
Recent progress in parameterized upper and lower
bounds

Rod Downey
Victoria University

Wellington
Cornell, November, 2012

THIS LECTURE:

I Basic Definitions
I Basic Hardness results
I Kernelization lower bounds

PARAMETERIZED COMPLEXITY

I A mathematical idealization is to identify “Feasible” with P.
(I won’t even bother looking at the problems with this.)

I With this assumption, the theory of NP-hardness is an
excellent vehicle for mapping an outer boundary of
intractability, for all practical purposes.

I Indeed, assuming the reasonable current working
assumption that NTM acceptance is Ω(2n), NP-hardness
allows for practical lower bound for exact solution for
problems.

I A very difficult practical and theoretical problem is “How
can we deal with P?”.

I More importantly how can we deal with P − FEASIBLE ,
and map a further boundary of intractability.

I Arora 1996 gave a O(n
3000
ε) PTAS for EUCLIDEAN TSP

I Chekuri and Khanna 2000 gave a O(n12(log(1/ε)/ε8)) PTAS
for MULTIPLE KNAPSACK

I Shamir and Tsur 1998 gave a O(n22
1
ε −1)) PTAS for

MAXIMUM SUBFOREST

I Chen and Miranda 1999 gave a O(n(3mm!)
m
ε +1

) PTAS for
GENERAL MULTIPROCESSOR JOB SCHEDULING

I Erlebach et al. 2001 gave a O(n
4
π

(1
ε2

+1)2(1
ε2

+2)2
) PTAS for

MAXIMUM INDEPENDENT SET for geometric graphs.

I Deng, Feng, Zhang and Zhu (2001) gave a
O(n5 log1+ε(1+(1/ε))) PTAS for UNBOUNDED BATCH

SCHEDULING.
I Shachnai and Tamir (2000) gave a O(n64/ε+(log(1/ε)/ε8))

PTAS for CLASS-CONSTRAINED PACKING PROBLEM (3
cols).

REFERENCE RUNNING TIME FOR A
20% ERROR

ARORA (AR96) O(n15000)

CHEKURI AND KHANNA (CK00) O(n9,375,000)

SHAMIR AND TSUR (ST98) O(n958,267,391)

CHEN AND MIRANDA (CM99) > O(n1060
)

(4 PROCESSORS)
ERLEBACH ET AL. (EJS01) O(n523,804)

DENG ET. AL (DFZZ01) O(n50)

SHACHNAI AND TAMIR (ST00) O(n1021570)

TABLE: The Running Times for Some Recent PTAS’s with 20% Error.

WHAT IS THE PROBLEM HERE?

I Arora (1997) gave a PTAS running in nearly linear time for
EUCLIDIAN TSP. What is the difference between this and
the PTAS’s in the table. Can’t we simply argue that with
more effort all of these will eventually have truly feasible
PTAS’s.

I The principal problem with the baddies is that these
algorithms have a factor of 1

ε (or worse) in their exponents.
I By analogy with the situation of NP completeness, we

have some problem that has an exponential algorithm.
Can’t we argue that with more effort, we’ll find a much
better algorithm? As in Garey and Johnson’s famous
cartoon, we cannot seem to prove a better algorithm. BUT
we prove that it is NP hard.

I’M DUBIOUS; EXAMPLE?

I Then assuming the working hypothesis that there is
basically no way to figure out if a NTM has an accepting
path of length n except trying all possibilities there is no
hope for an exact solution with running time significantly
better than 2n. (Or at least no polynomial time algorithm.)

I Our new working hypothesis that there is basically no way
to figure out if a NTM has an accepting path of length k
except trying all possibilities. Note that there are Ω(nk)
possibilities. (Or at least no way to get the “k ” out of the
exponent or an algorithm deciding k -STEP NTM.)

I One then defines the appropriate reductions from k -STEP

TURING MACHINE HALTING to the PTAS using k = 1
ε as a

parameter to argue that if we can “get rid” of the k from
the exponent then it can only be if the working hypothesis
is wrong.

TWO BASIC EXAMPLES

I VERTEX COVER
Input: A Graph G.
Parameter : A positive integer k .
Question: Does G have a size k vertex cover? (Vertices
cover edges.)

I DOMINATING SET
Input: A Graph G.
Parameter : A positive integer k .
Question: Does G have a size k dominating set? (Vertices
cover vertices.)

I VERTEX COVER is solvable by an algorithm O in time
f (k)|G|, a behaviour we call fixed parameter tractability,
(Specifically 1.28kk2 + c|G|, with c a small absolute
constant independent o f k .)

I Whereas the only known algorithm for DOMINATING SET
is complete search of the possible k -subsets, which takes
time Ω(|G|k).

I In the below I will mostly talk for convenience about graphs.
I I could just as easily be talking about many other areas.
I In the Computer Journal alone, there is biological, artificial

intelligence, constraint satisfaction, geometric problems,
scheduling, cognitive science, voting, combinatorial
optimzation, phylogeny. Model check is the basis of
Flum-Grohe.

