
Multivariant Algorithmics

Rod Downey
Victoria University

Wellington
April, 2016

THE GOALS

I “Understand computation”
I What does it mean to be a computable process?
I What does it mean to be an efficiently computable

process?
I How to find a best algorithm for a process?
I How to know you cannot do better?
I How to cope with apparently hard problems?
I What has this got to do with computation on real data.

THE ROLE OF COMPLEXITY THEORY

I Provide mathematical models for computational tasks.
I Assign cost to computational processes.
I Explain why some processes seem hard.
I Provide algorithms for more efficient computation.
I Explain the actual behaviour of algorithms in practice.
I Is theory fulfilling this role?

ALGORITHMS AND COMPLEXITY

I Basic idea count the steps as a function of the size of the
input. (Hartmanis, Sterns, Edmonds)

I Classical idealization Efficient= P = polynomial time= those
problems which have algorithms running in O(nc) where n
is the size of input.

I Controversial in the 1960’s.
I How to prove something is not e.g. in P?
I Kind of a holy grail in complexity theory.

NP

I Russians (Levin) perabor, Cook identified nondeterministic
polynomial time.

I These are defined as problems L such that there is a
polynomial time checking process R(x , y) such that

x ∈ L iff ∃y(|y | ≤ |x |c ∧ R(x , y)).

I Examples: SATISFIABILITY, VERTEX COVER (vertices cover
edges), DOMINATING SET (vertices cover vertices),
HAMILTON CYCLE. (Karp)

I NP completeness is everywhere.
I We cannot prove P6=NP, etc.

WHAT WE ARE ABLE TO PROVE ABOUT LOWER BOUNDS

FOR NP PROBLEMS

BUT WHAT’S THE REAL COST

I In the early 1990’s a reasonably successful systematic
coping strategy was developed.

I Building on early work of Fellows and Langston, Mike
Fellows and I suggested that focusing on the parameters of
the input would yield insight into feasibility.

I When is the only thing you know about an input is its size?
I Answer Never, except in cryptography by design.
I We know things like planarity, engineering bounds,

topology, depth, inductive designs.

TWO BASIC EXAMPLES

I VERTEX COVER
Input: A Graph G.
Parameter : A positive integer k .
Question: Does G have a size k vertex cover? (Vertices
cover edges.)

I DOMINATING SET
Input: A Graph G.
Parameter : A positive integer k .
Question: Does G have a size k dominating set? (Vertices
cover vertices.)

I VERTEX COVER is solvable by an algorithm O in time
f (k)|G|, a behaviour we call fixed parameter tractability,
(Specifically 1.28kk2 + c|G|, with c a small absolute
constant independent of k .)

I Whereas the only known algorithm for DOMINATING SET
is complete search of the possible k -subsets, which takes
time Ω(|G|k).

I In the below I will mostly talk for convenience about graphs.
I I could just as easily be talking about many other areas.
I In the Computer Journal alone, there is biological, artificial

intelligence, constraint satisfaction, geometric problems,
scheduling, cognitive science, voting, combinatorial
optimization, phylogeny. Model checking is the basis of
Flum-Grohe.

BASIC DEFINITION(S)

I Setting : Languages L ⊆ Σ∗ × Σ∗.

I Example (Graph, Parameter).
I We say that a language L is fixed parameter tractable if

there is a algorithm M, a constant C and a function f such
that for all x , k ,

(x , k) ∈ L iff M(x) = 1 and

the running time of M(x) isf (k)|x |C .

PARAMETERS

I Without even going into details, think of all the graphs you
have given names to and each has a relevant parameter:
planar, bounded genus, bounded cutwidth, pathwidth,
treewidth, degree, interval, etc, etc.

I Also nature is kind in that for many practical problems the
input (often designed by us) is nicely ordered.

POSITIVE TECHNIQUES

I Elementary ones
I Almost elementary
I Logical metatheorems
I Limits

KERNELIZATION

I I believe that the most important practical technique is
called kernelization.

