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ALGORITHMS

I From a set of basic instructions (ingredients) specify a
mechanical method to obtain the desired result.

I Already you can see that I plan to be sloppy, but you
should try to get the feel of the subject.

I I will try to have a general overview but will talk about some
of my own work. Not to say that my work is the most
important, but that I actually know something about it!
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GREATEST COMMON DIVISORS

I The greatest common divisor of two numbers x and y is
the biggest number that is a factor of both.

I For instance, the greatest common divisor, gcd(4,8) is 4.
gcd(6,10)=2; gcd(16,13)=1.

I Euclid, or perhaps Team Euclid, (around 300BC) devised
what remains the “best” algorithm for determining the gcd
of two numbers.
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EUCLID’S ALGORITHM

I To find gcd(1001,357).
I 1001 = 357 · 2 + 287
I 357 = 287 · 1 + 70
I 287 = 70 · 4 + 7
I 70 = 7 · 10
I 7=gcd(1001,357).

Rod Downey Victoria University Wellington New Zealand When Does a problem have a solution: A computability-theorists view



ANALYSIS

I Ingredients: numbers, +,−, ×, division.
I Operations : Combine in sensible ways.
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ANOTHER EXAMPLE

I At school one sees the following algorithm for solving the
quadratic equation.

ax2 + bx + c = 0.

I The solutions are −b+
√

b2−4ac
2a and −b−

√
b2−4ac

2a .

I Example 4x2 − 5x + 1 = 0 gives 5+
√

52−4·4·1
2·4 which equals

1; and 5−
√

52−4·4·1
2·4 which equals 1

4
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ANALYSIS

I Ingredients: numbers, +,− ×, division, √ , maybe cube
roots, powers etc.

I Operations : Combine in sensible ways.
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A GOOD QUESTION

I Can we do the same for degree 3, the “cubic”

ax3 + bx2 + cx + d = 0?,

what about degree 4, etc.
I This was one of the many questions handed to us by the

Greeks.
I The answer is yes for degree 3 and degree 4.
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THE SORRY TALE

I For degree 3 this was first proven by Ferro (1500).
I Ferro left it to his son-in-law Nave and pupil Fiore.
I Fiore challenged Tartaglia (in 1535) who then

re-discovered the solution with a few days to spare, leaving
Foire in ignomy.
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THE SORRY TALE

I For degree 3 this was first proven by Ferro (1500).
I Ferro left it to his son-in-law Nave and pupil Fiore.
I Fiore challenged Tartaglia (in 1535) who then

re-discovered the solution with a few days to spare, leaving
Foire in ignomy.

I Tartaglia also kept it secret, but told Cardano, who
promised by his Christian faith to keep it secret, but....

I in 1545 Cardano published it in his great text Ars Magna
I Additionally Cardano published how to extend to degree 4,

being discovered by a student Ferrari, (of whom the car
company is surely named).
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ABEL

I Finally, in 1823, a young Norwegian mathematician, Abel
proved that there is no recipe using the given ingredients
for the degree 5 case, the quintic.
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ABEL

I Finally, in 1823, a young Norwegian mathematician, Abel
proved that there is no recipe using the given ingredients
for the degree 5 case, the quintic.

I (The paper was called “Memoir on algebraic
purifications...” rather than “Memoir on algebraic
equations...” due to a typsetting error.)

I (My favourite error in one of my own papers referred to a
journal “Annals of Mathematical Logic” as “Animals of
Mathematical Logic.”It made me think of some of my
colleagues!)

I Nobody believed him, for a long time. (There had been an
earlier announcement by Ruffini, which contained “gaps”.)

Rod Downey Victoria University Wellington New Zealand When Does a problem have a solution: A computability-theorists view



GALOIS

I Evariste Galois (1811-32) eventually gave a general
methodology for deciding if a given degree n equation
admits a solution with the ingredients described.
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GALOIS

I Evariste Galois (1811-32) eventually gave a general
methodology for deciding if a given degree n equation
admits a solution with the ingredients described.