BASIC DEFINITION(S)

I Setting : Languages L ⊆ Σ∗ × Σ∗.

I Example (Graph, Parameter).
I We say that a language L is fixed parameter tractable if

there is a algorithm M, a constant C and a function f such
that for all x , k ,

(x , k) ∈ L iff M(x) = 1 and

the running time of M(x) isf (k)|x |C .

PARAMETERS

I Without even going into details, think of all the graphs you
have given names to and each has a relevant parameter:
planar, bounded genus, bounded cutwidth, pathwidth,
treewidth, degree, interval, etc, etc.

I Also nature is kind in that for many practical problems the
input (often designed by us) is nicely ordered.

POSITIVE TECHNIQUES

I Elementary ones
I Logical metatheorems
I Limits

KERNELIZATION

I I believe that the most important practical technique is
called kernelization.

I pre-processing, or reducing

KARSTEN WEIHE’S TRAIN PROBLEM

I TRAIN COVERING BY STATIONS

Instance: A bipartite graph G = (VS ∪ VT ,E), where the
set of vertices VS represents railway stations and the set of
vertices VT represents trains. E contains an edge
(s, t), s ∈ Vs, t ∈ VT , iff the train t stops at the station s.
Problem: Find a minimum set V ′ ⊆ VS such that V ′ covers
VT , that is, for every vertex t ∈ VT , there is some s ∈ V ′

such that (s, t) ∈ E .

WEIHE’S SOLUTION

I REDUCTION RULE TCS1:
Let N(t) denote the neighbours of t in VS. If N(t) ⊆ N(t ′)
then remove t ′ and all adjacent edges of t ′ from G. If there
is a station that covers t , then this station also covers t ′.

I REDUCTION RULE TCS2:
Let N(s) denote the neighbours of s in VT . If N(s) ⊆ N(s′)
then remove s and all adjacent edges of s from G. If there
is a train covered by s, then this train is also covered by s′.

I European train schedule, gave a graph consisting of
around 1.6 · 105 vertices and 1.6 · 106 edges.

I Solved in minutes.
I This has also been applied in practice as a subroutine in

practical heuristical algorithms.

THE IDEA

I Reduce the parameterized problem to a kernel whose size
depends solely on the parameter

I As compared to the classical case where this process is a
central heuristic we get a provable performance
guarantee.

I We remark that often the performance is much better than
we should expect especially when elementary methods are
used.

VERTEX COVER

I REDUCTION RULE VC1:
Remove all isolated vertices.

I REDUCTION RULE VC2:
For any degree one vertex v , add its single neighbour u to
the solution set and remove u and all of its incident edges
from the graph.

I Note (G, k)→ (G′, k − 1).
I (S. Buss) REDUCTION RULE VC3:

If there is a vertex v of degree at least k + 1, add v to the
solution set and remove v and all of its incident edges from
the graph.

I The result is a graph with no vertices of degree > k and
this can have a VC of size k only if it has < k2 many edges.

KERNELIZATION

DEFINITION (KERNELIZATION)
Let L ⊆ Σ∗ × Σ∗ be a parameterized language. Let L be the
corresponding pa rameterized problem, that is, L consists of
input pairs (I, k), where I is the main part of the input and k is
the parameter. A reduction to a problem kernel, or
kernelization, comprises replacing an instance (I, k) by a
reduced instance (I′, k ′), called a problem kernel, such that

(i) k ′ ≤ k ,
(ii) |I′| ≤ g(k), for some function g depending only on k ,

and
(iii) (I, k) ∈ L if and only if (I′, k ′) ∈ L.

The reduction from (I, k) to (I′, k ′) must be computable in time
polynomial in |I|.

A USELESS THEOREM

THEOREM (CAI, CHEN, DOWNEY AND FELLOWS)
L ∈ FPT iff L is kernelizable.

I Proof Let L ∈ FPT via a algorithm running in time nc .f (k).
Then run the algorithm which in time O(nc+1), which
eventaully dominates f (k)nc , either computes the solution
or understands that it is in the first g(k) many exceptional
cases. (“Eventually polynomial time”)

STRATEGIES FOR IMPROVING I: BOUNDED SEARCH

TREES

I Buss’s algorithm gives crudely a 2n + kk2
algorithm for

k -VC.
I Here is another algorithm: (DF) Take any edge e = v1v2.

either v1 or v2 is in any VC. Begin a tree T with first
children v1 and v2. At each child delete all edges covered
by the vi .

I repeat to depth k .
I Gives a O(2k · n) algorithm.
I Now combine the two: Gives a 2n + 2kk2 algorithm.

I It is worth remarking that there are problems notably FPT
by bounded search tree (type checking in ML) that are not
known to have polynomial size kernels, and some
“provably” don’t.