I pre-processing, or reducing For parameterized complexity
(I, k) 7→ (I′, k ′) and |I′| ≤ g(k).

KARSTEN WEIHE’S TRAIN PROBLEM

I TRAIN COVERING BY STATIONS

Instance: A bipartite graph G = (VS ∪ VT ,E), where the
set of vertices VS represents railway stations and the set of
vertices VT represents trains. E contains an edge
(s, t), s ∈ Vs, t ∈ VT , iff the train t stops at the station s.
Problem: Find a minimum set V ′ ⊆ VS such that V ′ covers
VT , that is, for every vertex t ∈ VT , there is some s ∈ V ′

such that (s, t) ∈ E .

WEIHE’S SOLUTION

I REDUCTION RULE TCS1:
Let N(t) denote the neighbours of t in VS. If N(t) ⊆ N(t ′)
then remove t ′ and all adjacent edges of t ′ from G. If there
is a station that covers t , then this station also covers t ′.

I REDUCTION RULE TCS2:
Let N(s) denote the neighbours of s in VT . If N(s) ⊆ N(s′)
then remove s and all adjacent edges of s from G. If there
is a train covered by s, then this train is also covered by s′.

I European train schedule, gave a graph consisting of
around 1.6 · 105 vertices and 1.6 · 106 edges.

I Solved in minutes.
I This has also been applied in practice as a subroutine in

practical heuristical algorithms.

THE IDEA

I Reduce the parameterized problem to a kernel whose size
depends solely on the parameter

I As compared to the classical case where this process is a
central heuristic we get a provable performance
guarantee.

I We remark that often the performance is much better than
we should expect especially when elementary methods are
used.

VERTEX COVER

I REDUCTION RULE VC1:
Remove all isolated vertices.

I REDUCTION RULE VC2:
For any degree one vertex v , add its single neighbour u to
the solution set and remove u and all of its incident edges
from the graph.

I Note (G, k)→ (G′, k − 1).
I (S. Buss) REDUCTION RULE VC3:

If there is a vertex v of degree at least k + 1, add v to the
solution set and remove v and all of its incident edges from
the graph.

I The result is a graph with no vertices of degree > k and
this can have a VC of size k only if it has < k2 many edges.

STRATEGIES FOR IMPROVING I: BOUNDED SEARCH

TREES

I Buss’s algorithm gives crudely a 2n + kk2
algorithm for

k -VC.
I Here is another algorithm: (DF) Take any edge e = v1v2.

either v1 or v2 is in any VC. Begin a tree T with first
children v1 and v2. At each child delete all edges covered
by the vi .

I repeat to depth k .
I Gives a O(2k · n) algorithm.
I Now combine the two: Gives a 2n + 2kk2 algorithm.

I It is worth remarking that there are problems notably FPT
by bounded search tree (type checking in ML) that are not
known to have polynomial size kernels, and some
“provably” don’t.

I Another easy example for bounded search trees is
PLANAR INDEPENDENT SET. (Start with a degree 5
vertex, branching rule of size 6)

PRUNING TREES AND CLEVER REDUCTION RULES

I If G has paths of degree 2, then there are simple reduction
rules to deal with them first. Thus we consider that G is of
min degree 3.
BRANCHING RULE VC2:
If there is a degree two vertex v in G, with neighbours w1
and w2, then either both w1 and w2 are in a minimum size
cover, or v together with all other neighbours of w1 and w2
are in a minimum size cover.

I Now when considering the kernel, for each vertex
considered either v is included or all of its neighbours (at
least) {p,q} are included.

I Now the tree looks different. The first child nodes are
labeled v or {p,q}, and on the right branch the parameter
drops by 2 instead of 1. or similarly with the wi case.

I Now the size of the search tree and hence the time
complexity is determined by some recurrence relation.

I many, many versions of this idea with increasingly
sophisticated reduction rules.

