Algorithmically Random Trigonometric Series

Rod Downey
Victoria University
Wellington
New Zealand

NTU, July 2024
- Partially supported by Marsden Fund.
- Joint with Noam Greenberg and Andrew Tanggara
The idea goes back to Von Mises around 1919, and earlier. Want to give meaning to randomness of individual strings or reals (infinite sequences)

Plainly 01010101010... should not be random, but likely

Something from e.g. Brownian Motion should be.

The idea is that we apply algorithmic “tests” to a sequence, and should it pass these tests, we regard it as random.

The stronger the tests, the more the level of randomness.

If the universe is computable and something passes all computable tests, then it should be indistinguishable with “real randomness” whatever that might be.
Uses of Algorithmic Randomness in Mathematics

Quite aside from its intrinsic interest, there have recently been a number uses of *algorithmic* randomness in mathematics.

After all, giving meaning to randomness for an individual string or sequence (real) is surely a useful tool.

Lutz, Stull and Lutz (FOCS, STOC) have had great success using this tool and their “point to set” principle to prove theorems in geometric measure theory.

From their paper: “enables one to use a lower bound on the relativized algorithmic dimension of a single, judiciously chosen point in a set E to prove a lower bound on the classical dimension of the set E.”

That is, we look at algorithmic *dimension* relative to an “oracle” and it turns out that this can be used to generate new results in geometric measure theory.

New simpler proofs of old results: Lutz and Lutz gave a new proof of of the two-dimensional case of the well-known Kakeya conjecture.
In work on subshifts of finite type, Hochman and Meyerovitch, showed that values of entropies of subshifts of finite type over \mathbb{Z}^d for $d \geq 2$ are exactly the complements of halting probabilities.

Often algorithms result from using probability to show that something exists and then observing that the condition is a closed one. E.g. Bosserhof’s construction in Banach Spaces.

For our results, we will show that understanding how much randomness is needed for classical theorems can yield algorithms.
Bollobás in the introduction to his book, originally in 1985. In this introduction, Bollobás motivates the use of probabilistic ideas in graph theory. He mentioned that earlier probabilistic application had been found in analysis via three famous papers of Paley and Zygmund (1932-33)

"Paley and Zygmund (1930a,b,1932) had investigated random series of functions. One of their results was that if the real numbers \(c_n \) satisfy \(\sum_{n=0}^{\infty} c_n^2 = \infty \) then \(\sum_{n=0}^{\infty} \pm c_n \cos nx \) fails to be a Fourier-Lebesgue series for almost all choices of the signs. To exhibit a sequence of signs with this property is surprisingly difficult: indeed there is no algorithm known which constructs an appropriate sequence of signs from any sequence \(c_n \) with \(\sum_{n=0}^{\infty} c_n^2 = \infty \)."
An almost identical question can be found even earlier in the 1968 version of Kahane’s book (most recently, (2003 version) page 47),

“If \(\sum c_n^2 = \infty \), there exists a choice of signs \(\pm \) such that
\[
\sum \pm c_n \cos(nt + \varphi_n)
\]
is not a Fourier-Stieltjes series. A surprising fact is that nobody knows how to construct these signs explicitly, but a random choice works.”

Thus, this natural question is now at least 50 years old.

Here Fourier-Steiltjes and Fourier-Lebesgue refer to where the series represents a measure (more specifically as a Fourier series to the derivative of a function of bounded variation on \([0, 2\pi]\)) or a function \(f \in L^p\), respectively in terms of convergence. Here “convergence” usually refers to summable in the Cesáro or Abel sense. It is not absolutely necessary for this talk to have the precise definitions as we use properties of such series instead. For simplicity just think “convergent”.
As logicians we know how to formulate questions like this. We wish to say that given the data specifying the input we have an algorithm to specify the signs. We can use the umbrella of computable analysis to work within. A positive solution to Bollobás’s problem would consist of an algorithm which runs on Turing’s idealised machine. On an “input tape” of the machine is written the sequence of reals \(\langle c_n \rangle \). The machine runs indefinitely, and on an “output tape” is gradually written a solution: a sequence \(\langle x_n \rangle \in \{-1, 1\}^\infty \) such that \(\sum x_n c_n \cos nt \) is not a Fourier-Lebesgue series. The main point is that there is a single algorithm which given the input \(\langle c_n \rangle \) produces a desired output \(\langle x_n \rangle \). We say that the outputs are *uniformly computable* from the inputs.
Identify the amount of randomness needed for the proof of the classical theorem, and use that to understand the existence or nonexistence of an operator.

