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NOTATION

I Real is a member of Cantor space 2ω with topology with
basic clopen sets [σ] = {σα : α ∈ 2ω} whose measure is
µ([σ]) = 2−|σ|.

I α � n is the first n bits of α.
I Strings = members of 2<ω = {0,1}∗.
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KOLMOGOROV COMPLEXITY

I Capture the incompressibility paradigm. Random means
hard to describe, incompressible: e.g. 1010101010....
(10000 times) would have a short program.

I A string σ is random iff the only way to describe it is by
hardwiring it. (Formalizing the Berry paradox)

I Want the bits of τ to describe σ if U(τ) = σ for a device
(Turing machine) U. Write C(σ) = |τ | for the shortest such
τ , and can use a universal machine.

I Plain complexity like this has τ providing itself and its
length so this is circumvented by using prefix-free
complexity (telephone numbers) giving K for prefix-free
machines.

I Using this, Levin, Chaitin, Schnorr proved that there are
reals with K (α � n) ≥+ n for all n, called 1-random, and
coinciding with earlier ones avoiding all effective null sets,
Martin-Löf random.Rod Downey Victoria University Wellington New Zealand Strong Jump Traceability I
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MARTIN-LÖF RANDOMNESS

I Generalized effective statistical test: an effectively
shrinking computable collection of open sets: {Un | n ∈ N}
with µ(Un) ≤ 2−n.

I e.g. every second bit is 0: U1 = {[10], [00]}, etc.
I For all such Martin-Löf tests A 6∈ ∩nUn.
I Other notions: Schnorr randomness (µ(Un) = 2−n),

Demuth Randomness (ω-effective approximations and
other acceptances criterion), etc.
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I As with life, relationships here are complex (Solovay)

K (x) = C(x) + C(2)(x) +O(C(3)(x)).

and
C(x) = K (x)− K (2)(x) +O(K (3)(x)).

I These 3’s are sharp (Solovay) That is, for example,
K = C + C2 + C3 + O(C4) is NOT true.
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LOWNESS

I I would like to discuss the remarkable story of lowness
generating K -triviality and then sjt.

I First sjt was an apparent artifact
I Then proved to be intimately related with randomness
I Later (also) giving insight into computability itself.
I I will try to explain the little boxes method, which is new

and poorly understood.
I Theme: to what extent do computational lowness (the

extent to which sets resemble computable ones) and being
far from random align themselves?

Rod Downey Victoria University Wellington New Zealand Strong Jump Traceability I



K -Triviality
K -lowness

KEY FACTS

I THEOREM (CHAITIN)
There is a constant d such that for all c, and n,

|{ν : |ν| = n ∧ C(ν) ≤ C(n) + c}| ≤ d2c .

THEOREM (LEVIN, CHAITIN)
There is a constant d such that for all c and n,

|{ν : |ν| = n ∧ C(ν) ≤ C(n) + c}| ≤ d2c .
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INFORMATION CHARACTERIZATION OF COMPUTABILITY

I Chaitin proved that a real A is computable iff for all n,
C(A � n) ≤+ log n, iff C(A � n) ≤+ C(n).

I This is proven using the fact that a Π0
1 class with a finite

number of paths has only computable paths, combined
with the Counting Theorem
{σ : C(σ) ≤ C(n) + c ∧ |σ| = n} ≤ d2c . (Using the
Meyer-Loveland Technique below)

I Meyer(-Loveland) had earlier shown A is computable iff
C(A � n|n) ≤ c for some c and all n.
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THE MEYER-LOVELAND TECHNIQUE

I If C(α � n|n) ≤ c then there are only c programmes
possibly computing initial segments of α.

I This computes a tree of strings of maximal width c.
I Therefore only at most c paths. Say ĉ.
I Imagine the situation that there is only one path in a tree of

maximal width 2.
I Enumerate until only one remains.
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K-TRIVIALITY

I What is a consequence of K (A � n) ≤+ K (n) for all n? We
call such reals K -trivial. Does A K -trivial imply A
computable?

I Write A ∈ KT (d) iff for all n, K (A � n) ≤ K (n) + d .
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THE ARGUMENT FAILS

I It is still true that {σ : K (σ) ≤ K (|σ|) + d} is O(2d ), so it
would appear that we could run the Π0

1 class argument
used for C. But no...

