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Abstract. Computability-theoretic investigation of complexity of isomorphisms

between countable structures is a key topic in computable model theory since
Fröhlich and Shepherdson, Mal’cev, and Metakides and Nerode. A computable

structure A is called ∆0
n-categorical, for n ≥ 1, if for every computable iso-

morphic B there is a ∆0
n isomorphism from A onto B. More generally, A is

relatively ∆0
n-categorical if for every isomorphic B there is an isomorphism

that is ∆0
n relative to the atomic diagram of B. Equivalently, A is relatively

∆0
n-categorical if and only if A has a computably enumerable Scott family of

computable (infinitary) Σn formulas. Relative ∆0
n-categoricity implies ∆0

n-

categoricity, but not vice versa.

In this paper, we present an example of a computable Fräıssé limit that is
computably categorical (that is, ∆0

1-categorical) but not relatively computably

categorical. We also present examples of ∆0
2-categorical but not relatively ∆0

2-

categorical structures in natural classes such as trees of finite and infinite

heights, abelian p-groups, and homogenous completely decomposable abelian
groups. It is known that for structures from these classes computable cate-

goricity and relative computable categoricity coincide.

By relativizing the notion of a computable categoricity to a Turing degree
d, we obtain a notion of d-computable categoricity. The categoricity spectrum

of a computable structure M is the set of all Turing degrees d such that M
is d-computably categorical. The degree of categoricity of M is the least
degree in the categoricity spectrum of M, if such a degree exists. Here we

compute degrees of categoricity for relatively ∆0
3-categorical Boolean algebras

and relatively ∆0
2-categorical abelian p-groups.

1. Introduction and preliminaries

In computable model theory we use the tools and techniques of computability
theory to investigate algorithmic content of notions and constructions in classical
mathematics. We consider only countable structures for computable languages,
which are often finite. Such an infinite structure A is computable if its universe can
be identified with the set ω of natural numbers in such a way that the relations
and operations of A are uniformly computable. A finite structure is always com-
putable. A structure A is called n-decidable, for n ≥ 1, if the Σn-diagram of A is
decidable. Computable categoricity is one of the main topics in computable model
theory. It dates back to Fröhlich and Shepherdson [22] who produced examples of
computable fields that are not computably isomorphic. A computable structure A
is called computably categorical if for every computable structure B isomorphic to
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A, there exists a computable isomorphism from A onto B. For example, Ershov [20]
established that a computable algebraically closed field is computably categorical
if and only if it has a finite transcendence degree over its prime subfield. Miller
and Schoutens [47] recently constructed a computably categorical field of infinite
transcendence degree over the field of rational numbers.

The notion of computable categoricity can be extended to higher level of hyper-
arithmetic hierarchy. Let α be a computable ordinal. A computable structure A
is ∆0

α-categorical if for every computable structure B isomorphic to A, there exists
a ∆0

α isomorphism from A onto B. More generally, a computable structure A is
relatively ∆0

α-categorical if for every B isomorphic to A, there is an isomorphism
from A to B, which is ∆0

α relative to the atomic diagram of B. Clearly, a relatively
∆0
α-categorical structure is ∆0

α-categorical. The converse is not always true.

Relative ∆0
α-categoricity has a syntactic characterization that involves the ex-

istence of certain Scott families of computable formulas. Roughly speaking, com-
putable formulas are infinitary formulas with disjunctions and conjunctions over
computable enumerable (c.e.) sets. A Scott family for a structure A is a countable
family Φ of Lω1ω-formulas with finitely many fixed parameters from A such that:

(i) Each finite tuple in A satisfies some ψ ∈ Φ;

(ii) If a, b are tuples in A, of the same length, satisfying the same formulas in
Φ, then there is an automorphism of A, which maps a to b.

Ash [3] defined computable Σα and Πα formulas of Lω1ω, where α is a computable
ordinal, recursively and simultaneously and together with their Gödel numbers.
The computable Σ0 and Π0 formulas are the finitary quantifier-free formulas. The
computable Σα+1 formulas are of the form∨

n∈We

∃ynψn(x, yn),

where for n ∈We, ψn is a Πα formula indexed by its Gödel number n, and ∃yn is a
finite block of existential quantifiers. Similarly, Πα+1 formulas are c.e. conjunctions
of ∀Σα formulas. If α is a limit ordinal, then Σα (Πα, respectively) formulas are of
the form

∨
n∈We

ψn (
∧

n∈We

ψn, respectively), such that there is a sequence (αn)n∈We

of ordinals less than α, given by the ordinal notation for α, and every ψn is a Σαn

(Παn
, respectively) formula. For a more precise definition see [3].

A formally Σ0
α Scott family is a Σ0

α Scott family consisting of computable Σα
formulas. It follows that a formally c.e. Scott family is also a c.e. Scott family of
finitary existential formulas.

The following equivalence (i)–(ii)–(iii) for a computable structure A was estab-
lished by Goncharov [26] for α = 1, and by Ash, Knight, Manasse, and Slaman [4]
and independently by Chisholm [11] for any computable ordinal α:

(i) The structure A is relatively ∆0
α-categorical.

(ii) The structure A has a formally Σ0
α Scott family.

(iii) The structure A has a c.e. Scott family consisting of computable Σα formu-
las.

Infinitary language is essential for Scott families. Cholak, Shore, and Solomon [14]
proved the existence of a computably categorical rigid graph that does not have
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a Scott family of finitary formulas. It follows that this structure is not relatively
computably categorical.

Goncharov [25] was the first to show that computable categoricity of a com-
putable structure does not imply relative computable categoricity. The result of
Goncharov was lifted to higher levels in the hyperarithmetic hierarchy by Gon-
charov, Harizanov, Knight, McCoy, R. Miller, and Solomon for successor ordi-
nals [28], and by Chisholm, Fokina, Goncharov, Harizanov, Knight, and Quinn for
limit ordinals [12]. Hence, for every computable ordinal α, there is a ∆0

α-categorical
but not relatively ∆0

α-categorical structure. If follows from results by Hirschfeldt,
Khoussainov, Shore, and Slinko in [33] that there are (computable) computably
categorical but not relatively computably categorical structures in the following
classes: partial orders, lattices, 2-step nilpotent groups, commutative semigroups,
and integral domains of arbitrary characteristic. Recently, Hirschfeldt, Kramer,
R. Miller, and Shlapentokh [31] showed that there is a computably categorical
algebraic field, which is not relatively computably categorical.

Cholak, Goncharov, Khoussainov, and Shore [13] showed that there is a com-
putable structure, which is computably categorical, but ceases to be after naming
any element of the structure. Clearly, this structure is not relatively computably
categorical. Khoussainov and Shore [37] proved that there is a computably categori-
cal structure A, which is not relatively computably categorical, but the expansion of
A by any finite number of constants is computably categorical. Previously, T. Mil-
lar [43] showed that if a computably categorical structure A is 1-decidable, then
any expansion of A by finitely many constants remains computably categorical.

