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FIP

I One equivalent of the axiom of choice

I A family of sets F = {Ai |∈ Q} has finite intersection property iff for
all finite F ⊂ Q, ∩i∈FAi 6= ∅.

I The principal says: Any collection of sets has a maximal subfamily
with FIP.

I We investigate the computability of this.

I First began by Dzharfarov and Mummert.



I The first thing to notice is that it depends on whether you consider
the family as set or a sequence

I If as a set then ∅′ is easily codable into a sequence and the theorem is
equivalent to ACA0. (Namely, have a set B = Be such that it is
initially empty, and if e ∈ ∅′[s] henceforth intersect it with everything,
so it must be included. ∅′ can clearly figure things out.)

I Interesting if a sequence, so that A1,A2,A3 is different from
A2,A3,A1.

I Similarly D̄2IP for for all pairs Ai ∩ Aj 6= ∅. (DM notation)

Definition

Say that a is FIP iff for all computable collections of sets, a can compute a
solut to the FIP problem.



A Basic Result

Theorem (Dzharfarov and Mummert)

There is a computable collection of sets with no c.e. subfamily with FIP.
So 0 is not FIP, or even D̄2IP.

1. Meet Re : We is not an index for a maximal FIP family.

2. Use a trap set Xe .

3. Begin with A0,A1, . . . . Wait for We to respond.

4. Start intersecting Xe “in the back” . If We enumerates it win with
finite injury.



Theorem (Dzharfarov and Mummert)

If a is D̄2IP then it is hyperimmune. (i.e. not computably dominated for
those under 35)

Theorem (Dzharfarov and Mummert)

If a 6= 0 is c.e. then a is FIP.

Theorem (Dzharfarov and Mummert )

If a is ∅′-hyperimmune then it is FIP.



I The c.e. noncomputable case below C 6=T ∅.
I We are building A0,A1, . . .An.

I We want to put some element B into this family (with truncation), as
we have seen B intersect A0, . . . ,Aj , the first position determined by
B ′s index.

I We then place a permitting challenge to C . If later we see C permit
j , we change the family to A0, . . .Aj ,B.

I When B meets Aj+1[s] place another challange on B.

I The ∅′-hyperimmune is because ∅′ knows if we ever want to put
things in, and infinitely often the C can decode this.

I It might seem that the c.e. case would also work for ∆0
2 C , but it fails

for a nonuniform reason.

I An earlier promise for a C -configuration might force some D1 into the
sequence which might be disjoint from the B we are attempting to
put in. (board)



Theorem (DM)

There is a computable nontrivial family such that every maximal subfamily
with D̄2IP has hyperimmune degree.

(proof)[DDGT] We will define a computable family of the form

{Ai
e : e ≤ i} ∪ {Be : e ∈ ω}.

We will call sets Ai
e and Be with subscript e “e-sets”. We will ensure the

following hold.

I Every Ai
e is nonempty.

I Be is nonempty iff φe(e) ↓, and contains only numbers larger than the
stage when φe(e) converges.

I If i 6= e, then every nonempty e-set intersects every nonempty i-set.

I For all i , j ≥ e, Ai
e intersects Aj

e .

I Ai
e intersects Be iff φe(x) ↓ for all x ≤ i + 1. Moreover, the

intersection only contains elements larger than the least stage s such
that φe(x) ↓ [s] for all x ≤ i + 1.



We can assume the nonempty sets also code their indices, so that for every
subfamily C = {Cn | n ∈ ω} which does not contain the empty set, we can
compute from Cn which set Ai

e or Be is equal to Cn.
Let C be a maximal subfamily with D̄2IP, and let Cs denote {Cn | n ≤ s}.
Since C does not contain the empty set, for each e, if Be /∈ C, then Ai

e ∈ C
for every i ≥ e, since Ai

e intersects every nonempty set in our family,
except perhaps Be . Let g be defined by

g(x) = (µs)∀e ≤ i ≤ x Ai
e ∈ Cs ∨ Be ∈ Cs .

