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» Supported by the Marsden Fund of New Zealand.

» The New Zealand Institute of Mathematics and its
Applications.
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ALGORITHMS

» From a set of basic instructions (ingredients) specify a
mechanical method to obtain the desired result.

» Already you can see that | plan to be sloppy, but you
should try to get the feel of the subject.

» | will try to have a general overview but will talk about some
of my own work. Not to say that my work is the most
important, but that | actually know something about it!
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MUSIC
Bars
1- 8

9-12
13-16

17-24

25-28

20-32

No. 1 - THE REVEREND JOHN MACFARLANE
(Reel)

DESCRIPTION

Istwoman dancesareel of three on themen’s side with 2nd and 3rd men, while
Ist man dances a reel of three on the women’s side with 2nd and 3rd women.
(Fig.)

Ist couple finish in partner’s place.

Ist couple dance a half figure of eight round 2nd couple.

Ist couple, joining both hands, dance four slip steps down the middle to third
place and then set with hands still joined. (1st man sets to the left and then to
the right.) 2nd and 3rd couples step up and 4th couple step in to meet on bars
15-16.

Istand 4th couples poussette.

9nd couple with 3rd couple and 4th couple with 1st couple dance right hands
across once round to places.

2nd, 3rd, 4th and Ist couples turn partners once round with the left hand.

Repeat with a new top couple.

Th

he 150th y of the founding in Wellington of New Zealand’s first

Scots Chureh, later known as St. Andrews.
The Rev. John Macfarlane, the first minister of Martyr's Memorial Church, Paisley, arvived in New
Zealand on 20th Februany, 1840 and he held the first service on the beach at Petone on Sunday 23rd

February.

Devised by Gary W. Morris (New Zealand Branch)

Fig



ice when it reaches the mushy stage and every 30 minutes
after that until it is ready to serve, to insure smoothness.
Garnish with pitted black cherries.

CREAM FRITTERS

READY TRAY Serves4t0 6 |

egg yolks

cups milk, scalded

teaspoon grated orange or lemon rind
egg, beaten

Breadcrumbs

tablespoons oil

tablespoons butter

Powdered sugar

tablespoons brandy or rum

SIEREr S 19
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Beat egg yolks and sugar in top of double boiler. Cook
over low heat, stirring with wooden spoon until slightly
thickened. Mix in % cup fiour, salt and gradually add
‘milk. Simmer, stirring, until very thick. At no time allow
to boil. Blend in rind.

Rinse a square dish or pan with cold water and pour
in mixture to a depth of 2 inches. Chill until firm. Cut
ine es o siumpoter oo Ichen lowg. Dip in
remaining flour, in egg and then in
gently on both sides in hot oil and butter. oy q)'nnﬂed
with sugar, and flame with heated brandy or rum.

FRIED RICOTTA *

READY TRAY Serves 8

%  pound macaroons |
1 pound ricotta cheese |
Pinch cinnamon
3 eggs
Breaderumbs |
Y% pound butter |
Powdered sugar
Brandy
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ALGORITHMS

» From a set of basic instructions (ingredients) specify a
mechanical method to obtain the desired result.
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GREATEST COMMON DIVISORS

» The greatest common divisor of two numbers x and y is
the biggest number that is a factor of both.

» For instance, the greatest common divisor, gcd(4,8) is 4.
gcd(6,10)=2; gcd(16,13)=1.

» Euclid, or perhaps Team Euclid, (around 300BC) devised
what remains the “best” algorithm for determining the gcd
of two numbers.
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EucCLID’S ALGORITHM

To find gcd(1001,357).
1001 = 357 - 2 4 287
357 — 287 -1+ 70
287 =70-4+7
70=7-10
7=gcd(1001,357).

vV vV vV vV VvVY
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ANALYSIS

» Ingredients: numbers, +, —, x, division.
» Operations : Combine in sensible ways.
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ANOTHER EXAMPLE

» At school one sees the following algorithm for solving the
quadratic equation.

ax®> + bx +¢c=0.
. _ 2_ —b—/b2—4
» The solutions are %\/Tac and M.