We use the theory of algorithmic randomness.

This theory abandons the idea of absolute randomness and thinks of a real as being random at a certain level of sensitivity if it passes all tests for that level.
We work under the umbrella of computability theory.

Basic concept is a computable function.

A set (language) which is the range of a computable function is called c.e. (computably enumerable)

Since Turing (1936) the quintessential example is the halting set K, the codes for pairs $\langle x, y \rangle$ where the x-th programme halts on input y.

This is famously c.e. but non-computable, in that there is no algorithm to decide if $\langle x, y \rangle \in K$.

It is an undecidable problem.
The approach below is called the statistician’s approach: Random reals should not be statistically rare.

Interpret “statistically rare” as null sets.

Definition

(i) A *name of an open set* U is a list $\langle V_0, V_1, V_2, \ldots \rangle$ of basic open sets such that $U = \bigcup_n V_n$. (For a closed interval, we can take the basis consisting of rational open intervals; in Cantor space, the basis of clopen sets, each determined by finitely many many values.)

(ii) A *name of a sequence of open sets* U_0, U_1, \ldots is a sequence consisting of a name of U_0, a name of U_1, \ldots.

(iii) A *name of a G_δ set* G is a name of a nested sequence of open sets U_0, U_1, U_2, \ldots such that $G = \bigcap_n U_n$.

(iv) A name of an F_σ set is a name of its complement.
The most fundamental notion of algorithmic randomness is called Martin-Löf random.

Definition

(i) \(X \) is ML-random if it passes all ML-tests, where a ML-test \(T \) is a computable collection of open sets \(\{U_n : n \in \mathbb{N}\} \) such that \(\lambda(U_n) \leq 2^{-(n+1)} \). (i.e. a named \(G_\delta \) null set)

(ii) \(X \) passes \(T \) if \(X \notin \cap_{n \in \mathbb{N}} U_n \).

You should think of this as defining statistical tests as we learn about the universe. For instance, if the space was \(\{-1, 1\}^\infty \), the sequences with every 4-th bit \(-1\) would not be random, so we'd define analogous tests. So a simple test would be \(U_1 = \{\sigma \ast \langle -1 \rangle : |\sigma| = 3\} \), \(U_2 = \{\sigma \tau \ast \langle -1 \rangle : \sigma \in U_1 \land |\tau| = 3\} \), etc. This is a special test called a Kurtz test (below).
Why ML?

- There is a long history here, and if you are really interested there are several wonderful books.
- There are other approaches to this idea.
- (The coder’s approach) Random reals should have no regularities to allow compression of the bits. This is called Kolmogorov complexity.
 - Specifically $K(\sigma)$ is the length of the shortest (prefix-free) code computing σ, and X is MLR iff for all n, $K(X \upharpoonright n) \geq n - O(1)$.
- (The gambler’s approach) It should not be possible to use algorithmic means to bet (by predicting the next bit) on the bits and make lots of (infinitely much) money. (Uses “martingales”.)
- (More or less) These all result in ML-randomness.
- The formulation here is best suited to our task.
Other tasks

- Other formulations are more suitable for other tasks.
- For instance, the Lutz-Lutz-Stull results use the fact that a real X has effective Hausdorff dimension $\dim_{\mathcal{H}}(X) = \alpha$ iff
 $$\liminf_n \frac{K(X|n)}{n} = \alpha.$$
- That is, we can also give a definition for dimension of a single point.
- Then showing that this “pointwise” definition can give the classical
definition of the Hausdorff dimension of a set via looking at
“relativized” versions: the dimension of B is

$$\min_{A \subseteq \mathbb{N}} \sup_{u \in B} \dim_{\mathcal{H}}^A(u).$$

- This is in the spirit as being continuous is the same as computable
relative to some oracle (at least in e.g. $[0, 1]$.)
- Then you prove things about clever choices of A.
We analysed a theorem of Potgeiter

Theorem

Given $\langle c_n \rangle$ and $\langle \varphi_n \rangle$ with $\sum c_n^2 = \infty$, we can compute a name of a null F_σ set containing all $x \in \{-1, 1\}^\infty$ for which $\sum x_n c_n \cos(nt + \varphi_n)$ is a Fourier-Stieltjes series.