I Another easy example for bounded search trees is
PLANAR INDEPENDENT SET. (Start with a degree 5
vertex, branching rule of size 6)

PRUNING TREES AND CLEVER REDUCTION RULES

I If G has paths of degree 2, then there are simple reduction
rules to deal with them first. Thus we consider that G is of
min degree 3.
BRANCHING RULE VC2:
If there is a degree two vertex v in G, with neighbours w1
and w2, then either both w1 and w2 are in a minimum size
cover, or v together with all other neighbours of w1 and w2
are in a minimum size cover.

I Now when considering the kernel, for each vertex
considered either v is included or all of its neighbours (at
least) {p,q} are included.

I Now the tree looks different. The first child nodes are
labelled v or {p,q}, and on the right branch the parameter
drops by 2 instead of 1. or similarly with the wi case.

I Now the size of the search tree and hence the time
complexity is determined by some recurrence relation.

I many, many versions of this idea with increasingly
sophisticated reduction rules.

I This method has a 2005 (Fomin, Grandoni, Kratsch)
incarnation called measure and conquer where the
branching rules are given rational valued weights, and
decisions as to what to do are figured out by optimization.

I For example the best exact algorithm for SET COVER and
DOMINATING SET use this. (van Rooij-Bodlaender point
out that this can be used for algoritm design as well.)

I Jianer Chen and others use this in many FPT algorithms
such as the state of the art for FEEDBACK VERTEX SET
and VERTEX COVER.

SHRINK THE KERNEL

THEOREM (NEMHAUSER AND TROTTER (1975))
For an n-vertex graph G = (V ,E) with m edges, we can
compute two disjoint sets C′ ⊆ V and V ′ ⊆ V, in O(

√
n ·m)

time, such that the following three properties hold:

(i) There is a minimum size vertex cover of G that contains
C′.

(ii) A minimum vertex cover for the induced subgraph
G[V ′] has size at least |V ′|/2.

(iii) If D ⊆ V ′ is a vertex cover of the induced subgraph
G[V ′], then C = D ∪ C′ is a vertex cover of G.

THEOREM (CHEN ET AL. (2001))
Let (G = (V ,E), k) be an instance of K-VERTEX COVER. In
O(k · |V |+ k3) time we can reduce this instance to a problem
kernel (G = (V ′,E ′), k ′) with |V ′| ≤ 2k.

I The current champion using this approach is a O∗(1.286k)
(Chen01) The best is O∗(1.2745k)(Chen10 using this,
iterative compression, struction, measure and conquer,
and other methods).

I Here the useful O∗ notation only looks at the exponential
part of the algorithm.

INTERACTIONS

I Now we can ask lots of questions. How small can the
kernel be?

I Notice that applying the kernelization to the unbounded
problem yields a approximation algorithm.

I Using the PCP theorem we know that no kernel can be
smaller that 1.36 k unless P=NP (Dinur and Safra) as no
better approximation is possible. Is this tight?

I Assuming the “Unique Games Conjecture” the 2k kernel is
tight (Khot etc).

I Actually we know that no O∗(1 + ε)k) algorithm is possible
unless ETH fails.

I ETH n-valued 3SAT is not in DTIME(2o(n)).

CROWN REDUCTION RULES

DEFINITION
A crown in a graph G = (V ,E) consists of an independent set
I ⊆ V and a set H containing all vertices in V adjacent to I.

I For example a degree 1 vertex and its neighbour is a
crown.

I For a crown I ∪ H in G, then we need at least |H| vertices
to cover all edges in the crown.

I REDUCTION RULE CR:
For any crown I ∪ H in G, add the set of vertices H to the
solution set and remove I ∪H and all of the incide nt edges
of I ∪ H from G.

I Shrinkage (G, k)→ (G′, k − |H|).

HOW TO USE CROWNS?

THEOREM (CHOR, FELLOWS, JUEDES (2004))
If a graph G = (V ,E) has an independent set V ′ ⊂ V such that
|N(V ′)| < |V ′|, then a crown I ∪H with I ⊆ V ′ can be found in G
in time O(n + m).

I Can get the crown: Take a maximal matching M of G. If
|M| > k say no. Else I = G −M is an independent set
(≤ k) , and then use bipartite matching to match I and its
neighbours. Combinatorial arguments show that this has a
submatching which is a crown. Delete and repeat.

I Other examples found in SIGACT News
Gou-Niedermeier’s survey on kernelization.

INTERLEAVING

I (Niedermeier and Rossmanith, 2000) showed that
iteratively combining kernelization and bounded search
trees often performs much better than either one alone or
one followed by the other.

I Begin a search tree, and apply kernelization, then continue
etc. Analysing the combinatorics shows a significant
reduction in time complexity, which is very effective in
practice.

ITERATIVE COMPRESSION

I Reed, Smith and Vetta 2004. For the problem of “within k
of being bipartite” (by deletion of edges).

DEFINITION (COMPRESSION ROUTINE)
A compression routine is an algorithm that, given a problem
instance I and a solution of size k , either calculates a smaller
solution or proves that the given solution is of minimum size.

