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I I would like to discuss the remarkable story of lowness.
I I will try to explain the decanter method, which is relatively

poorly understood.
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K -TRIVIALITY

I Chaitin proved that a real A is computable iff for all n,
C(A � n) ≤+ log n, iff C(A � n) ≤+ C(n).

I This is proven using the fact that a Π0
1 class with a finite

number of paths has computable paths, combined with the
Counting Theorem {σ : C(σ) ≤ C(n) + d ∧ |σ| = n} ≤ A2d .
(The Loveland Technique)

I What is K (A � n) ≤+ K (n) for all n? We call such reals
K -trivial. Does A K -trivial imply A computable?

I Write A ∈ KT (d) iff for all n, K (A � n) ≤ K (n) + d .
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THE ARGUMENT FAILS

I It is still true that {σ : K (σ) ≤ K (|σ|) + d} is O(2d), so it
would appear that we could run the Π0

1 class argument
used for C. But no...

I The problem is that we don’t know K (n) in any
computable interval, therefore the tree of K -trivials we
would construct would be a Π0

1 class relative to ∅′.
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THEOREM (CHAITIN, ZAMBELLA)
There are only O(2d) members of KT (d). They are all ∆0

2.

THEOREM (SOLOVAY)
There are noncomputable K -trivial reals.

THEOREM (ZAMBELLA)
Such reals can be c.e. sets.
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THE TAILWEIGHT GAME

I The following argument due to Downey, Hirschfeldt, Nies
and Stephan and independently Kummer is becomming
reasonably well known to the experts, but perhaps not
outside the area.

I The method could be described as the tailsum game.
I A complicated way to “prove” that the set B = {0n : n ∈ ω}

has the same complexity as ω = {1n : n ∈ ω}.
I Opponent enumerates the universal U describing n with

descriptions. We build M, a KC set o that if opponent
plays (k , n) (that is 1n has a description of length k ), then
we enumerate (k , 0n) into M (or indeed (k + 1, 0n) would
be okay too.

Rod Downey Victoria University Wellington New Zealand Lowness, Again



K -Triviality
The decanter method

K -lowness

I In the above we play into M no more than U plays into its
domain. Thus M is a KC set. The overall weight or
measure of the domain of M is Ω, or 1

2Ω if we use the “+1”
option.

I Now imagine we are building B but now we want to make B
noncomputable. Now there is asymmetry.

I To make B noncomputable, at some stage we must make
Bs+1(x) = 1, where Bs(x) = 0.

I Thus we must issue new descriptions for all of the tail:
Bs+1 � n for x ≤ n ≤ s.

I However, A has not changed, so this requires new
quanta we can’t charge to U.

I The cost is the weight of the tail, the tailsum:∑
x≤n≤s

2−Ks(n).
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I The point is that if we can limit this cost to, say, 1
2 the extra

cost would be acceptable.
I Since cost equals chargable cost (1

2Ω) plus extra cost (1
2 ).

I

A = {〈e, n〉 : ∃s (We,s ∩ As = ∅ ∧ 〈e, n〉 ∈ We,s

and
∧

∑
〈e,n〉≤j≤s

2−K (j)[s] < 2−(e+2))}.
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THE DECANTER METHOD

I K -trivials form a remarkable class as we will see.
I First they solve Post’s problem.
I Theorem: (DHNS) If A is K -trivial then A <T ∅′.
I More later.
I The proof below is the version discovered by Nies.
I The proof below runs the same way whether A is ∆0

2 or
computably enumerable. We only need the relevant
approximation being A = ∪sAs or A = lims As.
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wtt -INCOMPLETENESS

I Tool: amplification.
I A is in KT (b), and we are building a machine M whose

coding constant in U is b.
I Meaning: we describe n by some KC-axiom 〈p, n〉 i.e. we

M-describe n by something of length p, then in U we
describe n by something of length p + d and hence the
opponent at some stage s must eventually give a
description of As � n of length p + b + d .

I Note: the opponent has to play less quanta than we do for
the same effect.
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I Suppose that A is wtt-complete computing B (a set we
build) with a known reduction ΓA = B, and use γ(x).