We can then quote a standard result from computability theory:

Theorem

Given a (computable) name of a null F_σ set H, we can compute a (computable) point $x \notin H$.

That’s because they are Kurtz Tests. A Kurtz null test (e.g. in 2^ω) is a computable collection of clopen sets $\mathcal{V} = \{V_e \mid e \in \mathbb{N}\}$ with $V_e = \{[\sigma] : \sigma \in D_f(e)\}$, with f computable and $\lambda(V_e) \leq 2^{-e}$.

That is, at level e, we computably specify a specific finite collection of clopen sets whose measure is below 2^{-e}.
Running the enumeration of \mathcal{V} till the measure is below $2^{-(e+1)}$ allows us to compute a Cauchy sequence converging to a computable real, outside of \mathcal{V} to within 2^{-e}.

The same proof works for Schnorr Tests which are ML-tests, but with $\lambda(U_e) = 2^{-(e+1)}$, (in the definition) instead of $\lambda(U_e) \leq 2^{-(e+1)}$.

Schnorr tests can be infinite, and often come from classical proofs.

This is simply part of a long hierarchy of randomness calibrations: (2-Random implies) ML implies Schnorr implies Kurtz implies (PSPACE implies polynomial implies Finite State).

How fine-grained is the test?

No implication reversible.
The Paley-Zygmund theorems were motivated by questions of Rademacher, who, along with Steinhaus and Hardy-Littlewood seem to be the original people to study random series. Random trigonometric series arise quite naturally in, for example, Brownian motion, and random noise in image processing. Major area of analysis.

Theorem (Rademacher 1922)

Let \(\langle c_n \rangle \) be a sequence of real numbers.

(i) If \(\sum c_n^2 = \infty \) then \(\sum x_n c_n \) diverges for almost all \(x \in \{-1, 1\}^\infty \).

(ii) If \(\sum c_n^2 < \infty \) then \(\sum x_n c_n \) converges for almost all \(x \in \{-1, 1\}^\infty \).

The canonical nontrivial example for (ii) is the Harmonic series \(\sum_{n=1}^{\infty} \frac{1}{n} \). If \(\sum c_n^2 = \infty \), then choosing \(x_n \) so as to make \(x_n c_n > 0 \) will cause divergence of the Rademacher series. But what level of randomness is needed?
Theorem

Let $\langle c_n \rangle$ be a sequence of real numbers and let $x = \langle x_n \rangle \in \{-1, 1\}^\infty$.

(i) If $\sum c_n^2 = \infty$ and x is Kurtz random relative to $\langle c_n \rangle$ then $\sum x_n c_n$ diverges.

(ii) If $\sum c_n^2 < \infty$ and x is Schnorr random relative to $(\langle c_n \rangle, \sum c_n^2)$ then $\sum x_n c_n$ converges.

▶ Part (ii) was first shown by Ongay-Valverde and Tveite (2021). Potgieter (2018) showed that ML-randomness suffices for both cases. We will give simple proofs of both.

▶ We also consider what happens if we don’t know the value of $\sum c_n^2$.

Divergence of Rademacher Series

- Given $\langle c_n \rangle$ for which $\sum c_n^2 = \infty$ we can (uniformly) compute a name of a null F_σ set containing all $x \in \{-1, 1\}^\infty$ for which $\sum x_n c_n$ converges.

- **Paley-Zigmund Inequality** For any natural N and sequence of reals $a_0, a_1, \ldots, a_{N-1}$, if $\sum_{n<N} a_n^2 > 1/4$ then

$$
\mathbb{P}\left\{ \tau \in \{-1, 1\}^N : \left| \sum_{n<N} \tau_n a_n \right| > \frac{1}{2} \right\} > \frac{1}{6},
$$

where \mathbb{P} denotes the fair-coin probability measure on $\{-1, 1\}^N$.

