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THIS LECTURE:

I Basic Definitions
I Basic Hardness results
I Kernelization lower bounds



REMINDER

I A mathematical idealization is to identify “Feasible” with P.
(I won’t even bother looking at the problems with this.)

I With this assumption, the theory of NP-hardness is an
excellent vehicle for mapping an outer boundary of
intractability, for all practical purposes.

I Indeed, assuming the reasonable current working
assumption that NTM acceptance is Ω(2n), NP-hardness
allows for practical lower bound for exact solution for
problems.

I A very difficult practical and theoretical problem is “How
can we deal with P?”.

I More importantly how can we deal with P − FEASIBLE ,
and map a further boundary of intractability.



I Arora 1996 gave a O(n
3000
ε ) PTAS for EUCLIDEAN TSP

I Chekuri and Khanna 2000 gave a O(n12(log(1/ε)/ε8)) PTAS
for MULTIPLE KNAPSACK

I Shamir and Tsur 1998 gave a O(n22
1
ε −1)) PTAS for

MAXIMUM SUBFOREST

I Chen and Miranda 1999 gave a O(n(3mm!)
m
ε +1

) PTAS for
GENERAL MULTIPROCESSOR JOB SCHEDULING

I Erlebach et al. 2001 gave a O(n
4
π

( 1
ε2

+1)2( 1
ε2

+2)2
) PTAS for

MAXIMUM INDEPENDENT SET for geometric graphs.



I Deng, Feng, Zhang and Zhu (2001) gave a
O(n5 log1+ε(1+(1/ε))) PTAS for UNBOUNDED BATCH

SCHEDULING.
I Shachnai and Tamir (2000) gave a O(n64/ε+(log(1/ε)/ε8))

PTAS for CLASS-CONSTRAINED PACKING PROBLEM (3
cols).



REFERENCE RUNNING TIME FOR A
20% ERROR

ARORA (AR96) O(n15000)

CHEKURI AND KHANNA (CK00) O(n9,375,000)

SHAMIR AND TSUR (ST98) O(n958,267,391)

CHEN AND MIRANDA (CM99) > O(n1060
)

(4 PROCESSORS)
ERLEBACH ET AL. (EJS01) O(n523,804)

DENG ET. AL (DFZZ01) O(n50)

SHACHNAI AND TAMIR (ST00) O(n1021570)

TABLE: The Running Times for Some Recent PTAS’s with 20% Error.



WHAT IS THE PROBLEM HERE?

I Arora (1997) gave a PTAS running in nearly linear time for
EUCLIDIAN TSP. What is the difference between this and
the PTAS’s in the table. Can’t we simply argue that with
more effort all of these will eventually have truly feasible
PTAS’s.

I The principal problem with the baddies is that these
algorithms have a factor of 1

ε (or worse) in their exponents.
I By analogy with the situation of NP completeness, we

have some problem that has an exponential algorithm.
Can’t we argue that with more effort, we’ll find a much
better algorithm? As in Garey and Johnson’s famous
cartoon, we cannot seem to prove a better algorithm. BUT
we prove that it is NP hard.



I’M DUBIOUS; EXAMPLE?

I Then assuming the working hypothesis that there is
basically no way to figure out if a NTM has an accepting
path of length n except trying all possibilities there is no
hope for an exact solution with running time significantly
better than 2n. (Or at least no polynomial time algorithm.)

I Our new working hypothesis that there is basically no way
to figure out if a NTM has an accepting path of length k
except trying all possibilities. Note that there are Ω(nk )
possibilities. (Or at least no way to get the “k ” out of the
exponent or an algorithm deciding k -STEP NTM.)

I One then defines the appropriate reductions from k -STEP

TURING MACHINE HALTING to the PTAS using k = 1
ε as a

parameter to argue that if we can “get rid” of the k from
the exponent then it can only be if the working hypothesis
is wrong.



BASIC DEFINITION(S)

I Setting : Languages L ⊆ Σ∗ × Σ∗.

I Example (Graph, Parameter).
I We say that a language L is fixed parameter tractable if

there is a algorithm M, a constant C and a function f such
that for all x , k ,

(x , k) ∈ L iff M(x) = 1 and

the running time of M(x) isf (k)|x |C .



