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MOTIVATION

Understanding the dynamic nature of constructions, and
definability in the natural structures of computability theory such
as the computably enumerable sets and degree classes.
Beautiful examples: (i) definable solution to Post’s problem of
Harrington and Soare
(ii) definability of the double jump classes for c.e. sets of Cholak
and Harrington



(iii) (Nies, Shore, Slaman) Any relation on the c.e. degrees
invariant under the double jump is definable in the c.e. degrees iff
it is definable in first order arithmetic.
The proof of (i) and (ii) come from analysing the way the
automorphism machinery fails. (ii) only gives Lω1,ω definitions.



NATURAL DEFINABILITY

This work is devoted to trying to find “natural” definitions.
For instance, the NSS Theorem involves coding a standard model
of arithmetic into the c.e. degrees, using parameters, and then
dividing out by a suitable equivalence relation to get the (absolute)
definability result.
As articulated by Shore, we seek natural (e.g something that a
lattice theorist might come up with) definable classes as per the
following.



(Ambos-Spies, Jockusch, Shore, and Soare) A c.e. degree a is
promptly simple iff it is not cappable. (Ambos-Spies, Jockusch,
Shore, and Soare)
(Downey and Lempp) A c.e. degree a is contiguous iff it is locally
distributive, meaning that

∀a1,a2,b(a1 ∪ a2 = a ∧ b ≤ a→
∃b1,b2(b1 ∪ b2 = b
∧b1 ≤ a1 ∧ b2 ≤ a2)),

holds in the c.e. degrees.
(Ambos-Spies and Fejer) A c.e. degree a is contiguous iff it is not
the top of the non-modular 5 element lattice in the c.e. degrees.



(Downey and Shore) A c.e. truth table degree is low2 iff it has no
minimal cover in the c.e. truth table degrees.
(Ismukhametov) A c.e. degree is array computable iff it has a
strong minimal cover in the degrees.



SECOND (AND MAIN) MOTIVATION: UNIFICATION

It is quite rare in computability theory to find a single class of
degrees which capture precisely the underlying dynamics of a
wide class of apparently similar constructions.
Example: promptly simple degrees again.
Martin identified the high c.e. degrees as the ones arizing from
dense simple, maximal, hh-simple and other similar kinds of c.e.
sets constructions.
low2 degrees and lattice properties.
K-trivials; lots of people, especially Nies and Hirschfeldt.



Our inspiration was the the array computable degrees.
These degrees were introduced by Downey, Jockusch and Stob
This class was introduced by those authors to explain a number of
natural “multiple permitting” arguments in computability theory.



Definition: A degree a is called array noncomputable iff for all
functions f ≤wtt ∅′ there is a a function g computable from a such
that

∃∞x(g(x) > f (x).

Looks like “non-low2.”
Indeed many nonlow2 constructions can be run with only the
above. For example, every anc degree bounds a 1-generic.



c.e. anc degree are those that:
(Kummer) Contain c.e. sets of infinitely often maximal Kolmogorov
complexity
(Downey, Jockusch, and Stob) bound disjoint c.e. sets A and B
such that every separating set for A and B computes the halting
problem
Exactly those that have integer valued randoms (D-Barmpalias)
and have packing dimension 1 (D-Greenberg).
(Cholak, Coles, Downey, Herrmann) The array noncomputable
c.e. degrees form an invariant class for the lattice of Π0

1 classes
via the thin perfect classes



THE FIRST CLASS

(Downey, Greenberg, Weber, also J. Miller) We say that a c.e.
degree a is totally ω-c.a. iff for all functions g ≤T a, g is ω-c.a..
That is, there is a computable approximation g(x) = lims g(x , s),
and a computable function h, such that for all x ,

|{s : g(x , s) 6= g(x , s + 1)}| < h(x).

array computability is a uniform version of this notion where h can
be chosen independent of g. Since a is not totally ω-c.e. means
that there is a function g ≤ a, such that for all f ≤wtt ∅′,
∃∞n(g(n) > f (n)). Note the quantifier swap from anc.
So every array computable degree (and hence every contiguous
degree) is totally ω-c.a..



