
Notes on Online Combinatorics

Rod Downey
Victoria University

Wellington, New Zealand

ACC, December 2025

Online

▶ Your job is to put an unknown number of objects {a0, a1, . . . } into
bins {bj | j ∈ ω} of a certain maximum capacity and they are given
one at a time. You must put ai into some bj at stage i before I give
you ai+1 and try to minimize the number of bins used as you go
along. ‘

▶ I give you an unknown graph graph G one point at a time, giving the
induced subgraph {a0, a1, . . . , ai} at step i and you must decide a
colour before given ai+1. Minimize the number of colours.

▶ You are in a vast graph and need to build, for example, an object
incrementally, but don’t have time to see more than a local
neighbourhood.

▶ You are a triage nurse and patients arrive and you must order them in
some priority ordering to be seen dynamically.

▶ You are answering processing questions about an infinite group on
your laptop, but have no idea about the complexity, except hope.

Online

▶ In all of the above you are in an online situation, though some are
different than others.

▶ There are hundreds of algorithms for such problems both in the finite
case, and in the case where e.g. a scheduler needs to works “forever”.

▶ There are books with taxonomies of such algorithms.

▶ As data gets bigger there is no doubt in my mind that algorithms
concerned with incremental changes in data and their relationship
with updating solutions will be ever more important.

▶ My goal is to give a theoretical basis for the above.

▶ What is a good setting? What kinds of questions can be answered for
such online structures, for example, in terms of logical description,
and for what kinds of parameterizations? Etc.

▶ One such basis has been talked about by Melnikov and Ng, and
others.

Two approaches

▶ There seem two basic criteria needed for “online-ness”.

▶ And there are two non-independent approaches based on them.

▶ The first is based on the punctuality of the online algorithm. We
must do something immediately before the next item arrives. (Or
leaves, this could be a ∆0

2 process.) This has a growing and rich
theory, and intersects with “temporal graphs”.

▶ Temporal graph is one on vertices v1, . . . , vn for which edges vivj
appear and disappear with time.

▶ The second is based on the uniformity of the operators against a
hostile universe. This has almost no theory, yet!

▶ In this talk we’ll look at the second approach, and mainly be
concerned with the setting of graphs.

The Operator Approach

▶ Consider online colouring of a graph with the simple monotone model.

▶ The online algorithm A acts on Gs+1 to (irrevocably) colour
v = s + 1.

▶ You could include delay where it sees f (s + 1) many new points,
where f would be primitive recursive, before making its decision, but
we’ll stick with the simple version.

▶ The crucial insight is that A must act uniformly on any sequence
G0, . . . ,Gs+1, The offline algorithm can be considered as a
sequence of algorithms Âs acting on Gs for each s.

▶ We think of the possible inputs as being represented by nodes in a
tree of possibilities, with nodes of length n representing greaphs with
n vertices.

▶ A node of length n + 1 will represent a graph extending the one of
length n which it is a child of.

▶ The key observation: whilst there are only a primitive recursive
number of graphs of size s, there is no reason that the limit graph the
opponent builds is even remotely primitive recursive.

▶ There are 2ℵ0 many possible graphs.

▶ We are thinking of the algorithm acting on objects represented as
paths in a computable tree. An operator.

▶ We could argue that any countable structure could be considered,
where An is some kind of n-bounded fragment of the open diagram.

▶ But, really, in practice online structures are given in “layers”. For
instance, the n-th step in colouring is to consider an induced
subgraph on n vertices, not, for instance, taking some enumeration of
the vertices and edges and giving only part of the picture.

▶ Moreover functions make everything problematical. (How many
iterations should we allow?)

▶ We want a theory which reflects practice.

Definitions

Definition

A class C of relational structures is called inductive if A ∈ C implies A has
a filtration or online presentation A = ∪sAs where each As is finite and
has universe {1, . . . , s} and for all s ′ > s the substructure induced by
{1, . . . , s} in As′ is As .

Definition

A representation of a class C of structures is a surjective function
F : ω<ω → C<ω, which acts computably in the sense that F (σ) = Cn for
|σ| = n and |Cn| = n, and if σ ⪯ τ then F (σ) is an induced substructure of
F (τ). (Later this might be partial, and objects might have several names.)

Online

Definition

A on-line problem is a triple (I , S , s) where I is the space inputs viewed as
strings in a finite or infinite computable alphabet, S is the space of
outputs (solutions) viewed as strings in (perhaps, some other) alphabet,
and s : I → S<ω is a function which maps I to the set of admissible
solutions of σ of S .

