T, ,,, is the full subtree of 2<* and in particular 70 and 71 are non-
forbidden. Furthermore 7+ 0 < M, . This is because of the way we forbid strings and
the I4(F) < s convention for & ¥, . Of course such initialization includes cancellation
of all &+ 0-freezings for all & with [A(8) > e. We now proceed to Step 3.

Case 2. No such p exists, but R, requires attention via 7, (o *0) <7. Declare
T, o42{0#0) as e-abandoned. Define M,,, to be the left-most non-forbidden non-k-
abandoned (k <e) path through 7T, ,.,. Note that M, > 7, ., (c*1). Initialize
all £ > e. Reset ) -

wlk,s+1) = n(k,s)+s+E+1.

For each a with Ih{«) < e find the longest string y on T, ., and the correspondingly
shortest string ¢ such that
(8) both & and y have lh{x)-statc ax0;
(9) M, >,
(10} & €7, (o) and T, ;. (o *0) < v;
(11} there exists a longest £ = z(y, &, s+ 1) such that for § = lk(a),
{@) (Yz < 2){9; ,(¥;2));
() Be< &) {(¥r)[rel, o & 7T <y~ @ {7; 2)1];
(12) there is no ¥ such that § is o «0-frozen for the sake of ¢.
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Clause {b) says that y is the necessary use of the computation.
For all such &, y declare y as & * 0-frozen with y blaming ¢. Attach ¢ to £,. Adopt
the first subcase below which applies to the situation.

Subcase 1. There do not exist y, ¢, a such that ¥ > 1, (o) > ¢ and y is @*0-
frozen and blames &. In this case we forbid 7}, ,, (o * 0) by enumerating it into 2, and
go to Step 3. Of course we forbid all strings so demanded by the forbiddenness
condition before the construction.

Subcase 2. Subcase { does not apply. In this case we begin a new version of R,

higher up. Thus we redefine n{e, s+ 1) = Afe, s)+e+ s+ 1. Now go to Step 3.

Step 3 (at the completion of substage ¢ = s+1). Define M, to be the left-most
non-forbidden non-abandoned path on 77, ., (this may have already been done).
Now we attend to any freezing/unfreezing commitments in much the same way as
in Step 2,

Tor each e < s and & with lh(a) = e find the longest y and correspondingly shortest
¢ such that
(13) v and ¢ are both on T, ,, and have e-state a0,
(14) M, >y > d;
(15) there exists a longest £ = z(y, &, s+ 1) such that
(@) (Yz <) (P, oy ZN )
() (B < ) (V) [r€T, 4y, & 7 <y =D, (75 D).
(16) there is no 7€ 7] ,,, with e-state ¢ *0 such that & <7 <M, and O, (7} 2)}
forall z < £;
(17) there is no ¥ such that 7 is a *0-frozen for the sake of .

In this case, declare ¥ as @ * 0-frozen and blaming &.

Finally, we thaw strings in the following way. If there exist y,&,« such that
y is a*0-frozen for the sake of & and there exists y <M., with ¥ on
T, w1 7 having Ih{a)-state & 0, and such that

(Vz < z('}’: OA-!L)) {mlh(a).a(’?; Z)\L],

where ¢ was the stage where v was a+0-frozen, declare y as a*0-thawed (i.e. no
longer o * 0-frozen).
This completes our construction. |

Lievna 1.

(@) lim, T, , =T, exists slringwise.

(b) R, requires attention only finitely often, and is mel.

{¢) Hm,n(e, s} = n{e} exists.

(@Y Me, s) exists for all ¢ and s.

(&) M =lim M, L,

(f) For each string o and for all ¢ and s, if th(c) = n(e,s) and R, is not salisfied al
stage s, and if T, (o) < M(e,s), then T, , < M, and both T, (o %0) and T, (o *1) are
non-forbidden.

Proof. We verify all except (¢) by simultaneous induction. Note that (e) then
follows by the Limit Lemma. Now assume that the lemma holds for all j <e. Let
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5, be a stage so large that for all s > s, and for all § < e, (i) »(j, ) = n{J, 85} = n(4), and
(ii) B; does not receive attention after stage s,

By the way a requirement is initialized, we may assume that when B, (j<e
receives attention, if (o) = n(e, 5} and T, (07) < M{e, s), then T, o) < M, and both
T, slo*0) and 7, (o * 1) are non-forbidden. Furthermore all extensions of T, slo) on
7, . must be non-forbidden if we chose s, minimal.

If we suppose that £, does not receive attention, then the only way T, ) =+
T, s1(0) where Ih{g) == n(e, 5} is due to the action of the N, for j < e (i.e. improving
e-states). Now if some shortest node y < 7, (o) on T, , improves its j-state (§ < &) at
stage s+ 1, it can only be via Case B. Thus we pick non-forbidden extensions r,,7, of
y ondj .. This implies that we must apply either Case B or Case D to all extensions
of 7, and 7, on 7} ;. In cither case we always pick non-forbidden extensions which
must exist lest 7, be forbidden by the forbiddenness condition. This means that on
tree Ty, .4 (if j <e) the same considerations must apply, and hence, if some v <
1., s(o) changes its e-state, then 7', ,,(¢) is non-forbidden as arc all its extensions on
1, s+1- The usual e-state argument implies that 7), exists. We then sec that R, is met
in this casc since, once 7, (@), 7, (o *0) and 7% (o * L) get their highest e-state, then
Te o *0) = Ty{o+0) is o witness for the failure of D(V,) to contain arbitrarily long
initial segments of M (since M > TL{o * 0)).