AND LATTICE EMBEDDINGS

Lattice embedding into the c.e. degrees. (Lerman, Lachlan,
Lempp, Solomon etc.)
One central notion:
(Downey, Weinstein) Three incomparable c.e. degrees a0,b,a1
form a weak critical triple iff a0 ∪ b = a1 ∪ b and there is a c.e.
degree c ≤ a0,a1 with a0 ≤ b ∪ c.
a, b0 and b1 form a critical triple in a lattice L, if a ∪ b0 = a ∪ b1,
b0 6≤ a and for d, if d ≤ b0,b1 then d ≤ a.
A lattice L has a weak critical triple iff it has a critical triple.
Critical triples attempt to capture the “continuous tracing” needed
in an embedding of the lattice M5 below, first embedded by
Lachlan.
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FIGURE: The lattice M5



THEOREM (DOWNEY, WEINSTEIN)
There are initial segments of the c.e. degrees where no lattice with a
(weak) critical triple can be embedded.

THEOREM (DOWNEY AND SHORE)
If a is non-low2 then a bounds a copy of M5.

THEOREM (WALK)
Constructed a array noncomputable c.e. degree bounding no weak
critical triple,

and hence it was already known that array non-computability was
not enough for such embeddings.



ANALYSING THE CONSTRUCTION

Track
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Pe,i : ΦA
e 6= Bi (i ∈ {0,1,2},e ∈ ω).

Ne,i,j : Φe(Bi) = Φe(Bj) = f total implies f computable in A,
(i , j ∈ {0,1,2}, i 6= j ,e ∈ ω.)
Associate H〈e,i〉 with Pe,i and gate G<e,i,j> with Ne,i,j .



Balls may be follower balls (which are emitted from holes), or trace
balls.
x = x i

e,n. that x is a follower is targeted for Ai for the sake of
requirement Pe,i and is our nth attempt at satisfying Pe,i .

otherwise it is a trace ball: t j
e,i,m(x) which indicates it is targeted

for Bj and is the mth trace:
at any stage s things look like:
x i

e,n, t
j1
e,i,1, t

j2
e,i,2, ..., t

jm
e,i,m

The key observation of Lachlan was that a requirement Ne,i,j is
only concerned with entry of elements into both Bi and Bj between
expansionary stages



When a ball is sitting at a hole it either gets released or it gets a
new trace.
When released a 1-2 sequence, say, moves down together and
then stops at the first unoccupied 1-2 gate. All but the last one are
put in the corral. The last one is the lead trace.
Here things need to go thru one ball at a time and we retarget the
lead trace as a 1-3 sequence or a 2-3 sequence. The current last
trace is targeted for 1 it is a 1-3 sequence, else a 2-3 sequence.



ONE GATE

The notion of a critical triple is reflected in the behaviour of one
gate. This can be made precise with a tree argument.
We have a 1-2 sequence with all but the last in the corral.
the last needs to get thru. It’s traces while waiting will be a 2-3
sequence, say. (or in the case of a critical triple, a sequence with a
trace and a trace for the middle set A).
Once it enters its target set, the the next comes out of corral and
so forth.
Now suppose that we want to do this below a degree a. We would
have a lower gate where thru drop waiting for some permission by
the relevant set D.
We know that if d is not totally ω-c.a. then we have a function
g ≤T D, ΓD = g which is not ω-c.a. for any witness f .
We force this enumeration to be given in a stage by stage manner
ΓD = g[s].
We ignore gratuitous changes by the opponent.



Now we try to build a ω approximation to g to force D to give
many permisssions.
thus, when the ball and its A-trace drop to the lower gate, then we
enumerate an attempt at a ω-c.a. approximation to ΓD(n)[s].
This is repeated each time the ball needs some permission.



A CHARACTERIZATION

THEOREM (DOWNEY, GREENBERG, WEBER)
(I) Suppose that a is totally ω-c.a.. Then a bounds no weak critical

triple.
(II) Suppose that a is not totally ω-c.a.. Then a bounds a weak critical

triple.
(III) Hence, being totally ω-c.a. is naturally definable in the c.e.

degrees.



The proof of (i) involves simulating the Downey-Weinstein
construction enough and guessing nonuniformly at the ω-c.a.
witness.
The other direction is a tree argument simutaling the “one gate”
scenario, as outlined.



A COROLLARY

Recall, a set B is called superlow if B′ ≡tt ∅′.

THEOREM (DOWNEY, GREENBERG, WEBER)
The low degrees and the superlow degrees are not elementarily
equivalent. (Nies question)

Proof: There are low copies of M5.
Also: Cor. (DGW) There are c.e. degrees that are totally ω-c.a.
and not array computable.