Goncharov’s graph in [25], which is computably categorical but not relatively
computably categorical, is rigid, and hence computably stable but not relatively
computably stable. A structure A is ∆0

α-stable if for every computable copy B of
A, all isomorphisms from A onto B are ∆0

α. Similarly, we define relatively ∆0
α-

stable structures. A defining family for a structure A is a set Φ of Lω1ω formulas
with one free variable and a fixed finite tuple of parameters from A such that:

(i) Every element of A satisfies some formula ψ ∈ Φ;

(ii) No formula of Φ is satisfied by more than one element of A.

The existence of a defining family is equivalent to rigidity relative to a finite set of
parameters. A countable structure is rigid if and only if it has a defining family
with no parameters. A computable structure A is relatively ∆0

α-stable if and only
if it has a formally Σ0

α defining family.

Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky [16] proved that for
every computable ordinal α, there is a computably categorical structure, which
is not relatively ∆0

α-categorical. In fact, it follows from their construction that
the structure is rigid. Thus, they answered positively the following question from
[28, 12]: For a computable ordinal α > 1, is there a computable structure A that is
∆0
α-stable but not relatively ∆0

α-stable? On the other hand, a natural open question
arising from [16] is whether there is a computably categorical structure that is not
relatively hyperarithmetically categorical.

Ash [2] proved that a computable structure A is ∆1
1-categorical if and only if A

is ∆0
α-categorical for some computable ordinal α. It is not known whether every

computable ∆1
1-categorical structure is relatively ∆1

1-categorical. A similar ques-
tion has been resolved for relations on structures – intrinsically ∆1

1 and relatively
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intrinsically ∆1
1 relations are the same (see [29]). Namely, it follows from a result

by Soskov [51] that for a computable structure A and a relation R on A, if R is
invariant under automorphisms of A, and ∆1

1, then R is definable in A by a com-
putable infinitary formula with no parameters. This is used to establish that if R
is intrinsically ∆1

1 on A, then R is relatively intrinsically ∆1
1 on A.

The authors of [16] also proved that the index set of computable categorical
structures is Π1

1-complete. Hence computable categoricity has no simple syntac-
tic characterization. On the other hand, the index set of relatively computably
categorical structures is Σ0

3-complete (see [16]).

An injection structure is a structure (A, f) where f : A→ A is a 1− 1 function.
For a linear order [27, 48], a Boolean algebra [27, 49], a tree of finite height [40], an
abelian p-group [24, 50, 7], an equivalence structure [9], an injection structure [10],
and an algebraic field with a splitting algorithm [46], computable categoricity co-
incides with relative computable categoricity.

For an injection structure A = (A, f) and a ∈ A, we define the orbit of a:

Of (a) = {b ∈ A : (∃n ∈ ω)[fn(a) = b ∨ fn(b) = a]}.

Cenzer, Harizanov, and Remmel [10] established that a computable injection struc-
ture is ∆0

2-categorical if and only if it has finitely many orbits of type ω or finitely
many orbits of type Z. They showed that every ∆0

2-categorical injection structure
is relatively ∆0

2-categorical. It is not hard to see that every computable injection
structure is relatively ∆0

3-categorical.

Calvert, Cenzer, Harizanov, and Morozov [9] proved that a computable equiva-
lence structure is relatively ∆0

2-categorical if and only if it either has finitely many
infinite equivalence classes, or there is an upper bound on the size of its finite equiva-
lence classes. They also have partial results towards characterizing ∆0

2-categoricity.
First we need some definitions. A function f : ω2 → ω is a Khisamiev s-function if
for every i and s, f(i, s) ≤ f(i, s + 1), and the limit mi = limtf(i, t) exists. If, in
addition, mi < mi+1 for every i, then we say that f is a Khisamiev s1-function. If
an equivalence structure A has no upper bound on the size of the finite equivalence
classes, then Khisamiev s1-function for A is such that A contains an equivalence
class of size mi for every i. If an equivalence structure A has infinitely many infi-
nite equivalence classes, no upper bound on the size of its finite equivalence classes,
and has a computable Khisamiev s1-function, then A is not ∆0

2-categorical (see
[9]). Kach and Turetsky [35] showed that there exists a ∆0

2-categorical equivalence
structure M, which is not relatively ∆0

2-categorical. Their equivalence structure
M has infinitely many infinite equivalence classes and unbounded character, but
has no computable Khisamiev’s s1-function, and has only finitely many equiva-
lence classes of size k for any finite k. Every computable equivalence structure is
relatively ∆0

3-categorical.

Goncharov and Dzgoev [27], and independently Remmel [48] proved that a com-
putable linear order is computably categorical (also, relatively computably categor-
ical) if and only if it has only finitely many adjacencies (successor pairs). In [41],
McCoy characterized relatively ∆0

2-categorical linear orders as follows. By ω∗ we
denote the reverse order of ω, and by η the order type of rationals. A computable
linear order is relatively ∆0

2-categorical if and only if it is a sum of finitely many
intervals, each of type m, ω, ω∗, Z or n · η, so that each interval of type n · η has a
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supremum and an infimum. McCoy [41] also characterized, after adding certain ex-
tra predicates, ∆0

2-categorical linear orders. However, it still remains open whether
there is a ∆0

2-categorical linear order, which is not relatively ∆0
2-categorical. In [42],

McCoy proved that there are 2ℵ0 relatively ∆0
3-categorical linear orders.

Goncharov and Dzgoev [27], and independently Remmel [49] established that a
computable Boolean algebra is computably categorical (also, relatively computably
categorical) if and only if it has finitely many atoms (see also LaRoche [39]).
In [41], McCoy characterized computable relatively ∆0

2-categorical Boolean algebras
as those that can be expressed as finite direct sums of subalgebras C0 ⊕ · · ·⊕Ck where
each Ck is either atomless, an atom, or a 1-atom. Using McCoy’s characterization,
Bazhenov [8] showed that for Boolean algebras the notions of ∆0

2-categoricity and
relative ∆0

2-categoricity coincide. Harris gave another proof in [30]. In [42], McCoy
gave a complete description of relatively ∆0

3-categorical Boolean algebras.

Fokina, Kalimullin, and R. Miller [21] introduced the following notions trying to
capture the set of all Turing degrees capable of computing isomorphisms between
computable structures. LetA be a computable structure. The categoricity spectrum
of A is the following set of Turing degrees:

CatSpec(A) = {x : A is x-computably categorical}.

The degree of categoricity of A, if it exists, is the least Turing degree in CatSpec(A).
If d is a non-hyperarithmetic degree, then d cannot be the degree of categoricity
of a computable structure. A Turing degree d is called categorically definable if
it is the degree of categoricity of some computable structure. Fokina, Kalimullin,
and R. Miller [21] investigated which arithmetic degrees are categorically definable.
Csima, Franklin, and Shore [15] extended their results to hyperarithmetic degrees.
For sets X and Y , we say that Y is c.e. in and above (c.e.a. in) X if Y is c.e.
relative to X, and X ≤T Y . Csima, Franklin, and Shore [15] proved that for every
computable ordinal α, 0(α) is categorically definable. They also established that for
a computable successor ordinal α, every degree d that is c.e.a. in 0(α) is categori-
cally definable. There were also negative results in [21, 15]. Anderson and Csima [1]
showed that there exists a Σ0

2 set the degree of which is not categorically definable.
They also showed that no noncomputable hyperimmune-free degree is categorically
definable. It is an open question whether all ∆0

2 degrees are categorically definable.