If R, receives attention at least stage s, then R, is met via T, {F+0) {since
M > T, {o+0)and 7, (o%0)eP) unless 1., o % Q) is @ *0-frozen for some pair (y, &)
withy > T, (¢ %0) > ¢&. In this case we reset n(e, s + 1) to ensure that, once we define
M,y (which extends 7, (% 1) by construction), we have

T er(n*0) < Mgy, = Me, 5+ 1)

with both 7, ., (7+0} and T, (7 * 1) non-forbidden, where Ih{n) = n(e, s+ 1).

If R, fails to be met, then some y > 7, (o +0) is @ * 0-frozen for the sake of some
¢ < 7T, (o). Also, if R, fails, then either there is a permanently a*O-frozen such y
(with 1, (o« 0) = T,(g*0}) or some node p < T, (o) changes its j-state (for i<ge).
Note that if the Jatter occurs, say at stage ¢ > s+ 1, then Case B must hold and we
completely initialize R, and reset nie,?) to n(e,s) and begin ancw. Arguing in this
manner, assuming &, fails to be met, we can pretend s to be after a stage s, > s, when
14, 5,lo# 0) = T (o % 0), and now some ¥ > Ty{c * Q) is permanently o x0-frozen for the
sake of some ¢ < 7,(7+0). Now we have reset 7% ,,.(7) where lh(y) = n(e,s-+1). In a
similar fashion, eventually ¢ > T,(y*0) must be permanently §x0-frozen for the
sake of some p < 7,(»0). The whale point is that § + «. Once y is permanently
o 0-frozen for the sake of &, if any string extending 7%() is to be & x0-frozen, it can
only be because (since ¢ < 7%(c) < 7.(n)) it blames the shortest node below it with the
same [h(z)-state, which by assumption is ¢. But y is already a * 0-frozen for the sake
of &, and so would need to be unfrozen before ¥ would be frozen. Since § & @ we must
choose a new e-state. There can thus be only finitely many permanently frozen
attacks on R,. Thus eventually R, is met and so lim, »n(e, s) = n(e) exists and the usual
e-state argument gives lim, T, , = 7, stringwise. This proves Lemma. 1.

Lemma 2. If ® (M) is lolal and if o {the well resided e-state) is f%0 then © (M) is
recursive,

-
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Proof. Let o be the shortest string with o on 7, and o <3/, and such that ¢ has
e-state S%0. Let s, be a stage after which, for all § < e, X, does not receive attention
and all 7 <o do not act (i.e. have reached their final e-states and so on), and
furthermore M, > 1, (o) for all > g, We show how to compute & (M). Let z be
given with 2z > lh(¢). To compute &, (M ; z), find the least stage ¢, > 5, such that there
exists a (least) string y <M, on T, , with y > ¢ and such that (i} y has e-state
F*0, (i) @, (v; &) for all £< 2, and (iii) Ih(y) > z (we assume here without loss
of generality that for all z, the use function w gives w(®, (M ; z)) > ).

Now there are two possibilities: either there is a string 7 already # + G-frozen for the
sake of @, or there is not. In the former case, if 7 Is not a* 0-thawed, it can only be
that 2{y, ¢, 8) > z. In this case set ¥ = 5. Otherwise set ¥ = y. We claim that for all
stages ¢ > ,, it must be that if ¢, (M,; 2)) then

(be.s{ﬁfls; z) = (Dc.s,('}'; z) = q)e,s(?;; z).

The reader should note that the last equality follows, since if ®, (y; 2) * @, ,(7; 2)
then we could use v and ¥ = 7 as e-splitting extensions of & on 7, (with (e— 1)-states
M. Let s, > s, be the least stage where, if § %y, we have some r <M, on T, , with
7 having (¢—1)-state £ and ®, , (7; #)} for all £ < 2($,¢,5,). Then, by the choice of
s, and the e-state of ¢ being £*0, it must be that {by freezing} @,  (r; %) =
D, 5 (75 8)-

In a similar fashion whenever a stage s; occurs with 8, > s, and s, and M, not
extending y, it must be that sowme string § 2 y is or has been already frozen blaming
o. Obviously the same reasoning shows that eventually some ¢ with (e—1)-state 8
occurs as an initial segment of M, (s, > ;) unfreezing & (and therefore y). This in
turn means that (¥ ; z) = ®, , (v, z) as required.

Lemma 3. If @ (M) is lolal and if the well resided e-state is o= f*1, then
S My=,M.

Proof. Let sy, o be chosen as in Lemma 2, but with o == §* 1. Now use the standard
properties of e-splittings for extensions of g.

This completes the proof of Theorem C, and hence establishes the existence of a
minimal degree below €' not recursive in any l-generic degree.

We remark that all the usual full approximation variations will apply to this
construction. For example, each r.e. degree and each high A degree will bound a
minimal degree not recursive in a [-generic degree. We refer the reader to Lerman 8]
for details of such variations. There remain several interesting questions regarding
the relationship between Sacks forcing and Cohen forcing. Some of these are
mentioned in Chong[1]. By the results of Haught[6], there exist I-generic degrees
below 07 that are minimal covers (of 1-generic degrees). It would appear to be an
interesting question to decide what initial segment-type results are possible. In
particular, are there 1l-generic strong minimal covers? A related question is the
following: can a hyper-immune free minimal degree be recursive in a 1-generic
degree?

It seems conceivable that the ideas of this paper may be useful in answering this
question. Finally we remark that Jockusch has pointed out that another method of
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constructing & minimal degree not recursive in a l-generic degrce would be to
construct a set M of such minimal degree separating a recursively inseparable pair
of r.¢. sets. However it is unclear as to how such a set may be constructed.
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