Notes on Online Combinatorics

Rod Downey
Victoria University
Wellington, New Zealand

ACC, December 2025



Your job is to put an unknown number of objects {ag, a1, ...} into
bins {b; | j € w} of a certain maximum capacity and they are given
one at a time. You must put a; into some b; at stage / before | give
you aj+1 and try to minimize the number of bins used as you go
along.

| give you an unknown graph graph G one point at a time, giving the
induced subgraph {ag, a1, ..., a;} at step i and you must decide a
colour before given a;1. Minimize the number of colours.

You are in a vast graph and need to build, for example, an object
incrementally, but don’t have time to see more than a local
neighbourhood.

You are a triage nurse and patients arrive and you must order them in
some priority ordering to be seen dynamically.

You are answering processing questions about an infinite group on
your laptop, but have no idea about the complexity, except hope.



v

In all of the above you are in an online situation, though some are
different than others.

There are hundreds of algorithms for such problems both in the finite
case, and in the case where e.g. a scheduler needs to works “forever”.
There are books with taxonomies of such algorithms.

As data gets bigger there is no doubt in my mind that algorithms
concerned with incremental changes in data and their relationship
with updating solutions will be ever more important.

My goal is to give a theoretical basis for the above.

What is a good setting? What kinds of questions can be answered for
such online structures, for example, in terms of logical description,
and for what kinds of parameterizations? Etc.

One such basis has been talked about by Melnikov and Ng, and
others.



v

There seem two basic criteria needed for “online-ness”.
And there are two non-independent approaches based on them.

The first is based on the punctuality of the online algorithm. We
must do something immediately before the next item arrives. (Or
leaves, this could be a Ag process.) This has a growing and rich
theory, and intersects with “temporal graphs”.

Temporal graph is one on vertices vi, ..., v, for which edges v;v;
appear and disappear with time.

The second is based on the uniformity of the operators against a
hostile universe. This has almost no theory, yet!

In this talk we'll look at the second approach, and mainly be
concerned with the setting of graphs.



The Operator Approach

» Consider online colouring of a graph with the simple monotone model.

» The online algorithm A acts on G,41 to (irrevocably) colour
v=s+1.

» You could include delay where it sees f(s + 1) many new points,
where f would be primitive recursive, before making its decision, but
we'll stick with the simple version.

» The crucial insight is that A must act uniformly on any sequence
Go, ..., Gsy1,.... The offline algorithm can be considered as a
sequence of algorithms A acting on G for each s.



We think of the possible inputs as being represented by nodes in a
tree of possibilities, with nodes of length n representing greaphs with
n vertices.

A node of length n+ 1 will represent a graph extending the one of
length n which it is a child of.

The key observation: whilst there are only a primitive recursive
number of graphs of size s, there is no reason that the limit graph the
opponent builds is even remotely primitive recursive.

There are 280 many possible graphs.

We are thinking of the algorithm acting on objects represented as
paths in a computable tree. An operator.



We could argue that any countable structure could be considered,
where A, is some kind of n-bounded fragment of the open diagram.
But, really, in practice online structures are given in “layers”. For
instance, the n-th step in colouring is to consider an induced
subgraph on n vertices, not, for instance, taking some enumeration of
the vertices and edges and giving only part of the picture.

Moreover functions make everything problematical. (How many
iterations should we allow?)

We want a theory which reflects practice.



Definitions




Online

Intuitively, to solve a problem (/,S,s) we need to find an “online”
computable function f which, on input /, chooses an admissible solution
from the finite set s(/).




» Suppose that the representation is e.g. 2, the space of infinite binary
sequences, The algorithm is uniform on all paths.



Finite=Infinite




Suppose f is a solution to an online problem (/,S,s).

The space of inputs carries a natural totally disconnected topology,
and the completion of / forms the space of “paths” or infinite words
in the language of |.

The solution f induces a solution for the completion of the initial
problem (/,S,s), in the sense that f can be uniquely extended to a
functional f : [/] — [S] between completions.

Then f is a primitive recursive ibT operator (which means that its
oracle use is bounded by the identity) with the property that, for
every n,f(p [ n) € s(p | n).

In this case we say that f is a solution to the completion of (/, S, s).