Not every computable structure has the degree of categoricity. The first negative
example was built by R. Miller [44]. Further interesting examples of structures
without the degrees of categoricity were built by Fokina, Frolov, and Kalimullin [19].
It is an open question whether there is a computable structure the categoricity
spectrum of which is the set of all noncomputable Turing degrees.

In this paper, we present some new examples of structures in natural classes,
which are computably categorical but not relatively computably categorical, as
well as ∆0

2-categorical but not relatively ∆0
2-categorical. In Section 2, we present 1-

decidable structure that is a Fräıssé limit, which is computably categorical but not
relatively computably categorical. In Section 3, we build computable ∆0

2-categorical
but not relatively ∆0

2-categorical trees of finite and infinite heights. Here, a tree
can be viewed both as a partial order and as a directed graph. In Section 4, we
present an abelian p-group that is ∆0

2-categorical but not relatively ∆0
2-categorical.

In Section 5, we prove that there is a homogenous completely decomposable abelian
group, which is ∆0

2-categorical but not relatively ∆0
2-categorical. In Section 6, we
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compute the degrees of categoricity for relatively ∆0
2-categorical abelian p-groups.

This parallels Frolov’s work in [23] where he computed degrees of categoricity for
relatively ∆0

2-categorical linear orders. We further compute the degrees of categoric-
ity for relatively ∆0

3-categorical Boolean algebras. This extends Bazhenov’s work
in [8] where he computed the degrees of categoricity for relatively ∆0

2-categorical
Boolean algebras.

2. Computably categorical but not relatively computably
categorical Fräıssé limits

For a computable ordinal α, the notions of ∆0
α-categoricity and relative ∆0

α-
categoricity of a computable structure A coincide if A satisfies certain extra decid-
ability conditions (see Goncharov [26] and Ash [2]). Goncharov [26] proved that if
A is 2-decidable, then computable categoricity and relative computable categoricity
of A coincide. Kudinov [38] showed that the assumption of 2-decidability cannot
be weakened to 1-decidability, by giving an example of 1-decidable and computably
categorical structure, which is not relatively computably categorical. On the other
hand, Downey, Kach, Lempp, and Turetsky [17] showed that any 1-decidable com-
putably categorical structure is relatively ∆0

2-categorical.

The proofs by Goncharov and by Downey, Kach, Lempp, and Turetsky use the
decidability of the structure to determine if certain finitely generated substructures
can be extended to various larger finitely generated substructures. Because of the
special properties of a Fräıssé limit, one might expect that all such questions would
be trivial to determine, and so the decidability condition could be weakened or
dropped entirely for such structures. However, this is not the case. Here, we give
an example of 1-decidable and computably categorical Fräıssé limit which is not
relatively computably categorical.

Let us recall the definition of a Fräıssé limit (see [34, Chapter 6]). The age of a
structure M is the class of all finitely generated structures that can be embedded
in M. Fräıssé showed that a (nonempty) finite or countable class K of finitely
generated structures is the age of a finite or a countable structure if and only if K
has the hereditary property and the joint embedding property. A class K has the
hereditary property if whenever C ∈ K and S is a finitely generated substructure of
C, then S is isomorphic to some structure in K. A class K has the joint embedding
property if for every B, C ∈ K there is D ∈ K such that B and C embed into D.
A structure U is ultrahomogeneous if every isomorphism between finitely generated
substructures of U extends to an automorphism of U .

Definition 1. (see [34, Chapter 6]) A structure A is a Fräıssé limit of a class of
finitely generated structures K if A is countable, ultrahomogeneous, and has age
K.

Fräıssé proved that the Fräıssé limit of a class of finitely generated structures
is unique up to isomorphism. We say that a structure A is a Fräıssé limit if for
some class K, A is the Fräıssé limit of K. First we show that every Fräıssé limit is
relatively ∆0

2-categorical.

Theorem 1. Let A be a computable structure which is a Fräıssé limit. Then A is
relatively ∆0

2-categorical.
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Proof. Because of ultrahomogeneity, we can construct isomorphisms between A
and an isomorphic structure B using a back-and-forth argument, as long as we can
determine, for every a ∈ A and b ∈ B, whether there is an isomorphism from the
structure generated by a to the structure generated by b that maps a to b in order.
This can be determined by (B)′, since there is such an isomorphism precisely if
there is no atomic formula φ with A |= φ(a) and B 6|= φ(b). This is a Π0

1 condition
relative to A⊕ B ≡T B.

Therefore, we can use (B)′ as an oracle to perform the back-and-forth construc-
tion of an isomorphism, and so there is a ∆0

2(B) isomorphism. �

Note that if the language of A is finite and relational, then there are only finitely
many atomic formulas φ to consider, and the set of such formulas can be effectively
determined. Hence, if the language is finite and relational, then a Fräıssé limit is
necessarily relatively computably categorical.

Theorem 2. There is a 1-decidable structure F that is a Fräıssé limit and com-
putably categorical, but not relatively computably categorical. Moreover, the lan-
guage for such F can be finite or relational.

Proof. The proof is a modification of the first construction in Theorem 3.3 by
Downey, Kach, Lempp, and Turetsky [17]; the only new ingredient we add is to make
the resulting structure a Fräıssé limit. Instead of repeating the entire construction
here, we only explain the modifications we must make.

The original construction was an undirected graph. We assured that the struc-
ture is made not relatively computably categorical by creating infinitely many con-
nected components that were all accumulation points in the Σ1 type-space; this
is similar to the technique used in Kudinov’s construction in [38]. Then for any
potential Scott family of Σ1 formulas, there must be some accumulation point in a
component disjoint from the finitely many parameters of the family. Any Σ1 for-
mula from the Scott family, which holds of the accumulation point would also need
to hold of any other point that is “sufficiently close” in the type space, contradicting
the definition of a Scott family.

The original construction created these accumulation points as vertices with
loops of various sizes coming out of them. For each accumulation point, there
would be a pair of computable sequences {nk}k∈ω and {mk}k∈ω. For every k, there
would be a vertex vk with attached loops of sizes n0, . . . , nk and a loop of size
mk. There would also be a vertex v∞ with attached loops n0, n1, . . . . Each vk and
v∞ would also have infinitely many rays – non-branching infinite paths originating
from the vertex. The Σ1 type of v∞ was then the limit of the Σ1 types of the vk.

The original construction took place on a tree of strategies, where each accu-
mulation point was created by an individual strategy. Because a strategy might
be visited only finitely many times in the construction, not all strategies would
create the full set of vertices described above. Each time a strategy was visited, it
performed one of the following steps, in alternation:

• Increment k, choose nk+1 and attach a loop of size nk+1 to v∞.
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• Choose mk. Create the full vk component.

