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Abstract. An ongoing challenge for computer science is the development of a
tool which automatically verifies programs meet their specifications, and are free
from runtime errors such as divide-by-zero, array out-of-bounds and null deref-
erences. Several impressive systems have been developed to this end, such as
ESC/Java and Spec#, which build on existing programming languages (e.g. Java,
C#). However, there remains a need for an open research platform in this area. We
have developed the Whiley programming language, and its accompanying veri-
fying compiler, as an open platform for research. Whiley has been designed from
the ground up to simplify the verification process. In this paper, we introduce the
Whiley language and it accompanying verifying compiler tool.

1 Introduction

Prof. Sir Tony Hoare (ACM Turing Award Winner, FRS) proposed the creation of a
verifying compiler as a grand challenge for computer science [1]. A verifying compiler
“uses automated mathematical and logical reasoning to check the correctness of the
programs that it compiles.” There have been numerous attempts to construct a verifying
compiler system, although none has yet made it into the mainstream. Early examples
include that of King [2], Deutsch [3], the Gypsy Verification Environment [4] and the
Stanford Pascal Verifier [5]. More recently, the Extended Static Checker for Modula-
3 [6] which became the Extended Static Checker for Java (ESC/Java) — a widely ac-
claimed and influential work [7]. Building on this success was JML and its associated
tooling which provided a standard notation for specifying functions in Java [8]. Finally,
Microsoft developed the Spec# system which is built on top of C# [9].

Both ESC/Java and Spec# build on existing object-oriented languages (i.e. Java and
C#) but, as a result, suffer numerous limitations. The problem is that such languages
were not designed for use with verifying compilers. Ireland, in his survey on the history
of verifying compilers, noted the following [10]:

“The choice of programming language(s) targeted by the verifying compiler
will have a significant effect on the chances of success.”

Likewise, a report on future directions in verifying compilers, put together by several
researchers in this area, makes a similar comment [11]:

“Programming language design can reduce the cost of specification and veri-
fication by keeping the language simple, by automating more of the work, and
by eliminating common errors.”



This paper introduces Whiley, a programming language designed from scratch in con-
junction with a verifying compiler. The intention of this is to provide an open frame-
work for research in automated software verification. The initial goal is to automatically
eliminate common errors, such as null dereferences, array-out-of-bounds, divide-by-
zero and more. In the future, the intention is to consider more complex issues, such as
termination, proof-carrying code and user-supplied proofs. Finally, several works have
already been published which focus primarily on Whiley’s type system [12–14].

The Tool. The main tool underlying Whiley is the verifying compiler. This is been
in development for over three years, and has become a large (and relatively mature)
code base. Numerous student projects have been conducted already based on this com-
piler, and the hope is to use it for teaching next year. The compiler is released under
an open source license, can be downloaded from http://whiley.org and forked
at http://github.com/DavePearce/Whiley/. Some interesting statistics are
available from http://http://www.ohloh.net/p/whiley and a fun demon-
stration on writing loop invariants is available here: http://www.youtube.com/
watch?v=WwnxHugabrw. Finally, a prototype Eclipse plugin is available and can be
installed via the update site: http://whiley.org/eclipse.

2 Language Core

We begin by exploring the Whiley language and highlight some of the choices made in
its design. For now, we stick to the basic issues of syntax, semantics and typing and, in
the following section, we will focus more specifically on using Whiley for verification.
Perhaps one of our most important goals was to make the system as accessible as possi-
ble. To that end, the language was designed to superficially resemble modern imperative
languages (e.g. Python), and this decision has significantly affected our choices.

Overview. Languages like Java and C# permit arbitrary side-effects within methods and
statements. This presents a challenge when such methods may be used within specifi-
cations. Systems like JML and Spec# require that methods used in specifications are
pure (i.e. side-effect free). An important challenge here is the process of checking that
a function is indeed pure. A significant body of research exists on checking functional
purity in object-oriented languages (e.g. [15, 16]). Much of this relies on interprocedu-
ral analysis, which is too costly for a verifying compiler. To address this, Whiley is a
hybrid object-oriented and functional language which divides into a functional core and
an imperative outer layer. Everything in the functional core can be modularly checked
as being side-effect free. To make this possible, Whiley incorporates first-class sets, lists
and maps which are values (rather than mutable objects) and, hence, allow call-by-value
semantics (more on this later).