AN EXAMPLE, VC AGAIN!

I (G = (V ,E), k), start with V ′ = ∅, and (solution) C = ∅.
I Add a new vertex v to both V ′ and C,

V ′ ← V ′ ∪ {v}, C ← C ∪ {v}.
I Now call the compression routine on the pair (G[V ′],C),

where G[V ′] is the subgraph induced by V ′ in G, to obtain
a new solution C′. If |C′| > k then we output NO, otherwise
we set C ← C′.

I If we successfully complete the nth step where V ′ = V , we
output C with |C| ≤ k . Note that C will be an optimal
solution for G. (Algo runs in time O(2kmn).)

I This was forst successflly applied by Reed, Smith, Vetta to
GRAPH BIPARTITIZATION. The algorithm is similar,
building a minimal bipartitization at each step and using
what we can call acceptable partitions for the search step.

I The best now is O∗(3.83k), and it works better with
algorithm engineering (Gray Codes, tree pruning) with
(e.g.) biological data Hüffner 2004.

I It is a crucial step for the best two algorithms for VERTREX
COVER (Chen, Kanj, Xia 2010, O∗(1.2745k) and
FEEDBACK VERTEX SET (Can I remove k verteices and
get a acyclic graph?) (Cao, Chen, Liu, 2009).

PRACTICE

I I remark that in practice these methods work much better
than we might expect.

I Langston’s work with irradiated mice, ETH group in Zurich,
Karesten Weihe

I See The Computer Journal especially articles by Langston
et al.

LESS PRACTICAL ALGORITHMS

I In what follows we look at algorithms that in general seem
less practical but can sometimes work in practice.

COLOUR CODING

I K-SUBGRAPH ISOMORPHISM

Instance: G = (V ,E) and a graph H = (V H ,EH) with
|V H | = k .
Parameter: A positive integer k (or V H).
Question: Is H isomorphic to a subgraph in G?

I Idea: to find the desired set of vertices V ′ in G, isomorphic
to H, we randomly colour all the vertices of G with k
colours and expect that there is a colourful solution; all the
vertices of V ′ have different colours.

I G uniformly at random with k colors, a set of k distinct
vertices will obtain different colours with probability
(k !)/kk . This probability is lower-bounded by e−k , so we
need to repeat the process ek times to have high
probability of obtaining the required colouring.

DERANDOMIZATION

I We need a list of colorings of the vertices in G such that,
for each subset V ′ ⊆ V with |V ′| = k there is at least one
coloring in the list by which all vertices in V ′ obtain different
colors.

DEFINITION (k -PERFECT HASH FUNCTIONS)
A k -perfect family of hash functions is a family H of functions
from {1,2, ...,n} onto {1,2, ..., k} such that, for each
S ⊂ {1,2, ...,n} with |S| = k , there exists an h ∈ H such that h
is bijective when restricted to S.

THEOREM (ALON ET AL. (1995))
Families of k-perfect hash functions from {1,2, ...,n} onto
{1,2, ..., k} can be constructed which consist of 2O(k) · log n
hash functions. For such a hash function, h, the value h(i),
1 ≤ i ≤ n, can be computed in linear time.

AN EXAMPLE

I k -PATH

I For each colouring h, we check every ordering
c1, c2, . . . , ck of the k colours to decide whether or not it
realizes a k -path. We first construct a directed graph G′ as
follows:
For each edge (u, v) ∈ E , if h(u) = ci and
h(v) = ci+1(mod k) for some i , then replace (u, v) with arc
〈u, v〉, otherwise delete (u, v).
In G′, for each v with h(v) = c1, we use a breadth first
search to check for a path C from v to v of length k .

I 2O(k) · log |V | colourings, and k ! orderings. k -path in time
O(k · |V |2).

BOUNDED WIDTH METRICS

I Graphs constructed inductively. Treewidth, Pathwidth,
Branschwidth, Cliquewidth mixed width etc. k -Inductive
graphs, plus old favourites such as planarity etc, which can
be viewed as local width.

I Example:

DEFINITION
[Tree decomposition and Treewidth] Let G = (V ,E) be a graph.
A tree decomposition, TD, of G is a pair (T ,X) where
1. T = (I,F) is a tree, and
2. X = {Xi | i ∈ I} is a family of subsets of V , one for each node
of T , such that

(i)
⋃

i∈I Xi = V ,
(ii) for every edge {v ,w} ∈ E , there is an i ∈ I with

v ∈ Xi and w ∈ Xi , and
(iii) for all i , j , k ∈ I, if j is on the path from i to k in

T , then Xi ∩ Xk ⊆ Xj .

I This gives the following well-known definition.

DEFINITION
The width of a tree decomposition ((I,F), {Xi | i ∈ I}) is
maxi∈I |Xi | − 1. The treewidth of a graph G, denoted by tw(G), is
the minimum width over all possible tree decompositions of G.