I We are trying to claim that A is not K -trivial.
I We force U to issue too many descriptions of A, by using

up all of its quanta.
I The first idea is to make the opponent play many times on

the same length and hence amount of quanta.
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I Pick k = 2b+d+1 many followers mk < dots < m1 targeted
for B and wait for a stage where `(s) > m1, `(s) denoting
the length of agreement of ΓA = B[s].

I Now load an M-description of some fresh, unseen
n > γ(m1) (and hence bigger than γ(mi) for all i) of size 1,
enumerating an axiom 〈1, n〉.

I Wait for the opponent to U-decribe As � n with complexity
≤ 2−b+d .
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I When `(s) > m1, put m1 into Bs+1 − Bs.
I After As1 � n 6= As � n (as n > γ(m1)), and `(s1) > m1 and

Ks(As1 � n) ≤ d + b, again, repeat by putting m2 into Bs1+1.

I This cannot return 2b+d+1 many times as each time U has
to issue new At � n descriptions of size ≤ 2b+d .
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IMPOSSIBLE CONSTANTS

I Now, Γ is a Turing reduction; NB γ(mi , s) not γ(mi).
I Now when we play the M-description of n, the opponent

can
I move the use γ(m1, s) (or γ(mk , s) even) to some value

bigger than n
I before he decides to match our description of n.
I This costs him little.
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I We realize that it is pretty dumb of us to try to describe n in
one hit.

I All that really matters is that we load lots of quanta beyond
some point were it is measured many times.

I Note wven for wtt , we certainly could have used many n’s
beyond γ(m1) loading each with, say, 2−e for some small
e, and only attacking once we have amassed the requisite
amount beyond γ(m1).
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I Impossible assumption: Turing reduction ΓA = B and the
overheads of the coding and Recursion Theorem result in
a constant of 0 for the coding, and the constant of triviality
is 0.

I ΓA = B[s]

I Remember, if we use the dumb strategy, then he will
change As � γ(m, s) moving some Γ-use before he
describes As � n.

I Thus he only needs to describe As � n once.
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DRIPFEEDING

I We use a drip feed strategy for loading.
I Our goal if to load 7

8 beyond some n (more or less) and
have it counted twice, so he’d need 7

4 in his domU.
I It might be that whilst we are trying to load some quanta,

the change use problem might happen, a certain amount
of “trash”, that is, axioms enumerated into M that do not
cause the appropriate number of short descriptions to
appear in U.

I We arrange things so that this trash is small enough to be
negligable.
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INDUCTIVE PROCEDURES

I We begin by using a procedure P(7
8 , 1

8), asking us for twice
counted quanta (a “2-set”) of size 7

8 but only having trash
bounded by 1

8 .
I 1

8 =
∑

j 2−(j+4).

I Initially we might try loading quanta beyond the current use
γ(m, s0) in lots of 2−4.

I If we are successful in reaching our target of 7
8 before A

changes, then we are in the wtt-case and can simply
change B to get the quanta counted twice.

Rod Downey Victoria University Wellington New Zealand Lowness, Again



K -Triviality
The decanter method

K -lowness

The second approximation: impossible constants
The less impossible case

INDUCTIVE PROCEDURES

I We begin by using a procedure P(7
8 , 1

8), asking us for twice
counted quanta (a “2-set”) of size 7

8 but only having trash
bounded by 1

8 .
I 1

8 =
∑

j 2−(j+4).

I Initially we might try loading quanta beyond the current use
γ(m, s0) in lots of 2−4.

I If we are successful in reaching our target of 7
8 before A

changes, then we are in the wtt-case and can simply
change B to get the quanta counted twice.

Rod Downey Victoria University Wellington New Zealand Lowness, Again



K -Triviality
The decanter method

K -lowness

The second approximation: impossible constants
The less impossible case

INDUCTIVE PROCEDURES

I We begin by using a procedure P(7
8 , 1

8), asking us for twice
counted quanta (a “2-set”) of size 7

8 but only having trash
bounded by 1

8 .
I 1

8 =
∑

j 2−(j+4).

I Initially we might try loading quanta beyond the current use
γ(m, s0) in lots of 2−4.

I If we are successful in reaching our target of 7
8 before A

changes, then we are in the wtt-case and can simply
change B to get the quanta counted twice.