I This method has a 2005 (Fomin, Grandoni, Kratsch)
incarnation called measure and conquer where the
branching rules are given rational valued weights, and
decisions as to what to do are figured out by optimization.

I For example the best exact algorithm for SET COVER and
DOMINATING SET use this. (van Rooij-Bodlaender point
out that this can be used for algorithm design as well.)

I Jianer Chen and others use this in many FPT algorithms
such as the state of the art for FEEDBACK VERTEX SET
and VERTEX COVER.

SHRINK THE KERNEL

THEOREM (NEMHAUSER AND TROTTER (1975))
There is a 2k kernel.

I Proof use LP {xi | i ∈ V}. Solve∑
i∈V

xi ≤ k , subject to

xi + xj ≥ 1, for ij ∈ E(G),

xi ∈ {0,
1
2
,1}.

I The current champion using this approach is a O∗(1.286k)
(Chen01) The best is O∗(1.2745k)(Chen10 using this,
iterative compression, struction, measure and conquer,
and other methods).

I Here the useful O∗ notation only looks at the exponential
part of the algorithm.

INTERACTIONS

I Now we can ask lots of questions. How small can the
kernel be?

I Notice that applying the kernelization to the unbounded
problem yields a approximation algorithm.

I Using the PCP theorem we know that no kernel can be
smaller that 1.36 k unless P=NP (Dinur and Safra) as no
better approximation is possible. Is this tight?

I Assuming the “Unique Games Conjecture” the 2k kernel is
tight (Khot etc).

I Actually we know that no O∗(1 + ε)k) algorithm is possible
unless ETH fails.

I ETH n-variable 3SAT is not in DTIME(2o(n)). That is, not
only does P 6= NP but you can’t beat complete search
meaningfully.

INTERLEAVING

I (Niedermeier and Rossmanith, 2000) showed that
iteratively combining kernelization and bounded search
trees often performs much better than either one alone or
one followed by the other.

I Begin a search tree, and apply kernelization, then continue
etc. Analysing the combinatorics shows a significant
reduction in time complexity, which is very effective in
practice.

ITERATIVE COMPRESSION

I Reed, Smith and Vetta 2004. For the problem of “within k
of being bipartite” (by deletion of edges).

DEFINITION (COMPRESSION ROUTINE)
A compression routine is an algorithm that, given a problem
instance I and a solution of size k , either calculates a smaller
solution or proves that the given solution is of minimum size.

AN EXAMPLE, VC AGAIN!

I (G = (V ,E), k), start with V ′ = ∅, and (solution) C = ∅.
I Add a new vertex v to both V ′ and C,

V ′ ← V ′ ∪ {v}, C ← C ∪ {v}.
I Now call the compression routine on the pair (G[V ′],C),

where G[V ′] is the subgraph induced by V ′ in G, to obtain
a new solution C′. If |C′| > k then we output NO, otherwise
we set C ← C′.

I If we successfully complete the nth step where V ′ = V , we
output C with |C| ≤ k . Note that C will be an optimal
solution for G. (Algo runs in time O(2kmn).)

I This was first successfully applied by Reed, Smith, Vetta to
GRAPH BIPARTITIZATION. The algorithm is similar,
building a minimal bipartitization at each step and using
what we can call acceptable partitions for the search step.

I The best now is O∗(3.83k), and it works better with
algorithm engineering (Gray Codes, tree pruning) with
(e.g.) biological data Hüffner 2004.

I It is a crucial step for the best two algorithms for VERTEX
COVER (Chen, Kanj, Xia 2010, O∗(1.2745k) and
FEEDBACK VERTEX SET (Can I remove k vertices and
get an acyclic graph?) (Cao, Chen, Liu, 2009).

PRACTICE

I I remark that in practice these methods work much better
than we might expect.

I Langston’s work with irradiated mice, ETH group in Zurich,
Karsten Weihe

I See The Computer Journal especially articles by Langston
et al.