THE CANONICAL METHOD

I The following refers to any of these inductively defined
graphs families. Notes that many commercial constructions
of, for example chips are inductively defined.

1. Find a bounded-width tree (path) decomposition of the input
graph that exhibits the underlying tree (path) structure.

2. Perform dynamic programming on this decomposition to
solve the problem.

AN EXAMPLE FOR INDEPENDENT SET

e

hgi

egh

egdegh

egfce

abc

a b

c
d

f

g

ih

∅ a b c ab ac bc abc
0 1 1 1 2 - - -

BODLAENDER’S THEOREM

I The following theorem is shows that treewidth is FPT.
Improves many earlier results showing this. The constant
is about 235k3

.

THEOREM (BODLAENDER)
k-TREEWIDTH is linear time FPT

I Not practical because of large hidden O term.
I Unknown if there is a practical FPT treewidth algorithm
I Nevertheless approximation and algorithms specific to

known decomps run well at least sometimes.

MONADIC SECOND ORDER LOGIC

I Two sorted structure with variables for sets of objects.
I 1. Additional atomic formulas: For all set variables X and

individual variables y , Xy is an MSO-formula.
2. Set quantification: If φ is an MSO-formula and X is a set

variable, then ∃X φ is an MSO -formula, and ∀X φ is an
MSO-formula.

I Eg k -col

∃X1, , , ∃Xk

(
∀x

k∨
i=1

Xix∧∀x∀y
(

E(x , y)→
k∧

i=1

¬(Xix∧Xiy)
))

MODEL CHECKING

I Instance: A structure A ∈ D, and a sentence (no free
variables) φ ∈ Φ.
Question: Does A satisfy φ?

I PSPACE-complete for FO and MSO.

COURCELLE’S AND SEESE’S THEOREMS

THEOREM (COURCELLE 1990)
The model-checking problem for MSO restricted to graphs of
bounded treewidth is linear-time fixed-parameter tractable.
Detleef Seese has proved a converse to Courcelle’s theorem.

THEOREM (SEESE 1991)
Suppose that F is any family of graphs for which the
model-checking problem for MSO is decidable, then there is a
number n such that, for all G ∈ F , the treewidth of G is less
than n.

LOCAL TREEWIDTH

I ltw(G)(r) = max {tw(Nr (v)) | v ∈ V (G)} where Nr (v) is
the neighbourhood of radius r about v .

I A class of graphs C = {G : G ∈ D} has bounded local
treewidth if there is a function f : N→ N such that, for
r ≥ 1, ltw(G)(r) ≤ f (r)i, for all G ∈ C.

I Examples Bounded degree, bounded treewidth, bounded
genus, excluding a minor

THE FRICK GROHE THEOREM

THEOREM (FRICK AND GROHE 1999)
Parameterized problems that can be described as
model-checking problems for FO are fixed-parameter tractable
on classes of graphs of bounded local treewidth.
For example DOMINATING SET, INDEPENDENT SET, or
SUBGRAPH ISOMORPHISM are FPT on planar graphs, or on
graphs of bounded degree

MORE EXOTIC METHODS

I minor ordering

E

BA

E

DC

G

H

C D

B

A

I Robertson-Seymour Finite graphs are WQO’s under minor
ordering. H ≤minor G is O(|G|3) FPT for a fixed H.

I THEOREM (MINOR-CLOSED MEMBERSHIP)
If F is a minor-closed class of graphs then membership of a
graph G in F can be determined in time O(f (k) · |G|3), where k
is the collective size of the graphs in the obstruction set for F .

I Likely I won’t have time to discuss what this means but see
DF for more details.

REDUCTIONS AND INTRACTABILITY

I Natural basic hardness class: W [1]. Does not matter what
it is, save to say that the analog of Cook’s Theorem is
SHORT NONDETERMINISTIC TURING MACHINE
ACCEPTANCE
Instance: A nondeterministic Turing Machine M and a
positive integer k .
Parameter: k .
Question: Does M have a computation path accepting the
empty string in at most k steps?

I If one believes the philosophical argument that Cook’s
Theorem provides compelling evidence that SAT is
intractible, then one surely must believe the same for the
parametric intractability of SHORT NONDETERMINISTIC
TURING MACHINE ACCEPTANCE.

I Moreover, recent work has shown that if SHORT NTM is
fpt then n-variable 3SAT is in DTIME(2o(n))

I Given two parameterized languages L, L̂ ⊆ Σ∗ × Σ∗, say
L ≤FPT L̂ iff there are (computable) f , x 7→ x ′, k 7→ k ′ and a
constant c, such that for all x ,

(x , k) ∈ L iff (x ′, k ′) ∈ L̂,

in time f (k)|x |c .
I Lots of technical question still open here.