I This work laid the basis for the area called group theory.
I Galois method is to associate a group with each equation,

so that the equation is solvable in terms of the given
ingredients (arithmetic operations and radicals) iff the
group has a certain structure on its subgroups. This is one
of the gems of mathematics.
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CHANGING INGREDIENTS

I Nevertheless we can add some new operations “elliptic
functions” and show that there is a method of solving the
general degree n equation.

I These operations are “mechanical” so there is a an
algorithm for solving all such equations.
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HILBERT

I David Hilbert, 1900, working from a background of 19th
century determinism basically asked the question of
whether mathematics could be finitely “mechanized”.
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HILBERT

I David Hilbert, 1900, working from a background of 19th
century determinism basically asked the question of
whether mathematics could be finitely “mechanized”.

I Can we create an algorithm, a machine, into which one
feeds a statement about mathematics or at least in a
reasonable “formal system” and from the other end a
decision emerges: true or false.

I Or, for a given formal system, can we produce a machine
that would eventually emit all the “truths” of that system.

I Hilbert also proposed that we should prove the consistency
of various formal systems of mathematics.
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FORMAL SYSTEM

I It is not important what this is, save to say the type
envisioned would be a bunch of axioms, saying things like

I for all numbers x, x+1 exists,
I for all numbers x and y x + y = y + x ,
I and other “obvious truths.”
I plus rules of inference, like “if whenever P is true then Q is

true, and whenever Q is true then R is true; then whenever
P is true R is true.”

I induction.
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GÖDEL

I Hilbert’s dreams were forever shattered by a young
mathematician, Kurt Gödel.
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GÖDEL

I Hilbert’s dreams were forever shattered by a young
mathematician, Kurt Gödel.

I He prove the two incompleteness theorems.
I The first incompleteness theorem says that any sufficiently

rich formal system has statements
I expressible in the system
I true of the system, but
I cannot be proven in the system.
I Secondly no sufficiently rich formal system can prove its

own consistency.
I The collective intuition of a generation of mathematicians

was wrong.
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WELL, NOT QUITE

I Some rich systems are decidable by mechnaical methods.
I For example, Euclidian geometry. (Tarski, using quantifier

elimination, and inventing model theory).
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MATHEMATICAL INCOMPLETENESSES

I Gödel’s results had only weak penetration into the
consciousnesses of so-called “working mathematicians”,
and far too much penetration into that of would-be
philosophers and physicists.

I There are definitely now known “mathematical
incompleteness of various systems”

I Here is one example: Kruskal’s Theorem says that finite
trees are well-partially ordered by topological embedding.
(No infinite antichain)

I (Harvey Friedman) For all k there is an n so large that if
{Ti : i ≤ n} are trees with |Ti | < k · i then for some i < j , Ti
topologically embeds into Tj .

I This is statable in PA but not provable in any system that
esentially does not prove the existsnce of uncountable
sets. Friedman has examples equivalent to the existence
of “Mahlo Cardinals”(i.e. their truth is equivalent to
deciding what colour cheese the moon is made of).
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CHURCH-TURING-KLEENE

I Around the same time, various people were working on
formalizing what we might mean by “mechanical method.”
(such as the above)
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CHURCH-TURING-KLEENE

I Around the same time, various people were working on
formalizing what we might mean by “mechanical method.”
(such as the above)

I There were various models proposed, “lambda calculus”
(Church) “partial recursive functions (Kleene)”

I The convincing model was that of Turing which are now
called Turing Machines.

I Church’s Thesis “All mechanically computable processes
on the numbers can be simulated on a Turing Machine”
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TURING

I Worked on Code cracking in the 2nd world war. (Enigma
machine)
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TURING

I Worked on Code cracking in the 2nd world war. (Enigma
machine)

I His fundamental paper, was part of the inspiration for the
first computers, and strongly influenced John von
Neumann.

I Much work e.g. on Colusus only recently declassified.
I Also the foundations of numerical analysis and

ill-conditioning.
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A BASIC UNDECIDABLE QUESTION

I Using the fact that all Turing machines can be enumerated
we can use a beautiful argument of Cantor about differing
sizes of infinite sets(!) to show that there is no algorithm to
decide to following question.