LESS PRACTICAL ALGORITHMS

I In what follows we look at algorithms that in general seem
less practical but can sometimes work in practice.

COLOUR CODING

I K-SUBGRAPH ISOMORPHISM

Instance: G = (V ,E) and a graph H = (V H ,EH) with
|V H | = k .
Parameter: A positive integer k (or V H).
Question: Is H isomorphic to a subgraph in G?

I e.g. k -PATH. Is H is a path of length k .
I Idea: Randomly colour the vertices of G with k colours and

expect that there is a colourful solution; all the vertices of
V ′ have different colours.

I G uniformly at random with k colors, a set of k distinct
vertices will obtain different colours with probability
(k !)/kk . This probability is lower-bounded by e−k , so we
need to repeat the process ek times to have high
probability of obtaining the required colouring.

DERANDOMIZE

I k -PATH has a 2O(k) · log |V | colourings, and k ! orderings.
k -path in time O(k · |V |2), using derandomization
techniques.

I Recent improvements using multilinear detection and finite
fields. (Kanj, Lokshtanov and Saurabh)

BOUNDED WIDTH METRICS

I Graphs constructed inductively. Treewidth, Pathwidth,
Branchwidth, Cliquewidth mixed width etc. k -Inductive
graphs, plus old favourites such as planarity etc, which can
be viewed as local width. Recently nowhere density. e.g.:

DEFINITION
Let G = (V ,E) be a graph. A tree decomposition, TD, of G is a
pair (T ,X) where
1. T = (I,F) is a tree, and
2. X = {Xi | i ∈ I} is a family of subsets of V , one for each node
of T , such that

(i)
⋃

i∈I Xi = V ,
(ii) for every edge {v ,w} ∈ E , there is an i ∈ I with

v ∈ Xi and w ∈ Xi , and
(iii) for all i , j , k ∈ I, if j is on the path from i to k in

T , then Xi ∩ Xk ⊆ Xj .

I This gives the following well-known definition.

DEFINITION
The width of a tree decomposition ((I,F), {Xi | i ∈ I}) is
maxi∈I |Xi | − 1. The treewidth of a graph G, denoted by tw(G), is
the minimum width over all possible tree decompositions of G.

THE CANONICAL METHOD

I The following refers to any of these inductively defined
graphs families. Notes that many commercial constructions
of, for example chips are inductively defined.

1. Find a bounded-width tree (path) decomposition of the input
graph that exhibits the underlying tree (path) structure.

2. Perform dynamic programming on this decomposition to
solve the problem.

AN EXAMPLE FOR INDEPENDENT SET

e

hgi

egh

egdegh

egfce

abc

a b

c
d

f

g

ih

∅ a b c ab ac bc abc
0 1 1 1 2 - - -

BODLAENDER’S THEOREM

I The following theorem is shows that treewidth is FPT.
Improves many earlier results showing this. The constant
is about 235k3

.

THEOREM (BODLAENDER)
k-TREEWIDTH is linear time FPT

I Not practical because of large hidden O term.
I Unknown if there is a practical FPT treewidth algorithm
I Nevertheless approximation and algorithms specific to

known decomps run well at least sometimes.

MONADIC SECOND ORDER LOGIC

I Two sorted structure with variables for sets of objects.
I 1. Additional atomic formulas: For all set variables X and

individual variables y , Xy is an MSO-formula.
2. Set quantification: If φ is an MSO-formula and X is a set

variable, then ∃X φ is an MSO -formula, and ∀X φ is an
MSO-formula.

I Eg k -col

∃X1, , , ∃Xk

(
∀x

k∨
i=1

Xix∧∀x∀y
(

E(x , y)→
k∧

i=1

¬(Xix∧Xiy)
))

MODEL CHECKING

I Instance: A structure A ∈ D, and a sentence (no free
variables) φ ∈ Φ.
Question: Does A satisfy φ?