Thus, if a strategy was only visited finitely many times, the v∞-component would
have loops of sizes n0, . . . , nk+1, and the components v0, . . . , vk−1 would have all
been created, and possibly vk as well. Numbers nk and mk are always chosen
larger than the current stage, and two distinct strategies choose completely distinct
numbers nk and mk. That is, any number is chosen by at most one strategy.

We describe now two ways of modifying this construction so that the structure
is a Fräıssé limit. The first uses a finite language with function symbols, while the
second uses an infinite relational language. Let L1 = {E, f, g, h}, where E is a
binary relation symbol and f , g and h are unary function symbols. Let

L∞ = {E}∪{Ui,j : j < i∧i, j ∈ ω}∪{Vi,j : j ≤ i∧i, j ∈ ω}∪{Ri : i ∈ ω}∪{Si : i ∈ ω},

where E is a binary relation symbol and each Ui,j , Vi,j , Ri and Si is a unary relation
symbol.

The intention is that E is the edge relation of the graph from the original con-
struction. That is, in both cases, the reduct of the structures we make to the
language {E} will be the original structure in [17]. We will now describe the new
functions and relations on the structure.

Suppose that v is one of the vk or v∞, and a0, . . . , ank−1 are vertices with vEa0,
aiEai+1 for all i < nk − 1, and ank−1Ev; that is, v, a0, . . . , ank−1 is the loop of size
nk attached to v. Suppose also that a0 has lower Gödel number than ank−1, so that
we have chosen a particular orientation of the loop. Then we define f(ai) = ai+1,
and f(ank−1) = v. We also define g(ai+1) = ai and g(a0) = v. So f “walks” along
the loop in one direction, and g “walks” along it in the other direction. We also
define Unk,i(ai) to hold for every i < nk, while Unk,i(x) fails to hold for any other
x.

For vk, suppose that a0, . . . , amk−1 are vertices as above, so that vk, a0, . . . , amk−1
is the loop of size mk attached to vk, again with a chosen orientation. Then we
define f(ai) = ai+1, f(amk−1) = vk and f(vk) = a0. We also define g(ai+1) = ai,
g(a0) = vk and g(vk) = amk−1. So again f and g walk along the loop in the op-
posite directions, but the walks continue through vk. We also define Vmk,i(ai) to
hold, and Vmk,i(x) fails to hold for any other x, for every i < mk. Finally, we define
Vmk,mk

(z) to hold for every vertex z in the same component as vk.

Suppose that v is one of the vk’s or v∞, and consider a ray of the form a0, a1, . . .
with vEa0 and aiEai+1 for all i ∈ ω. For infinitely many of these rays, we define
f(ai) = ai+1, g(ai+1) = ai and g(a0) = v, and for infinitely many rays we define
g(ai) = ai+1, f(ai+1) = ai and f(a0) = v. So for infinitely many rays, f walks away
from v, while g walks towards v, and for infinitely many rays the reverse holds. For
every ray, we define Ri(ai) to hold.

For v∞, we choose some a0 from some ray with g(a0) = v∞ and define f(v∞) =
a0. We choose some b0 from some ray with f(b0) = v∞ and define g(v∞) = b0.

Suppose that v is one of the vk’s or v∞, and a is part of the loop of size n0 with
g(a) = v. Then we define h(v) = a. For every other x, we define h(x) = f(x).

For every vertex x in every component created by strategy i from the priority
tree, we define Si(x) to hold.



COMPUTABILITY-THEORETIC CATEGORICITY AND SCOTT FAMILIES 9

Claim 1. In both L1 and L∞, if x and y generate substructures that are isomorphic
via an isomorphism mapping x to y, then there is an automorphism of the full
structure F mapping x to y.

Proof. We prove the result for singletons x and y. The general case proceeds
similarly. The point is that if x 6= y, then they must both be vertices from rays
within the same component, and they must be the same length along those rays.
Then, for any two rays, there is an automorphism switching those rays and fixing
the remainder of the structure. The argument is slightly longer for L∞, because
rays come in two sorts, and there are two distinguished rays in the component of
v∞.

In L1, through f or g, the substructure generated by x contains some vertex vk
or v∞. The same is true for y. Through h, the substructure also contains the entire
loop of size n0. Since n0 is unique to some strategy from the priority tree, x and y
are both placed by the same strategy.

In L∞, there is some i such that Si(x) and Si(y) hold. So x and y must again
both be placed by the same strategy.

In L1, if the substructure generated by x contains vk, then through f(vk) it also
contains the loop of size mk. If the substructure contains v∞, then through f(v∞)
it also contains an infinite ray with f(v∞) = a0. The same holds for y. This loop
or ray uniquely characterizes the component, so x and y must be part of the same
component.

In L∞, if the component of x contains vk, then Vmk,mk
(x) holds. If instead it

contains v∞, then no Vmk,mk
(x) holds for any k. The same is true for y. So x and

y must be part of the same component.

In L1, there are four possibilities: f i(x) = v and gj(x) = v for some i and j;
f i(x) = v for some i but gj(x) 6= v for all j; gj(x) = v for some j but f i(x) 6= v for
all i; or x = v. Note that v is uniquely characterized by having degree greater than
2, even in the substructures generated by x or y. In the first case, x must be aj−1
from the loop of size i+ j. In the second case, x must be ai−1 from one of the rays
in which f walks towards v. In the third case, x must be aj−1 from one of the rays
in which g walks towards v. The same holds for y. The first case is unique in the
component, so in this case we know that x = y. If v 6= v∞, there is a single orbit
containing every instance of the second case, and another containing every instance
of the third case, so there must be an automorphism mapping x to y. If v = v∞,
then the second case breaks into two subcases: g(v) = f i−1(x), and g(v) 6= f i−1(x).
The first subcase is unique in the component, so x = y, while the second subcase
again comprises a single orbit. We reason similarly in the third case. The fourth
case is again unique in the component.

In L∞, if x is part of some loop, then there is some Ui,j or Vi,j that holds of x
and no other point. So x = y. If x is part of some ray, then there is some Ri that
holds of x and only of the points on rays, which are distance i from v. So y is also
a point on a ray, which is distance i from v. So there is an automorphism of the
structure switching those two rays, and in particular sending x to y.

In L∞, vk is uniquely characterized by Vmk,mk
(vk) holding, some Si(vk) holding,

and no other unary relation holding. So if x = vk, then y = vk. Also, v∞ is uniquely
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characterized by some Si(v∞) holding and no other unary relation holding. So if
x = v∞, then y = v∞. �

It follows that the structures we have described are Fräıssé limits. Observe that
they are defined in a computable fashion. Finally, our expanded language does not
provide an obstacle to 1-decidability, since nk and mk are always chosen larger than
the current stage. Thus any statement about fs(x), gs(x), hs(x), Us,j(x), Vs,j(x),
Rs(x) or Ss(x) can be decided by considering the construction up through stage
s. �

3. ∆0
2-categorical but not relatively ∆0

2-categorical trees

We consider trees as partial orders. R. Miller [45] established that no com-
putable tree of infinite height is computably categorical. Lempp, McCoy, R. Miller,
and Solomon [40] characterized computably categorical trees of finite height, and
showed that for these structures, computable categoricity coincides with relative
computable categoricity. There is no known characterization of ∆0

2-categoricity or
higher level categoricity for trees of finite height. Lempp, McCoy, R. Miller, and
Solomon [40] proved that for every n ≥ 1, there is a computable tree of finite height,
which is ∆0

n+1-categorical but not ∆0
n-categorical. We will establish the following

result, which also holds when a tree is presented as a directed graph.

