My Mathematical Encounters with Anil Nerode

Rod Downey Victoria University Wellington New Zealand

LFCS, San Diego, January 2013

- When I was asked to give a talk for Anil's 80-th, I was not only honoured, but also had occasion to reflect on how many times his work has influenced mine.
- It seemed to me that this would be a nice basis for a talk.

The beginning

- I think I met Anil in 1979 (certainly 79 or 80) in Monash University in Australia. I was beginning my PhD.
- My supervisor, Crossley, said I should talk to Anil Nerode, to which I said "who?"

My thesis

- Was in Effective Alegebra.
- This considers algebraic structures and endows them with some kind of computational structure and seeks to see what kind of algorithms come with this.
- For example. A computable group is one where the group operations are computable and the universe is too.
- Nerode was there way before me.

Background

- ▶ Begins implicitly with work of Kronecker, etc in the late 19th century.
- ► Explicitly with the work of Max Dehn in 1911 asking about the word, conjugacy and isomorphism problems in finitely presented groups. (That is, groups of the form F(x₁,...,x_n)/G(y₁,...,y_m) with y_i words in x_i, F and G free and G normal.)
- Before the language of computability theory.
- Arguably going back to Kronecker.
- Van ver Waerden (based on Emmy Noether's lectures), Grete Hermann (1926) for ideal theory, Post and Turing in the 1930's for semigroups.
- Discussion: Metakides (a student of Anil) and Nerode: The introduction of nonrecursive methods into mathematics. The L. E. J. Brouwer Centenary Symposium (Noordwijkerhout, 1981), 319-335.
- Modern incarnation: Fröhlich and Shepherdson 1956, Effective procedures in field theory,
- Rabin, Computable algebra, general theory and theory of computable fields, 1960

	and the second states and the second
CRUDE HISTORY O	F F/ELD THEORY 177-1130
LAGRANCE CITTI) [Algel Solva GAUSS CIBOI): QUADRA ABEL, GALOIS CIBOD) C KUMMER (1840'a) [ido CON	The BE ETHING MANIPULATIONS alling by Radicals Galois Theory TIC FIELDS, Cyclotomy. COMPUTATION OF GALOIS Groups cals as systems of Higher IGRUGNCES IN CYCLOTONIC FIGU
UIGHLY CONSTRUCTIVES SEP. KRONECKER (1882) STUDENT OF KUMMER CONSTRUCTIVE Algibuu NUMBER THOORY AND GEONETRY VIA MUMMER I deals M. NOCTHER - CONPUTATION IN Algebraic GEONETRY	A RATION OF Methods CNOT HIGHLY CONSTRUCTIVE) R. Dedekind (1879?) [LAST STUDENT OF GAUSS SUBSTITUTION OF SET DEGINITION IN IDEALS AND Reals Weberc(890's) abstract Fields Hilbert
HENZELT (1915) ELIMMATION THEORY UN PUBLISHED E.Noether-HENZELT (1923) EliMinistion Theory of PolyNomiai	STEINITE (1909) General Theory of Fidlds E.A RTIN-Schreiden (1927) Real Fields W.Krull (1928) OGalois Theory

- Rabin showed that a computable field had a computable algebraic closure.
- Frölich and Shepherdson showed that there are computale fields without computably unique algebraic closures (meaning no computable isomorphism between the algebraic closures).
- When does a computable field have a computably unique computably algebraic closure.
- What about the rest of classical field theory?
- For example, does a computable algebraically closed field have a computable transcendence base?

III MODER N ACT I The theorens Above Do Not involve Non-TRIVAL RECURSION theory. They leave open what happens when F is recursive but does Nor have a splitting Algorithy: is its recursive Algebraic closure recursively unique, or CAN IT have two recursive Algo braic closures which do BOT differ by a recursive isomorphism over F?

This is what we hear by Analyzing the <u>effective</u> <u>CONTENT</u> OF STEINIT's FAMOUS theorem that: Every field has an algebraic closure; Any two such differ by 2n automorphism of the base field.

