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FIP

» One equivalent of the axiom of choice

A family of sets F = {A; |€ Q} has finite intersection property iff for
all finite F C Q, NjcrAi # 0.

The principal says: Any collection of sets has a maximal subfamily
with FIP.

We investigate the computability of this.
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First began by Dzharfarov and Mummert.



The first thing to notice is that it depends on whether you consider
the family as set or a sequence

If as a set then () is easily codable into a sequence and the theorem is
equivalent to ACAg. (Namely, have a set B = B, such that it is
initially empty, and if e € ('[s] henceforth intersect it with everything,
so it must be included. (' can clearly figure things out.)

Interesting if a sequence, so that Az, Ay, Az is different from
AQ) A37 Al-

Similarly D>IP for for all pairs A; N Aj # (. (DM notation)




A Basic Result

Meet Re : W, is not an index for a maximal FIP family.
Use a trap set Xe.
Begin with Ag, A1, .... Wait for W, to respond.

Start intersecting X, “in the back” . If W, enumerates it win with
finite injury.
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The c.e. noncomputable case below C #7 0.
We are building Ag, A1, ... An.
We want to put some element B into this family (with truncation), as

we have seen B intersect Ao,..., A/, the first position determined by
B’s index.

We then place a permitting challenge to C. If later we see C permit
J, we change the family to Ao, ... A;, B.

When B meets Aj1[s] place another challange on B.

The (/-hyperimmune is because (/' knows if we ever want to put
things in, and infinitely often the C can decode this.

It might seem that the c.e. case would also work for AS C, but it fails
for a nonuniform reason.

An earlier promise for a C-configuration might force some D; into the
sequence which might be disjoint from the B we are attempting to
put in. (board)



(proof)[DDGT] We will define a computable family of the form

{AL:e<i}U{B.:ecw}

We will call sets AL and B, with subscript e “e-sets”. We will ensure the
following hold.
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Every AL is nonempty.

Be is nonempty iff ¢e(e) |, and contains only numbers larger than the
stage when ¢.(e) converges.

If i # e, then every nonempty e-set intersects every nonempty i-set.
For all i,j > e, Afe intersects Aje

AL intersects By iff ¢e(x) | for all x < i+ 1. Moreover, the
intersection only contains elements larger than the least stage s such
that ¢e(x) | [s] for all x < i+ 1.



We can assume the nonempty sets also code their indices, so that for every
subfamily C = {C,, | n € w} which does not contain the empty set, we can
compute from C, which set Aé or Be is equal to C,,.

Let C be a maximal subfamily with D,IP, and let Cs denote {Cy | n<s}.
Since C does not contain the empty set, for each e, if Be ¢ C, then Aé eC
for every i > e, since AL intersects every nonempty set in our family,
except perhaps B. Let g be defined by

g(x) = (us)Ve < i < x AL € Cs V Be € Cs.
Let f be defined by
f(x) = (un)Vi,j < g(x) GGN G N0, n] # 0.

Observe that f <t C.



We will show f is not majorized by any computable function. Suppose ¢,
is total. Then every e-set intersects every nonempty set in the family we
built, so the maximal subfamily C must contain Be and every Ag. Let

x > e be minimal such that A appears after B, in C. | claim

f(x) > ¢e(x). Notice g(x) bounds the position that B, appears. If x = e,
then B. N[0, f(x)] is nonempty and therefore f(x) > ¢c(e). If x > e, then
g(x) also bounds the position AX~! appears, and therefore

Be N AX~1 N0, f(x)] is nonempty. Thus f(x) > ¢e(x).



1-Generices, again

The main idea: Think about the proof that if a is c.e. then it is FIP. If we
want to add some B to Ap, A1, ..., then we put up a permitting challenge
to aa and if permission occurs slot B in, and truncate the family.

If we need to add some B in then it will be dense in the construction so a
permission occurs. For a 1-generic construction, for finite partial families,
we will see such B occur and challenge generics to include B by the
enumeration of a c.e. set of strings (thinking of sequences as strings, and
the family as coding the generic). If this is dense then the generic will
meet the condition.



In more detail:

Suppose that X is 1-generic. Let {A,: n € w} be a nontrivial family of
sets. Without loss of generality, we may assume Ay # ). Given f : w — w,
we define a function g recursively as follows:

> g(0)=0

» Suppose we have defined g [ n. To define g(n+ 1), look for the least
m < n+ 1 different from g(0)...g(n) such that Ay, N(,<, Ag(x)
contains a number smaller than f(n+ 1). If there is such an m, define
g(n+ 1) = m. Otherwise, define g(n+ 1) = 0.