- Given $\langle c_n \rangle$ with $\sum c_n^2 = \infty$ we can compute a partition of \mathbb{N} into intervals $l_0 < l_1 < \cdots$ (so $\min l_{k+1} = \max l_k + 1$), with each interval l_i sufficiently long so that

$$
\sum_{n \in l_i} c_n^2 > \frac{1}{4}.
$$
For each i let

$$C_i = \left\{ x \in \{-1, 1\}^\infty : (\forall j \geq i) \left| \sum_{n \in I_j} x_n c_n \right| \leq \frac{1}{2} \right\}.$$

Then each C_i is closed and null (it is the product of infinitely many independent clopen sets, each with measure at most $1/6$). Hence, $H = \bigcup_i C_i$ is a null F_σ set with $\langle c_n \rangle$-computable name, that contains every x for which $\sum x_n c_n$ converges.
Paley-Zigmund For any N, sequence of real numbers $\langle a_n \rangle_{n<N}$ and any $\epsilon > 0$,

$$\mathbb{P}\left\{ \tau \in \{-1, 1\}^N : \max_{m<N} \left| \sum_{n \leq m} \tau_n a_n \right| > \epsilon \right\} \leq \frac{1}{\epsilon^2} \sum_{n<N} a_n^2. \quad (2)$$

The inequality holds for $N = \infty$ as well, in which case we need of course to replace max with sup. With the triangle inequality, we can deduce the following:

$$\mathbb{P}\left\{ \tau \in \{-1, 1\}^N : \max_{k \leq m < N} \left| \sum_{n=k}^{m} \tau_n a_n \right| > \epsilon \right\} \leq \frac{4}{\epsilon^2} \sum_{n<N} a_n^2. \quad (3)$$

(In fact, the proof of Kolmogorov’s inequality gives the bound $\sum a_n^2/\epsilon^2$.)
Given both a name of a nested sequence $\langle U_n \rangle$ of open sets such that $\lambda(U_n) \to 0$, and the sequence $\langle \lambda(U_n) \rangle$, we can compute a Schnorr name of $\bigcap_n U_n$.

The proof is an easy induction.

Given $\langle c_n \rangle$ for which $\sum c_n^2 < \infty$, and the value of that sum, we can (uniformly) compute a Schnorr name of a null set containing all $x \in \{-1, 1\}^\infty$ for which $\sum x_n c_n$ diverges.

Given $\langle c_n \rangle$ and $\sum c_n^2$, we can compute a partition of \mathbb{N} into intervals $l_0 < l_1 < \cdots$ such that for all $k \geq 1$, $\sum_{n \in l_k} c_n^2 < 2^{-3k-2}$.

By (3), $\lambda(A_k) \leq 2^{-k}$, where

$$A_k = \left\{ x \in \{-1, 1\}^\infty : \max_{J \subseteq l_k} \left| \sum_{n \in J} x_n c_n \right| > 2^{-k} \right\},$$

Let $U_m = \bigcup_{k > m} A_k$. A name of $\langle U_m \rangle$ can be obtained computably given the data, and $\lambda(U_m)$ is computable as well given the data ($U_{m,s} = \bigcup_{k=m+1}^{s} A_k$ is a clopen set approximating U_m to within 2^{-s}). If $x \in \{-1, 1\}^\infty$ and $\sum x_n c_n$ diverges then $x \in A_k$ for infinitely many k, so $x \in \bigcap_m U_m$.
The method of Potgieter only gives ML tests and it is not clear if his proof can be adapted to give Schnorr tests. (Detailed analysis in our full paper.)

Ongay-Valverde and Tveite (2021), Lemma 6.7 claim to prove (ii). They use sophisticated machinery developed by Jason Rute in an unpublished manuscript, rather than directly producing Schnorr null sets. However, it appears that they only prove convergence of a subsequence of the partial sums $\sum_{n \leq k} x_n c_n$.

Question: What if we are given a sequence $\langle c_n \rangle$ with $\sum c_n^2 < \infty$, but we are not told what the sum is?

It appears that Schnorr randomness will not suffices in this case.
Definition

An **OW-null set** is a set contained in an intersection \(\bigcap_n U_n \), where \(\langle U_n \rangle \) is a nested sequence of uniformly enumerable open sets such that for some left-c.e. real \(\alpha \) and some increasing computable rational approximation \(\langle \alpha_n \rangle \) of \(\alpha \), we have \(\lambda(U_n) \leq \alpha - \alpha_n \) for all \(n \).