ANALOG OF COOK’S THEOREM

I Analog of Cook’s Theorem: (Downey, Fellows, Cai, Chen)
WEIGHTED 3SAT≡FTP SHORT NTM ACCEPTANCE.
WEIGHTED 3SAT

Input: A 3 CNF formula φ
Parameter: k
Question: Does φ has a satisfying assignment of Hamming
weigth k , meaning exactly k literals made true.

W-HIERARCHY

I Think about the usual poly reduction from SAT to 3SAT. It
takes a clause of size p, and turns it into many clauses of
size 3. But the weight control goes awry. A weight 4
assignment could go to anything.

I We don’t think WEIGHTED CNF SAT≤ftpWEIGHTED 3 SAT.
I Gives rise to a heirarchy:

W [1] ⊆W [2] ⊆W [3] . . .W [SAT] ⊆W [P] ⊆ XP.

I XP is quite important, it is the languages which are in
DTIME(nf (k)) with various levels of uniformity, depending
on the choice of reductions.

I XP has k -CAT AND MOUSE GAME and some other games ((DF99a)),
I W [P] has LINEAR INEQUALITIES, SHORT SATISFIABILITY, WEIGHTED CIRCUIT

SATISFIABILITY ((ADF95)) and MINIMUM AXIOM SET((DFKHW94)).
I Then there are a number of quite im portant problems from combinatorial pattern

matching which are W [t] hard for all t : LONGEST COMMON SUBSEQUENCE (k =
number of seqs.,|Σ|-two parameters) ((BDFHW95)), FEASIBLE REGISTER
ASSIGNMENT, TRIANGULATING COLORED GRAPHS, BANDWIDTH, PROPER
INTERVAL GRAPH COMPLETION ((BFH94)), DOMINO TREEWIDTH ((BE97)) and
BOUNDED PERSISTE NCE PATHWIDTH ((McC03)).

I W [2] include WEIGHTED {0, 1} INTEGER PROGRAMMING, DOMINATING SET
((DF95a)), TOURNAMENT DOMINATING SET ((DF95c)) UNIT LENGTH
PRECEDENCE CONSTRAINED SCHEDULING (hard) ((BF95)), SHORTEST
COMMON SUPERSEQUENCE (k)(hard) ((FHK95)), MAXIMUM LIKELIHOOD
DECODING (hard), WEIGHT DISTRIBUTION IN LINEAR CODES (hard), NEAREST
VECTOR IN INTEGER LATTICES (hard) ((DFVW99)), SHORT PERMUTATION
GROUP FACTORIZATION (hard).

I W [1] we have a collection including k -STEP DERIVATION FOR CONTEXT

SENSITIVE GRAMMARS, SHORT NTM COMPUTATION, SHORT POST

CORRESPONDENCE, SQUARE TILING ((CCDF96)), WEIGHTED q–CNF

SATISFIABILITY ((DF95b)), VAPNIK–CHERVONENKIS DIMENSION ((DEF93))

LONGEST COMMON SUBSEQUENCE (k , m = LENGTH OF COMMON SUBSEQ.)

((BDFW95)), CLIQUE, INDEPENDENT SET ((DF95b)), and MONOTONE DATA

COMPLEXITY FOR RELATIONAL DATABASES

I Notice that there are at least two ways to parameterize:
Parameterize the part of the problem you want to look at
and to parameterize the problem itself.

I This point of view makes this sometime a promise
problem. Input something, promise it is parameterized, and
ask questions about it.

I Two interpretations one with certificate one only with a
promise. e.g. CLIQUEWIDTH, PATHWIDTH.

I Some recent work “lowers the hardness barrier”; perhaps
giving better inapproximability results.

ETH

I Recall the exponential time hypthesis is (ETH) n-variable
3-SATISFIABILITY is not solvable in DTIME(2o(n)).
(Impagliazzo Paturi and Zane.)

I This is seen an important refinement of P 6= NP that is
widely held to be true.

I It is related to FPT as we now see.

THE MINIMOB

I INPUT A parametrically minature problem QUESTION Is it
in the class
e.g. INPUT a graph G of size k log n with n in unary.
Does it have a vertex cover of size d?

I Get mini Vertex cover, mini Dominating set, Minisat etc.
I Core problem: minicircuitsat.

THEOREM (CHOR, FELLOWS AND JUEDES ; DOWNEY ET.
AL.)
The M[1] complete problems such as MIN-3SAT are in FPT iff
the exponential time hypothesis fails.

I That is, more or less, EPT is the “same” as M[1] 6= FPT .
I And now we have a method of demonstrating no good

subexponential algorithm; Show M[1] hardness.
I Chen-Grohe established an insomorphism between the

complexity degree structures.
I Fellows conjectures that PCP like techniques will show

M[1]=W[1] using randomized reductions

XP-OPTIMALITY

I This new programme regards the classes like W[1] as
artifacts of the basic problem of proving hardness under
reasonable assumptions, and strikes at membership ofXP.

I Eg INDEPENDENT SET and DOMINATING SET which
certainly are in XP. But what’s the best exponent we can
hope for for slice k? They are clearly solvable in time
O(nk+1).