» There is a notion of incremental computation due to Milterson et. al.
and we can show that this aligns to an online version of “Weihrauch
reduction.”

> We can also have ratio preserving Weihrauch reductions.

» The performance ratio of a minimization problem (e.g. coloring here)

is
{A (G I n)}|
{x(G [}~
» E.g. Famously First Fit Bin Packs with Performance ratio 2.
(currently 1.7)



> |t is pretty hopeless to find properties with small performance ratios
on general graphs, but we know that bounding inputs with topological
parameters seems to sometimes give good online performance.

» We look at some below.



One example as above is colouring. E.g. an interval graph of width k
can be online coloured by 3k + 1 many colours reduces to chain
covering of interval orderings. (Kierstead and Trotter)

G is an interval graph of width k, if it can be represented as intervals
I for each x € V with I, N1, # 0 iff xy € E, and the cutwidth is
< k + 1. A subgraph is said to have bounded pathwidth
Another formulation is that G has a path decomposition with
maximal bag size k + 1. That is there is a path wy, ..., w, such that
each w; has a bag B;, with |Bj| < k + 1 and such that

» v e V(G) implies v is in some bag B;.

» vw € E(G) implies both v and w appear together in some B;.

> v e BinB;implies v e B fori <k <.
If the decomposition above is a tree rather than a path, then we have
tree decomposition, rather than a path decomposition.



» This is proven by induction on the width k, and for each k we
recursively construct an algorithm Aj. If k =1 then G is a caterpillar
graph and we can use greedy minimization which will use at most 3
colours.

» So suppose k > 1, and let G, have vertices {vi,...,v,}. The
computable algorithm Ay will have computed a partition of G, which
we denote by {D, | y < k}. Consider v,;1. If the pathwidth of
Gnt1 = G U{vat1}is < k, colour vpy1 by Ak—_1, and put into one of
the cells Dy, for y < k — 1 recursively. (In the case of pathwidth 1,
this will all go into Dy.) We will be colouring using using the set of
colours {1,...,3k — 2}.



If the pathwidth of G,1 is k, consider H, .1, the induced subgraph of
Gpt1 generated by Gy \ Dy. If the pathwidth of H,41 is < k, then
again colour v41 by Ax_1, and put into one of the cells D, for

y < k — 1, recursively, and colour using the set of colours

{1,...,3k —2}.

If the pathwidth of H,y1 is k, then we put v, 1 into Dx_1. In this
case, that is in Dyx_1, we will use first fit using colours
3k—2<j<3k+1.

The remainder of the proof is an induction on the construction to
show that this works, roughly showing that is the process does not
work then it would have failed earlier and the pathwidth of G, would
be too big.

This is done by taking a path decomposition of width k of G and
seeing how this interacts with the algorithm.



> We remark that the proof of the theorem above gives an algorithm
which is linear time (as k-PATHWIDTH is linear time FPT), but is
inefficient as the constants for the pathwidth algorithm (Bodlaender's
Algorithm for treewidth.) are of the order of 235k* \vhich is pretty
horrible.

» This algorithm is invoked at each step. We don’t know the best
complexity for the following (online) promise problem, which is
highlighted by such considerations.

Input: An online graph G, and a vertex v and a graph H with vertices
V(G)U{v} G a subgraph of H.

Promise: G has pathwidth k.

Parameter: An integer k.

Question: Does H have pathwidth k?



Efficient algorithm

> Amazingly, first fit gives a good approximate algorithm.

» The proof uses static analysis of chain decompositions of posets.



» For online applications, ratio preserving Weihrauch Reductions.

» A classical reduction is a ratio preserving Weihrauch reduction from
colouring interval graphs to chain cover for interval orderings.




» Lots other applications of this setting.
» E.g. EX-learning, Distributed computing, Biichi automata, etc.
P> The idea is to somehow tie these together.

» Here are two examples, one from Tree Decompositions, and one from
proof theory:



» Graphs of bounded treewidth are usually solved by tree automata.
» But if we present a graph by a root to leaf online representation, we
call a promise, then the apparatus of Courcelle’s Theorem on MS,

theory of graphs of bounded treewidth applies.

» Principal tool: Gaifman’s Locality Lemma, and greed.