Flow Typing. An unusual feature of Whiley is the use of a flow typing system (see
e.g. [17, 18, 13, 14]). This gives Whiley the look-and-feel of a dynamically typed lan-
guage (e.g. Python). Furthermore, automatic variable retyping through conditionals is
supported using the is operator (similar to instanceof in Java) as follows:
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define Circle as {int x, int y, int radius}
define Rect as {int x, int y, int width, int height}
define Shape as Circle | Rect

real area(Shape s):
if s is Circle:

return PI * s.radius * s.radius
else:

return s.width * s.height

A Shape is either a Rect or a Circle (which are both record types). The type test
“s is Circle” determines whether s is a Circle or not. Unlike Java, Whiley auto-
matically retypes s to have type Circle (resp. Rect) on the true (resp. false) branches
of the if statement. There is no need to explicitly cast variable s to the appropriate
Shape before accessing its fields.

Union Types. Another unusual feature of Whiley is the use of union types (see e.g. [19,
20]), which complement the flow type system. Consider the following example:

null|int indexOf(string str, char c):
...

[string] split(string str, char c):
idx = indexOf(str,c)
// idx has type null|int
if idx is int:

// idx now has type int
below = str[0..idx]
above = str[idx..]
return [below,above]

else:
// idx now has type null
return [str]

Here, indexOf() returns the first index of a character in the string, or null if there is
none. The type null|int is a union type, meaning it is either an int or null. The sys-
tem seamlessly ensures null is never dereferenced because the type null|int cannot
be treated as an int. Instead, one must first check it is an int using e.g. “idx is int”.

Recursive Data Types. Whiley provides recursive types which are similar to the abstract
data types found in functional languages (e.g. Haskell, ML, etc). For example:

define LinkedList as null | {int data, LinkedList next}

int length(LinkedList l):
if l is null:
return 0 // l now has type null

else:
return 1 + length(l.next) // l now has type {int data, LinkedList next}

Here, we again see how flow typing gives an elegant solution. More specifically, on
the false branch of the type test “l is null”, variable l is automatically retyped
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to {int data, LinkedList next} — thus ensuring the subsequent dereference of
l.next is safe. No casts are required as would be needed for a conventional impera-
tive language (e.g. Java). Finally, like all compound structures, the semantics of Whiley
dictates that recursive data types are passed by value (or, at least, appear to be from the
programmer’s perspective).

Value Semantics. The prevalence of pointers — or references — in modern program-
ming languages (e.g. Java, C++, C#) has been a major hindrance in the development of
verifying compilers. Indeed, Mycroft recently argued that (unrestricted) pointers should
be “considered harmful” in the same way that Dijkstra considered goto harmful [21]. To
address this, all compound structures in Whiley (e.g. lists, sets, and records) have value
semantics. This means they are passed and returned by-value (as in Pascal, MATLAB or
most functional languages). But, unlike functional languages (and like Pascal), values
of compound types can be updated in place. Whilst this latter point may seem unimpor-
tant, it serves a critical purpose: to give Whiley the appearance of a modern imperative
language when, in fact, the functional core of Whiley is pure. This goes towards our
goal of making the language as accessible as possible.

Value semantics implies that updates to a variable only affect that variable, and that
information can only flow out of a function through its return value. Consider:

int f([int] xs):
ys = xs
xs[0] = 1
...

The semantics of Whiley dictate that, having assigned xs to ys as above, the subse-
quent update to xs does not affect ys. Arguments are also passed by value, hence xs is
updated inside f() and this does not affect f’s caller. That is, xs is not a reference to
a list of int; rather, it is a list of ints and assignments to it do not affect state visible
outside of f().

Unbound Arithmetic. Modern languages typically provide fixed-width numeric types,
such as 32bit twos-compliment integers, or 64-bit IEEE 754 floating point numbers.
Such data types are notoriously difficult for an automated theorem prover to reason
about [22]. Systems like JML and Spec# assume (unsoundly) that numeric types do not
overflow or suffer from rounding. To address this, Whiley employs unbounded integers
and rationals in place of their fixed-width alternatives and, hence, does not suffer the
limitations of soundness discussed above.

Performance. Many of our choices (e.g. value semantics and unbound arithmetic) have
a potentially detrimental effect on performance. Whilst this is a trade-off we accept,
there are existing techniques which can help. For example, using reference counting
to minimise unnecessary cloning of compound structures (see e.g. [23]); and, integer
range analysis (see e.g. [24]) to place variables into native data types where possible.

3 Verification

The key goal of the Whiley project is to develop an open framework for research in
automated software verification. As such, we now explore verification in Whiley.
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Example 1 — Constrained Types. The following Whiley code defines a function ac-
cepting a positive integer and returning a non-negative integer (i.e. natural number):

int f(int x) requires x > 0, ensures $ >= 0 && $ != x:
return x-1

Here, the function f() includes a requires and ensures clause which correspond
(respectively) to its pre-condition and post-condition. In this context, $ represents the
return value, and must be used in the ensures clause. The Whiley compiler statically
verifies that this function meets its specification.