- \(\lambda(U_n) \to 0 \) is witnessed by the fact that the approximation \(\alpha_n \to \alpha \) converges. Computably, at very late stages \(s \), we discover that the sets \(U_n \) for \(n < s \) are “allowed to grow” by a large amount (much larger than \(2^{-s} \)).

- This “amount of growing” eventually goes to 0, but we cannot tell computably how quickly.
We could prove the following

Theorem

Let $\langle c_n \rangle$ be such that $\sum c_n^2 < \infty$. If $x \in \{-1, 1\}^\infty$ is OW-random relative to $\langle c_n \rangle$, then $\sum x_n c_n$ converges.

The proof is to observe

$$U_m^\epsilon = \left\{ x \in \{-1, 1\}^\infty : \sup_{k \geq m} \left| \sum_{n=m}^{k} x_n c_n \right| > \epsilon \right\}.$$

is an OW-test.
Fourier-Stieltjes Series

- We are given $\langle c_n \rangle$ and $\langle \varphi_n \rangle$. For each finite binary string $\tau = (\tau_0, \tau_1, \ldots, \tau_m) \in \{-1, 1\}^{m+1}$, let the corresponding Fejér sum be

$$\sigma_\tau(t) = \sum_{n \leq m} \left(1 - \frac{n}{m}\right) \tau_n c_n \cos(nt + \varphi_n).$$

- This is a continuous function on $[0, 2\pi]$ and the functions σ_τ for $\tau \in \{-1, 1\}^\infty$ are uniformly computable relative to $(\langle c_n \rangle, \langle \varphi_n \rangle)$.

- By Zygmund 1959, for all $x \in \{-1, 1\}^\infty$, $\sum x_n c_n \cos(nt + \varphi_n)$ is Fourier-Stieltjes if and only if

$$\sup_m \|\sigma_x|_m\|_1 < \infty,$$

where recall that $\|f\|_1 = \int_0^{2\pi} |f(t)| \, dt$.
By Pour-El and Richards, Ch 0, Thm 5, the values $\|\sigma_\tau\|_1$ are uniformly computable relative to the data. For each K, let

$$C_K = \{ x \in \{-1, 1\}^\infty : (\forall m) \|\sigma_{x|m}\|_1 \leq K \}.$$

Then each C_K is closed, effectively so given the data. The required F_σ set is thus $\bigcup_K C_K$; this set is null by the classical result that under the assumption, $\sum x_n c_n \cos(nt + \varphi_n)$ is not Fourier-Stieltjes for almost all x.

We remark that Potgeiter (2018) follows similar path, but the proof has a gap in concerning Riemann sums and we repaired this with the Pour-El Richards material.

Question: What about pointwise convergence/divergence?
Theorem (Paley and Zygmund 1932)

Let $\langle c_n \rangle$ and $\langle \varphi_n \rangle$ be sequences of real numbers.

(i) If $\sum c_n^2 < \infty$, then for almost all $x \in \{-1, 1\}^\infty$, $\sum x_n c_n \cos(nt + \varphi_n)$ converges for almost all $t \in [0, 2\pi]$.

(ii) If $\sum c_n^2 = \infty$, then for almost all $x \in \{-1, 1\}^\infty$, $\sum x_n c_n \cos(nt + \varphi_n)$ diverges for almost all $t \in [0, 2\pi]$.

We study effectiveness, asking not only for almost everywhere divergence, but also, what level of randomness of t ensures this divergence. This leads us to consider randomness in the product space $\{-1, 1\}^\infty \times [0, 2\pi]$, which is defined as expected, using the product measure $\lambda \times \mu$.
Theorem

Let $\langle c_n \rangle$ and $\langle \varphi_n \rangle$ be sequences of real numbers, and suppose that $\sum c_n^2 = \infty$. If $(x, t) \in \{-1, 1\}^\infty \times [0, 2\pi]$ is Schnorr random relative to $(\langle c_n \rangle, \langle \varphi_n \rangle)$ then $\sum x_n c_n \cos(nt + \varphi_n)$ diverges.

We note that this theorem implies that if x is Schnorr random then $\sum x_n c_n \cos(nt + \varphi_n)$ diverges almost everywhere.