» Example 4x2 — 5x + 1 = 0 gives >V 441 which equals
1;and 2= V5 —+41 \which equals 1
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ANALYSIS

» Ingredients: numbers, +, — x, division, Vo maybe cube
roots, powers etc.

» Operations : Combine in sensible ways.
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A GOOD QUESTION

» Can we do the same for degree 3, the “cubic”
ax® + bx? + cx +d = 0?,

what about degree 4, etc.

» This was one of the many questions handed to us by the
Greeks.

» The answer is yes for degree 3 and degree 4.
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THE SORRY TALE

» For degree 3 this was first proven by Ferro (1500).
» Ferro left it to his son-in-law Nave and pupil Fiore.

» Fiore challenged Tartaglia (in 1535) who then
re-discovered the solution with a few days to spare, leaving
Foire in ignomy.
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Historical introduction  xv

>lo Fontana (Tartaglia),

University Wellington New Zealand



THE SORRY TALE

» For degree 3 this was first proven by Ferro (1500).
» Ferro left it to his son-in-law Nave and pupil Fiore.

» Fiore challenged Tartaglia (in 1535) who then
re-discovered the solution with a few days to spare, leaving
Foire in ignomy.

» Tartaglia also kept it secret, but told Cardano, who
promised by his Christian faith to keep it secret, but....

» in 1545 Cardano published it in his great text Ars Magna

» Additionally Cardano published how to extend to degree 4,
being discovered by a student Ferrari, (of whom the car
company is surely named).
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Figure 4:  Title page of Cardano’s Ars Magna.
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square roots being chosen so that

V=yi X V=y2 X V=y3; = —q.

22 Cardano, the first to publish solutions of cubic and quartic
ations.
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ABEL

» Finally, in 1823, a young Norwegian mathematician, Abel
proved that there is no recipe using the given ingredients
for the degree 5 case, the quintic.
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The only authentic portrait of Niels Henrik Abel, executed by the
painter Gorbitz in Paris in 1826
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ABEL

» Finally, in 1823, a young Norwegian mathematician, Abel
proved that there is no recipe using the given ingredients
for the degree 5 case, the quintic.

» (The paper was called “Memoir on algebraic
purifications...” rather than “Memoir on algebraic
equations...” due to a typsetting error.)

» (My favourite error in one of my own papers referred to a
journal “Annals of Mathematical Logic” as “Animals of
Mathematical Logic.”It made me think of some of my
colleagues!)

» Nobody believed him, for a long time. (There had been an
earlier announcement by Ruffini, which contained “gaps”.)
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GALOIS

» Evariste Galois (1811-32) eventually gave a general
methodology for deciding if a given degree n equation
admits a solution with the ingredients described.
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Figure 8: “I have no time” (je n’ ai pas le temps) above deleted paragraph in lower
left corner. But consider the context.
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GALOIS

» Evariste Galois (1811-32) eventually gave a general
methodology for deciding if a given degree n equation
admits a solution with the ingredients described.

» This work laid the basis for the area called group theory.

» Galois method is to associate a group with each equation,
so that the equation is solvable in terms of the given
ingredients (arithmetic operations and radicals) iff the
group has a certain structure on its subgroups. This is one
of the gems of mathematics.
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CHANGING INGREDIENTS

» Nevertheless we can add some new operations “elliptic
functions” and show that there is a method of solving the
general degree n equation.

» These operations are “mechanical” so there is a an
algorithm for solving all such equations.
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HILBERT

» David Hilbert, 1900, working from a background of 19th
century determinism basically asked the question of
whether mathematics could be finitely “mechanized”.
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David Hilbert, 1912 — one of a group of portraits of professors
which were sold as postcards in Géttingen
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The first three problems concerned the foundations of mathematics:

1. To prove Cantor’s “continuum ‘hypothesis” that any set of real aumbers can be put
into one-to-one correspondence cither with the set of natural numbers or with the
set of all real numbers (i.c., the continuum).