Theorem 3. There is a computable ∆0
2-categorical tree of finite height, which is

not relatively ∆0
2-categorical.

Proof. While building a computable tree T (with domain ω), we diagonalize against
all potential c.e. Scott families of computable Σ2 formulas with finitely many pa-
rameters. Thus, we consider all pairs (X , p), where X is a c.e. family of computable
Σ2 formulas and p is a finite tuple of elements from the domain of T , and we must
ensure that for each pair (X , p), X with parameters p is not a Scott family for
T . At the same time, we have to assure that every isomorphic computable tree is
0′-isomorphic to T . The construction will be an infinite injury construction where
strategies are arranged on a priority tree with the true path defined as usual.

The root of T will have infinitely many “children,” which we label c0, c1, c2, . . ..
Each ce will have 3 children, ae, be and me. The purpose of me is to uniquely
identify ce. The node me will have a child ne, and ne will have e+1 many children.
See the diagram.

At stage 0, ae will have 2 children and be will have no children. Through the
action of some strategy, more children may be added to ae and be at later stages.

Let (Xi, pi)i be an enumeration of pairs, where Xi is a c.e. family of computable
Σ2 formulas, and pi is a tuple drawn from ω, the domain of T . We must meet
the following categoricity and isomorphism requirements. Let M0,M1, . . . be an
effective enumeration of all computable structures.

Ri : X i with parameters pi is not a Scott family for T .

Qj : If Mj
∼= T , then there is a 0′-computable isomorphism between Mj

and T .
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root

c0 c1

· · ·

ce

ae be me

ne

0 1

· · ·

e

· · ·

Strategy for Ri

Our strategy will appear on a priority tree. When the strategy is visited, s is
always the current stage, and t < s is the last stage at which the strategy took
outcome ∞ (or t = 0 if the strategy has never before taken outcome ∞). The first
time the strategy is visited, we choose a large e to work with. In particular, ae and
be must not occur in pi, and e > s.

We will take advantage of the fact that if φ(x) is a computable Σ2 formula and
a ∈ T , then we have a computable approximation (Ts)s to T such that T |= φ(a) if
and only if Ts |= φ(a) for co-finitely many stages s. By modifying our assumption,
we may assume that Ts 2 φ(a) for any a if φ(x) is not one of the first s elements of
Xi.

We proceed as follows.

(1) Among the first s elements of Xi, locate the φ(x) that minimizes the u such
that Tr |= φ(ae, pi) ∧ φ(be, pi) for every r ∈ (u, s]. Note that u = s always
works. Decide ties by favoring earlier elements of Xi.

(2) Wait until there is an r ∈ (t, s] with Tr 2 φ(ae, pi) ∧ φ(be, pi).
(3) Add a child to both ae and be, ensuring that these children are not elements

of pi.
(4) Return to Step (1).

We perform at most one step at every stage at which the strategy is visited. In
particular, we never add more than 1 child to ae at a single stage. This will be
important for interactions with higher priority categoricity requirements. Note also
that at every stage, ae has exactly 2 more children than be.

The strategy has infinitely many outcomes: ∞ and fink for k ∈ ω. Every time
we reach Step (4), we take outcome ∞ for a single stage. At all other stages, we
take outcome fink, where k is the number of previous stages at which we have
taken outcome ∞.

Strategy for Qj
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Suppose σ is a strategy for Qj . This strategy will also appear on the priority
tree. When σ is visited, s is always the current stage and t < s is the last stage at
which the strategy took outcome ∞ (or t = 0 if σ has never before taken outcome
∞).

We construct the isomorphism on ce and its descendants independently of the
isomorphism for all the other ce′ ’s. We begin by searching for a tuple (r, c,m, n) ∈
Mj with

r CMj
cCMj

mCMj
n,

and n having e+1 many children. When we find such a tuple, we map ce to c; me to
m; ne to n; and the children of ne to the children of n. Of course, we may later see
that the (e+2)nd child of ne appear, in which case we have made a mistake. If this
happens, we will discard our mapping and begin again. If Mj

∼= T , eventually the
tuple in Mj that respects the isomorphism is the Gödel least satisfying the above,
and so we will define the correct mapping. The oracle 0′ will be able to predict our
mistakes, and so can ignore all mappings before the correct one.

Under the assumption that we have correctly mapped ce, we must map ae and
be. This part will not rely on the oracle. We wait until σ is visited and s > e. If e
has not been chosen by an Ri-strategy by this point, we know by construction that
it will be never chosen. In this case, we search for an aBMj c such that a has two
children and map ae to a. We then search for any child bBMj

c other than m or a,
and map be to b.

If e has been chosen by an Ri-strategy, and that strategy is incomparable with σ
on the tree, then, under the assumption that σ is along the true path, the strategy
that chose e will never be visited again. So let pe be the number of children of ae.
We search for an a BMj c such that a has pe children, and map ae to a. We then
search for any bBMj

c other m or a, and map be to b.

If e has been chosen by an Ri-strategy τ with τ ̂∞ ⊆ σ, then, under the
assumption that σ is along the true path, ae and be are automorphic. So we search
for any a, bBMj

c other than m, and map ae to a and be to b.

If e has been chosen by an Ri-strategy τ with τ ̂fink ⊆ σ, then, under the
assumption that σ is along the true path, ae and be will never gain any more
children. So let pe be the number of children on ae. We search for an aBMj

c such
that a has pe children, and map ae to a. We then search for any bBMj

c other than
m or a, and map be to b.

If e has been chosen by an Ri-strategy τ with σ̂fink ⊆ τ , then we wait until
a stage t when σ is accessible and t > e. At this stage, we know that τ will never
again be accessible (since τ was visited before t, σ had taken outcome ∞ at least
k times strictly before t, so at least k + 1 times by any stage after t, so any future
outcomes of σ must be ∞ or fink′ for k′ > k). So let pe be the number of children
on ae. We search for an aBMj

c such that a has pe children, and map ae to a. We
then search for any bBMj

c other than m or a, and map be to b.

If e has been chosen by an Ri-strategy τ with σ ̂∞ ⊆ τ , then let pes be the
number of children on ae at the beginning of stage s. We search for an a BMj c
such that a has pes children, and map ae to a. We then search for any bBMj

c other
than m or a, and map be to b. Note that, unlike in the other cases, pes may change,
which is why we have subscripted it with the stage number.
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The strategy has infinitely many outcomes: ∞ and fink for k ∈ ω. At stage s,
if the isomorphism is defined on ae for every e < s, which has been chosen by a τ
extending σ̂∞, and further the image of ae in Mj has pes many children for every
such e, then we take outcome ∞. Otherwise, we take outcome fink where k is the
number of previous stages at which we have taken outcome ∞.