Theorem

Let $\langle c_n \rangle$ and $\langle \varphi_n \rangle$ be sequences of real numbers, and suppose that $\sum c_n^2 < \infty$. If $(x, t) \in \{-1, 1\}^\infty \times [0, 2\pi]$ is Schnorr random relative to $(\langle c_n \rangle, \langle \varphi_n \rangle, \sum c_n^2)$ then $\sum x_n c_n \cos(nt + \varphi_n)$ converges.
- The proofs are along similar lines of analysing the random sets obtained in variations of the classical proofs.
- We don’t know whether Kurtz randomness suffices for divergence.
- There are many open lower bound questions:
We’d like to have classifications like:

Theorem (Bratkka, Miller, Nies (2016))

A point \(x \in [0, 1] \) is ML-random if and only if every computable function \(f : [0, 1] \to \mathbb{R} \) of bounded variation is differentiable at \(x \).

Theorem (Gács, Hoyrup, Rojas (2011))

Let \((X, \mu)\) be a computable measure space, and let \(T : X \to X \) be computable and ergodic. A point \(x \in X \) is Schnorr random if and only if for every computable function \(f : X \to \mathbb{R}, \)

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i < n} f(T^i x) = \int f \, d\mu.
\]

For instance, does Kurtz randomness characterize divergence of Rademacher series? (Most classical theorems align to ML, Kurtz, Schnorr and “computable” randomness.)
NO

This is a new (and natural) phenomenon in randomness:

Theorem

Suppose that $P \subset \{-1, 1\}^\infty$ is effectively closed, and that there is a computable tree $T \subset \{-1, 1\}^{<\infty}$ such that $P = [T]$ and for all n, T contains fewer than $\log_2 n$ many strings of length n. Then there is a computable sequence $\langle c_n \rangle$ such that $\sum c_n^2 = \infty$, but $\sum x_n c_n$ converges for all $x \in P$.

Such an effectively closed set must be null, as $\log_2 n/2^n \to 0$, and so (as is necessary) no $x \in P$ is Kurtz random. We note that very small effectively closed sets of Binns (2005) have this property.

The proof: Let $I_k = [2^k, 2^{k+1})$. For each k, since there are at most k strings of length 2^{k+1} in T, there is some $n_k \in I_k$ such that τ_{n_k} is a constant value i_k for all $\tau \in T$ of length 2^{k+1}. We let $c_{n_k} = (-1)^k i_k/\sqrt{k}$ and $c_n = 0$ if $n \neq n_k$ for all k.
The following lower bound is also weaker than randomness. A sequence \(x \in \{-1, 1\}^\infty \) is bi-immune if neither \(\{ n : x_n = 1 \} \) nor its complement \(\{ n : x_n = -1 \} \) contain an infinite computable set (equivalently, an infinite computably enumerable set). All Kurtz random sequences are bi-immune.

Theorem

If \(x \) is not bi-immune then there is a computable sequence \(\langle c_n \rangle \) with \(\sum c_n^2 = \infty \) but \(\sum x_n c_n \) converges.

The proof: Let \(A \) be an infinite computable set such that either \(x_n = 1 \) for all \(n \in A \), or \(x_n = -1 \) for all \(n \in A \). Let \(n_1, n_2, \ldots \) be the increasing enumeration of the elements of \(A \). Let \(c_{n_k} = (-1)^k / \sqrt{k} \); if \(n \neq n_k \) for any \(k \) let \(c_n = 0 \).
Define SCP strong convergence property: $\sum x_i a_i$ converge whenever $\langle a_i \rangle$ computable and square-summable, even if the sum of squares is not computable.

(Downey, Greenberg, Tanggara) Schnorr Random implies CP (where the sum is known)

(Bienvenu and Greenberg) Computably Random implies SCP

Motivated by several counterexamples, Ruofei Xie looked at strong extensions: expanding the area for selecting the sequence of reals from the computable ones to the partial computable ones. The formal definition is as follows. Definition 5.1. Given a partial computable function f, let \bar{f} be the extension which converges and gives 0 of $f(x) \uparrow$. Now we seek convergence if $\sum x_n \bar{f}(n)$ converges for all partial f with $\sum_n \bar{f}(n)^2 < \infty$. Call this VSCP.

(Ruofei Xi) MLR implies VSCP

All notions distinct.
References

- Algorithmically random series, and uses of algorithmic randomness in mathematics, Downey, Greenberg and Tanggarra, submitted.

- Ruofei Xi, PhD Thesis, Victoria University, 2024.
Thank You