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Our Concern

I Mal’cev 1962 A computable abelian group is computably presented if
we have G = (G ,+, 0) has + and = computable functions/relations
on G = N.

I When can an abelian group be computably presented? (Relative to an
oracle) Is there any reasonable answer?

I Do different computable presentations have different computable
properties?

I Mal’cev produced examples presentations of Q∞ that were not
computably isomorphic, as we see later.

I Along with Rabin and Frölich and Shepherdson, began the theory of
presentations of computable structures, though arguably back to
Emmy Noether as recycled in van der Waerden (first edition).

I See Metakies and Nerode “Effective Content of Field Theory”.



Why should we care?

I We are logicians after all, and hence its our calling,....but:

I If we are interested in actual processes on algebraic structures then
surely we need to understand the extent to which they are algorithmic.

I Effective algorithmics requires more detailed understanding of the
model theory. Witness the resurrection of the study of invariants
despite Hilbert’s celebrated “destruction” of the programme. The
Hilbert basis (or nulstellensatz) theorem(s) are fine, but suppose we
need to calculate the relevant basis.

I Examples of this include the whole edifice of combinatorial group
theory. The theory of Gröbner bases etc. Ashenbrunner’s Thesis.

I As we will see a backdoor into estabishing classical results about the
existence/nonexistence of invariants in mathematics. Computability is
used to establish classical result.

I Establishing calibrations of complexity of algebraic constructions....
reverse mathematics.



While we are on the subject of logic

I Thanks to Moshe Vardi for this and the next quote (my highlighting).

I Cosma R. Shalizi, Santa Fe Institute (A famous US think-tank).

If, in 1901, a talented and sympathetic outsider had
been called upon (say by a granting agency) to survey the
sciences an name a branch that would the the least fruitful
in the century ahead, his choice might well have settled
upon mathematical logic, and exceedingly recondite field
whose practicioners could all have fit into a small
auditorium. It had no practical applications, and not even
that much mathematics to show for itself: its crown was an
exceedingly obscure definition of cardinal numbers.



More recently

I Martin Davis (1988) Influences of mathematical Logic on Computer
Science.

When I was a student, even the topologists regarded
mathematical logicians as living in outer space. Today the
connections between logic and computers are a matter of
engineering practice at every level of computer organization.

I Yuri Gurevich (Microsoft) quoted as saying engineers need logic not
calculus!

I Read a somewhat dated but wonderful collection in the Bulletin of
Symbolic Logic: On the Unusual Effectiveness of Logic in Computer
Science (Halpern, Harper, Immerman, Kolaitis, and Vardi).

I Echoes Wigner’s 1960 article “The unreasonable effectiveness of
mathematics in the natural sciences,” and Galileo’s “The book of
nature is writ in the language of mathematics.”



Computable abelian groups

I Describe computably presentable Abelian groups.

Theorem (Khisamiev 1970’s, Ash-Knight-Oates 1980’s)

A certain characterization of computable reduced abelian p-groups of finite
Ulm type in terms of limitwise monotonic approximations of functions.

I Recall that a set S is limitwise monotonic iff S = ra(f ) for some
computable f = f (·, ·), where for lims f (n, s) exists for all n, and
f (n, s + 1) ≥ f (n, s) for all s.

I Sometimes the function f has only elements of ω in its range and
sometimes for convenience we have ∞ there.

I Fact: the finite members of the range of one of these functions is a
Σ0
2 set.



Equivalence relations/structures

I Will be of relevance and interest later.

I E is a structure with cells ci for i ∈ ω. As above, note that they only
get bigger.

Theorem (Calvert, Cenzer, Harizanov, and Morozov 2006)

An equivalence structure E with infinitely many classes is computable if
and only if there is a limitwise monotonic function F (with range
ω ∪ {∞}) for which there are exactly |{x : F (x) = κ}| many classes of
size κ (for each κ ∈ ω ∪ {∞}) in E .



I Limitwise monotonic approximations found applications:

I in computable linear orders (Downey-Khoussainov, Harris,
Kach-Turetsky),

I in computable models of ℵ1-categorical theories (Khoussainov, Nies,
Shore),

I in computable equivalence structures (Harizanova et al.),

I in a characterization of high c.e. degrees (Downey, Kach, Turetsky).

I Groups as we soon see:



Ulm’s Theorem

I G is a p-group if each element has order pn for some n. G is reduced
if no element of infinite height. The height of g is the largest n with
pnx = g having a solution (or ∞).

I Ulm Sequence G0 = G , Gα+1 = pGα, and for limit Gα = ∩β<αGβ.
There is some α = λ(G ) with Gα = Gα+1.

I This α = λ(G ) is called the length. If G is computable then α < ωCK
1

by general results.