I PSPACE-complete for FO and MSO.

COURCELLE’S AND SEESE’S THEOREMS

THEOREM (COURCELLE 1990)
The model-checking problem for MSO restricted to graphs of
bounded treewidth is linear-time fixed-parameter tractable.
Detlef Seese has proved a converse to Courcelle’s theorem.

THEOREM (SEESE 1991)
Suppose that F is any family of graphs for which the
model-checking problem for MSO is decidable, then there is a
number n such that, for all G ∈ F , the treewidth of G is less
than n.

THE FRICK GROHE THEOREM

I considers the treewidth growth rate for families of graphs
I Examples Bounded degree, bounded treewidth, bounded

genus, excluding a minor

THEOREM (FRICK AND GROHE 1999)
Parameterized problems that can be described as
model-checking problems for FO are fixed-parameter tractable
on classes of graphs of bounded local treewidth.

I For example DOMINATING SET, INDEPENDENT SET, or
SUBGRAPH ISOMORPHISM are FPT on planar graphs, or on
graphs of bounded degree

I Recent extension of this for nowhere dense graphs.

MORE EXOTIC METHODS

I minor ordering

E

BA

E

DC

G

H

C D

B

A

I Robertson-Seymour Finite graphs are WQO’s under minor
ordering. H ≤minor G is O(|G|3) FPT for a fixed H.

I THEOREM (MINOR-CLOSED MEMBERSHIP)
If F is a minor-closed class of graphs then membership of a
graph G in F can be determined in time O(f (k) · |G|3), where k
is the collective size of the graphs in the obstruction set for F .

I Likely I won’t have time to discuss what this means but see
DF for more details.

REDUCTIONS AND INTRACTABILITY

I Natural basic hardness class: W [1]. Does not matter what
it is, save to say that the analog of Cook’s Theorem is
SHORT NONDETERMINISTIC TURING MACHINE
ACCEPTANCE
Instance: A nondeterministic Turing Machine M and a
positive integer k .
Parameter: k .
Question: Does M have a computation path accepting the
empty string in at most k steps?

I If one believes the philosophical argument that Cook’s
Theorem provides compelling evidence that SAT is
intractable, then one surely must believe the same for the
parametric intractability of SHORT NONDETERMINISTIC
TURING MACHINE ACCEPTANCE.

I Moreover, recent work has shown that if SHORT NTM is
fpt then n-variable 3SAT is in DTIME(2o(n))

I Given two parameterized languages L, L̂ ⊆ Σ∗ × Σ∗, say
L ≤FPT L̂ iff there are (computable) f , x 7→ x ′, k 7→ k ′ and a
constant c, such that for all x ,

(x , k) ∈ L iff (x ′, k ′) ∈ L̂,

in time f (k)|x |c .
I Lots of technical question still open here.

ANALOG OF THE COOK-LEVIN THEOREM

THEOREM (DOWNEY, FELLOWS, CAI, CHEN)
WEIGHTED 3SAT≡FTP SHORT NTM ACCEPTANCE.
WEIGHTED 3SAT

Input: A 3 CNF formula φ
Parameter: k
Question: Does φ has a satisfying assignment of Hamming
weight k, meaning exactly k literals made true.

I Many hardness results, like e.g. DOMINATING SET,
CLIQUE, INDEPENDENT SET, etc

W-HIERARCHY

I Think about the usual poly reduction from SAT to 3SAT. It
takes a clause of size p, and turns it into many clauses of
size 3. But the weight control goes awry. A weight 4
assignment could go to anything.

I We don’t think WEIGHTED CNF SAT≤ftpWEIGHTED 3 SAT.
I Gives rise to a hierarchy:

W [1] ⊆W [2] ⊆W [3] . . .W [SAT] ⊆W [P] ⊆ XP.

I XP is quite important, it is the languages which are in
DTIME(nf (k)) with various levels of uniformity, depending
on the choice of reductions.