I INPUT Turing machine number x and an input y .
QUESTION Does the machine x halt on input y .
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I (Proof. Suppose that we could decide this algorithmically.
We can then use the decision procedure to construct a
machine M that halts on input n if Tn does not halt on input
n, and our machine M does not halt if machine Tn does
halt on input n. Then M would be some machine Tm, but
then Tm(m) halts if and only if M(m) halts iff Tm(m) does
not halt....)

I We code this problem into others.

Rod Downey Victoria University Wellington New Zealand When Does a problem have a solution: A computability-theorists view



EXAMPLE-CONWAY’S THEOREM

I Collatz-type functions. f (x) = x
2 if x is even, and

f (x) = 3x + 1 if x odd.
I e.g. f (3) = 10 f (f (3)) = 5, get the sequence,

3,10,5,16,8,4,2,1
I Do you always get to 1? (Still open)
I General type of question : e.g g(x) = 1/2x if x divisible by

4, g(x) = 5x − 1 if x has remainder 1 when divided by 4,
etc.

I John Conway (1980’s) showed that there is no general
algorithm to decide
INPUT A system like the above, and a number x .
QUESTION Does x get back to 1?
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WANG TILES

I INPUT a set of square coloured tiles of the same size.
Only same colour borders next to one another.
QUESTION Can an initial configuration be extended to
colour the plane?

I Wang in the 60’s showed that there is no algorithm to
decide this.
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HILBERT’S 10TH PROBLEM

I INPUT A polynomial P in variables x1, ..., xn
QUESTION Is there a positive solution to the equation
P = 0?

I Matijasevich, after Julia Robinson in the 70’s showed there
is no algorithm to decide such questions.

I But there is now a polynomial whose only positive rational
zeroes are the primes!
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RECENT EXAMPLES

I Recently it was shown by Braverman and Yampolsky
(STOC, 2007) that Julia sets can be noncomputable, any
halting problem being codable. (Also Blum-Smale-Shub,
but that’s another story.)

I Julia set: z 7→ z2 + αz, where α = e2πiθ.

I Nabutovsky and Weinberger (Geometrica Dedicata, 2003)
showed that basins of attraction in differential geometry
faithfully emulated certain computations. Refer to Soare
Bull. Symbolic Logic.

Rod Downey Victoria University Wellington New Zealand When Does a problem have a solution: A computability-theorists view



Rod Downey Victoria University Wellington New Zealand When Does a problem have a solution: A computability-theorists view



I The answer is inescapable: these diverse mathematical
objects, tiles, Conway sequences, and polynomials can be
used to simulate computations.

Rod Downey Victoria University Wellington New Zealand When Does a problem have a solution: A computability-theorists view



MEASURING IMPOSSIBILITY

I So we have seen that some problems are algorithmically
undecidable. Question how hard?

I A ≤T B means that if there is a way to solve B I can solve
A. Call the equivalence classes degrees and these are
called computably enumerable if they contain a halting
problem of some machine.

I E.g. Halt <T TOT, the collection of programmes which halt
on all inputs.
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DEGREE STRUCTURE

I 2ℵ0 many degrees. (Obvious)
I (Post’s Problem) are there halting problems a with 0 (the

degree of the computable sets) < a < 0′ the degree of
HALT)?

I Answer Yes, Friedberg and Muchnik 1956 priority method.
I dense Sacks, 1962
I “natural solutions” Downey, Hirschfeldt, Nies, Stephan.

Priority free (Kučera, 1980’s) Uses techniques in effective
randomness.

I Want to know more? Buy Algorithmic Randomness and
Complexity, Springer, 2008 (DH) or Computability and
Randomness (Nies, OUP, 2008).
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WORD PROBLEMS

I E.g. Word problems in finitely presented groups.
G = 〈x1, . . . , xn : y1, . . . , yn〉, where 〈x1, . . . , xn〉 is the free
group, and the yi are a free normal subgroup.

I E.g. low dimensional topology and the like, Max Dehn,
1910’s.

I Boone, Novikov, Collins, Stallings etc: For each c.e. degree
a there is a finitely presented group whose word problem
(given z1, z2 is z1 =G z2?) has degree a.
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NO INVARIANTS

I Much of mathematics is concerned with classification of
structures (groups rings, de’s etc) by invariants.