Let f be defined by

f (x) = (µn)∀i , j ≤ g(x) Ci ∩ Cj ∩ [0, n] 6= ∅.

Observe that f ≤T C.



We will show f is not majorized by any computable function. Suppose φe
is total. Then every e-set intersects every nonempty set in the family we
built, so the maximal subfamily C must contain Be and every Ai

e . Let
x ≥ e be minimal such that Ax

e appears after Be in C. I claim
f (x) > φe(x). Notice g(x) bounds the position that Be appears. If x = e,
then Be ∩ [0, f (x)] is nonempty and therefore f (x) > φe(e). If x > e, then
g(x) also bounds the position Ax−1

e appears, and therefore
Be ∩ Ax−1

e ∩ [0, f (x)] is nonempty. Thus f (x) > φe(x).



1-Generices, again

Theorem (DDGT)

If a bounds a 1-generic then a is FIP.

The main idea: Think about the proof that if a is c.e. then it is FIP. If we
want to add some B to A0,A1, . . . , then we put up a permitting challenge
to aa and if permission occurs slot B in, and truncate the family.
If we need to add some B in then it will be dense in the construction so a
permission occurs. For a 1-generic construction, for finite partial families,
we will see such B occur and challenge generics to include B by the
enumeration of a c.e. set of strings (thinking of sequences as strings, and
the family as coding the generic). If this is dense then the generic will
meet the condition.



In more detail:
Suppose that X is 1-generic. Let {An : n ∈ ω} be a nontrivial family of
sets. Without loss of generality, we may assume A0 6= ∅. Given f : ω → ω,
we define a function g recursively as follows:

I g(0) = 0

I Suppose we have defined g � n. To define g(n + 1), look for the least
m ≤ n + 1 different from g(0) . . . g(n) such that Am ∩

⋂
x≤n Ag(x)

contains a number smaller than f (n + 1). If there is such an m, define
g(n + 1) = m. Otherwise, define g(n + 1) = 0.

This defines a functional Ψ : ωω → ωω. We define Ψσ for σ ∈ ω<ω in the
usual way, noting that |Ψσ| = |σ|
In DDGT, we prove that if X is 1-generic, and if g = ΨpX , where pX is the
principal function of X , then {Ag(n) : n ∈ ω} is a maximal subfamily of
{An : n ∈ ω} with FIP.



By construction, for all N,
⋂

n<N Ag(n) is nonempty, as we only allow g to
take a new value not already in its range when we see a witness to
nonempty intersection. Thus the subfamily {Ag(n) : n ∈ ω} has FIP.
Suppose it is not a maximal subfamily with FIP, and let m be minimal
such that m is not in the range of g , but {Am,Ag(n) : n ∈ ω} has FIP. Let

W = {σ : ∃n Ψpσ(n) = m}

where pσ is the element of ωk , where k is the number of 1s in σ, such that
pσ(i) gives the position of the ith 1 in σ. Then no initial segment of X
can be in W , since m is not in the range of g . However, every initial
segment of X can be extended to an element of W . Let σ be an initial
segment of X such that the range of Ψpσ contains every number less than
m in the range of g , and for every number i less than m not in the range
of g , the range of Ψpσ contains some j1 . . . jk such that

Ai ∩ Aj1 ∩ . . . ∩ Ajk = ∅.

Such a σ exists by the minimality of m.



Now, for any initial segment τ of X extending σ,

Am ∩
⋂

n<|pτ |

AΨpτ (n) 6= ∅.

Therefore, extending τ by sufficiently many 0s followed by a 1 (such that
the number of 0s bounds some element of this intersection) gives a string
in W . This contradicts the 1-genericity of X .



The ∆0
2 Case

Theorem (DDGT)

If X is ∆0
2 and of FIP degree, then X computes a 1-generic.