REDUCTIONS AND INTRACTABILITY

I Natural basic hardness class: W [1]. Does not matter what
it is, save to say that the analog of Cook’s Theorem is
SHORT NONDETERMINISTIC TURING MACHINE
ACCEPTANCE
Instance: A nondeterministic Turing Machine M and a
positive integer k .
Parameter: k .
Question: Does M have a computation path accepting the
empty string in at most k steps?



I If one believes the philosophical argument that Cook’s
Theorem provides compelling evidence that SAT is
intractible, then one surely must believe the same for the
parametric intractability of SHORT NONDETERMINISTIC
TURING MACHINE ACCEPTANCE.

I Moreover, recent work has shown that if SHORT NTM is
fpt then n-variable 3SAT is in DTIME(2o(n))



I Given two parameterized languages L, L̂ ⊆ Σ∗ × Σ∗, say
L ≤FPT L̂ iff there are (computable) f , x 7→ x ′, k 7→ k ′ and a
constant c, such that for all x ,

(x , k) ∈ L iff (x ′, k ′) ∈ L̂,

in time f (k)|x |c .
I Lots of technical question still open here.



ANALOG OF COOK’S THEOREM

I Analog of Cook’s Theorem: (Downey, Fellows, Cai, Chen)
WEIGHTED 3SAT≡FTP SHORT NTM ACCEPTANCE.
WEIGHTED 3SAT

Input: A 3 CNF formula φ
Parameter: k
Question: Does φ has a satisfying assignment of Hamming
weigth k , meaning exactly k literals made true.



W-HIERARCHY

I Think about the usual poly reduction from SAT to 3SAT. It
takes a clause of size p, and turns it into many clauses of
size 3. But the weight control goes awry. A weight 4
assignment could go to anything.

I We don’t think WEIGHTED CNF SAT≤ftpWEIGHTED 3 SAT.
I Gives rise to a heirarchy:

W [1] ⊆W [2] ⊆W [3] . . .W [SAT ] ⊆W [P] ⊆ XP.

I XP is quite important, it is the languages which are in
DTIME(nf (k)) with various levels of uniformity, depending
on the choice of reductions.



THE CIRCUIT VIEW

Large gates (unbounded fanin) represented by Small gates (bounded fanin) represented by

x¡ x£ x¢ x∞ x§ x¶x™

A 3CNF Formula is a large and of small or's.

ϕ = (x¡ + x£ + x∞)(x™ + ¬x£ + x¶)(x¡ + x¢ + x∞)(x∞ + x§ + x¶)(¬x¢ + ¬x∞ + x§)(x∞ + x§ + x¶)

A Weft 2 Depth 5 Decision Circuit.

x¡ x£ x¢ x∞x™

¬
¬

¬

¬

¬

¬
¬

FIGURE: Examples of circuits



I Example: W [1, s] ≡fpt Antimonotone W [1, s].
I W [1, s] is the problem based around weight k for circuits of

depth 2, and maximum fanin for the top Or gates of size s.
(board) Specifically, W [1, s] are the problems fpt reducible
to weighted s-SAT.

I Red/Blue nonblocker: Input A Red/Blue bipartite graph
G = (VR ∪ VB = V ,E) with the blue vertices of degree ≤ s.
Question is there a set of red vertices V ′ of size k , such
that each blue vertex has a neighbour not in V ′?

I Πu∈VB Σxi∈N[u]∩VR
xi .



I X is a boolean expressiuon in CNF of max clause size s.
I m clauses C1, . . . ,Cm.
I Construct G = (VR ∪ VB,E) with a nonblocker of size 2k iff

X has a satisfying assignment of weight k .
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THEOREM
W [1, s] = W [1,2] = Antimonotone W [1,2] = W [1].

I Given an antimonotone W [1, s] circuit C, we construct an
antimonotone W [1,2] circuit such that W [1, s] has a weight
k accepting input iff C′ has a weight k ′ one where

k ′ = k2k +
s∑

i=2

(
k
i

)
I Let the input variable x [j], j = 1, . . . ,n to C, create new

variables for each possible set of at most s and at least 2
of the x [i]’s. Let A1, . . . ,Ap be the enumeration of all such
sets. These are the circuit inputs. Think of them as
variables v [i] representing Ai .

I Rearrange the circuit using these variables and
enforcement variables.



I For each top or gate g choose the correct Ai ’s for the input
lines to g in C, all negated of course.