Metakides-Nerode (1977) Let F be a recursive field. Any two Recorsing Algebraic closures of F differ by B recursive F-Iso MORPHISM IF AND ONLY IF F has a Splitting Algorithm. Note: R. Snith Carried out the Characteristic

TV ANOTHER TWO UNIVERSALLY COMPRENSIOIDIE THEOREMS FROM THE SAME WORK. Stemita: Every field has a theusander 64.57 Meranidas-Nerade: LET F be & recursive Field. They there is A recursive Algonnia closed field G OVER F OF THANSCENDENCE degree to such that every recursively enumerable independent set in G OVERF IS FINITE. (thus No Trace of a decent Transcendence base Persists.) ARTIN-Schreier: Every Formally real field has a real closure. Metamides - Newse - The SPACE OF ORDERING OF A RECURSIVE FORMALLY ROAL Field IS Q bounded MC class, AND EVERY SUCH Class SO Q RISES (UP TO 6 F FECTIVE NON BO MORPHESA

Classic papers

- Metakides and Nerode :
- Recursion theory and algebra, in *Algebra and Logic* (ed. J. N. Crossley), Lecture notes in Math., vol. 450, New York (1975), 209–219.
- Recursively enumerable vector spaces, Ann. Math. Logic, Vol. 11 (1977), 141-171.
- ► Effective content of field theory, Ann. Math. Logic, vol. 17 (1979), 289–320.

- ► The last one I found particularly inspiring. I assign this to students:
- It shows that a computable field has a computablly unique algebraic closure iff it has a (separable) splitting algorithm.
- That is, an algorithm to decompose polynomials and hence use the usual method of adjoining roots.
- Hidden message: There must be some other way to construct algebraic closures by Rabin's Theorem.
- Also shows how to classify the orderings of computable formally real fields in terms of effective approximations called Π⁰₁ classes.
- These are the infinite paths through computable trees.
- Uses the priority method in algebra.
- Remains an area of great interest, e.g. Russell Miller, Reed Slomon, Steffen Lempp, etc.

- One recent use is to show that certain algebraic objects cannot have decent invariants using computation.
- "decent" = should make the problem less complex than the invariant "the isomorphism type"
- Example. (Downey and Montalbán) The isomorphism problem for torsion-free abelian groups is Σ¹₁-complete.
- This work developed also into feasible algebra (polynomial time presented structures-notably Nerode and Remmel), automatic structures (notably Khoussainov-Nerode) more later.
- Also recycled as reverse mathematics (Harvey Friedman, Steve Simpson etc)

Isols

- ► The Metakides-Nerode work developed from 1960's and 1970's interest in effective maths of a different type.
- ► $A \sim B$ means that there is a partial computable 1-1 function φ such that dom $(\varphi) \supseteq A$ and ra $(\varphi) \supseteq B$, and $\varphi(A) = B$.
- ► A and B are called recursively equivalent. [A] is the RET (recursive equivalence type).
- This is an effective notion of cardinality. What does "finite" mean? (Dedekind) A cannot be mapped to a proper subset of itself.
- [A] is an isol if it is not equivalent to a proper subset.
- ► For example, all finite sets plus immune sets.
- McCarty proved that models of the isols are models of choice free mathematics in the sense of Kleene realizability.

- A big project in the 60's and 70's was to develop arithmetic for the isols.
- ► For example $[A] + [B] =_{\mathsf{def}} [A \oplus B],$ $[A] \cdot [B] = [\{\langle a, b \rangle \mid a \in A, b \in B\}].$
- Many authors gave ad hoc development but Anil showed with a very general construction how to do a wide class simultaneously.
 1966: Diophantine correct non-standard models in the isols. Ann. of Math. (2) 84 421-432.
 - 1962: Extensions to isolic integers. Ann. of Math. (2) 75 419-448.
 - 1961: Extensions to isols. Ann. of Math. (2) 73 362-403.
- Essentially forcing arguments before Cohen.

- Given f : ω → ω, we can write f as ∑_{i=0}[∞] c_i (ⁿ_i) (uniquely) with the c_i called Stirling coefficients. There's a k-ary version of this. If all the c_i ≥ 0, then f is called combinatorial. Note that we see all f can be expressed as the difference of two combinatorial functions; and similarly for computable functions.
- Nerode showed via extensions of ideas of Myhill how to extend every computable f in this way to the isols using "frames" where are eseentially forcing techniques, as later demonstrated by Ellentuck.
- ► I should remark that problems in this area can be very hard. One of my own most complicated argument was with Slaman, it was in the isols and needed a nonuniform-0^{'''} priority argument.