Rod Downey Victoria University Wellington New Zealand Lowness, Again



K -Triviality
The decanter method

K -lowness

The second approximation: impossible constants
The less impossible case

I We load the quanta 2−4 on some n0 > γ(m, s0).

I He has a choice:
I Move γ(m, s) to some new γ(m, s1) > n0, at essentially no

cost to him.
I We played 2−4 for no gain, and would throw the 2−4 into

the trash.
I Now we would begin to try to load anew 7

8 beyond γ(m, s1)
but this time we would use chunks of size 2−5.

I Again if he moved immediately, then we would trash that
quanta and next time use 2−6.

I Note: ΓA = B this movement can’t happen forever, lest
γ(m, s) →∞.
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I On the other hand, in the first instance, perhaps we loaded
2−4 beyond γ(m, s0) and he did not move γ(m, s0) at that
stage, but simply described A � n0 by some description of
size 4.

I At the next step, we would pick another n beyond
γ(m, s0) = γ(m, s1) and try again to load 2−4.

I If the opponent now changes, then we lose the second
2−4 but he must count the first one (on n0) twice.

I That is, whenever he actually does not move γ(m, s) then
he must match our description of the current n, and this
will later be counted twice since either he moves γ(m, s)
over it (causing it to me counted twice) or we put m into B
making γ(m, s) change.
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SUMMARY

Each time we try to load, he either matches us (in which case
the amount will contribute to the 2-set, and we can return
2−current β where β is the current number being used for the
loading to the target,
or we lose β, but gain in that γ(m, s) moves again, and we put
β in the trash, but make the next β = β

2 .
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THE LESS IMPOSSIBLE CASE

I The key idea from the wwt-case where the use is fixed but
the coding constants are nontrivial, is that we must make
the changes beyond γ(mk ) a k−set.

I We pretend that the constant of triviality is 0, but now the
coding constant is 1.

I Thus when we play 2−q to describe some n , the opponent
will only use 2−(q+1).
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I Emulating the wtt-case, we would be working with
k = 21+1 = 4 and would try to construct a 4-set of
changes.

I What we will do is break the task into the construction of a
2-set of a certain weight, a 3-set and a 4-set of a related
weight in a coherent way.

I Procedures Pj for 2 ≤ j ≤ 4 which are called in in reverse
order in the following manner.
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The less impossible case

I Our overall goal begins with, say P4(
7
8 , 1

8)

I Load 7
8 beyond γ(m4, s0) initially in chunks of 1

8 , this being
a 4-set.

I The procedure Pj (2 ≤ j ≤ 4) enumerates a j-set Cj . The
construction begins by calling P4, which calls P3 several
times, and so on down to P2, which enumerates the 2-set
C2 and a KC set L of axioms 〈q, n〉.

I Each procedure Pj has rational parameters q, β ∈ [0, 1].
The goal q is the weight it wants Cj to reach, and the
garbage quota β is how much it is allowed to waste.
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I In the impossible construction, where there was only one
m, the goal was 7

8 and the β evolved with time. The same
thing happens here. P4’s goal never changes, and hence
can never be met lest U use too much quanta. Thus A
cannot compute B.

I The main idea is that procedures Pj will ask that
procedures Pi for i < j do the work for them, with
eventually P2 “really” doing the work, but the the goals of
the Pi are determined inductively by the garbage quotas of
the Pj above.

I Then if the procedures are canceled before completing
their tasks then the amount of quanta wasted is acceptably
small.
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I P4(
7
8 , 1

8). Its action:
1. Choose m4 large.
2. Wait until ΓA(m4) ↓.

I Then P4 will call P3(2−4, 2−5).
I Note that here the idea is that P4 is asking P3 to

enumerate the 2−4’s which are the current quanta bits that
P4 would like to load beyond m4’s current Γ-use.