2. To investigate the consistency of the arithmeic axioms.

6. To axiomatize those physical scieaces in which mathematics plays an important role.

“So far we have considered only questions ing the foundati
of the mathematical sciences. Indeed, the study of the foundations of a
science is always particularly attractive, and the testing of these foundations
will always be among the foremost problems of the investigator. Weier-
scrass said, “The final objective always to be kept in mind is to arrive
at a correct understanding of the foundations . . . . But to make any prog-
cess in the sciences the study of individual problems is, of course, indispen-
sable.” In fact, a thorough understanding of s special theories is necessary
to the successful treatment of the foundations of the science. Only that
architect is in the position to lay a sure foundation for a structure who
knows its purpose thoroughly and in detail.”

The next four problems were sclected from arithmetic and algebra:

7. To establish the transcendence, ot at least the irrationality, of certain numbers.
8. To prove the correctaess of an extremely important statement by Riemann tha the
zetos of the function known as the “zeta function” all have the real pare 'y, except
the well known negative integral real zeros.
13. To show the impossibility of the solution of 4
by functions of only two arguments.
16. To conducta thorough i i i of the
ich 2 plane algebraic curve of th order can have when their number is the maxi-
mum. . . and the corresponding investigation as to the aumber, form, and position
of the sheets of an algebraic surface in space.

The last three problems came from the theory of functions:
19. To determine whether the solutions of “cegulac” problems in the calculus of vacia-
tions are necessarily analytic.
21. To show that there always cxists 2 linear diffecential equation of the Fuchsiaa class
with given singular points and monodromic group.
22. To generalize a theorem proved by Poincaré to the effect that it is always possible
i i iion between two variables by

he general equation of the Tth degree

©
functions of one variable.

“The problems mentioned,” Hilbert told his audience, “are merely
samples of problems; yet they aze sufficient to show how sich, how manifold
and how extensive the mathematical science is today; and the question is
urged upon us whether mathematics is doomed to the fate of those other

82
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HILBERT

» David Hilbert, 1900, working from a background of 19th
century determinism basically asked the question of
whether mathematics could be finitely “mechanized”.

» Can we create an algorithm, a machine, into which one
feeds a statement about mathematics or at least in a
reasonable “formal system” and from the other end a
decision emerges: true or false.

» Or, for a given formal system, can we produce a machine
that would eventually emit all the “truths” of that system.

» Hilbert also proposed that we should prove the consistency
of various formal systems of mathematics.
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FORMAL SYSTEM

» It is not important what this is, save to say the type
envisioned would be a bunch of axioms, saying things like

for all numbers x, x+1 exists,
for allnumbers xandy x +y =y + x,
and other “obvious truths.”

plus rules of inference, like “if whenever P is true then Q is
true, and whenever Q is true then R is true; then whenever
P is true Ris true.”

» induction.

vV v v Y
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GODEL

» Hilbert’s dreams were forever shattered by a young
mathematician, Kurt Gédel.
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GODEL

» Hilbert’s dreams were forever shattered by a young
mathematician, Kurt Gédel.

» He prove the two incompleteness theorems.

The first incompleteness theorem says that any sufficiently
rich formal system has statements

expressible in the system

true of the system, but

cannot be proven in the system.

Secondly no sufficiently rich formal system can prove its
own consistency.

» The collective intuition of a generation of mathematicians
was wrong.

v

vV v.v Yy
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WELL, NOT QUITE

» Some rich systems are decidable by mechnaical methods.

» For example, Euclidian geometry. (Tarski, using quantifier
elimination, and inventing model theory).
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MATHEMATICAL INCOMPLETENESSES

» Godel’s results had only weak penetration into the
consciousnesses of so-called “working mathematicians”,
and far too much penetration into that of would-be
philosophers and physicists.

