The Finite Intersection Property and Computability Theory

Rod Downey Victoria University Wellington New Zealand

Joint with Diamondstone, Greenberg, Turetsky.

Cornell, November 2012

FIP

- One equivalent of the axiom of choice
- A family of sets *F* = {*A_i* |∈ *Q*} has finite intersection property iff for all finite *F* ⊂ *Q*, ∩_{*i*∈*F*}*A_i* ≠ Ø.
- The principal says: Any collection of sets has a maximal subfamily with FIP.
- We investigate the computability of this.
- First began by Dzharfarov and Mummert.

- The first thing to notice is that it depends on whether you consider the family as set or a sequence
- If as a set then Ø' is easily codable into a sequence and the theorem is equivalent to ACA₀. (Namely, have a set B = B_e such that it is initially empty, and if e ∈ Ø'[s] henceforth intersect it with everything, so it must be included. Ø' can clearly figure things out.)
- ► Interesting if a sequence, so that A₁, A₂, A₃ is different from A₂, A₃, A₁.
- ▶ Similarly \overline{D}_2 IP for for all pairs $A_i \cap A_j \neq \emptyset$. (DM notation)

Definition

Say that \mathbf{a} is FIP iff for all computable collections of sets, \mathbf{a} can compute a solut to the FIP problem.

Theorem (Dzharfarov and Mummert)

There is a computable collection of sets with no c.e. subfamily with FIP. So **0** is not FIP, or even \overline{D}_2 IP.

- 1. Meet R_e : W_e is not an index for a maximal FIP family.
- 2. Use a trap set X_e .
- 3. Begin with A_0, A_1, \ldots Wait for W_e to respond.
- 4. Start intersecting X_e "in the back". If W_e enumerates it win with finite injury.

Theorem (Dzharfarov and Mummert)

If **a** is \overline{D}_2IP then it is hyperimmune. (i.e. not computably dominated for those under 35)

Theorem (Dzharfarov and Mummert)

If $\mathbf{a} \neq \mathbf{0}$ is c.e. then \mathbf{a} is FIP.

Theorem (Dzharfarov and Mummert)

If a is \emptyset' -hyperimmune then it is FIP.

- ▶ The c.e. noncomputable case below $C \neq_T \emptyset$.
- We are building $A_0, A_1, \ldots A_n$.
- ► We want to put some element B into this family (with truncation), as we have seen B intersect A₀,..., A_j, the first position determined by B's index.
- ► We then place a permitting challenge to C. If later we see C permit j, we change the family to A₀,...A_j, B.
- When B meets $A_{j+1}[s]$ place another challange on B.
- ► The Ø'-hyperimmune is because Ø' knows if we ever want to put things in, and infinitely often the C can decode this.
- It might seem that the c.e. case would also work for Δ⁰₂ C, but it fails for a nonuniform reason.
- ► An earlier promise for a C-configuration might force some D₁ into the sequence which might be disjoint from the B we are attempting to put in. (board)

Theorem (DM)

There is a computable nontrivial family such that every maximal subfamily with \overline{D}_2 IP has hyperimmune degree.

(proof)[DDGT] We will define a computable family of the form

$$\{A_e^i: e \leq i\} \cup \{B_e: e \in \omega\}.$$

We will call sets A_e^i and B_e with subscript e "*e*-sets". We will ensure the following hold.

- Every A_e^i is nonempty.
- B_e is nonempty iff φ_e(e) ↓, and contains only numbers larger than the stage when φ_e(e) converges.
- If $i \neq e$, then every nonempty *e*-set intersects every nonempty *i*-set.
- For all $i, j \ge e$, A_e^i intersects A_e^j .
- Aⁱ_e intersects B_e iff φ_e(x) ↓ for all x ≤ i + 1. Moreover, the intersection only contains elements larger than the least stage s such that φ_e(x) ↓ [s] for all x ≤ i + 1.

We can assume the nonempty sets also code their indices, so that for every subfamily $C = \{C_n \mid n \in \omega\}$ which does not contain the empty set, we can compute from C_n which set A_e^i or B_e is equal to C_n . Let C be a maximal subfamily with \overline{D}_2 IP, and let C_s denote $\{C_n \mid n \leq s\}$. Since C does not contain the empty set, for each e, if $B_e \notin C$, then $A_e^i \in C$ for every $i \geq e$, since A_e^i intersects every nonempty set in our family, except perhaps B_e . Let g be defined by

$$g(x) = (\mu s) \forall e \leq i \leq x A_e^i \in C_s \lor B_e \in C_s.$$

Let f be defined by

$$f(x) = (\mu n) \forall i, j \leq g(x) \ C_i \cap C_j \cap [0, n] \neq \emptyset.$$

Observe that $f \leq_T C$.