I Now add an enforcement mechanism for consistency of
the v [i]. This is done by 2k copies of each of the x [j],
x [j ,d ] : d = 1, . . . ,2k . Now write out the exponentially
many implications saying that the simulation is faithful.

I Details DF or see FG, for their approach using logic.



I CLIQUE is W [1]-complete as is INDEPENDENT SET.

THEOREM (DF, CAI AND CHEN)
SHORT TURING MACHINE ACCEPTANCE is W [1] complete.

I Generic reduction for hardness from CLIQUE. (write the
vertices on the tape and check in

(k
2

)
moves if they are

adjacent.) Membership is another generic simuation by a
circuit.



I XP has k -CAT AND MOUSE GAME and some other games ((DF99a)),
I W [P] has LINEAR INEQUALITIES, SHORT SATISFIABILITY, WEIGHTED CIRCUIT

SATISFIABILITY ((ADF95)) and MINIMUM AXIOM SET((DFKHW94)).
I Then there are a number of quite im portant problems from combinatorial pattern

matching which are W [t] hard for all t : LONGEST COMMON SUBSEQUENCE (k =
number of seqs.,|Σ|-two parameters) ((BDFHW95)), FEASIBLE REGISTER
ASSIGNMENT, TRIANGULATING COLORED GRAPHS, BANDWIDTH, PROPER
INTERVAL GRAPH COMPLETION ((BFH94)), DOMINO TREEWIDTH ((BE97)) and
BOUNDED PERSISTE NCE PATHWIDTH ((McC03)).

I W [2] include WEIGHTED {0, 1} INTEGER PROGRAMMING, DOMINATING SET
((DF95a)), TOURNAMENT DOMINATING SET ((DF95c)) UNIT LENGTH
PRECEDENCE CONSTRAINED SCHEDULING (hard) ((BF95)), SHORTEST
COMMON SUPERSEQUENCE (k )(hard) ((FHK95)), MAXIMUM LIKELIHOOD
DECODING (hard), WEIGHT DISTRIBUTION IN LINEAR CODES (hard), NEAREST
VECTOR IN INTEGER LATTICES (hard) ((DFVW99)), SHORT PERMUTATION
GROUP FACTORIZATION (hard).

I W [1] we have a collection including k -STEP DERIVATION FOR CONTEXT

SENSITIVE GRAMMARS, SHORT NTM COMPUTATION, SHORT POST

CORRESPONDENCE, SQUARE TILING ((CCDF96)), WEIGHTED q–CNF

SATISFIABILITY ((DF95b)), VAPNIK–CHERVONENKIS DIMENSION ((DEF93))

LONGEST COMMON SUBSEQUENCE (k , m = LENGTH OF COMMON SUBSEQ.)

((BDFW95)), CLIQUE, INDEPENDENT SET ((DF95b)), and MONOTONE DATA

COMPLEXITY FOR RELATIONAL DATABASES



A CASE STUDY: DATABASES

I (Chandra and Merlin, 77) the complexity of query
languages in the study of database theory.

I Vardi 1982 notes that classical complexity seemed wrong:
suggested evaluation of a query when the size of the query
was fixed as a function of the size of the database



I (Standard sort of problem) Input: A boolean query ϕ and a
database instance I.
Parameter: Some parameter of ϕ, such as the size of ϕ.
(or its complexity etc)
Problem: Evaluate ϕ in I.

I Yananakakis 1995 suggested that parameterized
complexity good framework to address this.

I (Downey-Fellows-Taylor, 95 Papadimitriou-Yannakakis 97)
The morning edition of the news is bad.

I Papadimitriou and Yannakakis systematically also looked
at other parameters such as bounding the number of
variables following ideas of Vardi (Va95). They looked at
positive queries, conjunctive queries, first order theories
and datalog ones and found them to be all W [1] hard and
at various levels of the W -hierarch y.

I Other analyses look at other parametric aspects and give
even more bad news. (e.g. Demri, Laroussinie and
Schnoebelen (DLS02).)



I You might well ask now, with “good” news like this provided
by parameterized complexity, what use is it? You could
argue that once we knew these problems were NP-hard
and likely PSPACE complete. Now we know that even
when you bound the obvious parameters then they are still
hard!

I One interpretation is that we should learn to live with this
by searching for new coping strategies



I The parametric point of view is to continue the dialog with
the problem. To cope by finding new, and maybe more
appropriate parameters.