» There are definitely now known “mathematical
incompleteness of various systems”

» Here is one example: Kruskal's Theorem says that finite
trees are well-partially ordered by topological embedding.
(No infinite antichain)

» (Harvey Friedman) For all k there is an n so large that if
{T; : i < n} are trees with |T;| < k - i then for some i < j, T;
topologically embeds into 7;.

» This is statable in PA but not provable in any system that
esentially does not prove the existsnce of uncountable
sets. Friedman has examples equivalent to the existence
of “Mahlo Cardinals”(i.e. their truth is equivalent to
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CHURCH-TURING-KLEENE

» Around the same time, various people were working on
formalizing what we might mean by “mechanical method.”
(such as the above)
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258 Alfred Tarski: Life and Logic




The mathematical work of Charles Babbage
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Plate 3. The analytical engine
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CHURCH-TURING-KLEENE

» Around the same time, various people were working on
formalizing what we might mean by “mechanical method.”
(such as the above)

» There were various models proposed, “lambda calculus”
(Church) “partial recursive functions (Kleene)”

» The convincing model was that of Turing which are now
called Turing Machines.

» Church’s Thesis “All mechanically computable processes
on the numbers can be simulated on a Turing Machine”
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TURING

» Worked on Code cracking in the 2nd world war. (Enigma
machine)
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Aged 5
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After a successful race.  May, 1950
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168 Tue Man Wrao KNew Too Much




John von Neumann, Princeton, 1932
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The von Neumanns starting the descent into the Grand Canyon on an excursion
in the late 1940s: Klari, with visor, is fourth from front; Johnny, bareheaded
and in city suit, is last, on the only mule facing the wrong way
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TURING

» Worked on Code cracking in the 2nd world war. (Enigma
machine)

» His fundamental paper, was part of the inspiration for the
first computers, and strongly influenced John von
Neumann.

» Much work e.g. on Colusus only recently declassified.

» Also the foundations of numerical analysis and
ill-conditioning.
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A BASIC UNDECIDABLE QUESTION

» Using the fact that all Turing machines can be enumerated
we can use a beautiful argument of Cantor about differing
sizes of infinite sets(!) to show that there is no algorithm to
decide to following question.

» INPUT Turing machine number x and an input y.
QUESTION Does the machine x halt on input y.
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» (Proof. Suppose that we could decide this algorithmically.
We can then use the decision procedure to construct a
machine M that halts on input nif T, does not halt on input
n, and our machine M does not halt if machine T, does
halt on input n. Then M would be some machine T, but
then T,(m) halts if and only if M(m) halts iff T,(m) does
not halt....)

» We code this problem into others.
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EXAMPLE-CONWAY’S THEOREM

» Collatz-type functions. f(x) = 7 if x is even, and
f(x) = 3x + 1 if x odd.

» e.g. f(3) =10 f(f(3)) = 5, get the sequence,
3,10,5,16,8,4,2,1

» Do you always get to 1? (Still open)

» General type of question : e.g g(x) = 1/2x if x divisible by
4, g(x) = 5x — 1 if x has remainder 1 when divided by 4,
etc.

» John Conway (1980’s) showed that there is no general
algorithm to decide
INPUT A system like the above, and a number x.
QUESTION Does x get back to 1?
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WANG TILES

» INPUT a set of square coloured tiles of the same size.
Only same colour borders next to one another.
QUESTION Can an initial configuration be extended to
colour the plane?

» Wang in the 60’s showed that there is no algorithm to
decide this.
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HILBERT’S 10TH PROBLEM

» INPUT A polynomial P in variables xi, ..., X,
QUESTION Is there a positive solution to the equation
P =07

» Matijasevich, after Julia Robinson in the 70’s showed there
is no algorithm to decide such questions.

» But there is now a polynomial whose only positive rational
zeroes are the primes!
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This shows myself, Julia Robinson, Raphael Robinson, and my wife.
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HILBERT’S 10TH PROBLEM

» INPUT A polynomial P in variables xi, ..., X,
QUESTION Is there a positive solution to the equation
P =07

» Matijasevich, after Julia Robinson in the 70’s showed there
is no algorithm to decide such questions.