This defines a functional W : w* — w*. We define W7 for o € w<¥ in the
usual way, noting that |[W7| = |o]|

In DDGT, we prove that if X is 1-generic, and if g = WPX, where px is the
principal function of X, then {A :n € w} is a maximal subfamily of
{An : n € w} with FIP.

g(n) -



By construction, for all N, (,_y Ag(n) is nonempty, as we only allow g to
take a new value not already in its range when we see a witness to
nonempty intersection. Thus the subfamily {Ag(,,) :n € w} has FIP.
Suppose it is not a maximal subfamily with FIP, and let m be minimal
such that m is not in the range of g, but {Am, Ag(n) : n € w} has FIP. Let

W = {o: 3nVP(n) = m}

where p, is the element of wX, where k is the number of 1s in &, such that
po(i) gives the position of the ith 1 in o. Then no initial segment of X
can be in W, since m is not in the range of g. However, every initial
segment of X can be extended to an element of W. Let o be an initial
segment of X such that the range of WPe contains every number less than
m in the range of g, and for every number / less than m not in the range
of g, the range of WP contains some jj ... jk such that

AiNA,N...NA;, =0.

Such a o exists by the minimality of m.



Now, for any initial segment 7 of X extending o,

An () Awer(n) # 0.

n<|pr|

Therefore, extending 7 by sufficiently many Os followed by a 1 (such that
the number of Os bounds some element of this intersection) gives a string
in W. This contradicts the 1-genericity of X.



The AY Case

The theorem is aided by the fact that there is a universal family.

e

The idea for the proof is “intersect a lot, in a recoverable way.”




Let {{AX}icu }kew be an enumeration of all computable instances of FIP.
We let D; be a canonical listing of finite subsets of (w x w). As time
passes, we may see a D; with

() Af#0

ieD}”

for all k with D}k] # (). Note that this is a c.e. event. When this happens,
we enumerate j into U 4 for all (i, k) € Dj. This completes the
description of U = {U;}cy-

The idea is that U ) represents Aff. Suppose D; = {(i, k)}. Then note
that AX £ () <= j € U, and further that no other U can possibly
contain j.

Now, suppose F = {F;}icw is a solution for 2. Then let

B ={Af| Uj € F} = {Af| for j such that D; = {(i, k)}, j € Fisome /}.



Clearly B can be enumerated from F, and this enumeration is as uniform
as we could want. We claim that B is a solution for A.

Suppose Af-;, Ai’;, e Af{n € B. Then Uy iy, Ui iys - - -5 Ui iy € F- So
there is some j € Uy ) N Ugj, 0 N == N U, k). By construction, this tells
us that (io, k), (i1, k), ..., (im, k) € Dj, and A NAF N---NAE 0. So B
is a solution.

Now, suppose F were maximal. Then for any AJ’-‘ ¢ B, there is a finite
subset of 7 which blocks U; . Call this finite set C. Now, consider

D = {Af | Ui € C}. Clearly D C B. We claim that D blocks Af. For if
not, then let D; = {(i, k") | Uiy € C}U{(j, k)}. By construction, we
would have eventually enumerated / into Uj; +) and also into all U € C,
contrary to our choice of C. So AJ’-‘ is blocked from B, and thus B is
maximal.



Given @ of FIP degree, we build 1-generic G <7 Q, and a family.
At some stage have Xp, X1,... and G <7 Q|[s].

Want to make G meet Vg, say. Use a auxilairy set B = Be.

Make it meet, say, Xp, ..., Xe (but not the rest) (A permitting
challenge). Repeat with X1 etc.

If at some stage we get permission, then want to have, say,

Xo, - .., Xj, Be want to block this from going back (For the principle
all families representing the same collections of sets should give the
same 1-generic) using bocker Z ;



The general case

» Does this hold in general? We don’t know.

» Earlier Downey claimed that there was a minimal FIP bounding
degree, But the claimed proof was flawed.



Finite variations

>

Do the same but use only families of finite sets.

v

Computably true if given as either canonical finite sets, or with a
bound on the number.

\{

FIP is computably true (look at the big intersection)

\4

If only finite and weak indices:

v

The proof is similar but uses more initialization and priority.



Thank You