I (Frick and Grohe (FrG02), Flum and Grohe (FG02a)) Let C
be a class of relational database instances such that
underlying graph of instances in C are any of the following
forms: bounded degree, bounded treewidth, bounded local
treewidth, planar or have an excluded minor. Then the
query evaluation problem for the relational calculus on C is
FPT.

I Frick and Grohe also looked at things beyond query
languages, such as XML and temporal logics such as LTL
and CTL∗ are used for specification languages for
automated verification, proving sometimes practical FPT
results.



I Notice that there are at least two ways to parameterize:
Parameterize the part of the problem you want to look at
and to parameterize the problem itself.

I This point of view makes this sometime a promise
problem. Input something, promise it is parameterized, and
ask questions about it.

I Two interpretations one with certificate one only with a
promise. e.g. CLIQUEWIDTH, PATHWIDTH.

I Some recent work “lowers the hardness barrier”; perhaps
giving better inapproximability results.



ETH

I Recall the exponential time hypthesis is (ETH) n-variable
3-SATISFIABILITY is not solvable in DTIME(2o(n)).
(Impagliazzo Paturi and Zane.)

I This is seen an important refinement of P 6= NP that is
widely held to be true.

I it is related to FPT as we now see.



THE MINIMOB

I INPUT A parametrically minature problem QUESTION Is it
in the class
e.g. INPUT a graph G of size klogn with n in unary.
Does it have a vertex cover of size d?

I Get mini Vertex cover, mini Dominating set, Minisat etc.
I Core problem: minicircuitsat.

THEOREM (CHOR, FELLOWS AND JUEDES ; DOWNEY ET.
AL. )
The M[1] complete problems such as MIN-3SAT are in FPT iff
the exponential time hypothesis fails.

I That is, more or less, EPT is the “same” as M[1] 6= FPT .
I And now we have a method of demonstrating no good

subexponential algorithm; Show M[1] hardness.
I Chen-Grohe established an insomorphism between the

complexity degree structures.
I Fellows conjectures that PCP like techniques will show

M[1]=W[1] using randomized reductions



XP-OPTIMALITY

I This new programme regards the classes like W[1] as
artifacts of the basic problem of proving hardness under
reasonable assumptions, and strikes at membership ofXP.

I Eg INDEPENDENT SET and DOMINATING SET which
certainly are in XP. But what’s the best exponent we can
hope for for slice k?

THEOREM (CHEN ET. AL 05)
The following hold:

(i) INDEPENDENT SET cannot be solved in time no(k)

unless FPT=M[1].
(ii) DOMINATING SET cannot be solved in time no(k)

unless FPT=M[2].



WHERE ELSE?

I We can formulate a notion of counting complexity and get
#W [1] (Flum and Grohe, McCartin). A sample theorem:

THEOREM (FG)
Counting k-cycles in a graph is #W [1]-complete. (The
existence problem is FPT, as we see next time.)



WHERE ELSE?

I Another area is approximation. Here we ask for an
algorithm which either says “no solution of size k ” or here
is one of size 2k (say).

I For example BIN PACKING is has to (k ,2k)-approx, but
k -INDEPENDENT DOMINATING SET has not approx of the
form (k ,F (k)) for any computable F unless FPT = W [1].
(DFMccartin)

I Flum Grohe show that all natural W [P] complete problems
don’t have approx of the form (k ,F (k)) for any computable
F unless FPT = W [P].



WHERE ELSE?

I EPT and bounded alternation. (Flum, Grohe and Weyer ) A
parameterized problem is in EPT iff it is solvable in time
20(k)|x |c .

I Partial formulation of an operator calculus such as BP
analog. (Downey, Fellows, Regan) (Moritz Meuller)
Unknown if analogs of, say, Toda’s Theorem holds.

I A few results on parameterized logspace, and even less on
parameterized PSPACE, except through game analogs.



ETP

I (Flum, Grohe and Weyer ) A parameterized problem is in
EPT iff it is solvable in time 20(k)|x |c .

I Things shown in FPT by elementary methods tend to be in
EPT. e.g. Vertex Cover.

I (EPT reductions)

L ≤EPT L′ iff 〈x , k〉 ∈ L iff 〈x ′, k ′〉 ∈ L′,

where x 7→ x ′ in time 20(k)|x |c , but

〈k , x〉 7→ k ′ has k ′ ≤ d(k + log |x |).
I Notice that this is not parameterized.
I This gives the E-hierarchy.
I Flum, Grohe and Weyer have shown that the various

modle checking problems from logic are complete at higher
levels of this hierarchy.