THEOREM (CHEN ET. AL 05)
The following hold:

(i) INDEPENDENT SET cannot be solved in time no(k)

unless FPT=M[1].
(ii) DOMINATING SET cannot be solved in time no(k)

unless FPT=M[2].

I The proofs recycle and miniaturize various NP and W[1]
completeness results.

I Many recent results of similar ilk based on ETH or SETH,
such as results on treewidth etc.

WHERE ELSE?

I Another area is approximation. Here we ask for an
algorithm which either says “no solution of size k ” or here
is one of size 2k (say).

I For example BIN PACKING is has to (k ,2k)-approx, but
k -INDEPENDENT DOMINATING SET has not approx of the
form (k ,F (k)) for any computable F unless FPT = W [1].
(DFMccartin)

I Flum Grohe show that all natural W [P] complete problems
don’t have approx of the form (k ,F (k)) for any computable
F unless FPT = W [P].

REMEMBER KERNELIZATION?

I When can we show that a FPT problem likely has no
polynomial size kernel?

I Notice that if P=NP then all have constant size kernel, so
some reasonable assumption is needed.

A GENERIC LOWER BOUND ENGINE

DEFINITION (BODLAENDER, DOWNEY, FELLOWS,
HERMELIN)
labelDefinition: DistillationA OR-distillation algorithm for a
classical problem L ⊆ Σ∗ is an algorithm that

I receives as input a sequence (x1, . . . , xt), with xi ∈ Σ∗ for
each 1 ≤ i ≤ t ,

I uses time polynomial in
∑t

i=1 |xi |,
I and outputs a string y ∈ Σ∗ with

1. y ∈ L ⇐⇒ xi ∈ L for some 1 ≤ i ≤ t .
2. |y | is polynomial in max1≤i≤t |xi |.

I Similarly AND-distillation.

THE FORTNOW-SANTHANAM LEMMA

LEMMA (FORTNOW AND SANTHANAM 2007)
If any NP complete problem has a distillation algorithm then
PH = ΣP

3 . That is, the polynomial time hierarchy collapses to
three or fewer levels That is, the polynomial time hierarchy
collapses to three or fewer levels

I Here Σp
3 is NPNPNP

.
I Strictly speaking the prove that co − NP ⊆ NP\poly .

THE PROOF

I Let L be NP complete. We show that L is in NP\poly if L
has dist.

I Let Ln = {x /∈ L : |x | ≤ n}.
I Given any x1, . . . , xt ∈ Ln, the distillation algorithm A maps

(x1, . . . , xt) to some y ∈ Lnc , where c is some constant
independent of t .

I The main part of the proof consists in showing that there
exists a set Sn ⊆ Lnc , with |Sn| polynomially bounded in n,
such that for any x ∈ Σ≤n (PHP) we have the following:

I If x ∈ Ln, then there exist strings x1, . . . , xt ∈ Σ≤n with
xi = x for some i , 1 ≤ i ≤ t , such that A(x1, . . . , xt) ∈ Sn.

I If x /∈ Ln, then for all strings x1, . . . , xt ∈ Σ≤n with xi = x for
some i , 1 ≤ i ≤ t , we have A(x1, . . . , xt) /∈ Sn.

I to decide if x ∈ L, guess t strings x1, . . . , xt ∈ Σ≤n, and
checks whether one of them is x . If not, it immediately
rejects. Otherwise, it computes A(x1, . . . , xt), and accepts
iff the output is in Sn. It is immediate to verify that M
correctly determines (in the non-deterministic sense)
whether x ∈ Ln.

HOW DOES THIS RELATE TO KERNELIZATION?

DEFINITION (BODLAENDER, DOWNEY, FELLOWS,
HERMELIN)
A OR-composition algorithm for a parameterized problem
L ⊆ Σ∗ × N is an algorithm that

I receives as input a sequence ((x1, k), . . . , (xt , k)), with
(xi , k) ∈ Σ∗ × N+ for each 1 ≤ i ≤ t ,

I uses time polynomial in
∑t

i=1 |xi |+ k ,
I and outputs (y , k ′) ∈ Σ∗ × N+ with

1. (y , k ′) ∈ L ⇐⇒ (xi , k) ∈ L for some 1 ≤ i ≤ t .
2. k ′ is polynomial in k .

LEMMA (BODLAENDER, DOWNEY, FELLOWS, HERMELIN)
Let L be a compositional parameterized problem whose derived
classical problem Lc is NP-complete. If L has a polynomial
kernel, then Lc is also distillable.

EXAMPLES

LEMMA (BODLAENDER, DOWNEY, FELLOWS, HERMELIN)
Let L be a parameterized graph problem such that for any pair
of graphs G1 and G2, and any integer k ∈ N, we have
(G1, k) ∈ L ∨ (G2, k) ∈ L ⇐⇒ (G1 ∪G2, k) ∈ L, where G1 ∪G2
is the disjoint union of G1 and G2. Then L is compositional.