OTHER SIMILAR RESULTS

THEOREM (DOWNEY, GREENBERG, WEBER)
A c.e. degree a is totally ω-c.a. iff there are c.e. sets A, B and C of
degree ≤T a, such that
(I) A ≡T B

(II) A 6≤T C
(III) For all D ≤wtt A,B, D ≤wtt C.

(Downey and Greenberg) Actually D can be made as the infimum.



PRESENTING REALS

A real A is called left-c.e. if it is a limit of a computable
non-decreasing sequence of rationals.
(eg) Ω =

∑
U(σ)↓ 2−|σ|, the halting probability.

A c.e. prefix-free set of strings A ∈ 2<ω presents left c.e. real α if
α =

∑
σ∈A 2−|σ| = λ(A).

THEOREM (DOWNEY AND LAFORTE)
There exist noncomputable left c.e. reals α whose only presentations
are computable.



THEOREM (DOWNEY AND TERWIJN)

The wtt degrees of presentations forms a Σ0
3 ideal. Any Σ0

3 ideal can
be realized.



THEOREM (DOWNEY AND GREENBERG)
The following are equivalent.
(I) a is not totally ω-c.a.

(II) a bounds a left c.e. real α and a c.e. set B <T α such that if A
presents α, then A ≤T B.

For example, this generalizes work of Stephan and Wu who
proved part of this for K-trivials, which of course are array
computable.
Notice that if a is array computable, it means that we can always
present it via prefic free set of the same degree.



A HIERARCHY

Lets re-analyse the 1-3-1 example.
With more than one gate then when it drops down, it needs to
have the same consitions met.
That is, for each of the f (i) many values j at the first gate there is
some value f (j , s) at the second.
This suggest ordinal notations.
(Strong Notation) Notations in Kleene’s sense, except that we ask
that the notation for an ordinal is given by an effective Cantor
Normal Form.
There is no problem for the for ordinals below ε0, and such
notations are computably unique.



Now we can define for a notation for an ordinal O, a function to be
O-c.a. in an analogous was as we did for ω-c.a..
e.g. g is 2ω + 3 c.e., if it had a computable approximation g(x , s),
which initially would allow at most 3 mind changes.
Perhaps at some stage s0, this might change to ω + j for some j ,
and hence then we would be allowed j mind changes, and finally
there could be a final change to some j ′ many mind changes.
All low2.



ωω

Analysing the 1-3-1 case, you realize that that construction needs
at least ωω.

THEOREM (DOWNEY AND GREENBERG)
a is not totally < ωω-c.a. iff a bounds a copy of M5.



The proof in one way uses direct simulation of the pinball machine
plus “not < ωω” permissions, building functions at the gates. At
gate n build at level ωn for each Pe of higher peiority.
In the reverse direction, we use level ω-nonuniform arguments
where the inductive strategies are based on the failure of the
previous level. Kind of like a level ω version of Lachlan
non-diamond, using the Downey-Weinstein construction as a
base.
Corollary There are c.e. degrees that bound lattices with critical
triples, yet do not bound copies of M5.



ADMISSIBLE RECURSION

THEOREM (GREENBERG, THESIS)
Let α > ω be admissible. Let a be an incomplete α-ce degree. TFAE.
(1) a computes a counting of α
(2) a bounds a 1-3-1
(3) a bounds a critical triple.

Uses a theorem of Shore that if a computes a cofinal sequence iff
it computes a counting. Then the weak critical triple machinery
can actually have a limit. (Plus Maass-Freidman)

THEOREM (DOWNEY AND GREENBERG)
Let ψ be the sentence “a bounds a critical triple but not a 1-3-1” and let
α be admissable. Then α satisfies ψ iff α = ω.

This is the first natural difference between Rω and RωCK
1
.

Differences in Greenberg’s thesis are all about coding.



m-TOPPED DEGREES

Recall that a c.e. degrees a is called m-topped if it contains a c.e.
set A such that for all c.e. W ≤T A, W ≤m A.

THEOREM (DOWNEY AND JOCKUSCH)
Incomplete ones exist, and are all low2. None are low.

THEOREM (DOWNEY AND SHORE)
If a is a c.e. low2 degree then there is an m-topped incomplete degree
b > a.



THEOREM (DOWNEY AND GREENBERG)
Suppose that b is totally < ωω-c.a. Then a bounds no m-topped
degree.