Intuitively, to solve a problem (I , S , s) we need to find an “online”
computable function f which, on input i , chooses an admissible solution
from the finite set s(i).

Definition

A solution to an online problem (I , S , s) is a function f : I → S with the
properties:

(O1) f is computable without delay;

(O2) f (σ) ∈ s(σ) for every σ ∈ I ;

(O3) f (σ) uses only σ in its computation.

We call f an online solution to P = (I , S , s), or just a solution to P.

Remark:

▶ Suppose that the representation is e.g. 2ω, the space of infinite binary
sequences, The algorithm is uniform on all paths.

Finite=Infinite

Proposition

▶ Suppose that A acts in an online fashion uniformly on all finite
strings. Then A acts uniformly online on all computable paths
through the representing space.

▶ Suppose that the algorithm A is total and acts uniformly online on all
computable paths. Then A acts uniformly on all paths.

Proof.

(i) If A fails on some computable path α it must fail on some finite initial
segment. (ii) Computable paths are dense.

More precisely

▶ Suppose f is a solution to an online problem (I ,S , s).

▶ The space of inputs carries a natural totally disconnected topology,
and the completion of I forms the space of “paths” or infinite words
in the language of I.

▶ The solution f induces a solution for the completion of the initial
problem (I ,S , s), in the sense that f can be uniquely extended to a
functional f : [I] → [S] between completions.

▶ Then f is a primitive recursive ibT operator (which means that its
oracle use is bounded by the identity) with the property that, for
every n, f (p ↾ n) ∈ s(p ↾ n).

▶ In this case we say that f is a solution to the completion of (I , S , s).

Graphs; incremental computation

▶ There is a notion of incremental computation due to Milterson et. al.
and we can show that this aligns to an online version of “Weihrauch
reduction.”

▶ We can also have ratio preserving Weihrauch reductions.

▶ The performance ratio of a minimization problem (e.g. coloring here)
is

|{fχ(G ↾ n)}|
|{χ(G ↾ n}|

.

▶ E.g. Famously First Fit Bin Packs with Performance ratio 2.
(currently 1.7)

Shape counts

▶ It is pretty hopeless to find properties with small performance ratios
on general graphs, but we know that bounding inputs with topological
parameters seems to sometimes give good online performance.

▶ We look at some below.

▶ One example as above is colouring. E.g. an interval graph of width k
can be online coloured by 3k + 1 many colours reduces to chain
covering of interval orderings. (Kierstead and Trotter)

▶ G is an interval graph of width k, if it can be represented as intervals
Ix for each x ∈ V with Ix ∩ Iy ̸= ∅ iff xy ∈ E , and the cutwidth is
≤ k + 1. A subgraph is said to have bounded pathwidth

▶ Another formulation is that G has a path decomposition with
maximal bag size k + 1. That is there is a path w1, . . . ,wn such that
each wi has a bag Bi , with |Bi | ≤ k + 1 and such that
▶ v ∈ V (G) implies v is in some bag Bi .
▶ vw ∈ E (G) implies both v and w appear together in some Bj .
▶ v ∈ Bi ∩ Bj implies v ∈ Bk for i ≤ k ≤ j .

▶ If the decomposition above is a tree rather than a path, then we have
tree decomposition, rather than a path decomposition.

Theorem (Askes and Downey-Building on Kierstead and Trotter, and
Downey and Fellows)

]

1. Graphs of pathwidth k can be online coloured with 3k + 1 many
colours.

2. Hence there is a linear time to construct such colourings. (More later)

▶ This is proven by induction on the width k, and for each k we
recursively construct an algorithm Ak . If k = 1 then G is a caterpillar
graph and we can use greedy minimization which will use at most 3
colours.

▶ So suppose k > 1, and let Gn have vertices {v1, . . . , vn}. The
computable algorithm Ak will have computed a partition of G , which
we denote by {Dy | y < k}. Consider vn+1. If the pathwidth of
Gn+1 = Gn ∪ {vn+1} is < k , colour vn+1 by Ak−1, and put into one of
the cells Dy , for y < k − 1 recursively. (In the case of pathwidth 1,
this will all go into D0.) We will be colouring using using the set of
colours {1, . . . , 3k − 2}.