» But there is now a polynomail whose only rationals zeroes
are the primes!
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RECENT EXAMPLES

» Recently it was shown by Braverman and Yampolsky
(STOC, 2007) that Julia sets can be noncomputable, any
halting problem being codable. (Also Blum-Smale-Shub,
but that’s another story.)

» Julia set: z — z% + az, where o = 2™,

» Nabutovsky and Weinberger (Geometrica Dedicata, 2003)
showed that basins of attraction in differential geometry
faithfully emulated certain computations. Refer to Soare
Bull. Symbolic Logic.
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Figure 1: Examples of quadratic Julia sets J, (black), and filled Julia sets K, (gray); orbits that originate at
white points escape to co; note that on picture (c) K, = J,, since K, has empty interior
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» The answer is inescapable: these diverse mathematical
objects, tiles, Conway sequences, and polynomials can be
used to simulate computations.
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MEASURING IMPOSSIBILITY

» So we have seen that some problems are algorithmically
undecidable. Question how hard?

» A <7 B means that if there is a way to solve B | can solve
A. Call the equivalence classes degrees and these are
called computably enumerable if they contain a halting
problem of some machine.

» E.g. Halt <7 TOT, the collection of programmes which halt
on all inputs.
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DEGREE STRUCTURE

» 2% many degrees. (Obvious)

» (Post’s Problem) are there halting problems a with 0 (the
degree of the computable sets) < a < 0’ the degree of
HALT)?

» Answer Yes, Friedberg and Muchnik 1956 priority method.

» dense Sacks, 1962

» “natural solutions” Downey, Hirschfeldt, Nies, Stephan.
Priority free (KuCera, 1980’s) Uses techniques in effective
randomness.

» Want to know more? Buy Algorithmic Randomness and
Complexity, Springer, 2008 (DH) or Computability and
Randomness (Nies, OUP, 2008).
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WORD PROBLEMS

» E.g. Word problems in finitely presented groups.
G=(X1,...,Xn: Y1,-..,¥Yn), Where (X1, ..., Xp) is the free
group, and the y; are a free normal subgroup.

» E.g. low dimensional topology and the like, Max Dehn,
1910’s.

» Boone, Novikov, Collins, Stallings etc: For each c.e. degree
a there is a finitely presented group whose word problem
(given zqy,z0 is zy =g 2?) has degree a.
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NO INVARIANTS

» Much of mathematics is concerned with classification of
structures (groups rings, de’s etc) by invariants.

» Bases for vector spaces, Ulm invariants for abelian groups.
» How can we show that no invariants are possible?
» A computability theorists’s view.
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ANALYTIC=Y!

» The halting problem is called £9 in that ¢ (y) halts iff

dt € N‘Px(y)

halts in t steps. (And ¢x(y) halts in ¢t steps is computable.)
This is arithmetic, where the quantifier searches over N.

» Almost all problems in normal mathematics are analytic.

» Ais analytic or ] iff deciding x € A entails asking if there
is a function f from N to N such that some computable
relation holds for all f(n).

» E.g. isomorphism is typically in Z].
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¥ ] COMPLETENESS

» Many problems in X1 are much easier. E.g. isomorphism
for finitely presented groups is Zg. (Is there a matching of
generators for which every equation in the first holds in the
second?)

» If some problem is shown to be Z} complete, then no
simpler set of invariants is possible.

» E.g. (Downey and Montalbén) the problem of deciding if
two finitely prsented groups have H;(G) = H;(G for i < 3 is
> ! complete.

» Uses the result that the isomorphism problem for
computable torsion free Abelian groups is 1 complete.
(DM)
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HOw TO PROVE SUCH A RESULT?

» A tree is a downward subset of N<N, the set of finite strings
of natural numbers.

» Atree is well-founded if it has no infinite path.