I The problem is that we don’t know K (n) in any
computable interval, therefore the tree of K -trivials we
would construct would be a Π0

1 class relative to ∅′.
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THEOREM (CHAITIN, ZAMBELLA)
There are only O(2d ) members of KT (d). They are all ∆0

2.

THEOREM (SOLOVAY)
There are noncomputable K -trivial reals.

THEOREM (ZAMBELLA)
Such reals can be c.e. sets.
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A REMARKABLE CLASS

I K -trivials form a remarkable class as we will see.
I First they solve Post’s problem.
I Theorem: (DHNS) If A is K -trivial then A <T ∅′.
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Similar methods allow for us to show the following

THEOREM (NIES)
All K -trivials are superlow A′ ≡tt ∅′, and are tt-bounded by c.e.
K -trivials. In fact they are Jump Traceable as we see below.
Thus triviality is essentially an “enumerable” phenomenom.
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There are other antirandomness notions.

DEFINITION (KUČERA AND TERWIJN)
We say A is low for randomness iff the reals Martin-Löf random
relative to A are exactly the Martin-Löf random reals.

DEFINITION (HIRSCHFELDT, NIES, STEPHAN)
A is a a base for randomness iff A ≤T B with B A-random.
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THEOREM
The following are equivalent to being K -trivial.
(I) (Nies) A is low for randomness.

(II) (Hirschfeldt and Nies) A is K -low in that K A =+ K .
(III) (Hirschfeldt, Nies, Stephan) A is a base for randomness.
(IV) (Downey, Nies, Weber, Yu+Nies, Miller) A is low for

weak-2-randomness.
(V) + 15 others!
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QUESTIONS AND A PROPER SUBCLASS

It is open if this is the same as a number of other “cost function”
classes such as the reals which are Martin-Löf coverable.
It is known there is a proper subclass defined by cost function.

DEFINITION

I (Zambella, Terwijn, later Nies) Let h be an order. We say
that A is jump traceable for the order h iff there is a
computable collection of c.e. sets Wg(e) with |Wg(e)| < h(e)

and JA(e) ∈Wg(e), for every partial A-computable function
JA.

I (Figueira, Nies, Stephan) A is strongly jump traceable iff it
is jump traceable for every computable order.

Think about classical set theory notions of capturing a function
by specifying possibilities. (Raisonnier, Shelah, ..., Zambella).
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COMBINATORIAL IDEAS

Inspired by the result

THEOREM (TERWIJN-ZAMBELLA, THEN BEDREGAL,
KJOS-HANSSEN, NIES, STEPHAN)
A is low for Schnorr randomness iff A is computably traceable.
That is, for every function f ≤T A there is a canonical collection
of finite sets {Dg(n) | n ∈ N} such that |Dg(n)| ≤ n + 1 and for all
n, f (n) ∈ Dg(n).

This generalized old traceing notions such as highness (Martin)
lowness (Soare), hyperhperimmunity (Miller-Martin).
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THEOREM (NIES)
A is K -triv implies that there is an order h ( n log n) relative to
which A is jump traceable.
Improved to M log n for some M by Hölzl, Kräling, Merkle.

THEOREM (FIGUEIRA, NIES, STEPHAN)
Noncomputable sjt c.e. sets exist.

THEOREM (FIGUEIRA, NIES, STEPHAN)
If A is strongly superlow the A is sjt.
strongly superlow means that A′ has very tame approximations

THEOREM (FIGUEIRA, NIES, STEPHAN)
Sjt is equivalent to C(n) ≤+ CA(n) + h(CA(n)) for all orders h.
ie A is lowly for C
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THEOREM (CHOLAK, DOWNEY, GREENBERG)
The c.e. sjt’s are a proper subclass of the K -trivials. They form
an ideal.
Turetsky has recently shown that there is a K -trivial which is not
o(log n)-jump traceable.

THEOREM (DOWNEY, GREENBERG)
If A is sjt then A is ∆0

2

THEOREM (DIAMONDSTONE, GREENBERG, TURETSKY)
If A is sjt then A ≤T B with B sjt and c.e.

COROLLARY (DIAMONDSTONE, GREENBERG, TURETSKY)
A is sjt is equivalent to A is strongly super low.
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RANDOMNESS

I It might seem that sjt’s are an artifact of randomness and
potential combinatorial characterizations of notions.
However (Noam will be discussing these results):

THEOREM (GREENBERG, HIRSCHFELDT, NIES)
sjt=superlow�=superhigh�. Here C� is exactly the c.e. sets
below all random members of C.