I Let P = {a ∈ G | pa = 0} and considering
Gβ∩P

Gβ+1∩P as a vector space

over Zp, we get a sequence (uβ(G ))β<α, called the Ulm sequence.

Theorem (Ulm, 1933)

If (uβ(G ))β<α is a countable sequence of elements of ω ∪ {∞}, then there
is a countable group with this sequence iff (i) if α = β + 1, u(β) 6= 0 and
(ii) for any limit β < α, there is an increasing βn 6= 0 and βn → β.



Theorem (Khisamiev; Ash, Knight, Oates)

Let G be a countable reduced abelian p-group with length λ(G ) < ω2, the
G has a computable copy iff

1. the relation Ri = {n, k) | uω.i+n(G ) ≥ k} is Σ0
2i+2, and

2. There is a ∆0
2i+1 function such that for each i , fi (n, s) is a limitwise

monotomic with finite limit m and uω.i+m(G ) 6= ∅.

We remark that if we are given any length ν < ωCK
1 and the ∆0

2i+1

functions uniformly, then we have a group G corresponding to the
functions.



I Question (Khisameiv, Ash et al.) Does this hold for ordinals ≥ ω2? If
not what is a possible characterization?

I The problem is that the proof is nonuniform, and works by induction
on ordinals below ω2. It appears to lack uniformity.

Theorem (Downey, Menikov, Ng)

There is a computable abelian p-group of Ulm length ω2 which does not
satisfy the uniform version of Khisamiev-Ash-Knight-Oates theorem.
Therefore, their proof can not be pushed up to ω2.

I Strangely, the proof filters through computable trees.

I Laurel Rogers gave an analysis of Ulm’s Theorem in TAMS in the
1960’s demonstrating that you can obtain it via trees.

I Question: Is there a computable reduced p-group with no
corresponding computable tree? Conj Yes (Downey), No (Melnikov),
No Clue (current state of affairs).



Rogers’ analysis

I T = (ω<ω, p, ∅), p predecessor.

I G (T ) via ∅ = 0, pa = b iff p(a) = b b ∈ G (T ) represented by∑n
i=1 kiai with ai ∈ T and ki ∈ ω.

I (Rogers) If T has no infinite branches then G (T ) is a reduced abelian
p-group. The converse is also true.

I Trees are not unique, but there is an equivalence relation which is
T1 ≡ T1, then G (T1) ∼= G (T2), and conversely. Equivalence
relation= sequences of “strippings”

I Example: T is the tree with one node p at level 1, and infinitely
many successors ck such that each is a chain and for each n there are
infinitely many ck of length ≥ n. T̂ is the same as T except that for
each n there is a node an of length 1 with a chain of length n below
it. T̂ stripped them off p. T ≡ T̂ . Same Ulm invariants.

I If T is computable, so is G (T ). Open : Converse?

I The Ash, Knight, Oates proof shows how to construct a computable
tree from the given information.



A minor victory

I Problem [Khisamiev 1990’s] Describe computable groups of the from⊕
p∈P Q(p), where P is a set of primes, and

Q(p) = { n
pk

: n ∈ Z and k ∈ N}.

Theorem (Khisamiev 2002)

The group GP is computable with some extra condition if and only if P is
n ot in a certain proper subclass of hh-immune sets.

Theorem (Downey, Goncharov, Knight et al. 2010)

The group GP is computable if and only if P is Σ0
3.



Computable Categoricity

I The effective classification tool.

I A computable structure A is computably categorical iff for all B ∼= A,
A ∼=computable B.

I relatively if it works for all oracles.

I There is a longstanding program to understand the relationship
between ∼=,∼=comp, classical structure of A and logical structure of A
in terms of definability.

I These all also have “higher up” versions, like ∆0
α categocity,

definability etc.

Theorem (Goncharov, 1975)

If A is 2−decidable, then A is computable cat iff it is relatively
computably cat iff it has an effective naming, that is a c.e. Scott family of
existential formulae with parameters c, such that for all a, b if they satisfy
the same φ, then they are automorphic.



More Recent Metatheorems

Theorem (Downey, Kach, Lempp, Turetsky-Fund. Math)

If A is 1-decidable and it is computably cat, then it is relatively ∆0
2 cat, as

it has a Σ2 Scott family.

Theorem (Downey, Kach, Lempp, Lewis, Montalbán,
Turetsky-submitted Annals of Math)

For each α < ωCK
1 there is a computably cat A which is not relatively ∆0

α

cat.



Example-Equivalence relations

I Computably cat equivalence structures are rare. Basically finitary.

Theorem (Calvert, Cenzer, Harizanov, Morozov)

A computable equivalence relation is comput. cat iff

1. it has only finitely many finite cells, or

2. has finitely many infinite classes, bounded character, and at most one finite
k > 0 with infinitely many equivalnce classes of size k.