» Core problem: Deciding of a tree is well-founded is Z}
complete. Deciding if two trees are isomorphic is X!
complete. (Essentially Kleene, Harrison)

THEOREM (DM)
There is a computable operator G, that assigns to each tree T
a torsion-free group G(T), in a way that

1. if To = Ty, then G(Ty) = G(Ty),

2. if Ty is well-founded and Ty is not, then G(Ty) % G(T1).
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KECHRIS-HJORTH-THOMAS

v

Borel cardinality theory: equivalence relations (such as
isomorphism) E; <g E; iff there is a Borel mapping
f: Ey — Ex with x =g, y iff f(x) =g, f(y).

v

Their idea is that any reasonable translation should be at
least Borel.

Invariants? e.g. finite rank torison free Abelian groups.
Erank i <8 Erank j + 1- Complete?

v

v

From a computability point of view, all the same 28.

v

Structure largely unknown.
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SLAMAN-WOODIN

» Another example is provided by extending partial
orderings.

» A linear extension (P, <,) of a partial ordering (P, <p) is a
linear ordering such that whenever x <p y, x <, y.

» Theorem (Szpilrajn) every partial order has a linear
extension.

» A well-partial ordering has a well ordered extension.
(Bonnet, Corominas, Fraissé, Jullien, and Pouzet, Galvin,
Kostinsky, and McKenzie, etc for extendible types)

» Theorem (Slaman and Woodin) The collection of
computable partial orderings with dense extensions is
co—Z} complete, and hence there are no reasonable
invariants, answering a question of Los.
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AN ASIDE

» One of the greatest theorems in mathematics is not widely
known, and is due to Saharon Shelah.

» The realization is that orderings are very complex and if
one can code them into a structure then that structure will
have so many models in its isomorphism type that it will be
impossible to “classify”

» Shelah proved the Dichotomy Theorem which says very
very roughly, that either a class of models resembles a
vector space and has a decent set of invariants “like a
basis” generated by a relation called “forking” or it
resembles a linear ordering and is unclassifiable.

» “Why am | so happy?” (AMS notices), Classification
Theory and the Number of Non-isomorphic Models.

» There is a nice user friendly discussion of this in a BUII
LMS paper by Wilfred Hodges “What is structure theory?”
(1987)
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COMPLEXITY THEORY, COST COUNTING

» Complexity theory is the above plus concerns about the

number of steps (time) or memory or some other resource
used.

» Fundamental papers, Edmonds 1965, Hartmanis-Sterns
1960’s.

» We will look at time, the number of steps.
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CoOK, KARP, AND LEVIN

» Around 1970-72 Cook and Karp in the west and Levin in
Russia realized that there were fundamental issues like the
halting problem above which were very important and yet
we had no idea how to attack them. This last statement is
still true!!!

Rod Downey Victoria University Wellington New Zealand When Does a problem have a solution: A computability-theo!



TwO PROBLEMS

» (Ice Cream Stands) (“Dominating Set”) No person should
need to walk more than one block for an ice cream. What
is the minimum number needed?

» (Travelling Salesman-Hamilton Circuit) Can | travel through
each city exactly once?

» If there is a cost what is the minimum cost route.
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THREE PROBLEMS

» (Ice Cream Stands) (“Dominating Set”) No person should
need to walk more than one block for an ice cream. What
is the minimum number needed?

» (Ice Cream Stands in a wealthy place) (“Vertex Cover”)
Every street must have one. What is the minimum number
needed?

» (Travelling Salesman-Hamilton Circuit) Can | travel through
each city exactly once?

» If there is, what is the minimum cost route?
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NP-COMPLETENESS

» All of the problems above have the property that we can
guess a solution and quickly verify it, but we curently have
no way to find a solution. Such problems are called
nondeterminsitically polynomial time.

» The fundamental question is whether they can all be done
in polynomial time. This is the P =?NP question, and |
regard it as the most important in mathematics.