The theorem is aided by the fact that there is a universal family.

Theorem (DDGT)

There is a computable instance of FIP named U which is universal in the
sense that any maximal solution for U computes a maximal solution for
every other computable instance of FIP. Further, this reduction is
uniform—if A is a computable instance of FIP, then from an index for A,
one can effectively obtain an index for a reduction that computes a
maximal solution for A from a maximal solution for U . Thus FIP for U is
Medvedev-above all other computable FIPs.

The idea for the proof is “intersect a lot, in a recoverable way.”



Let {{Ak
i }i∈ω}k∈ω be an enumeration of all computable instances of FIP.

We let Dj be a canonical listing of finite subsets of (ω × ω). As time
passes, we may see a Dj with ⋂

i∈D [k]
j

Ak
i 6= ∅

for all k with D
[k]
j 6= ∅. Note that this is a c.e. event. When this happens,

we enumerate j into U〈i ,k〉 for all (i , k) ∈ Dj . This completes the
description of U = {Ui}i∈ω.
The idea is that U〈i ,k〉 represents Ak

i . Suppose Dj = {(i , k)}. Then note

that Ak
i 6= ∅ ⇐⇒ j ∈ Ui ,k , and further that no other U can possibly

contain j .
Now, suppose F = {Fi}i∈ω is a solution for U . Then let

B = {Ak
i | U〈i ,k〉 ∈ F} = {Ak

i | for j such that Dj = {(i , k)}, j ∈ Flsome l}.



Clearly B can be enumerated from F , and this enumeration is as uniform
as we could want. We claim that B is a solution for A.
Suppose Ak

i0
,Ak

i1
, . . . ,Ak

im
∈ B. Then U〈i0,k〉,U〈i1,k〉, . . . ,U〈im,k〉 ∈ F . So

there is some j ∈ U〈i0,k〉 ∩ U〈im,k〉 ∩ · · · ∩ U〈im,k〉. By construction, this tells

us that (i0, k), (i1, k), . . . , (im, k) ∈ Dj , and Ak
i0
∩ Ak

i1
∩ · · · ∩ Ak

im
6= ∅. So B

is a solution.
Now, suppose F were maximal. Then for any Ak

j 6∈ B, there is a finite
subset of F which blocks U〈j ,k〉. Call this finite set C . Now, consider

D = {Ak
i | U〈i ,k〉 ∈ C}. Clearly D ⊆ B. We claim that D blocks Ak

j . For if
not, then let Dl = {(i , k ′) | U〈i ,k ′〉 ∈ C} ∪ {(j , k)}. By construction, we
would have eventually enumerated l into U〈j ,k〉 and also into all U ∈ C ,

contrary to our choice of C . So Ak
j is blocked from B, and thus B is

maximal.



The ∆0
2 case

I Given Q of FIP degree, we build 1-generic G ≤T Q, and a family.

I At some stage have X0,X1, . . . and G ≤T Q[s].

I Want to make G meet Ve , say. Use a auxilairy set B = Be .

I Make it meet, say, X0, . . . ,Xe (but not the rest) (A permitting
challenge). Repeat with Xe+1 etc.

I If at some stage we get permission, then want to have, say,
X0, . . . ,Xj ,Be want to block this from going back (For the principle
all families representing the same collections of sets should give the
same 1-generic) using bocker Ze,j



The general case

I Does this hold in general? We don’t know.

I Earlier Downey claimed that there was a minimal FIP bounding
degree, But the claimed proof was flawed.



Finite variations

I Do the same but use only families of finite sets.

I Computably true if given as either canonical finite sets, or with a
bound on the number.

I FIP is computably true (look at the big intersection)

I If only finite and weak indices:

Theorem (DDGT)

D2IPfinite and ∆0
2 iff it bounds a 1-generic.

I The proof is similar but uses more initialization and priority.



Thank You