The above illustrates a function specification given through explicit pre- and post-
conditions. However, we may also employ constrained types to simplify it as follows:

define nat as int where $ >= 0
define pos as int where $ > 0

nat f(pos x) ensures $ != x:
return x-1

Here, the define statement includes a where clause constraining the permissible
values for the type ($ represents the variable whose type this will be). Thus, nat defines
the type of non-negative integers (i.e. the natural numbers). Likewise, pos gives the
type of positive integers and is implicitly a subtype of nat (since the constraint on
pos implies that of nat). We consider that good use of constrained types is critical to
ensuring that function specifications remain as readable as possible.

The notion of type in Whiley is more fluid than found in typical languages. In par-
ticular, if two types T1 and T2 have the same underlying type, then T1 is a subtype of T2
iff the constraint on T1 implies that of T2. Consider the following:

define anat as int where $ >= 0
define bnat as int where 2*$ >= $

bnat f(anat x):
return x

In this case, we have two alternate (and completely equivalent) definitions for a natural
number (we can see that bnat is equivalent to anat by subtracting $ from both sides).
The Whiley compiler is able to reason that these types are equivalent and statically
verifies that this function is correct.

Example 2 — Implicit Retyping. Variables in Whiley are described by their underlying
type and those constraints which are shown to hold. As the automated theorem prover
learns more about a variable, it automatically takes this into consideration when check-
ing constraints are satisfied. For example:

define nat as int where $ >= 0

nat abs(int x):
if x >= 0:

return x
else:

return -x
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The Whiley compiler statically verifies that this function always returns a non-negative
integer. This relies on the compiler to reason correctly about the implicit constraints
implied by the conditional. A similar, but slightly more complex example is that for
computing the maximum of two integers:

int max(int x, int y) ensures $ >= x && $ >= y
&& ($==x || $==y):

if x > y:
return x

else:
return y

Again, the Whiley compiler statically verifies this function meets its specification. Here,
the body of the function is almost completely determined by the specification — how-
ever, in general, this not the case.

Example 3 — Bounds Checking. An interesting example which tests the automated
theorem prover more thoroughly is the following:

null|int indexOf(string str, char c):
for i in 0..|str|:

if str[i] == c:
return i

return null

In this case, the access str[i] must be shown as within the bounds of the list str.
The Whiley compiler statically verifies this is true and, hence, that indexOf() cannot
cause an out-of-bounds error.

Example 4 — Loop Invariants. Another example illustrates the use of loop invariants
in Whiley:

define natlist as [int] where all { x in $ | x >= 0 }

int sum(natlist list) ensures $>=0:
r = 0
for v in list where r >= 0:

r = r + v
return r

Here, bounded quantifiers are used to define a list of natural numbers which is accepted
by the sum() function. Equivalently, we could have used [nat] (with nat defined as
before) — and these two alternative definitions of the same concept are, in a strong
sense, identical.

A key constraint is that summing a list of natural numbers yields a natural number
(recall arithmetic is unbounded and does not overflow in Whiley). The Whiley compiler
statically verifies that sum() does indeed meet this specification. The loop invariant is
necessary to help the compiler generate a sufficiently powerful verification condition
to prove the function meets the post condition. In the future, we hope to automatically
synthesize simple loop invariants such as this.
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Fig. 1. Illustrating the compilation and verification pipeline.

4 Compiler Architecture

The Whiley verifying compiler is structured as a number of distinct modules. This has
proved invaluable for keeping a clear separation of concerns between the major compo-
nents, and for testing and debugging — since many modules can be tested in isolation
from others. The main modules of the verifying compiler are:

– Whiley Build System (WyBS). Responsible for information flow throughout the
compiler, managing source and binary roots, and determining compilation orders.

– Whiley Compiler (WyC). Responsible for parsing and type checking whiley
source files, and compiling them into binary wyil files.

– Whiley Intermediate Language (WyIL). A register-based intermediate language
similar to Java bytecode along with an accompanying binary file format.

– Whiley-2-Java Compiler (WyJC). A back-end which converts wyil files into
JVM class files.

– Whiley-2-C Compiler (WyCC). An experimental back-end which converts wyil
files into C source files.

– Whiley Constraint Solver (WyCS). An automated theorem prover responsible for
accepting input files in a variant of first-order logic called the Whiley Assertion
Language (WyAL) and verifying they are correct.

