A Hierarchy Degrees

Rod Downey
Victoria University
Wellington
New Zealand

Nur-Sultan, June, 2019



MOTIVATION

e Understanding the dynamic nature of constructions, and
definability in the natural structures of computability theory such
as the computably enumerable sets and degree classes.

e Beautiful examples: (i) definable solution to Post’s problem of
Harrington and Soare
(ii) definability of the double jump classes for c.e. sets of Cholak
and Harrington



e (iii) (Nies, Shore, Slaman) Any relation on the c.e. degrees
invariant under the double jump is definable in the c.e. degrees iff
it is definable in first order arithmetic.

e The proof of (i) and (ii) come from analysing the way the
automorphism machinery fails. (i) only gives L., ., definitions.



NATURAL DEFINABILITY

e This work is devoted to trying to find “natural” definitions.

e Forinstance, the NSS Theorem involves coding a standard model
of arithmetic into the c.e. degrees, using parameters, and then
dividing out by a suitable equivalence relation to get the (absolute)
definability result.

e As articulated by Shore, we seek natural (e.g something that a

lattice theorist might come up with) definable classes as per the
following.



e (Ambos-Spies, Jockusch, Shore, and Soare) A c.e. degree a is
promptly simple iff it is not cappable. (Ambos-Spies, Jockusch,
Shore, and Soare)

e (Downey and Lempp) A c.e. degree a is contiguous iff it is locally
distributive, meaning that
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holds in the c.e. degrees.

e (Ambos-Spies and Fejer) A c.e. degree a is contiguous iff it is not
the top of the non-modular 5 element lattice in the c.e. degrees.



o (Downey and Shore) A c.e. truth table degree is lows iff it has no
minimal cover in the c.e. truth table degrees.

e (Ismukhametov) A c.e. degree is array computable iff it has a
strong minimal cover in the degrees.



SECOND (AND MAIN) MOTIVATION: UNIFICATION

e It is quite rare in computability theory to find a single class of
degrees which capture precisely the underlying dynamics of a
wide class of apparently similar constructions.

e Example: promptly simple degrees again.

e Martin identified the high c.e. degrees as the ones arizing from
dense simple, maximal, hh-simple and other similar kinds of c.e.
sets constructions.

o low, degrees and lattice properties.
e K-trivials; lots of people, especially Nies and Hirschfeldt.



e Our inspiration was the the array computable degrees.
e These degrees were introduced by Downey, Jockusch and Stob

e This class was introduced by those authors to explain a number of
natural “multiple permitting” arguments in computability theory.



e Definition: A degree a is called array noncomputable iff for all
functions f <, (' there is a a function g computable from a such
that

3*x(g(x) > f(x).

o Looks like “non-low,.”

e Indeed many nonlow, constructions can be run with only the
above. For example, every anc degree bounds a 1-generic.



@ c.e. anc degree are those that:

e (Kummer) Contain c.e. sets of infinitely often maximal Kolmogorov
complexity

e (Downey, Jockusch, and Stob) bound disjoint c.e. sets A and B
such that every separating set for A and B computes the halting
problem

e Exactly those that have integer valued randoms (D-Barmpalias)
and have packing dimension 1 (D-Greenberg).

e (Cholak, Coles, Downey, Herrmann) The array noncomputable
c.e. degrees form an invariant class for the lattice of N? classes
via the thin perfect classes



THE FIRST CLASS

e (Downey, Greenberg, Weber, also J. Miller) We say that a c.e.
degree ais totally w-c.a. iff for all functions g <t a, g is w-c.a..
That is, there is a computable approximation g(x) = lims g(x, s),
and a computable function h, such that for all x,

[{s:9(x,8) # g(x,s +1)}| < h(x).

e array computability is a uniform version of this notion where h can
be chosen independent of g. Since a is not totally w-c.e. means
that there is a function g < a, such that for all f <, (',
3>°n(g(n) > f(n)). Note the quantifier swap from anc.

e So every array computable degree (and hence every contiguous
degree) is totally w-c.a..



AND LATTICE EMBEDDINGS

e Lattice embedding into the c.e. degrees. (Lerman, Lachlan,
Lempp, Solomon etc.)