Encounter II-Analysis

- ► There is a tradition of computable analysis going back to Turing 1936.
- Reals are effective Cauchy sequences.
- Effective functions are effective maps taking effective approximations to effective approximations.
- ▶ Note Turing computed Bessel functions in 1936.
- There is a tradition of computable analysis-Abeth, Markov, Myhill, Pour-El Richards, more recently Weihrauch, Brattka, Hertling, Joe Miller, Bravermann, Yampolsky.
- Mekides-Nerode-Shore The effective content of the Hahn-Banach Theorem.
- ► Recently, it has been shown that this is hand-in-hand with the theory of algorithmic randomness (Demuth's program). Differentiability≈randomness.

Encounter III-Automata

- Mike Fellows and I were developing parameterized complexity, and I ran into Anil's work here.
- It related to Anil's famous:
- ► Myhill-Nerode Theorem L is finite state iff ~_L has a finite number of equivalence classes.
- \sim_L : $x \sim_L y$ iff for all $z, xz \in L$ iff $yz \in L$.
- So being regular (an apparently computational property) is in effect simply saying that something is finite.

Definition

[Tree decomposition and Treewidth] Let G = (V, E) be a graph. A tree decomposition, TD, of G is a pair (T, \mathcal{X}) where 1. T = (I, F) is a tree, and 2. $\mathcal{X} = \{X_i \mid i \in I\}$ is a family of subsets of V, one for each node of T, such that

(i)
$$\bigcup_{i \in I} X_i = V$$
,
(ii) for every edge $\{v, w\} \in E$, there is an $i \in I$ with $v \in X_i$
and $w \in X_i$, and
(iii) for all $i, j, k \in I$, if j is on the path from i to k in T , then
 $X_i \cap X_k \subseteq X_j$.

The width of a tree decomposition $((I, F), \{X_i | i \in I\})$ is $\max_{i \in I} |X_i| - 1$. The treewidth of a graph *G*, denoted by tw(G), is the minimum width over all possible tree decompositions of *G*.

The canonical method

- The following refers to any of these inductively defined graphs families. Notes that many commercial constructions of, for example chips are inductively defined.
 - 1. Find a bounded-width tree (path) decomposition of the input graph that exhibits the underlying tree (path) structure.
 - 2. Perform dynamic programming on this decomposition to solve the problem.

An example for INDEPENDENT SET

Ø	а	b	С	ab	ас	bc	abc
0	1	1	1	2	-	-	-

Monadic Second Order Logic

- Two sorted structure with variables for sets of objects.
 - 1. Additional atomic formulas: For all set variables X and individual variables y, Xy is an MSO-formula.
 - 2. Set quantification: If ϕ is an MSO-formula and X is a set variable, then $\exists X \phi$ is an MSO -formula, and $\forall X \phi$ is an MSO-formula.

Eg k-col

$$\exists X_1, ., \exists X_k \left(\forall x \bigvee_{i=1}^k X_i x \land \forall x \forall y \Big(E(x, y) \to \bigwedge_{i=1}^k \neg (X_i x \land X_i y) \Big) \right)$$

Model Checking

- Instance: A structure A ∈ D, and a sentence (no free variables)
 φ ∈ Φ.
 Question: Does A satisfy φ?
- ► PSPACE-complete for FO and MSO. Classical proofs have the size of φ more or less the same as A.
- Parameterize in various ways to induce tractability. E.g. bounded variables e.g. LTL, SQL etc.
- Or parameterize the structure of \mathcal{A} .

Theorem (Courcelle 1990)

The model-checking problem for (counting) MSO restricted to graphs of bounded treewidth is linear-time fixed-parameter tractable.

Theorem (Frick and Grohe)

First order model checking is FPT for families of graphs of bounded "local" treewidth.

Seese, and later Courcelle and Oum proved quasi-converses to the above.