Construction

Arrange the strategies on a tree in some effective fashion, and at every stage
allow strategies to be visited according to the outcome of previous strategies at
that stage in the usual fashion.

Verification

Define the true path in the usual fashion for a 0′′-construction.

Lemma 1. Suppose that τ is an Ri-strategy along the true path. Then τ ensures
Ri is satisfied.

Proof. Since τ is along the true path, it is visited infinitely often. Suppose there
is some φ(x) ∈ Xi such that T |= φ(ae, pi) ∧ φ(be, pi). Let u be such that Tr |=
φ(ae, pi) ∧ φ(be, pi) for every r ∈ (u,∞]. Then for any ψ(x) ∈ Xi, which is not one
of the first u+ 1 elements of Xi, we know that τ will never choose ψ(x) because it
will always prefer φ(x).

So if τ were to take outcome ∞ infinitely many times, by the pigeon hole prin-
ciple, it would choose one of the first u + 1 elements of Xi infinitely many times.
But if there are infinitely many r with Tr 2 ψ(ae, pi) ∧ φ(be, p), then eventually τ
will prefer φ over ψ, and so will stop choosing ψ. Thus, τ cannot choose an element
of Xi infinitely many times. So τ has true outcome fink for some k, and ae and
be have different finite numbers of children. This means that ae and be are not
automorphic, so φ witnesses the failure of (Xi, pi) as a Scott family.

Suppose instead that there is no such φ. Then for any φ, there are infinitely many
r with Tr 2 φ(ae, pi)∧φ(be, pi). So with any chosen φ we eventually reach Step (3),
so ae and be have infinitely many children. So ae and be will be automorphic, and
in particular there will be an automorphism permuting ae and be and pointwise
fixing pi. So for any φ with T |= φ(ae, pi), we know that T |= φ(be, pi). Hence
there can be no such φ ∈ Xi, and thus Xi fails to be a Scott family. �

Lemma 2. Suppose that σ is a Qj-strategy along the true path, that Mj
∼= T , and

e is chosen by some τ ⊇ σ̂∞. Then σ eventually correctly maps ae and be.

Proof. Certainly, σ eventually correctly maps ce and me, and defines some map for
ae and be. If τ has true outcome ∞, then ae and be are automorphic, so this is a
correct map.

Suppose instead that τ has true outcome fink (thus ae has k + 2 children, and
be has k children). Let s0 be the stage at which σ correctly maps ce, and let t0 be
the final stage at which τ takes outcome ∞. Suppose that s0 > t0. Then at stage
s0, σ searches for an a BMj

c with pes0 = k + 2 children, and maps ae to a. By
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assumption, ae never gains any more children, so, since Mj
∼= T , the correct image

of ae is the only such child of c. The element be is correctly mapped by elimination.

If instead s0 ≤ t0, then let a be the element to which σ has mapped ae at stage
t0. (Such an element necessarily exists because σ must have taken outcome ∞ at
stage t0.) Since ae can gain at most one child during stage t0, and will gain no
children after stage t0, it has at least k + 1 children at the start of stage t0. Since
σ has outcome ∞ at stage t0, a has at least pet0 = k + 1 children. Since Mj

∼= T ,
the correct image of ae is the only child of c with at least k + 1 children, so ae is
correctly mapped. The element be is correctly mapped by elimination. �

Lemma 3. Suppose that σ is a Qj-strategy along the true path, and that Mj
∼= T .

Then σ has true outcome ∞.

Proof. Suppose otherwise. Let t0 be the final stage at which σ takes outcome ∞.
Then there are only finitely many e that are chosen by strategies extending σ̂∞,
and, by Lemma 2, σ eventually correctly maps ae for each of these e’s. Since
Mj
∼= T , σ eventually sees pet0 many children below the target of ae for each e, and

so σ will take outcome ∞ at some stage after t0, contrary to our assumption. �

Lemma 4. If Mj
∼= T , then there is a ∆0

2 isomorphism between Mj and T .

Proof. Non-uniformly fix σ that is the Qj-strategy along the true path. As argued
before, σ eventually correctly maps every ce and me, and 0′ can determine when
this occurs. By Lemma 2, or by the description of σ’s action, σ correctly maps
ae and be once ce has been correctly mapped. The only new ingredient is the
observation that since σ has true outcome ∞, there is eventually a stage s with
t > e, thus treating those e’s chosen by strategies extending σ̂fink.

Once ae and be are mapped, their children can be mapped by a simple back-and-
forth argument. Thus 0′ can build an isomorphism. �

This completes the proof. Note that every step we have described above can be
performed equally well for partial orders and directed graphs. �

We can modify the construction in the proof of the previous theorem to make
the tree have infinite height by extending every child of ae, be and ne to an infinite
non-branching path. Once ae, be and ne are correctly mapped, we then need to
use the 0′-oracle to correctly map their descendants. Hence we have the following
result, which is interesting, in particular, since there is no computably categorical
tree of infinite height.

Theorem 4. There is a computable ∆0
2-categorical tree of infinite height, which is

not relatively ∆0
2-categorical.
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4. ∆0
2-categorical but not relatively ∆0

2-categorical abelian
p-groups

In this section, we will focus on ∆0
2-categorical abelian p-groups for a prime

number p. A group G is called a p-group if for all g ∈ G, the order of g is a power
of p. By Z(pn) we denote the cyclic group of order pn. By Z(p∞) we denote the
quasicyclic (Prüfer) abelian p-group, the direct limit of the sequence Z(pn), and
also the set of rationals in [0, 1) of the form i

pn with addition modulo 1. The length

of an abelian p-group G, λ(G), is the least ordinal α such that pα+1G = pαG. Here,
p0G = G, pα+1G = p(pαG), and pλG =

⋂
α<λ p

αG for limit λ. The divisible part

of G is Div(G) = pλ(G)G and it is a direct summand of G. The group G is said to
be reduced if Div(G) = {0}. For an element g ∈ G, the height of g, ht(g), is ∞ if
g ∈ Div(G), and is otherwise the least α such that g /∈ pα+1G. For a computable
group G, ht(g) can be an arbitrary computable ordinal. The height of G is the
supremum of {ht(g) : g ∈ G}. Let oG(g) be the order of g in G. The period of G
is max{o(g) : g ∈ G} if this quantity is finite, and it is ∞ otherwise.

Barker [6] proved that for every computable ordinal α, there is a ∆0
2α+2-categorical

but not ∆0
2α+1-categorical abelian p-group. Goncharov [24] and Smith [50] inde-

pendently characterized computably categorical abelian p-groups as those that can
be written in one of the following forms:

(i)
⊕
l

Z(p∞)⊕ F for l ≤ ω and F is a finite group; or

(ii)
⊕
n
Z(p∞)⊕H ⊕

⊕
ω
Z(pk), where n, k ∈ ω and H is a finite group.

For these groups, computable categoricity and relative computable categoricity co-
incide (for a proof see also [7]).

In [7], Calvert, Cenzer, Harizanov, and Morozov established that a computable
abelian p-group G is relatively ∆0

2-categorical if and only if:

(i) G is isomorphic to
⊕
l

Z(p∞)⊕H, where l ≤ ω and H has finite period; or

(ii) All elements in G are of finite height (equivalently, G is reduced with λ(G) ≤
ω).