I Bases for vector spaces, Ulm invariants for abelian groups.
I How can we show that no invariants are possible?
I A computability theorists’s view.
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ANALYTIC=Σ1
1

I The halting problem is called Σ0
1 in that ϕx(y) halts iff

∃t ∈ Nϕx(y)

halts in t steps. (And ϕx(y) halts in t steps is computable.)
This is arithmetic, where the quantifier searches over N.

I Almost all problems in normal mathematics are analytic.
I A is analytic or Σ1

1 iff deciding x ∈ A entails asking if there
is a function f from N to N such that some computable
relation holds for all f (n).

I E.g. isomorphism is typically in Σ1
1.
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Σ1
1 COMPLETENESS

I Many problems in Σ1
1 are much easier. E.g. isomorphism

for finitely presented groups is Σ0
3. (Is there a matching of

generators for which every equation in the first holds in the
second?)

I If some problem is shown to be Σ1
1 complete, then no

simpler set of invariants is possible.
I E.g. (Downey and Montalbán) the problem of deciding if

two finitely prsented groups have Hi(G) ∼= Hi(Ĝ for i ≤ 3 is
Σ1

1 complete.
I Uses the result that the isomorphism problem for

computable torsion free Abelian groups is Σ1
1 complete.

(DM)
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HOW TO PROVE SUCH A RESULT?

I A tree is a downward subset of N<N, the set of finite strings
of natural numbers.

I A tree is well-founded if it has no infinite path.
I Core problem: Deciding of a tree is well-founded is Σ1

1
complete. Deciding if two trees are isomorphic is Σ1

1
complete. (Essentially Kleene, Harrison)

THEOREM (DM)
There is a computable operator G, that assigns to each tree T
a torsion-free group G(T ), in a way that

1. if T0 ∼= T1, then G(T0) ∼= G(T1),
2. if T0 is well-founded and T1 is not, then G(T0) 6∼= G(T1).
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KECHRIS-HJORTH-THOMAS

I Borel cardinality theory: equivalence relations (such as
isomorphism) E1 ≤B E2 iff there is a Borel mapping
f : E1 → E2 with x ≈E1 y iff f (x) ≈E2 f (y).

I Their idea is that any reasonable translation should be at
least Borel.

I Invariants? e.g. finite rank torison free Abelian groups.
Erank i <B Erank i + 1. Complete?

I From a computability point of view, all the same Σ0
3.

I Structure largely unknown.
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SLAMAN-WOODIN

I Another example is provided by extending partial
orderings.

I A linear extension (P,≤L) of a partial ordering (P,≤P) is a
linear ordering such that whenever x ≤P y , x ≤L y .

I Theorem (Szpilrajn) every partial order has a linear
extension.

I A well-partial ordering has a well ordered extension.
(Bonnet, Corominas, Fraïssé, Jullien, and Pouzet, Galvin,
Kostinsky, and McKenzie, etc for extendible types)

I Theorem (Slaman and Woodin) The collection of
computable partial orderings with dense extensions is
co-Σ1

1 complete, and hence there are no reasonable
invariants, answering a question of Łoś.
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AN ASIDE

I One of the greatest theorems in mathematics is not widely
known, and is due to Saharon Shelah.

I The realization is that orderings are very complex and if
one can code them into a structure then that structure will
have so many models in its isomorphism type that it will be
impossible to “classify”

I Shelah proved the Dichotomy Theorem which says very
very roughly, that either a class of models resembles a
vector space and has a decent set of invariants “like a
basis” generated by a relation called “forking” or it
resembles a linear ordering and is unclassifiable.

I “Why am I so happy?” (AMS notices), Classification
Theory and the Number of Non-isomorphic Models.

I There is a nice user friendly discussion of this in a BUll
LMS paper by Wilfred Hodges “What is structure theory?”
(1987)
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COMPLEXITY THEORY, COST COUNTING

I Complexity theory is the above plus concerns about the
number of steps (time) or memory or some other resource
used.

I Fundamental papers, Edmonds 1965, Hartmanis-Sterns
1960’s.