I character χ(E ) = {〈n, k〉 | E has at least n classes of size ≥ k .
bounded if k is bounded.

I More interesting we look at ∆0
2 categoricity. General classification

seems hard.



Case study: coding a set

I The singleton case is interesting.

Definition

For a set X ⊂ ω, let E (X ) be an equivalence structure with ω-many
infinite classes and exactly one class of size n for each n ∈ X .
Say that an infinite Σ0

2 set X is categorical if the computable E (X ) is
∆0

2-categorical.

I There are infinite X which are categorical.

I If an infinite Σ0
2 set X is limitwise monotonic then X is not

categorical.

I There exists an infinite set which is not categorical and not limitwise
monotonic.

I The general intuition is that being not categorical is a “non-uniform
version” of being limitwise monotonic.

I Question How much do these notions differ?



Categoricity bounding vs. (non-)l.m. bounding

I Being limitwise monotonic is not a degree-invariant property. The
same is true about being categorical.

I Which c.e. degrees bound a categorical set?

Theorem (Downey, Melnikov, Ng)

For a c.e. degree a, the following are equivalent:

1. a is high (i.e. a′ = 0′′).

2. There exists an infinite categorical set X ≤T a.

3. (Downey, Kach, Turetsky) There exists an infinite X ≤T a such that X is
not limitwise monotonic.

I Thus, c.e. degrees do not see the difference. The proof of 1⇔ 2 has
nothing to do with limitwise monotonicity.



The general case of multi-sets

I Question Can we at least reduce the general problem to the set case
(remove repetitions)?

I Given an equivalence structure E , remove repetitions of finite classes
from E . Call the resulting E0 the condensation of E .

Theorem (DMN)

If E is ∆0
2-categorical, then its condensation is ∆0

2-categorical as well.

Theorem (Downey, Melnikov, Ng)

There is a computable E which is not ∆0
2-categorical but whose

condensation is ∆0
2-categorical.

Proof uses a 0′′′ priority argument.‘



Back to groups

Definition (Multi-cyclic groups)

A multi-cyclic group is a direct sum of cyclic (Zpn) and quasi-cyclic (Zp∞)
abelian p-groups.

Theorem

A multi-cyclic group with infinitely many infinite quasi-cyclic summands is
effectively ∆0

2-categorical if, and only if, the naturally associated
equivalence structure is effectively ∆0

2-categorical.

Corollary

There exists a ∆0
2-categorical multi-cyclic group having infinitely many

quasi-cyclic summands. (Answers a question left open by CCHM)



Multi-cyclic groups

I Comments on the proof:

1. (Uniform) ∆0
2-categoricity in such groups is regulated by the

complexity of height-function. (The proof uses a refinement of the first
half of Kaplansky’s book.)

2. We don’t know if the theorem holds for plain ∆0
2-categoricity

(conjecture: no).
3. A direct proof of the Corollary, without using the Theorem, would be

problematic.

I (Remark) In the context of c.e. degrees, effective ∆0
2-categoricity

bounding is equivalent to being complete (a pretty proof).



Categoricity questions for abelian groups

I When we specialize to specific structures within which it is hard to
code graphs questions become more complex. You actually have to
do some algebra!

I This is not too hard if you have torsion, and in particular p-groups.

I These have proven useful in lots of areas, ℵ1 categorical theories,
equivalence relations, linear orderings, etc.

Theorem (Goncharov, Smith)

A computable p-group is computably categorical iff it can be written in
one of the following forms.

1. (Z(p∞))` ⊕ G for ` ∈ ω ∪ {∞} and G finite;

2. (Z(p∞))n ⊕ (Zpk )∞ ⊕ G where G is finite, and n, k ∈ ω.



I (Calvert-Cenzer-Harizanov-Morozov) A p-group is computably
categorical iff it is uniformly computably categorical (and hence iff
relatively computably categorical) (and hence has a simple algebraic
structure by results of Goncharov-Smith)

I We remark that this phenomenom (uniform=nonuniform) is kind of
rare.

I The reason is that the uniform cases can be dealt with by forcing
whereas the non-uniform ones use priority arguments.

I Example: The algorithmic dimension if a structure A is the number of
computable isomorphism types it has. Goncharov showed that finite
dimensions are possible. Ash-Knight-Manasse-Slaman, and Chisholm
showed that only 1 and ∞ are possible in the relative case.



Torsion-Free Abelian Groups

I Here we will study torsion-free abelian groups. That is, they have no
elements z with zn trivial.

I Some kind of good behaviour.

Theorem (Khisamiev)

Every Π0
n+1 presentable torsion-free abelian group is isomorphic to one

which is ∆0
n-presentable.

I In general the isomorphism problem is very complex:

Theorem (Downey and Montalbán)

The isomorphism problem for torsion-abelian groups is Σ1
1 complete.