They also have partial results towards characterizing ∆0
2-categoricity. For example,

if G is a computable group with reduced part H such that H has a computable
copy and infinitely many elements of height ≥ ω, then G is not ∆0

2-categorical. If
G is a computable group isomorphic to

⊕
l

Z(p∞)⊕H, where all elements of H are

of finite height, then G is relatively ∆0
3-categorical (see [7]).

Theorem 5. There is a computable ∆0
2-categorical abelian p-group, which is not

relatively ∆0
2-categorical.

Proof. Let ((ω,+n, en))n∈ω be an enumeration of all partial computable abelian
groups with universe ω. Let 〈·, ·〉 be a standard pairing function. By pm ·n z we
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indicate z+n z+n · · ·+n z where there are pm summands. Define the following set:

k ∈ A⇔def ¬(∃n < k) (∃x < k) (∃m < k) [(2〈n, x〉 < k) ∧ (pm ·n x 6= en)

∧ (pm+1 ·n x = en)

∧ ∃z (pk−m−1 ·n z = x)

∧ ¬∃w (pk−m ·n w = x)].

Ignoring bounded quantifiers, A is defined by the conjunction of a Σ0
1 formula and a

Π0
1 formula, and is thus ∆0

2. Furthermore, note that every 〈n, x〉 can be the witness
to at most one k 6∈ A. That is, if 〈n, x〉 witnesses some k 6∈ A, and k′ < k, then fix
the m with pm ·n x 6= en and pm+1·n = en, and fix some z with pk−m−1 ·n z = x.
Then w = pk−k

′−1 · z is such that pk
′−m ·n w = x. Since 〈n, x〉 can only be the

witness to k 6∈ A if k > 2〈n, x〉, it follows that A is infinite.

Define
G =

⊕
ω

Z(p∞)⊕
⊕
k∈A

Z(pk).

Since A is ∆0
2, it can be easily shown that G has a computable isomorphic copy.

The form of G shows that it is not relatively ∆0
2-categorical (see [7]). We claim

that G is ∆0
2-categorical.

Lemma 5. Suppose that (ω,+n, en) ∼= G. Then the divisible part of (ω,+n, en)
(the isomorphic image of

⊕
ω
Z(p∞)) is computably enumerable.

Proof. An element x 6= en is in the divisible part of (ω,+n, en) precisely if the
following holds:

∃m ∃k [(2〈n, x〉 < k) ∧ (pm ·n x 6= en) ∧ (pm+1 ·n x = en) ∧ ∃z (pk−m−1 ·n z = x)].

Clearly, if x is in the divisible part, then there are m, k and z as desired. Conversely,
suppose that x is not in the divisible part. Fix m such that pm ·n x 6= en and
pm+1 ·n x = en. Since x is not divisible, fix k such that ∃z (pk−m−1 ·n z = x)
and ¬∃z (pk−m ·n z = x). Then since (ω,+n, en) ∼= G, it must be that Z(pk) is a
summand in G, and thus k ∈ A. By definition, this requires that k ≤ 2〈n, x〉, and
so x cannot satisfy the above formula. �

Now suppose that (ω,+n, en) ∼= G. We can construct a 0′-computable isomor-
phism as follows: since we can enumerate the divisible parts, we run a computable
back-and-forth construction on those; meanwhile, for each k ∈ A, we use the 0′-
oracle to locate an element x with pk ·n x = en but ¬∃z (p ·n z = x), and use this
to map the image of Z(pk). �

5. ∆0
2-categorical but not relatively ∆0

2-categorical homogenous
completely decomposable abelian groups

We will now consider certain torsion-free abelian groups. A homogenous com-
pletely decomposable abelian group is a group of the form

⊕
i∈κ

H, where H is a

subgroup of the additive group of the rationals, (Q,+). Note that we have only a
single H in the sum – any two summands are isomorphic. It is well known that
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such a group is computably categorical if and only if κ is finite; the proof is similar
to the analogous result that a computable vector space is computably categorical if
and only if it has finite dimension. In the remainder of this section, we will restrict
our attention to groups of infinite rank κ.

For P a set of primes, defineQ(P ) to be the subgroup of (Q,+) generated by { 1
pk

:

p ∈ P ∧k ∈ ω}. Downey and Melnikov [18] showed that a computable homogenous
completely decomposable abelian group of infinite rank is ∆0

2-categorical if and
only if it is isomorphic to

⊕
ω
Q(P ), where P is c.e. and the set (Primes − P ) is

semi-low. Recall that a set S ⊆ ω is semi-low if the set HS = {e : We ∩ S 6=
∅} is computable from ∅′. Here, we will first fully characterize the computable
relatively ∆0

2-categorical homogenous completely decomposable abelian groups of
infinite rank.

Theorem 6. A computable homogenous completely decomposable abelian group of
infinite rank is relatively ∆0

2-categorical if and only if it is isomorphic to
⊕
ω
Q(P ),

where P is a computable set of primes.

Proof. Suppose that G is relatively ∆0
2-categorical. Since this implies that G is

∆0
2-categorical, by the above mentioned result of Downey and Melnikov, we know

that G ∼=
⊕
ω
Q(P ) for P a c.e. set of primes. We will show that P is also co-c.e.

Fix X , a c.e. Scott family of computable Σ2 formulas for G, with parameters
a ∈ G<ω. Fix an element b ∈ G, which is independent of a. Then b 7→ p · b can be
extended to an automorphism of G fixing a if and only if p ∈ P . Fix some formula
∃x θ(z, x, y) ∈ X , where θ is a computable Π1 formula and G |= ∃x θ(a, x, b). Fix
some tuple c ∈ G such that G |= θ(a, c, b).

Now, decompose the elements of c as ci = di+ei, where di is a rational multiple of
b, and b is independent of {a, e}. One way to achieve this is to fix an isomorphism
f :

⊕
ω
Q(P ) → G such that b = f((q, 0, 0, 0, . . . )) for some q ∈ Q(P ), and then

define vi to be the projection of f−1(ci) onto the first coordinate, di = f(vi), and
ei = ci − di. Observe that the map b 7→ p · b can be extended to an automorphism
of G fixing a and e if and only if p ∈ P , and any such isomorphism would need to
map di 7→ p · di.

Define cp by cpi = p · di + ei. Note that an isomorphism sending b 7→ p · b and
fixing a and e would necessarily map c 7→ cp. So, if there is such an isomorphism,
then G |= θ(a, cp, p · b). Conversely, if G |= θ(a, cp, p · b) then G |= ∃x θ(a, x, p · b),
and, by the definition of Scott family, there must be an isomorphism fixing a and
mapping b 7→ p · b. Thus,

p ∈ P ⇔ G |= θ(a, cp, p · b).

Since θ is a computable Π1formula, and cp can be obtained effectively from p, it
follows that P is co-c.e. �

Since there exist co-c.e. sets that are semi-low and noncomputable, we obtain
the following categoricity result.
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Corollary 1. There is a computable homogenous completely decomposable abelian
group, which is ∆0

2-categorical but not relatively ∆0
2-categorical.