I Earlier Frick and Grohe had shown that model checking for
trees is not solvable in FPT with the f (k) elementary in
k = |φ| unless P = NP.

I Fascinating possibility k -TREEWIDTH (e.g.) is E [1] hard.



REMEMBER KERNELIZATION?

I When can we show that a FPT problem likely has no
polynomial size kernel?

I Notice that if P=NP then all have constant size kernel, so
some reasonable assumption is needed.



A GENERIC LOWER BOUND ENGINE

DEFINITION (BODLAENDER, DOWNEY, FELLOWS,
HERMELIN)
labelDefinition: DistillationA OR-distillation algorithm for a
classical problem L ⊆ Σ∗ is an algorithm that

I receives as input a sequence (x1, . . . , xt ), with xi ∈ Σ∗ for
each 1 ≤ i ≤ t ,

I uses time polynomial in
∑t

i=1 |xi |,
I and outputs a string y ∈ Σ∗ with

1. y ∈ L ⇐⇒ xi ∈ L for some 1 ≤ i ≤ t .
2. |y | is polynomial in max1≤i≤t |xi |.

I Similarly AND-distillation.



THE FORTNOW-SANTHANAM LEMMA

LEMMA (FORTNOW AND SANTHANAM 2007)
If any NP complete problem has a distillation algorithm then
PH = ΣP

3 . That is, the polynomial time hierarchy collapses to
three or fewer levels That is, the polynomial time hierarchy
collapses to three or fewer levels

I Here Σp
3 is NPNPNP

.
I Strictly speaking the prove that co − NP ⊆ NP\poly .



THE PROOF

I Let L be NP complete. We show that L is in NP\poly if L
has dist.

I Let Ln = {x /∈ L : |x | ≤ n}.
I Given any x1, . . . , xt ∈ Ln, the distillation algorithm A maps

(x1, . . . , xt ) to some y ∈ Lnc , where c is some constant
independent of t .



I The main part of the proof consists in showing that there
exists a set Sn ⊆ Lnc , with |Sn| polynomially bounded in n,
such that for any x ∈ Σ≤n (PHP) we have the following:

I If x ∈ Ln, then there exist strings x1, . . . , xt ∈ Σ≤n with
xi = x for some i , 1 ≤ i ≤ t , such that A(x1, . . . , xt ) ∈ Sn.

I If x /∈ Ln, then for all strings x1, . . . , xt ∈ Σ≤n with xi = x for
some i , 1 ≤ i ≤ t , we have A(x1, . . . , xt ) /∈ Sn.

I to decide if x ∈ L, guess t strings x1, . . . , xt ∈ Σ≤n, and
checks whether one of them is x . If not, it immediately
rejects. Otherwise, it computes A(x1, . . . , xt ), and accepts
iff the output is in Sn. It is immediate to verify that M
correctly determines (in the non-deterministic sense)
whether x ∈ Ln.



HOW DOES THIS RELATE TO KERNELIZATION?

DEFINITION (BODLAENDER, DOWNEY, FELLOWS,
HERMELIN)
A OR-composition algorithm for a parameterized problem
L ⊆ Σ∗ × N is an algorithm that

I receives as input a sequence ((x1, k), . . . , (xt , k)), with
(xi , k) ∈ Σ∗ × N+ for each 1 ≤ i ≤ t ,

I uses time polynomial in
∑t

i=1 |xi |+ k ,
I and outputs (y , k ′) ∈ Σ∗ × N+ with

1. (y , k ′) ∈ L ⇐⇒ (xi , k) ∈ L for some 1 ≤ i ≤ t .
2. k ′ is polynomial in k .

LEMMA (BODLAENDER, DOWNEY, FELLOWS, HERMELIN)
Let L be a compositional parameterized problem whose derived
classical problem Lc is NP-complete. If L has a polynomial
kernel, then Lc is also distillable.



EXAMPLES

LEMMA (BODLAENDER, DOWNEY, FELLOWS, HERMELIN)
Let L be a parameterized graph problem such that for any pair
of graphs G1 and G2, and any integer k ∈ N, we have
(G1, k) ∈ L ∨ (G2, k) ∈ L ⇐⇒ (G1 ∪G2, k) ∈ L, where G1 ∪G2
is the disjoint union of G1 and G2. Then L is compositional.