@ One central notion:

e (Downey, Weinstein) Three incomparable c.e. degrees ag, b, a;
form a weak critical triple iff ap U b = a; U b and there is a c.e.
degree ¢ < ag,a; withag < buc.

e a, by and by form a critical triple in a lattice L, ifaubg =auU by,
by £ aandford, ifd < bg,b; thend < a.

e A lattice L has a weak critical triple iff it has a critical triple.

e Critical triples attempt to capture the “continuous tracing” needed

in an embedding of the lattice M5 below, first embedded by
Lachlan.
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e and hence it was already known that array non-computability was
not enough for such embeddings.



ANALYSING THE CONSTRUCTION
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o Poi: ¥4 #£Bi(i€{0,1,2},ecw).

o Ngjj: ®e(B;) = Pe(B;) = f total implies f computable in A,
(i,j€{0,1,2},i#j,ecw.)

e Associate H jy With Pe; and gate G j >~ With Ng ;.



Balls may be follower balls (which are emitted from holes), or trace
balls.

X = x;n. that x is a follower is targeted for A, for the sake of
requirement Pg; and is our n'h attempt at satisfying Pe .

otherwise it is a trace ball: té’,’m
for B; and is the m™ trace:

at any stage s things look like:

Xe.n» tje1,i,1’ tjez,i,zv 20y tg?i,m

The key observation of Lachlan was that a requirement N ; ; is
only concerned with entry of elements into both B; and B; between

expansionary stages

(x) which indicates it is targeted



e When a ball is sitting at a hole it either gets released or it gets a
new trace.

e When released a 1-2 sequence, say, moves down together and
then stops at the first unoccupied 1-2 gate. All but the last one are
put in the corral. The last one is the lead trace.

e Here things need to go thru one ball at a time and we retarget the
lead trace as a 1-3 sequence or a 2-3 sequence. The current last
trace is targeted for 1 it is a 1-3 sequence, else a 2-3 sequence.



ONE GATE

e The notion of a critical triple is reflected in the behaviour of one
gate. This can be made precise with a tree argument.

e We have a 1-2 sequence with all but the last in the corral.

e the last needs to get thru. It’s traces while waiting will be a 2-3
sequence, say. (or in the case of a critical triple, a sequence with a
trace and a trace for the middle set A).

e Once it enters its target set, the the next comes out of corral and
so forth.

e Now suppose that we want to do this below a degree a. We would
have a lower gate where thru drop waiting for some permission by
the relevant set D.

e We know that if d is not totally w-c.a. then we have a function
g <7 D, P = g which is not w-c.a. for any witness f.

e We force this enumeration to be given in a stage by stage manner
e = g[s].

e We ignore gratuitous changes by the opponent.



o Now we try to build a w approximation to g to force D to give
many permisssions.

e thus, when the ball and its A-trace drop to the lower gate, then we
enumerate an attempt at a w-c.a. approximation to I'°(n)[s].

e This is repeated each time the ball needs some permission.



A CHARACTERIZATION




e The proof of (i) involves simulating the Downey-Weinstein
construction enough and guessing nonuniformly at the w-c.a.
witness.

e The other direction is a tree argument simutaling the “one gate”
scenario, as outlined.



A COROLLARY

e Recall, a set Bis called superlow if B = .

e Proof: There are low copies of Ms.

e Also: Cor. (DGW) There are c.e. degrees that are totally w-c.a.
and not array computable.



OTHER SIMILAR RESULTS

o (Downey and Greenberg) Actually D can be made as the infimum.



PRESENTING REALS

o Areal Ais called left-c.e. if it is a limit of a computable
non-decreasing sequence of rationals.

° (e9) Q=" (,, 271!, the halting probability.
e A c.e. prefix-free set of strings A € 2<% presents left c.e. real « if
Q=3 ca 2-lel = \(A).







e For example, this generalizes work of Stephan and Wu who
proved part of this for K-trivials, which of course are array
computable.

o Notice that if a is array computable, it means that we can always
present it via prefic free set of the same degree.



A HIERARCHY

o Lets re-analyse the 1-3-1 example.

e With more than one gate then when it drops down, it needs to
have the same consitions met.

e That is, for each of the (i) many values j at the first gate there is
some value f(j, s) at the second.

e This suggest ordinal notations.

e (Strong Notation) Notations in Kleene’s sense, except that we ask
that the notation for an ordinal is given by an effective Cantor
Normal Form.

e There is no problem for the for ordinals below ¢y, and such
notations are computably unique.



e Now we can define for a notation for an ordinal O, a function to be
O-c.a. in an analogous was as we did for w-c.a..