I Notice that there are at least two ways to parameterize:
Parameterize the part of the problem you want to look at
and to parameterize the problem itself.

I This point of view makes this sometime a promise
problem. Input something, promise it is parameterized, and
ask questions about it.

I Two interpretations one with certificate one only with a
promise. e.g. CLIQUEWIDTH, PATHWIDTH.

I Some recent work “lowers the hardness barrier”; perhaps
giving better inapproximability results.

ETH

I Recall the exponential time hypothesis is (ETH) n-variable
3-SATISFIABILITY is not solvable in DTIME(2o(n)).
(Impagliazzo Paturi and Zane.) Recall, this refinement of
P 6= NP says not only does P 6= NP but you can’t beat
complete search meaningfully.

I This is seen an important refinement of P 6= NP that is
widely held to be true.

I It is related to FPT as we now see.

THE MINIMOB

I INPUT A parametrically miniature problem
QUESTION Is it a yes instance?
e.g. INPUT a graph G of size k log n with n, k in unary.
Does it have a vertex cover of size d?

I Get mini Vertex cover, mini Dominating set, Minisat etc.
I Core problem: minicircuitsat.

THEOREM (CHOR, FELLOWS AND JUEDES ; DOWNEY ET.
AL.)
The M[1] complete problems such as MIN-3SAT are in FPT iff
the exponential time hypothesis fails.

I That is, more or less, EPT is the “same” as M[1] 6= FPT .
I And now we have a method of demonstrating no good

subexponential algorithm; Show M[1] hardness.
I Chen-Grohe established an isomorphism between the

complexity degree structures.

XP-OPTIMALITY

I This new programme regards the classes like W[1] as
artifacts of the basic problem of proving hardness under
reasonable assumptions, and strikes at membership of XP,
and realizes the dream of upper and lower bounds
matching.

I Eg INDEPENDENT SET and DOMINATING SET which
certainly are in XP. But what’s the best exponent we can
hope for for slice k? They are clearly solvable in time
O(nk+1).

THEOREM (CHEN ET. AL 05)
The following hold:

(i) INDEPENDENT SET cannot be solved in time no(k)

unless FPT=M[1].
(ii) DOMINATING SET cannot be solved in time no(k)

unless FPT=M[2].

I The proofs recycle and miniaturize various NP and W[1]
completeness results.

I Many recent results of similar ilk based on ETH or SETH,
such as results on treewidth etc.

I For example, Most known algorithms for e.g. treewidth
problems are optimal.

WHERE ELSE?

I Another area is approximation. Here we ask for an
algorithm which either says “no solution of size k ” or here
is one of size 2k (say).

I For example BIN PACKING is has to (k ,2k)-approx, but
k -INDEPENDENT DOMINATING SET has not approx of the
form (k ,F (k)) for any computable F unless FPT = W [1].
(DFMccartin)

I Flum Grohe show that all natural W [P] complete problems
don’t have approx of the form (k ,F (k)) for any computable
F unless FPT = W [P].

I Yijia Chen and Bingkai Lin (submitted) recently solved the
30 year old problem showing that DOMINATING SET has no
multiplicative approximation unless W [1] = FPT . (Allowing
new inapproximability proofs without PCP!)

REMEMBER KERNELIZATION?

I When can we show that a FPT problem likely has no
polynomial size kernel?

I Notice that if P=NP then all have constant size kernel, so
some reasonable assumption is needed.

A GENERIC LOWER BOUND ENGINE

DEFINITION (BODLAENDER, DOWNEY, FELLOWS,
HERMELIN)
An OR-distillation algorithm for a classical problem L ⊆ Σ∗ (like
SAT is an algorithm that

I receives as input a sequence (x1, . . . , xt), with xi ∈ Σ∗ for
each 1 ≤ i ≤ t ,

I uses time polynomial in
∑t

i=1 |xi |,
I and outputs a string y ∈ Σ∗ with

1. y ∈ L ⇐⇒ xi ∈ L for some 1 ≤ i ≤ t .
2. |y | is polynomial in max1≤i≤t |xi |.