- A proof: we work in the language of boundaried graphs, with boundaries of size t + 1. Then define H ⊕ G to be the graph obtained by gluing H to G on the boundary.
- ► Treewidth t 1: can actually work with parsing operators t, push_i, join_{i,j}, \oplus .
- Then algorithms can be automata running on parse sequences for broundried graphs.
- G₁ ∼_L G₂ iff for all H, G₁ ⊕ H ∈ L iff G₂ ⊕ H ∈ L. This is has a finite number of equivalence classes iff L is "finite state" (in a certain parse language for graphs of bounded treewidth).
- Abrahamson-Langston-Fellows prove Courcelle's Theorem using structural induction. (Think about e.g. 3-colouring) This uses Myhill-Nerode by constructing the relevant test sets for the formulae.
- As Mike points out: Myhill-Nerode is often a fist step in proving hardness.

- One of the first talks on parameterized complexity was at Nerode's 60th.
- Immediately, Anil recognized the value of the area and was exceptionally encouraging both as a mathematician and as an editor.
- ► This also was a reflection of his kindness to young people.
- Personally, I have always tried to live up to this model, being encouraging and positive.
- Some other advice has been dubious. e.g. When you are speaking your have slides, blackboard and your rhetoric. They don't have to be about the same thing.
- e.g. You must come to the US else you won't be able to do good math.
- ▶ e.g. How to write e-mails/letters (something I have used though).

Cornell University DEPARTMENT OF MATHEMATICS WHITE HALL ITHACA. NEW YORK 14853-0403 U.S.A.

ANIL NERODE, Chairman Tel. 607 256-4013 607 256-3577 Telex 937478

JAMES H. BRAMBLE, Associate Chairman TEL. 607 256-4185

Febraury 23; 1985

Deaf Rod,

Your paper on undecidability is nice. I will shortly send

you several things, including part one of the generic structures paper, whice was done last week and sent to the Obervolfach meeting. I will get a referee's report shortly; on your paper.

Cornell University DEPARTMENT OF MATHEMATICS WHITE HALL ITHACA. NEW YORK 14853-0403 U.S.A.

ANIL NERODE, Chairman TEL. 607 256-4013 607 256-3577 TELEX 937478

JAMES H. BRAMBLE, Associate Chairman Tel. 607 256-4185

14 30 1985

Dear Rob.

I Can't LOGK at Manimal theomes

Chill you <u>Firmally</u> tell H.R you have withdrawn the submission to him.

Besz

Cornell University DEPARTMENT OF MATHEMATICS WHITE HALL ITHACA, NEW YORK 14853-7901 U.S.A.

ANIL NERODE, Chairman Tel. 607 256-4013 Telex 937478

MICHAEL D. MORLEY, Associate Chairman TEL, 607 256-4105

Dear Rod,

Enclosed is Downey-Slaman. It was read by a very patient person. You still do not write coherently. But the paper is acceptable, and I will not get it refereed again. Please revise and send back. It will be sent then directly to APAL.

ditor

Encounter IV-computable model theory

- Logic is the only area of mathematics that takes language seriously, and a major theme in logic (and complexity) relates definability with computation.
- Chris Ash and Anil proved a beautiful result in computable model theory:

Theorem

Subject to certain decidability conditions, a relation R on a computanle structure A is intrinsically computably enumerable (that is computably enumerable in all computable copies of A) iff it is formally c.e. (meaning that it is a formal c.e. disjunction of existential formulae with parameters).

 Highly influential- in the spirit of Goncharov and classifying computably categorical structures with extra decidability in terms of effective Scott families.

- Recent results include those in the Ash-Knight monograph and more recent using complex codings.
- Recent result shows the limit of this : For each α < ω₁^{CK}, there's a structure which is is computably categorical but no Ø^α-Scott family. (Downey, Lempp, Lewis-Pye, Montalbán, Turetsky)
- Hence computable categoricity is Σ¹₁ complete. (Again meaning no invariants.)

- Particularly with Khoussainov, Anil developed automatic model theory.
- Plus well-known texts Automata Theory (with Khoussainov) and Logic for Computer Science (with Shore), and one with Greenberg on Elliptic Curves in preparation.
- Anil has, of course, worked in hybrid control, nonmonotonic logic, polynomially graded logic, and quantum related computing, of which I have no clue.

What I have learned

- Quite a lot of interesting maths.
- Lessons on doing your duty for mathematics.
- Being positive and a force for good whenever you can. Promote others.
- ▶ Being interested and reading as much as you can-be broad.
- Caring.....

Thank You and Happy Birthday Anil