▶ If the pathwidth of Gn+1 is k , consider Hn+1, the induced subgraph of
Gn+1 generated by Gn+1 \ Dk . If the pathwidth of Hn+1 is < k , then
again colour vn+1 by Ak−1, and put into one of the cells Dy , for
y < k − 1, recursively, and colour using the set of colours
{1, . . . , 3k − 2}.

▶ If the pathwidth of Hn+1 is k , then we put vn+1 into Dk−1. In this
case, that is in Dk−1, we will use first fit using colours
3k − 2 < j ≤ 3k + 1.

▶ The remainder of the proof is an induction on the construction to
show that this works, roughly showing that is the process does not
work then it would have failed earlier and the pathwidth of Gn would
be too big.

▶ This is done by taking a path decomposition of width k of G and
seeing how this interacts with the algorithm.

Complexity

▶ We remark that the proof of the theorem above gives an algorithm
which is linear time (as k-Pathwidth is linear time FPT), but is
inefficient as the constants for the pathwidth algorithm (Bodlaender’s
Algorithm for treewidth.) are of the order of 235k

3
which is pretty

horrible.

▶ This algorithm is invoked at each step. We don’t know the best
complexity for the following (online) promise problem, which is
highlighted by such considerations.
Input: An online graph G , and a vertex v and a graph H with vertices
V (G) ∪ {v} G a subgraph of H.
Promise: G has pathwidth k.
Parameter: An integer k .
Question: Does H have pathwidth k?

Efficient algorithm

▶ Amazingly, first fit gives a good approximate algorithm.

Theorem (Dujmovic, Joret, Wood, SIAM Discrete Math, 2012)

First Fit colours graphs of pathwidth k with at most 8(k + 1) many
colours.

▶ The proof uses static analysis of chain decompositions of posets.

▶ For online applications, ratio preserving Weihrauch Reductions.

Definition

Let f , g be functions on 2ω. Then f is called ratio preserving online
reducible to g , f ≤r

O g , if there are (type II) online computable functions
A and B with and a constant d , such that for all n,

f (α ↾ n) = A(α ↾ n, g(B(α ↾ n)),

and the ratio of c(f (α ↾ n)) to c(foff(α ↾ n)) is at most d times the ration
of c(g(B(α ↾ n))) to c(goff(B(α ↾ n))).

Fact

If f ≤r
O g then , for some d > 0,

c(f ↾ n)
c(foff ↾ n)

≤ d
c(g ↾ n)

c(goff ↾ n)
.

▶ A classical reduction is a ratio preserving Weihrauch reduction from
colouring interval graphs to chain cover for interval orderings.

▶ Lots other applications of this setting.

▶ E.g. EX-learning, Distributed computing, Büchi automata, etc.

▶ The idea is to somehow tie these together.

▶ Here are two examples, one from Tree Decompositions, and one from
proof theory:

▶ Graphs of bounded treewidth are usually solved by tree automata.
▶ But if we present a graph by a root to leaf online representation, we

call a promise, then the apparatus of Courcelle’s Theorem on MS2
theory of graphs of bounded treewidth applies.

Theorem (D and Long Qian)

Given a formula φ(X) which is first order on graphs and X only occurs
positively or negatively in φ(X), then the online problem corresponding to
φ(X) has an online algorithm (the greedy algorithm) which has constant
competitive ratio for graphs of bounded degree.

▶ Principal tool: Gaifman’s Locality Lemma, and greed.
▶ Associated with any structure is a Gaifman graph where more or less

edges correspond to relations, in the sense that x and y are joined if
they occur in some tuple of the structure A together. The Locality
Theorem says every first order formula is equivalent to a boolean
combination of “basic local sentences” of a small radius.

▶ Obviously there are lots of interesting questions open here. For
example, is there any analog of this result for some set of φ where
there is no promise. Maybe in bounded pathwidth?

Speculation

▶ You can topologise, for example the space of online presentations of
graphs (or graphs of bounded pathwidth) as a totally disconnected
space with distance 2−n at level n.

▶ Then considerations like the above says that we have an online
algorithm acting of the paths providing a 3k + 1 approximation
algorithm, and there is no continuous k + 1 colouring.

▶ Perhaps the correct logic here is continuous model theory, rather than
first order logic.

New directions

▶ Many counterexamples come from not knowing Skolem functions in
an online situation.

▶ Imagine you are in a maze and navigating. Unless you were in Harry
Potter, you are not going to get new egresses from the current
location appearing. In many situations in e.g. online graphs you
would expect at least to know your immediate surroundings, without
a global picture.