I Similarly AND-distillation.

THE FORTNOW-SANTHANAM LEMMA

LEMMA (FORTNOW AND SANTHANAM 2007)
If any NP complete problem has a distillation algorithm then
PH = ΣP

3 . That is, the polynomial time hierarchy collapses to
three or fewer levels

I Here Σp
3 is NPNPNP

.
I Strictly speaking the prove that co − NP ⊆ NP\poly .

HOW DOES THIS RELATE TO KERNELIZATION?

I Bodlaender, Downey, Fellows, Hermelin identified a
property called composition and proved the following.

LEMMA (BODLAENDER, DOWNEY, FELLOWS, HERMELIN)
Let L be a compositional parameterized problem whose derived
classical problem Lc is NP-complete. If L has a polynomial
kernel, then Lc is also distillable.

I One guarantee that a problem is compositional if the
disjoint union of two instances is a yes iff at least one is a
yes with the same parameter. (BDFH)

EXAMPLES

I k -PATH, k -CYCLE, k -CHEAP TOUR, k -EXACT CYCLE, and
k -BOUNDED TREEWIDTH SUBGRAPH

I k , σ-SHORT NONDETERMINISTIC TURING MACHINE

COMPUTATION (Needs work)
I Many recent examples, Bodlaender, Kratch, Lokshantov,

Saurabh etc. Also using (poly,poly)-reductions,
co-nondeterminism, small interactive protocols, etc.

I Now a big cottage industry.

AND-COMPOSITION AND DISTILLATION

I A then PhD student Andrew Drucker from MIT (2012) who
has shown this also implies collapse. This implies all the
below don’t have poly kernels, unless.... The proof is
remarkable.

I Applications: Graph width metrics:
I CUTWIDTH, TREEWIDTH, PROBLEMS WITH TREEWIDTH

PROMISES, EG.. COLOURING

OTHER RESULTS

I Burhmann and Hitchcock: There are no subexponential
size hard sets for NP unless PH collapses. (Ie many hard
instances)

I Using transformations, Bodlaender, Thomasse and Yeo
show that DISJOINT CYCLES, HAMILTON CIRCUIT

PARAMETERIZED BY TREEWIDTH etc don’t have poly
kernels unless collapse.

I Also the important DISJOINT PATHS, famously FPT by
Robertson and Seymour.

I Similarly using Dell-Mecklebeek, Kratz showed the
non-poly-kernelizability of k -RAMSEY.

I Fernau et. al. have shown that there are problems with
Poly Turing Kernels but no poly kernels unless collapse.(!),
and these are natural related to spanning trees (Namely
DIRECTED k LEAF SPANNING TREE).

THE BIGGEST CHALLENGE

I Explain why heuristics deliver. e.g.
I Parosh-Abdullah infinite state verification,
I Simplex method
I Sat solvers (Remember: Sat was supposed to be toxic)
I Huge linear programmes.
I Incorporate bounded rationality.
I Practical off shelf toolkit.
I Combine with, or beat things like MAP REDUCE.

SOME REFERENCES

I Parameterized Complexity, springer 1999 DF
I Invitation to Parameterized Algorithms, 2006 Niedermeier,

OUP
I Parameterized Complexity Theory, 2006, Springer Flum

and Grohe
I Theory of Computing Systems, Vol. 41, October 2007
I Parameterized Complexity for the Skeptic, D,
I The Computer Journal, (ed Downey, Fellows, Langston)
I Confronting intractability via parameters, Downey Thilikos,

Computing Reviews
I Fundamentals of Parameterized Complexity,

Downey-Fellows.
I Parameterized Algorithms, Cygan et. al.

WHAT SHOULD YOU DO?

I You should buy that new wonderful book...(and its friends)
I Thanks!