EXAMPLES

I k -PATH, k -CYCLE, k -CHEAP TOUR, k -EXACT CYCLE, and
k -BOUNDED TREEWIDTH SUBGRAPH

I k , σ-SHORT NONDETERMINISTIC TURING MACHINE

COMPUTATION (Needs work)
I Many recent examples, Bodlaender, Kratch, Lokshantov,

Saurabh etc. Also using (poly,poly)-reductions,
co-nondeterminism, small interactive protocols, etc.

AND-COMPOSITION AND DISTILLATION

I A current PhD student Andrew Drucker from MIT who has
shown this also implies collapse. This implies all the below
don’t have poly kernels. The proof is remarkable.

I Applications: Graph width metrics:
I CUTWIDTH, TREEWIDTH, PROBLEMS WITH TREEEWIDTH

PROMISES, EG.. COLOURING

OTHER RESULTS

I BDFH show that there are problems in ETP (FPT in time
O∗(2O(k))) without polynomial time kernels.

I Fortnow and Santhanam: Satisfiability does not have
PCP’s of size polynomial in the number of variables unless
PH collapse.

I The Harnik-Noar approach to constructing collision
resistant hash functions won’t work unless PH collapses.

I Burhmann and Hitchcock: There are no subexponential
size hard sets for NP unless PH collapses. (Ie many hard
instances)

I Chen Flum Müller: Many results, e.g. parameterized SAT

has no subexponential "normal" (strong) kernelization
unless ETH fails.

I Using transformations, Bodlaender, Thomass’/ e and Yeo
show that DISJOINT CYCLES, HAMILTON CIRCUIT

PARAMETERIZED BY TREEWIDT H etc don’t have poly
kernels unless collapse.

I Also the important DISJOINT PATHS, famously FPT by
Robertson and Se ymour.

I Similarly using Dell-Mecklebeek Kratz showed the
non-poly-kernelizability of k -RAMSEY.

I Fernau et. al. have shown that there are problems with
Poly Turing Kernels but no poly kernels unless collapse.(!),
and these are natural related to spanning trees (Namely
DIRECTED k LEAF SPANNING TREE).

TURING KERNELIZATIONS

I Possible to avoid the material above. e.g. Binkele-Raible,
Fernau, Fomin, Lokshantov, Saurabh and Villanger,
k -LEAF OUT TREE (directed spanning tree with k-leaves)

I The rooted case has a poly kernel.
I The unrooted case does not unless
I So it has a poly Turing Kernel
I Now lower bounds by recent work on completeness.

DEFINITION (TURING KERNELIZATION)
A Turing Kernel consists of

1. (I) Three parameterized languages L1 and L2 (typically
L1 = L2) with Li ⊂ Σ∗ × N and L3 ⊆ Σ∗ × L1

(II) and a computable function g
(III) and a polynomial time computable function

f : Σ∗ × Σ∗ × N→ Σ∗ × N, 〈σ, τ, k〉 7→ 〈ρ, k ′〉 with |τ | ≤ |σ|
and |f (〈σ, τ, k〉)| ≤ g(k) such that

(IV) for all σ, τ, k ,

〈σ, τ, k〉 ∈ L3 iff 〈ρ, k ′〉 ∈ L2.

2. Plus an oracle Turing procedure Φ, running in polynomial
time on L1, with oracle L2, such that on input 〈σ, k〉, if the
procedure queries 〈τ, k〉 then it answers yes iff
f (〈σ, τ, k〉) ∈ L3

I The idea is that on input 〈σ, k〉 Φ works like a normal
polynomial time machine except on oracle queries, it
converts the query to a query of the kernel determined by
the query τ .

I In the case of k -LEAF OUT BRANCHING,
(I) L1 are pairs 〈G, k〉 consisting of digraphs with k or more

leaf outbranchings.
(II) L2 are pairs 〈Ĝ, k〉 consisting of rooted digraphs (the input

Ĝ would specify a root r) with with k or more leaf
outbranchings.

(III) L3 are triples 〈r ,G, k〉 consisting of yes instances of
whether G has a k or greater leaf outbranching rooted at r .

SOME REFERENCES

I Parameterized Complexity, springer 1999 DF
I Invitation to Parameterized Algorithms, 2006 Niedermeier,

OUP
I Parameterized Complexity Theory, 2006, Springer Flum

and Grohe
I Theory of Computing Systems, Vol. 41, October 2007
I Parameterized Complexity for the Skeptic, D, proceedings

CCC, Aarhus, (see my homepage)
I The Computer Journal, (ed Downey, Fellows, Langston)
I Confronting intractability via parameters, Downey Thilikos,

Computing Reviews
I Fundamentals of Parameterized Complexity,

Downey-Fellows, this year.

WHAT SHOULD YOU DO?

I You should buy that new wonderful book...(and its friends)
I Thanks!