» Associated with any structure is a Gaifman graph where more or less
edges correspond to relations, in the sense that x and y are joined if
they occur in some tuple of the structure A together. The Locality
Theorem says every first order formula is equivalent to a boolean
combination of “basic local sentences” of a small radius.

» Obviously there are lots of interesting questions open here. For
example, is there any analog of this result for some set of ¢ where
there is no promise. Maybe in bounded pathwidth?



» You can topologise, for example the space of online presentations of
graphs (or graphs of bounded pathwidth) as a totally disconnected
space with distance 27" at level n.

> Then considerations like the above says that we have an online
algorithm acting of the paths providing a 3k + 1 approximation
algorithm, and there is no continuous k + 1 colouring.

» Perhaps the correct logic here is continuous model theory, rather than
first order logic.



New directions

» Many counterexamples come from not knowing Skolem functions in
an online situation.

» Imagine you are in a maze and navigating. Unless you were in Harry
Potter, you are not going to get new egresses from the current
location appearing. In many situations in e.g. online graphs you
would expect at least to know your immediate surroundings, without
a global picture.

» This idea leads to a new class of online structures with algorithmic

parameterizations:




This could be re-prhrased as adding certain function symbols to the
langauge.

Naturally realized in online algorithms on algebraic structures of
unknown size.

You can think of Gs as the blue part of the graph and Hs — G (or
Ns — Gs) as the red part of the graph. The online algorithm is
running on the blue part of the graph only.

In, for example, navigation we can see a space around us but only
process the algorithm when we traverse it. We could also specify N
instead of N for the k-neighbourhood of G;.

This accords with old work on “highly recursive” graphs. (Kierstead,
Bean, Schmerl, etc)



We compare this with




Pathwidth

Recall that G has pathwidth d if every vertex x can be represented as an
interval I, and such that if if xy € E, then I, N/, # (). The width is the

max cutqwidth of the decomposition, and this must be < d + 1. The cuts
determine a set of bags of size < k + 1 in an order.

Can online path decompositions be built?




We will diagonalize against all possible ¢., online algorithms attempting
to show that the pathwidth is < n. We present n(2n + 1) many vertices as
the centres of paths which are ever growing. The blue vertices are the
presented ones which are the centre. We wait till ¢, declares bags
(intervals /) for vertices in these paths. As G has n(2n+ 1) many vertices
into bags of size < n, there must be 2n+ 1 bags containing a vertex not in
the other 2n + 1 many bags.

We now join up the ends of the lines (with vertices) to force the bags to
grow.

The next pictures might help.



///ﬁﬁ

Figure: The initial n + 1 paths and the presented vertices (in black)



Vi V2 V3 V4 V5 V6 V7

Figure: The connections between vertices (paths) for n =3



X |oco | 26 Xni1 Xon |+ - - Pontd

Uy Us 50 c Uj coe |Up— Up

Figure: The bags in Q and the bags corrosponing to the path vi—vo,10_;.

Thus X1 appears between U; and Up,. Hence there must be some U;
such that U; = Xj,;1. Therfore Xj,;1 contains some u;. Then by letting i
vary we can see that X,;+1 must contain n+ 1 vertices (one from each
path along with the vertex v,;1). Therefore G, satisfies R..



» Speculation: We can have a constant ratio approximation scheme for
first order properties if the Gaifman rank of the formula is below the
online neighbourhood distance.

» Current model theory needs enriching to fit into this framework. For
example, structures which seem to be reasonably well behaved online
(e.g. good approximation ratios) seem to have a good shape
according to some pseudo-metric on them. How to include this in
model theory, whose inspiration was more about fields and the like.

» Further finitization of computability theory.



» Foundations of Online Structure Theory, BSL, 2019.

» Foundations of Online Structure Theory, II,
https://arxiv.org/abs/2007.07401 final version in Logical
Methods in Computer Science, 2021.

» M. Askes " Adversarial and Online Adversarial Games’ MSc Thesis,
Victoria University, in preparation.

> Lots of papers on Melnikov's and Ng's home pages.

> M. Askes and R. Downey, Online, Computable and Punctual
Structure Theory, Logic Journal of the IGPL, 2023.


https://arxiv.org/abs/2007.07401

Thank You