EXAMPLES

I k -PATH, k -CYCLE, k -CHEAP TOUR, k -EXACT CYCLE, and
k -BOUNDED TREEWIDTH SUBGRAPH

I k , σ-SHORT NONDETERMINISTIC TURING MACHINE

COMPUTATION (Needs work)
I Many recent examples, Bodlaender, Kratch, Lokshantox,

Saurabh etc. Also using (poly,poly)-reductions.



AND-COMPOSITION AND DISTILLATION

I Three days ago I received a manuscript from a student
Andrew Drucker from MIT who has shown this also implies
collapse. This implies all the below don’t have poly kernels.

I Oracle results
I Applications: Graph width metrics:
I CUTWIDTH, TREEWIDTH, PROBLEMS WITH TREEEWIDTH

PROMISES, EG.. COLOURING



OTHER RESULTS

I BDFH show that there are problems in ETP (FPT in time
O∗(2O(k))) without polynomial time kernels.

I Fortnow and Santhanam: Satisfiability does not have
PCP’s of size polynomial in the number of variables unless
PH collapse.

I The Harnik-Noar approach to constructing collision
resistant hash functions won’t work unless PH collapses.

I Burhmann and Hitchcock: There are no subexponential
size hard sets for NP unless PH collapses. (Ie many hard
instances)

I Chen Flum Müller: Many results, e.g. parameterized SAT

has no subexponential "normal" (strong) kernelization
unless ETH fails.



I Using transformations, Bodlaender, Thomass’/ e and Yeo
show that DISJOINT CYCLES, HAMILTON CIRCUIT

PARAMETERIZED BY TREEWIDT H etc don’t have poly
kernels unless collapse.

I Also the important DISJOINT PATHS, famously FPT by
Robertson and Se ymour.

I Similarly using Dell-Mecklebeek Kratz showed the
non-poly-kernelizability of k -RAMSEY.

I Fernau et. al. have shown that there are problems with
Poly Turing Kernels but no poly kernels unless collapse.(!),
and these are natural related to spanning trees (Namely
DIRECTED k LEAF SPANNING TREE).



TURING KERNELIZATIONS

I Possible to avoid the material above. e.g. Binkele-Raible,
Fernau, Fomin, Lokshantov, Saurabh and Villanger,
k -LEAF OUT TREE (directed spanning tree with k-leaves)

I The rooted case has a poly kernel.
I The unrooted case does not unless .....
I So it has a poly Turing Kernel
I no lower bounds by recent work on completeness.



DEFINITION (TURING KERNELIZATION)
A Turing Kernel consists of

1. (I) Three parameterized languages L1 and L2 (typically
L1 = L2) with Li ⊂ Σ∗ × N and L3 ⊆ Σ∗ × L1

(II) and a computable function g
(III) and a polynomial time computable function

f : Σ∗ × Σ∗ × N→ Σ∗ × N, 〈σ, τ, k〉 7→ 〈ρ, k ′〉 with |τ | ≤ |σ|
and |f (〈σ, τ, k〉)| ≤ g(k) such that

(IV) for all σ, τ, k ,

〈σ, τ, k〉 ∈ L3 iff 〈ρ, k ′〉 ∈ L2.

2. Plus an oracle Turing procedure Φ, running in polynomial
time on L1, with oracle L2, such that on input 〈σ, k〉, if the
procedure queries 〈τ, k〉 then it answers yes iff
f (〈σ, τ, k〉) ∈ L3



I The idea is that on input 〈σ, k〉 Φ works like a normal
polynomial time machine except on oracle queries, it
converts the query to a query of the kernel determined by
the query τ .

I In the case of k -LEAF OUT BRANCHING,
(I) L1 are pairs 〈G, k〉 consisting of digraphs with k or more

leaf outbranchings.
(II) L2 are pairs 〈Ĝ, k〉 consisting of rooted digraphs (the input

Ĝ would specify a root r ) with with k or more leaf
outbranchings.

(III) L3 are triples 〈r ,G, k〉 consisting of yes instances of
whether G has a k or greater leaf outbranching rooted at r .
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WHAT SHOULD YOU DO?

I You should buy that new wonderful book...(and its friends)
I muchas gratsias