▶ This idea leads to a new class of online structures with algorithmic
parameterizations:

Definition

1. A locally strongly online graph is an given by a filtration (Gs ,Ns) where
Ns = N(Gs), the neighbours of Gs in lims Gs = G .

2. A strongly online graph G is a filtration (Gs ,Hs) where
Hs+1 = N(Gs ∪ Hs ∪ {vs+1}).

▶ This could be re-prhrased as adding certain function symbols to the
langauge.

▶ Naturally realized in online algorithms on algebraic structures of
unknown size.

▶ You can think of Gs as the blue part of the graph and Hs − Gs (or
Ns − Gs) as the red part of the graph. The online algorithm is
running on the blue part of the graph only.

▶ In, for example, navigation we can see a space around us but only
process the algorithm when we traverse it. We could also specify Nk

instead of N for the k-neighbourhood of Gs .

▶ This accords with old work on “highly recursive” graphs. (Kierstead,
Bean, Schmerl, etc)

Theorem (Askes)

If G is a strongly online graph, then G can be strongly online coloured in
2χ(G) many colours.

We compare this with

Theorem (Schmerl 1980)

If G is a highly computable, k-colourable graph then, G is computably
(2k − 1)-colourable.

Theorem (Askes)

1. For all k there is a strongly online k-colourable graph that cannot be
strongly (2k − 1)-online coloured.

2. There is a locally strongly online tree T which cannot be finitely
coloured online.

Pathwidth

Recall that G has pathwidth d if every vertex x can be represented as an
interval Ix and such that if if xy ∈ E , then Ix ∩ Iy ̸= ∅. The width is the
max cutqwidth of the decomposition, and this must be ≤ d + 1. The cuts
determine a set of bags of size ≤ k + 1 in an order.

Theorem (Askes)

1. Every strongly online graph, G, with strongly online pathwidth k can
be strongly online coloured in 2k + 1 colours.

2. There is a strongly online graph with pathwidth k that cannot be
strongly online coloured in 2k colours.

Can online path decompositions be built?

Theorem (Askes)

For all n > 0, there is a strongly online graph of pathwidth 2 but whose
strongly online pathwidth is ≥ n

A sample proof

We will diagonalize against all possible φe , online algorithms attempting
to show that the pathwidth is ≤ n. We present n(2n+ 1) many vertices as
the centres of paths which are ever growing. The blue vertices are the
presented ones which are the centre. We wait till φe declares bags
(intervals Ix) for vertices in these paths. As G has n(2n+ 1) many vertices
into bags of size ≤ n, there must be 2n+1 bags containing a vertex not in
the other 2n + 1 many bags.
We now join up the ends of the lines (with vertices) to force the bags to
grow.
The next pictures might help.

v1 v2 v3 v4 v2n v2n+1
. . .

Figure: The initial n + 1 paths and the presented vertices (in black)

v4v3 v5v2 v6v1 v7

Figure: The connections between vertices (paths) for n = 3

X1 X2 Xn+1 X2n X2n+1

U1 Ub−1 UbU2 Uj

.

.

Figure: The bags in Q and the bags corrosponing to the path vi—v2n+2−i .

Thus Xn+1 appears between U1 and Ub. Hence there must be some Uj

such that Uj = Xn+1. Therfore Xn+1 contains some uj . Then by letting i
vary we can see that Xn+1 must contain n + 1 vertices (one from each
path along with the vertex vn+1). Therefore Ge satisfies Re .

A model theoretical framework

▶ Speculation: We can have a constant ratio approximation scheme for
first order properties if the Gaifman rank of the formula is below the
online neighbourhood distance.

▶ Current model theory needs enriching to fit into this framework. For
example, structures which seem to be reasonably well behaved online
(e.g. good approximation ratios) seem to have a good shape
according to some pseudo-metric on them. How to include this in
model theory, whose inspiration was more about fields and the like.

▶ Further finitization of computability theory.

References

▶ Foundations of Online Structure Theory, BSL, 2019.

▶ Foundations of Online Structure Theory, II,
https://arxiv.org/abs/2007.07401 final version in Logical
Methods in Computer Science, 2021.

▶ M. Askes ”Adversarial and Online Adversarial Games” MSc Thesis,
Victoria University, in preparation.

▶ Lots of papers on Melnikov’s and Ng’s home pages.

▶ M. Askes and R. Downey, Online, Computable and Punctual
Structure Theory, Logic Journal of the IGPL, 2023.

https://arxiv.org/abs/2007.07401

Thank You