I We will look at time, the number of steps.
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COOK, KARP, AND LEVIN

I Around 1970-72 Cook and Karp in the west and Levin in
Russia realized that there were fundamental issues like the
halting problem above which were very important and yet
we had no idea how to attack them. This last statement is
still true!!!
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TWO PROBLEMS

I (Ice Cream Stands) (“Dominating Set”) No person should
need to walk more than one block for an ice cream. What
is the minimum number needed?

I (Travelling Salesman-Hamilton Circuit) Can I travel through
each city exactly once?

I If there is a cost what is the minimum cost route.
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THREE PROBLEMS

I (Ice Cream Stands) (“Dominating Set”) No person should
need to walk more than one block for an ice cream. What
is the minimum number needed?

I (Ice Cream Stands in a wealthy place) (“Vertex Cover”)
Every street must have one. What is the minimum number
needed?

I (Travelling Salesman-Hamilton Circuit) Can I travel through
each city exactly once?

I If there is, what is the minimum cost route?
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NP-COMPLETENESS

I All of the problems above have the property that we can
guess a solution and quickly verify it, but we curently have
no way to find a solution. Such problems are called
nondeterminsitically polynomial time.

I The fundamental question is whether they can all be done
in polynomial time. This is the P =?NP question, and I
regard it as the most important in mathematics.

I We know that all of the problems mentioned have the
property that if any of them are polynomial time solvable
then all of them are! This is because they can all be
efficiently coded into each other.
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WHAT WE KNOW

I We know very little.
I We know no relativizable technique suffices

(Baker-Gill-Solovay)
I We know no “natutral proof” suffices (Razborov-Rudich).
I We know that almost all functions take expenential circuits

to compute. The best explicit example in NP takes 3n.
I We know DLIN 6= NLIN on a Turing machine (Szemerdi et.

al.).
I We think that e.g. n-variable SAT is not solvable with

subexpeonetial circuits. But:
I (Impagliazzo-Widgerson) It is not possible for this to be

true and for there to be functions computable in
randomized poly time, but not in polynomial time.(!!!)
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COPING

I Well beer must be delivered, so we must develop methods
of coping, using heuristics, and non-exact solutions.

I Approximation, probabilistic, etc are all such examples.
I Part of my work is with Mike Fellows to limit the effect of

intractability.
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PARAMETERIZED COMPLEXITY

I We bound some natural parameter, such as logical depth,
structure of the graphs, etc.

I e.g. k -Dominating set is DTIME(2O(k)) whereas using
pre-processing, k -Vertex Cover, is solvable in more or less
1.23k + 2n.
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PARAMETERIZED TRACTABILITY

I As an example, here is a simple kernelization for Vertex
Cover.

I Is the graph G has any vertex of degree k or more, then
this vertex must be in the VC lest all the neighbours are.

I Reduce by deleting them and all covered edges.
I Asymptotic combinatorics show that the suze of the

resulting graph must be at most k2

I Better combinatorics results in a kernel of size 2k
(Nemhauser and Trotter).

I using PCP, 1.36k is the best possible assuming P6=NP.
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I Not just a academic exercise: implemented using
pre-processing and used for irradiating mice (Mike
Langston, NZIMA programme, 2008, Feb)

I Used for analysis of Indo-european languages, etc.
I Next issue or so of The Computer Journal
I New methods, allow us to show no preprocessing of this

type possible. (December, Wellington)
I Other methods possible: bounded search used in ML type

checking.
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PARAMETERIZED INTRACTABILITY

I k -Dominating set is as hard as deciding the following core
problem:

I Input : a Turing Machine M (arbitary fanout)
Paramater : k
Question: Does M have an accepting path of k or fewer
steps?

I This class is called W [1] and has hundreds of problems
hard for it.

I can also be used for easy non-approximation results: No
reasonable PTAS if W [1] hard with k = 1

ε .
I There are examples in the literature with running times like

n1060
! (See “parameterized complexity for the skeptic”)
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MORE CHRISTMAS PRESENTS

I To learn more, there is another book which has a very
reasonable price......

I Also Flum-Grohe, Niedermeier, Fernau+ The computer
Journal special issue.

I Thank you for your time and attention.
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