I If the Γ-use of m4 changes, then we will go back to the
beginning.
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I P3(2−4, 2−5) will:

1. Choose m3 large.
2. Wait until ΓA(m3) ↓.

I Then it will invoke P2(2−5, 2−6), etc.
I It is only P2(2−5, 2−6),
I That is, load 2−5 beyond γ(m2, s) in lots of 2−6.
I Only P2 puts numbers into B to induce an A-change.
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The second approximation: impossible constants
The less impossible case

SUMMARY

In general, the inductive procedures work the same way. Whilst
waiting, if uses change, then we will initialize the lower
procedures, reset their garbages to be ever smaller, but not
throw away any work that has been successfully completed.
Then in the end we can argue by induction that all tasks are
completed.
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Similar methods allow for us to show the following

THEOREM (NIES)
All K -trivials are superlow A′ ≡tt ∅′, and are tt-bounded by c.e.
K -trivials.
Thus triviality is essentially an “enumerable” phenomenom.
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I This and the results to follow use a similar trick:
I Suppose that we play the decanter game on a K -trivial.

Then the procedures won’t return.
I Now suppose that we want to show a K -trivial A is

(super-)low.
I We want to decide should we believe some computation

ΦA
e (e) ↓ [s]. Is As � ϕe(x , s) = Aϕe(e)?
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I The idea is that we want to load enough quanta beyond
ϕe(x , s) that the computation is believable, or it costs the
opponent a lot to show us wrong. Thus we believe, i.e.
change from believing ↓ to ↑, when the inductive
procedures below load enough quanta.

I This should be thought of as an ω branching tree of
possibilities, one for each argument e.

I Each of the possibilities is given some quota varying with
s, but is “like” 2−(e+1), also with an inductive trash quota.

I At the outcome assuming that the procedure does not
return, we begin another attampt to compute the jump of A
working on computations ΦA

j (j), for j > ϕ(e, s). These are
given each a quota, the total being essentially the trash of
the procedure above.

I Nies calls the procedure which does not return the golden
run, and it is this that constructs the correct procedure
computing the jump.
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There are other antirandomness notions.

DEFINITION (KUČERA AND TERWIJN)
We say A is low for randomness iff the reals Martin-Löf random
relative to A are exactly the Martin-Löf random reals.

DEFINITION (HIRSCHFELDT, NIES, STEPHAN)
A is a a base of a cone of randomness iff A ≤T B with B
A-random.
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THEOREM
The following are equivalent.
(I) (Nies) A is low for randomness.

(II) (Hirschfeldt and Nies) A is K -low in that K A =+ K .
(III) (Hirschfeldt, Nies, Stephan) A is a base of a cone of

randomness.
(IV) (Downey, Nies, Weber, Yu+Nies, Miller) A is low for

weak-2-randomness.
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QUESTIONS AND A PROPER SUBCLASS

It is open if this is the same as a number of other “cost function”
classes such as the reals which are Martin-Löf cuppable to ∅′.
(Nies)
It is known there is a proper subclass defined by cost function.

DEFINITION (NIES)
Let h be an order. We say that A is jump traceable for the order
h iff there is a computable collection of c.e. sets Wg(e) with
|Wg(e)| < h(e) and JA(e) ∈ Wg(e). A is strongly jump traceable
iff it is jump traceable for every computable order.
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THEOREM (NIES)
A is K -triv implies that there is an order h (roughly n log n)
relative to which A is jump traceable.

THEOREM (FUGIERA, NIES, STEPHAN)
Noncomputable sjt c.e. sets exist.

THEOREM (CHOLAK, DOWNEY, GREENBERG)
The c.e. sjt’s are a proper subclass of the K -trivials. They form
an ideal.

THEOREM (DOWNEY, GREENBERG)
If A is sjt then A is ∆0

2

I Roughly need orders
√

log n, log log n. Is there a
combinatorial characterization?
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LOTS OF IGNORED WORK

There is a lot of material on lowness for e.g. Schnorr, Kurtz and
computable randomness. For example:

THEOREM (NIES)
No noncomputable set is low for computable randomness

THEOREM (TERWIJN-ZAMBELLA, NIES, ETC)
A is computably traceable iff A is low for Schnorr random.
Computably traceable is roughly uniformly hyperimmune free.

THEOREM (DOWNEY-GRIFFITHS, +STEPHAN-YU)
The low for Kurtz random properly contain the low for Schnorr
randoms, and are properly contained in the hyperimmune free
degrees.
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