We will show f is not majorized by any computable function. Suppose ϕ_e is total. Then every *e*-set intersects every nonempty set in the family we built, so the maximal subfamily C must contain B_e and every A_e^i . Let $x \ge e$ be minimal such that A_e^x appears after B_e in C. I claim $f(x) > \phi_e(x)$. Notice g(x) bounds the position that B_e appears. If x = e, then $B_e \cap [0, f(x)]$ is nonempty and therefore $f(x) > \phi_e(e)$. If x > e, then g(x) also bounds the position A_e^{x-1} appears, and therefore $B_e \cap A_e^{x-1} \cap [0, f(x)]$ is nonempty. Thus $f(x) > \phi_e(x)$.

Theorem (DDGT)

If a bounds a 1-generic then a is FIP.

The main idea: Think about the proof that if **a** is c.e. then it is FIP. If we want to add some B to A_0, A_1, \ldots , then we put up a permitting challenge to **a**a and if permission occurs slot B in, and truncate the family. If we need to add some B in then it will be dense in the construction so a permission occurs. For a 1-generic construction, for finite partial families, we will see such B occur and challenge generics to include B by the enumeration of a c.e. set of strings (thinking of sequences as strings, and the family as coding the generic). If this is dense then the generic will meet the condition.

In more detail:

Suppose that X is 1-generic. Let $\{A_n : n \in \omega\}$ be a nontrivial family of sets. Without loss of generality, we may assume $A_0 \neq \emptyset$. Given $f : \omega \to \omega$, we define a function g recursively as follows:

•
$$g(0) = 0$$

Suppose we have defined g ↾ n. To define g(n + 1), look for the least m ≤ n + 1 different from g(0)...g(n) such that A_m ∩ ∩_{x≤n} A_{g(x)} contains a number smaller than f(n + 1). If there is such an m, define g(n + 1) = m. Otherwise, define g(n + 1) = 0.

This defines a functional $\Psi:\omega^\omega\to\omega^\omega.$ We define Ψ^σ for $\sigma\in\omega^{<\omega}$ in the usual way, noting that $|\Psi^\sigma|=|\sigma|$

In DDGT, we prove that if X is 1-generic, and if $g = \Psi^{p_X}$, where p_X is the principal function of X, then $\{A_{g(n)} : n \in \omega\}$ is a maximal subfamily of $\{A_n : n \in \omega\}$ with FIP.

By construction, for all N, $\bigcap_{n < N} A_{g(n)}$ is nonempty, as we only allow g to take a new value not already in its range when we see a witness to nonempty intersection. Thus the subfamily $\{A_{g(n)} : n \in \omega\}$ has FIP. Suppose it is not a maximal subfamily with FIP, and let m be minimal such that m is not in the range of g, but $\{A_m, A_{g(n)} : n \in \omega\}$ has FIP. Let

$$W = \{ \sigma : \exists n \, \Psi^{p_{\sigma}}(n) = m \}$$

where p_{σ} is the element of ω^k , where k is the number of 1s in σ , such that $p_{\sigma}(i)$ gives the position of the *i*th 1 in σ . Then no initial segment of X can be in W, since m is not in the range of g. However, every initial segment of X can be extended to an element of W. Let σ be an initial segment of X such that the range of $\Psi^{p_{\sigma}}$ contains every number less than m in the range of g, and for every number *i* less than m not in the range of g, the range of $\Psi^{p_{\sigma}}$ contains some $j_1 \dots j_k$ such that

$$A_i \cap A_{j_1} \cap \ldots \cap A_{j_k} = \emptyset.$$

Such a σ exists by the minimality of m.

Now, for any initial segment τ of X extending σ ,

$$A_m \cap \bigcap_{n < |p_\tau|} A_{\Psi^{p_\tau}(n)} \neq \emptyset.$$

Therefore, extending τ by sufficiently many 0s followed by a 1 (such that the number of 0s bounds some element of this intersection) gives a string in W. This contradicts the 1-genericity of X.

Theorem (DDGT)

If X is Δ_2^0 and of FIP degree, then X computes a 1-generic.

The theorem is aided by the fact that there is a universal family.