@ e.g. gis 2w + 3 c.e., if it had a computable approximation g(x, s),
which initially would allow at most 3 mind changes.

e Perhaps at some stage sy, this might change to w + j for some j,
and hence then we would be allowed j mind changes, and finally
there could be a final change to some j many mind changes.

o All lows.



e Analysing the 1-3-1 case, you realize that that construction needs
at least w>.



e The proof in one way uses direct simulation of the pinball machine
plus “not < w*” permissions, building functions at the gates. At
gate n build at level w" for each P, of higher peiority.

e In the reverse direction, we use level w-nonuniform arguments
where the inductive strategies are based on the failure of the
previous level. Kind of like a level w version of Lachlan
non-diamond, using the Downey-Weinstein construction as a
base.

e Corollary There are c.e. degrees that bound lattices with critical
triples, yet do not bound copies of Ms.



ADMISSIBLE RECURSION

e Uses a theorem of Shore that if a computes a cofinal sequence iff
it computes a counting. Then the weak critical triple machinery
can actually have a limit. (Plus Maass-Freidman)

o This is the first natural difference between R, and A cx.
e Differences in Greenberg’s thesis are all about coding.




M-TOPPED DEGREES

e Recall that a c.e. degrees a is called m-topped if it contains a c.e.
set Asuch thatforallc.e. W <1 A W <, A




e The point is that making an m-top is kind of like making (' on a
tree: Phif = W, implies We <, A, with &4 = B.

e (Downey and Greenberg) There is, however, a totally w“ degree
that is an m-top (and hence the full power of nonlow, permitting is
not needed), and arbitarily complex degrees that are not.



EXPLORING THE HIERARCHY

e Theorem (Downey and Greenberg) If n £ m then the classes of
totally w"-c.a. and totally w™-degrees are distinct. Also there is a
c.e. degree a which is not totally < w“-c.a. yet is totally w“-c.a..

e Also totally < w* not w" for any n.
e This is also true at limit levels higher up.



e Thus they are another definable class.
e As are maximal totally < w“-c.a. degrees.



e Question: Are totally w"-c.a. degrees are all definable.
e Other assorted results about contiguity higher up.



THE PROMPT CASE

e What about zero bottom? It is posssible to get the infimum to be
zero.

e (DG) For the classes C aoove, we can define a notion of being
promptly C then show that if a is such for the w case, then it
bound a critical triple with infumum 0.

e (DG) a bounds a pairs of separating clases the degrees of whose
members form minimal pairs.

e eftc.



NORMAL NOTATIONS?

° Ag nonuniform version of Epstein-Haass-Kramer/Ershov.



FINITE RANDOMNESS

o Replace tests by finite tests. Several variations.
e If no conditions then on Ag reals MLR and finite random coincide.

o Ifthe test {V,,: n € w} has |V,| < g(n) for computable g, we say it
is computably finitele random. (le if it passes all such tests.)

e Compare with




WORKING ABOVE SUCH DEGREES

e With George Barmpalias, Noam and | began to look at the effect
of being able to compute such a degree, but with strong
reducibilities.




OTHER WORK

e A set /is called indifferent for A and class C if changing A on any
position in / keeps Ain C.

e For example / is indifferent ifor A for 1-genericity if anything
l-equivalent to A is 1-generic.

e (Day) a can compute a 1-generic B which can compute and
indifferent subset of itself if a is not totally < w“-c.a.. Conversely if
a can do this it must not be totally w-c.a.

e Nice open question to sort this one out.



HOW UNBOUNDED IS SACKS SPLITTING?




GENERALIZATIONS

e In arecent paper, D, Ambos-Spies and Monath, extends this to
witt-reductions.

e They characterize those c.e. sets <4 a maximal set.
@ Yet more hierarchies to analyse.



CONCLUSIONS

e We have defined a new hierarchy of degree classes within lows.
e This hierarchy unifies many constructions, and
e Provides new natural degree definable degree classes.

e Many questions remain. eg, is array computable definable in the
degrees. Are these classes definable in the degrees?

e Can they be used higher up in relativized form, say?