THEOREM (GREENBERG, NIES)
A is sjt iff it is computable from all ∆2 MRL which are not
weakly Demuth random.

THEOREM (KUCERA-NIES, GREENBERG-TURETSKY)
A c.e. degree a is sjt iff it is computable from some Demuth
random real.
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I Roughly need orders
√

log n,o(log n). Is there a
combinatorial characterization?

I Conjecture : A is K -trivial iff A is jump traceable for all
computable orders h with

∑
n≥1 2−h(n) <∞.
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A HINT OF THE PROOF TECHNIQUES

I To show that if A and B are c.e. sjt, so is A⊕ B.
I Given h we can construct a slower order k such that if A

and B are jump traceable via k then A⊕ B is jump
traceable via h

I Opponent gives: Wp(x) jump tracing A and Wq(x) jump
tracing B, such that |Wp(x)|, |Wp(x)| < k(x).

I We: Vz tracing JA⊕B(z) with |Vz | < h(z).
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TWO OBSTACLES

I We see an apparent jump computation JA⊕B(x) ↓ [s].

I Should we believe? We only have h(x) many slots in the
trace Vx to put possible values.

I Opponent can change A or B after stage s on the use.
I We build parts of jump (recursion thm) testing A and B
I Basic idea: For some a = a(x) and b = b(x) we will define

JB[s](b) = jB(x , s) and JA[s](a) = jA(x , s),

where jC(x , s) denotes the C-use of the JA⊕B(x)[s]
computation.
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I Ignore noncompletion: that is the A⊕ B computation
changes before these procedures return.

I Simplest case: Wp(a) and Wq(b) were of size 1 (1-boxes)
I Then if return: A⊕ B is correct
I Now 2-boxes. If the A⊕ B computation is wrong, at least

one of the A or B ones are too.
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I If we are lucky and there is are false jump computations in
both of the Wp(a) and Wq(b).

I The 2-boxes are now, in effect 1-boxes. (Very good)
I Can’t allow to only point at one side. Use up all the

2-boxes.
I For example if always the A sides was the wrong part, and

there were k 2-boxes then after k attacks, all the 2-boxes
would be useless and the information in the B-side is
correct, hence the box is used.
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MULTIPLE BOXES

I Idea: use multiple 2-boxes. E.g. at the beginning use two
2-boxes for the same computation.

I A side was wrong. Then now we have two promoted
1-boxes.

I Since the A-computation now must be correct, if the
believed computation is wrong, it must be the B side which
wrong the next time, now creating a new B-1-box. Finally
the third time we test, we would have two 1-boxes.
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NON-RETURN

I Now we face the ignored problem. We test and before the
computation returns, the jump computation is changed by
an A or B change, but possibly one of the A or B uses is
correct. Now nothing is promoted. This seems very bad.

I Even with 1-boxes.
I Use descending sequences of boxes, and monster boxes.
I Complicated, combinatorial.
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I The idea is that for a computation whose target is, say,
2-boxes, begin ever further out. Begin by testing at, say,
s-boxes.

I Monster boxes called metaboxes.
I If both A and B return at the s-box, go to s − 1 etc. Only

believe if you get back to the 2-boxes. The idea that a
failure at k promotes k + 1, . . . , s-boxes, at least on one
side.

I A combinatorial argument if used to show that cannot
favour one side forever.
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PROPER SUBCLASS OF THE K -TRIVIALS

I How to make a properly ω-c.e. K -trivial?
I Use descending costs....
I If the trace grows slowly enough then can make K -trivial

and not jt at that order. Much the same idea, the key point
being the to change the trace and use a a box location, the
use is very big, and the opponent needs more tailweight.
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NG KENG MENG’S THEOREMS

I The c.e. sjt’s are Π0
4 complete.

I This solves a problem of Nies: there is no minimal order.
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BEYOND JUMP TRACEABILITY

I Say A is C-sjt iff for all orders hB, for B ∈ C, A is hB-jt.
I (Ng) No real is C-sjt where C = ∆2.
I (Ng) There are c.e. reals sjt for all c.e. sets.
I (Ng) They cannot be promptly simple, the first such class.
I (Ng) No real is K B-trivial for all B, or c.e. B.
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