» We know that all of the problems mentioned have the
property that if any of them are polynomial time solvable
then all of them are! This is because they can all be
efficiently coded into each other.
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1 can’t find an efficient algorithm, I guess I'm just too dumb.”

To avoid serious damage to your position within the company, it would
much better if you could prove that the bandersnatch problem is in-
‘ently intractable, that no algorithm could possibly solve it quickly. You
1 could stride confidently into the boss’s office and proclaim:

¢

“Ican’t find an efficient algorithm, because no such algorithm is possible!”

Unfortunately, proving inherent intractability can be just as hard as
ling ‘efficient algorithms. Even the best theoreticians have been stymied
their. attempts to obtain such proofs for commonly encountered hard
blems. “However, having read this book, you have discovered something
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“I can’t find an efficient algorithm, but neither can all these famous people.”
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NP-COMPLETENESS

» All of the problems above have the property that we can
guess a solution and quickly verify it, but we curently have
no way to find a solution. Such problems are called
nondeterminsitically polynomial time.

» The fundamental question is whether they can all be done
in polynomial time. This is the P =?NP question, and |
regard it as the most important in mathematics.

» We know that all of the problems mentioned have the
property that if any of them are polynomial time solvable
then all of them are! This is because they can all be
efficiently coded into each other.
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WHAT WE KNOW

» We know very little.

» We know no relativizable technique suffices
(Baker-Gill-Solovay)

» We know no “natutral proof” suffices (Razborov-Rudich).

» We know that almost all functions take expenential circuits
to compute. The best explicit example in NP takes 3n.

» We know DLIN # NLIN on a Turing machine (Szemerdi et.
al.).

» We think that e.g. n-variable SAT is not solvable with
subexpeonetial circuits. But:

» (Impagliazzo-Widgerson) It is not possible for this to be
true and for there to be functions computable in
randomized poly time, but not in polynomial time.(!!!)
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COPING

» Well beer must be delivered, so we must develop methods
of coping, using heuristics, and non-exact solutions.

» Approximation, probabilistic, etc are all such examples.

» Part of my work is with Mike Fellows to limit the effect of
intractability.

Rod Downey Victoria University Wellington New Zealand
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PARAMETERIZED COMPLEXITY

» We bound some natural parameter, such as logical depth,
structure of the graphs, etc.

» e.g. k-Dominating set is DTIME(29(%)) whereas using
pre-processing, k-Vertex Cover, is solvable in more or less
1.23% +2n.
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PARAMETERIZED TRACTABILITY

» As an example, here is a simple kernelization for Vertex
Cover.

» Is the graph G has any vertex of degree k or more, then
this vertex must be in the VC lest all the neighbours are.

» Reduce by deleting them and all covered edges.

» Asymptotic combinatorics show that the suze of the
resulting graph must be at most k2

» Better combinatorics results in a kernel of size 2k
(Nemhauser and Trotter).

» using PCP, 1.36k is the best possible assuming P£NP.
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» Not just a academic exercise: implemented using
pre-processing and used for irradiating mice (Mike
Langston, NZIMA programme, 2008, Feb)

» Used for analysis of Indo-european languages, etc.
» Next issue or so of The Computer Journal

» New methods, allow us to show no preprocessing of this
type possible. (December, Wellington)

» Other methods possible: bounded search used in ML type
checking.
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PARAMETERIZED INTRACTABILITY

» k-Dominating set is as hard as deciding the following core
problem:

» Input : a Turing Machine M (arbitary fanout)
Paramater : k
Question: Does M have an accepting path of k or fewer
steps?

» This class is called W[1] and has hundreds of problems

hard for it.
» can also be used for easy non-approximation results: No
reasonable PTAS if W[1] hard with k = 1.
» There are examples in the literature with running times like
n'0%) (See “parameterized complexity for the skeptic”)
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MORE CHRISTMAS PRESENTS

» To learn more, there is another book which has a very
reasonable price......

» Also Flum-Grohe, Niedermeier, Fernau+ The computer
Journal special issue.

» Thank you for your time and attention.
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