Theorem (DDGT)

There is a computable instance of FIP named \mathcal{U} which is universal in the sense that any maximal solution for \mathcal{U} computes a maximal solution for every other computable instance of FIP. Further, this reduction is uniform—if \mathcal{A} is a computable instance of FIP, then from an index for \mathcal{A} , one can effectively obtain an index for a reduction that computes a maximal solution for \mathcal{A} from a maximal solution for \mathcal{U} . Thus FIP for \mathcal{U} is Medvedev-above all other computable FIPs.

The idea for the proof is "intersect a lot, in a recoverable way."

Let $\{\{A_i^k\}_{i\in\omega}\}_{k\in\omega}$ be an enumeration of all computable instances of FIP. We let D_j be a canonical listing of finite subsets of $(\omega \times \omega)$. As time passes, we may see a D_j with

$$\bigcap_{\in D_j^{[k]}} A_i^k \neq \emptyset$$

for all k with $D_j^{[k]} \neq \emptyset$. Note that this is a c.e. event. When this happens, we enumerate j into $U_{\langle i,k \rangle}$ for all $(i,k) \in D_j$. This completes the description of $\mathcal{U} = \{U_i\}_{i \in \omega}$.

The idea is that $U_{\langle i,k \rangle}$ represents A_i^k . Suppose $D_j = \{(i,k)\}$. Then note that $A_i^k \neq \emptyset \iff j \in U_{i,k}$, and further that no other U can possibly contain j.

Now, suppose $\mathcal{F} = \{F_i\}_{i \in \omega}$ is a solution for \mathcal{U} . Then let

 $\mathcal{B} = \{A_i^k \mid U_{\langle i,k \rangle} \in \mathcal{F}\} = \{A_i^k \mid \text{for } j \text{ such that } D_j = \{(i,k)\}, j \in F_l \text{some } l\}.$

Clearly \mathcal{B} can be enumerated from \mathcal{F} , and this enumeration is as uniform as we could want. We claim that \mathcal{B} is a solution for \mathcal{A} .

Suppose $A_{i_0}^k, A_{i_1}^k, \ldots, A_{i_m}^k \in \mathcal{B}$. Then $U_{\langle i_0, k \rangle}, U_{\langle i_1, k \rangle}, \ldots, U_{\langle i_m, k \rangle} \in \mathcal{F}$. So there is some $j \in U_{\langle i_0, k \rangle} \cap U_{\langle i_m, k \rangle} \cap \cdots \cap U_{\langle i_m, k \rangle}$. By construction, this tells us that $(i_0, k), (i_1, k), \ldots, (i_m, k) \in D_j$, and $A_{i_0}^k \cap A_{i_1}^k \cap \cdots \cap A_{i_m}^k \neq \emptyset$. So \mathcal{B} is a solution.

Now, suppose \mathcal{F} were maximal. Then for any $A_j^k \notin \mathcal{B}$, there is a finite subset of \mathcal{F} which blocks $U_{\langle j,k \rangle}$. Call this finite set C. Now, consider $D = \{A_i^k \mid U_{\langle i,k \rangle} \in C\}$. Clearly $D \subseteq \mathcal{B}$. We claim that D blocks A_j^k . For if not, then let $D_l = \{(i, k') \mid U_{\langle i,k' \rangle} \in C\} \cup \{(j, k)\}$. By construction, we would have eventually enumerated I into $U_{\langle j,k \rangle}$ and also into all $U \in C$, contrary to our choice of C. So A_j^k is blocked from \mathcal{B} , and thus \mathcal{B} is maximal.

The Δ_2^0 case

- Given Q of FIP degree, we build 1-generic $G \leq_T Q$, and a family.
- At some stage have X_0, X_1, \ldots and $G \leq_T Q[s]$.
- Want to make G meet V_e , say. Use a auxilairy set $B = B_e$.
- ► Make it meet, say, X₀,..., X_e (but not the rest) (A permitting challenge). Repeat with X_{e+1} etc.
- ► If at some stage we get permission, then want to have, say, X₀,..., X_j, B_e want to block this from going back (For the principle all families representing the same collections of sets should give the same 1-generic) using bocker Z_{e,j}

The general case

- Does this hold in general? We don't know.
- Earlier Downey claimed that there was a minimal FIP bounding degree, But the claimed proof was flawed.

Finite variations

- Do the same but use only families of finite sets.
- Computably true if given as either canonical finite sets, or with a bound on the number.
- FIP is computably true (look at the big intersection)
- If only finite and weak indices:

Theorem (DDGT)

 $\overline{D}_2 IP_{\text{finite}}$ and Δ_2^0 iff it bounds a 1-generic.

The proof is similar but uses more initialization and priority.

Thank You