Consequences of Σ1
1-completeness

I The idea of an invariant is that is ought to make the problem simpler.

I Classical isomorphism is always Σ1
1. “There is a function such that

....”

I Invariants make this easier, you would expect. Dimension in a vector
space makes the problem ∆0

3.

I The point is that a Σ1
1-completeness result result means that the

cannot be reasonable invariants for the isomorphism problem.

I This methodology understands invariant theory computationally.

I There are other programmes like this as we now will see.



The Borel game

I This is related to work by the descriptive set theorists who seek to
have a notion of Borel cardinality for isomorphism types.

I One class C is reducible to another D if there is a Borel mapping
injectively taking the isomorphism types of C into D.

I For example, rank 3 torsion free groups are above rank 2 groups here.

I H. Friedman, Kechris, Thomas, Hjorth etc.



Better algebraic classes

I The idea is to look at algebraically more tractable classes; this is what
is done classically anyway.

I Recall that if G is a torsion-free then G embeds into ⊕i∈F (Q,+).
The cardinality of the least such F is called the (Prüfer) rank of G .

I Khisamiev proved that there is an effective embedding.



Rank One Groups

I The only groups we understand well are the rank one groups (and
certain mild generalizations) If g ∈ G , define t(g) = (a1, a1, . . . )
where ai ∈ {∞} ∪ ω and represents the maximum number of times pi

divides g . Say that t(g) = t(h) if they are =∗, meaning that they
must be ∞ in the same places, but otherwise are finitely often
different. Thus we can write t(G ).

I For example, a divisible group would have (∞,∞, . . . ) as its type.

Theorem (Baer, Levi)

For rank 1 torsion-free abelian groups, G ∼= H iff they have the same type.

I One corollary is that if we consider T (G ) = {〈x , y〉 | x ≤ t(G )y},
then G is computably presentable iff T (G ) is c.e.. (Mal’tsev)



Two Corollaries

I G is a computably categorical torsion-free abelian group iff it has
finite rank.

Definition

A structure A has a degree iff min{deg(B) | B ∼= A} exists.

I Strictly speaking, we would mean the isomorphism type here.

I (Jockusch) Can define jump degree by replacing deg(B) by deg(B)′.
The same for α-th jump degree. Proper if no β-th jump degree for
β < α.

I (Coles, Downey and Slaman) Every torsion free abelian group of finite
rank has first jump degree.

I (Anderson, Kach, Melnikov, Solomon) For each computable α and
a > 0α there is a torsion-free abelian group with proper α-th jump
degree a.



The infinite rank case

I It could be hoped that if G has infinite rank, then G ∼= ⊕i∈ωHi with
Hi of rank one.

I Alas, this is not true, however, there is a class of groups for which this
is true, called completely decomposable for which this does happen.

I What about categoricity for such groups?

I We cannot hope for computable categoricity, but can hope for things
“higher up”.



The homogeneous case

I If G ∼= ⊕H for a fixed H then G is called homogeneous

Theorem (Downey and Melnikov)

Homogeneous computable torsion free abelian groups are ∆0
3 categorical.

I The proof relies on a new notion of independence called
S-independence generalizing a notion of Fuchs to sets S of primes.

I B, a set of elements, is S-independent (in G ) iff for all p ∈ S and
b1, . . . , bk ∈ G ,

p|
k∑

i=1

mibi implies p|mi for all i .

I This bound is tight.



But when can it be ∆0
2 categorical?

I Recall that a set S is called semilow if {e |We ∩ S 6= ∅} ≤ ∅′.
I Semilow sets allow for a certain kind of local guessing, and aroze in

(i) automorphisms of the lattice of computably enumerable sets
(Soare) and in (ii) computational complexity as non-speedable ones.
(Soare, Blum-Marques, etc.)

Theorem (Downey and Melnikov)

G is ∆0
2 categorical iff the type of H consists of only 0’s and ∞’s and the

position of the 0’s is semilow.

I The proof is tricky and splits into 5 cases depending on “settling
times”.

I We remark that this is one of the very few known examples of when
∆0

2 categoricity of structures has been classified.



The general completely decomposable case

Theorem (Downey and Melnikov)

A completely decomposable G is ∆0
5 categorical. The bound is tight.

The proof uses methods from the homogeneous case, plus some new ideas.
The sharpness is a coding argument. For sharpness we use copies of
⊕i∈ωZ⊕⊕i∈ωQ(p) ⊕⊕i∈ωQ(q)., where p 6= q primes and Q(r) denotes the
additive group of the localization of Z by r . Then a relation θ on this
group which is decidable in one copy and very bad in another.
With some extra work we can also prove the following. We don’t know if
the bound is sharp here.

Corollary (Downey and Melnikov)

The index set of completely decomposable groups is Σ0
7.
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