Figure 1 provides an overview of the flow of information within the compiler. Here we
see that whiley source files are converted into (binary) wyil files; in turn, these are
converted into binary class files (for execution) and wyal source files (for verifica-
tion). The latter is, in turn, converted into the more concise binary wycs form. Note
that, in the general course of events, not all of these files are physically produced. For
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example, when compiling a whiley source file into a class file, no other files are
written to disk (unless specifically requested).

From Figure 1, we see that a strong emphasis has been placed on the use of dif-
ferent file formats. Whilst this may seem overly complex, it helps the testing and de-
bugging process significantly. For example, consider diagnosing a bug presenting as
a whiley source file that incorrectly verifies. There are numerous places within the
compiler which could be causing the problem. For example, it could be a problem with
the translation of the whiley source to the wyil file. Likewise, it could be a problem
with the verification condition generator which generates wyal files from wyil files.
In debugging this, one can generate each of these files and inspect them individually to
identify the misbehaving module; furthermore, one can modify any of these files and
push them back into the pipeline to see the effect. Likewise, each module can be tested
in isolation of others by providing tests written in its given input format.

Another advantage of the modularisation in the verifying compiler, is that it enables
interesting possibilities for reuse. For example, other researchers could build a front-
end for a different language and compile down to our intermediate language — thereby
gaining the ability to verify their programs for free. Likewise, other researchers devel-
oping their own verifying compiler with a different intermediate representation might
still generate verification conditions in the wyal format and reuse our theorem prover.
Similarly, we can e.g. replace the WyCS theorem prover with another (e.g. Z3 [25] or
Simplify [26]) by writing a wrapper which converts files in the wyal format into the
appropriate input language of the external tool1.

4.1 Intermediate Language

The Whiley Intermediate Language (WyIL) is a register-based intermediate language
which resembles Java Bytecode. The following illustrates a Whiley function (left) and
the corresponding WyIL code (right):

int abs(int x) ensures $ >= 0:
if x >= 0:

return x
else:

return -x

int abs(int):
ensures:
const %3 = 0 : int
assertge %0,%3 "..." : int

body:
const %2 = 0 : int
iflt %0,%2 goto label0 : int
return %0 : int

.label0
neg %5 = %0 : int
return %5 : int

As can be seen from above, every WyIL bytecode is associated with a type. Fur-
thermore, registers are prefixed with % (e.g. %3); the const bytecode loads a constant
value into a register; the iflt bytecode branches to a label if its first operand is less
than its second; the neg bytecode negates its operand and assigns to a given register;
finally, the return bytecode returns its operand.

1 And, indeed, a student project run this year has been investigating doing exactly this.
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4.2 Assertion Language

The Whiley Assertion Language is a dialect of first-order logic with various additional
theories (e.g. for arithmetic, sets, lists, etc). A given wyil file will generate a single
wyal file that may contain numerous assertions. The following illustrates the two as-
sertions generated from our example above (written side-by-side to conserve space):

assert "...":
forall(int r0):

if:
r0 >= 0

then:
r0 >= 0

assert "...":
forall(int r0):

if:
r0 < 0

then:
-r0 >= 0

Here, the left assertion corresponds to the execution path through the true branch of the
if statement in the original Whiley function; likewise, the right assertion corresponds
to the path through the false branch. Finally, each assert statement is given a message
to report if it is found to be invalid (note, these are elided above for brevity).

4.3 Build System

The Whiley Build System (WyBS) controls the overall flow of information within the
compiler. Every build operates over a project which contains one or more source roots,
and one or more corresponding binary roots. A source root gives the root location of
a Whiley package (e.g. a file system directory). A binary root indicates where binary
files should be located (e.g. a file system directory, a jar file, etc). Observe that some
binary files (e.g. wyil) are written during compilation, but may also be read (e.g. from
the standard library). A key design feature is that roots may be virtual — meaning they
are not written physically to disk. A command-line option can then determine whether
or not a given root should be virtual (i.e. whether or not a given set of files need to be
physically generated). A further advantage of this approach is that it aids integration
with other tools (e.g. ant, eclipse, etc). For example, eclipse maintains its own
filesystem representation and, hence, integrating our compiler requires integrating with
this. In fact, this was straightforward: we simply created a range of root classes which
interface with eclipse and replace those used by the stand-alone compiler.

5 Conclusion

In this paper, we have presented the Whiley language and its accompanying verifying
compiler tool. Our goal is to provide an open framework for research in automated
software verification, and work continues on this front.
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