The point is that making an m-top is kind of like making ∅′ on a
tree: PhiAe = We implies We ≤m A, with ΦA

e 6= B.
(Downey and Greenberg) There is, however, a totally ωω degree
that is an m-top (and hence the full power of nonlow2 permitting is
not needed), and arbitarily complex degrees that are not.



EXPLORING THE HIERARCHY

Theorem (Downey and Greenberg) If n 6= m then the classes of
totally ωn-c.a. and totally ωm-degrees are distinct. Also there is a
c.e. degree a which is not totally < ωω-c.a. yet is totally ωω-c.a..
Also totally < ωω not ωn for any n.
This is also true at limit levels higher up.



THEOREM (DOWNEY AND GREENBERG)
There are maximal (e.g.) totally ω-c.a. degrees. These are totally
ω-c.a. and each degree above is not totally ω-c.a. degree.

Thus they are another definable class.
As are maximal totally < ωω-c.a. degrees.



THEOREM (DOWNEY AND GREENBERG)

a is totally ω2-c.a. implies there is some totally ω-c.a. degree b below a
with no critical triple embeddable in [b,a].

Question: Are totally ωn-c.a. degrees are all definable.
Other assorted results about contiguity higher up.



THE PROMPT CASE

What about zero bottom? It is posssible to get the infimum to be
zero.
(DG) For the classes C aoove, we can define a notion of being
promptly C then show that if a is such for the ω case, then it
bound a critical triple with infumum 0.
(DG) a bounds a pairs of separating clases the degrees of whose
members form minimal pairs.
etc.



NORMAL NOTATIONS?

THEOREM (DOWNEY AND GREENBERG)
Suppose that a is low2. Then there is a notation O relative to which a
is totally ω2-c.a.

∆0
3 nonuniform version of Epstein-Haass-Kramer/Ershov.



FINITE RANDOMNESS

Replace tests by finite tests. Several variations.
If no conditions then on ∆0

2 reals MLR and finite random coincide.
If the test {Vn : n ∈ ω} has |Vn| < g(n) for computable g, we say it
is computably finitele random. (Ie if it passes all such tests.)

THEOREM (BRODHEAD, DOWNEY, NG)
The c.e. degrees a containing no such real are the totally ω-c.a.
degrees.

Compare with

THEOREM (DOWNEY AND GREENBERG)
The c.e. segrees containing sets of packing dimension 1 are exactly
the anc degrees.



WORKING ABOVE SUCH DEGREES

With George Barmpalias, Noam and I began to look at the effect
of being able to compute such a degree, but with strong
reducibilities.

THEOREM (BARMPALIAS, DOWNEY, GREENBERG)
Every set in (c.e.) a is wtt reducible to a ranked one iff every set in a is
wtt reducible to a hypersimple set iff a is totally ω-c.a.

THEOREM (BARMPALIAS, DOWNEY, GREENBERG)
A computably enumerable a computes a pair of left c.e. reals with no
upper bound in the cL degrees iff a computes a left c.e. real not cL
reducible to a random left c.e. real iff a is anc.



OTHER WORK

A set I is called indifferent for A and class C if changing A on any
position in I keeps A in C.
For example I is indifferent ifor A for 1-genericity if anything
I-equivalent to A is 1-generic.
(Day) a can compute a 1-generic B which can compute and
indifferent subset of itself if a is not totally < ωω-c.a.. Conversely if
a can do this it must not be totally ω-c.a.
Nice open question to sort this one out.



HOW UNBOUNDED IS SACKS SPLITTING?

THEOREM (AMBOS-SPIES, D, MONATH)

If A is c.e. then there are totally ω3-c.a. c.e. sets splitting A.

THEOREM (D AND NG)
There are c.e. degrees a which are not the sup of two totally ω-c.a.
c.e. degrees.



GENERALIZATIONS

In a recent paper, D, Ambos-Spies and Monath, extends this to
wtt-reductions.
They characterize those c.e. sets ≤wtt a maximal set.
Yet more hierarchies to analyse.



CONCLUSIONS

We have defined a new hierarchy of degree classes within low2.
This hierarchy unifies many constructions, and
Provides new natural degree definable degree classes.
Many questions remain. eg, is array computable definable in the
degrees. Are these classes definable in the degrees?
Can they be used higher up in relativized form, say?