6. Degrees of categoricity of certain Boolean algebras and abelian
p-groups

Cenzer, Harizanov, and Remmel established in [10] that the degrees of categoric-
tiy of computable injections structures can only be 0, 0′ and 0′′. Frolov [23] showed
that the degrees of categoricity of relatively ∆0

2-categorical linear orders can only be
0 and 0′. Using the characterization of relatively ∆0

2-categorical Boolean algebras
by McCoy in [41], Bazhenov [8] established that the degrees of categoricity of rela-
tively ∆0

2-categorical (equivalently, ∆0
2-categorical) Boolean algebras can only be 0

and 0′. In this section, we will extend Bazhenov’s result to relatively ∆0
3-categorical

Boolean algebras.

A Boolean algebra B is atomic if for every a ∈ B there is an atom b ≤ a. An
equivalence relation ∼ on a Boolean algebra A is defined by:

a ∼ b iff each of a ∩ b and b ∩ a is ∅ or a union of finitely many atoms of A.

A Boolean algebra A is a 1-atom if A/ ∼ is a two-element algebra. A Boolean
algebra A is rank 1 if A/ ∼ is a nontrivial atomless Boolean algebra. McCoy [42]
proved that a countable rank 1 atomic Boolean algebra is isomorphic to I(2 · η).

In [41], McCoy established that a Boolean algebra is relatively ∆0
2-categorical

if and only if it is a finite direct sum of algebras that are atoms, atomless, or 1-
atoms. Furthermore, in [42], McCoy characterized relatively ∆0

3-categorical Boolean
algebras as those computable Boolean algebras that can be expressed as finite direct
sums of algebras that are atoms, atomless, 1-atoms, rank 1 atomic, or isomorphic to
the interval algebra I(ω+η). In our next theorem, we will use this characterization
and the following isomorphism result of Remmel [49] .

Lemma 6 (Remmel). If A is a Boolean algebra, B ⊆ A is a subalgebra, B has
infinitely many atoms, every atom in B is a finite join of atoms in A, and A is
generated by B and the elements below the atoms of B, then B ∼= A.

Theorem 7. The degrees of categoricity of relatively ∆0
3-categorical Boolean alge-

bras can only be 0, 0′ and 0′′.

Proof. Fix a relatively ∆0
3-categorical Boolean algebra B. If B is a finite join of

atoms, 1-atoms and atomless Boolean algebras, then B is relatively ∆0
2-categorical,

and so its degree of categoricity is either 0 or 0′. Otherwise, B has a summand
which is either rank 1 atomic or isomorphic to the interval algebra I(ω + η).

All of the potential summands in the characterization of relatively ∆0
3-categorical

Boolean algebras have computable isomorphic copies in which the set of finite ele-
ments (that is, the elements a with a ∼ 0) is computable. We will show that both
the rank 1 atomic algebra and I(ω + η) have computable isomorphic copies where
the set of finite elements is Σ0

2-complete. It will follow that B has a computable
isomorphic copy in which the set of finite elements is computable, and another
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computable isomorphic copy in which it is Σ0
2-complete, and so any isomorphism

between these two copies will compute ∅′′.
We begin with the rank 1 atomic algebra. Let C be a computable copy of this

algebra in which the set of atoms is computable. Let {ai : i ∈ ω} be the atoms
of C. We will create an algebra A by extending C. Let φ(i, x) be a computable
formula such that

i ∈ ∅′′ ⇔ ∃<∞xφ(i, x).

At every step s, we will consider whether φ(i, s) holds. The first time φ(i, s) holds,
we choose three large elements b0i , b

1
i and b2i and use them to partition ai into three

pieces. That is,
b0i ∧ b1i = b1i ∧ b2i = b2i ∧ b0i = 0

and
b0i ∨ b1i ∨ b2i = ai.

At the second stage at which we see φ(i, s) hold, we repeat the process on b0i and
b2i . See the following diagrams.

ai

b0ib1ib2i

Working with rank 1 atomic, the first time we see φ(i, s) hold.

ai

b0i

b00ib01ib02i

b1ib2i

b20ib21ib22i

Working with rank 1 atomic, the second time we see φ(i, s) hold.

We then let A be the Boolean algebra generated by C along with these new
elements we have added. Note that every element of A is the join of an element
from C and some of these new elements (among bσi ’s). That is, for all d ∈ A,
d = c ∨ bσ0

i0
∨ bσ1

i1
∨ · · · ∨ bσk

ik
for some c ∈ C and some bσ0

i0
, . . . , bσk

ik
.

Observe that ai is infinite in A if and only if φ(i, x) holds for infinitely many x,
which is if and only if i 6∈ ∅′′. Also, ai necessarily bounds an atom in A, e.g., b1i .
Finally, if ai is infinite, then it can be partitioned into two infinite elements, e.g.,
b0i and b1i ∨ b2i . Since every element of C bounds an atom, and every infinite element
of C can be partitioned into two infinite elements, it follows that the same holds
for every element of A. This characterizes the rank 1 atomic algebra. Thus A ∼= C,
and A is as desired.

Next, consider I(ω+ η). Again, let C be a computable copy of I(ω+ η) in which
the set of atoms is computable. Let {ai : i ∈ ω} be the atoms of C. We again create
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ai

b0i

b00i

b000ib001ib002i

b01ib02i

b020ib021ib022i

b1ib2i

b20i

b200ib201ib202i

b21ib22i

b220ib221ib222i

Working with rank 1 atomic, the third time we see φ(i, s) hold.

A extending C. Let φ(i, x) be as before. At every step s, if φ(i, s) holds, we add
new elements below a2i. The first time φ(i, s) holds, we partition a2i = b0i ∨b1i . The
second time it holds, we partition b0i and b1i . See the diagrams.

a2i

b0ib1i

Working with I(ω + η), the first time we see φ(i, s) hold.

a2i

b0i

b00ib01i

b1i

b10ib11i

Working with I(ω + η), the second time we see φ(i, s) hold.

We again let A be the Boolean algebra generated by C along with these new
elements. The isomorphism type of I(ω + η) is characterized by three properties:
there are infinitely many atoms; any element which bounds infinitely many atoms
also bounds an atomless element; and no two disjoint elements both bound infinitely
many atoms. Since every atom of A is bounded by an atom of C, every atomless
element of C is still atomless in A, and every atom of C is either atomless or finite
in A, the second and the third properties are inherited from C to A. Meanwhile,
the first property is ensured by the fact that each a2i+1 is still an atom of A. Thus
A ∼= C. Also, a2i is finite if and only if i ∈ ∅′′, so A is as desired.

This completes the proof. �
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a2i

b0i

b00i

b000ib001i

b01i

b010ib011i

b1i

b10i

b100ib101i

b11i

b110ib111i

Working with I(ω + η), the third time we see φ(i, s) hold.

It follows from proofs in [9] that the degrees of categoricity of computable rel-
atively ∆0

2-categorical equivalence structures can only be 0 and 0′. Using the
characterization of relatively ∆0

2-categorical abelian p-groups in [7] we can show
the following.

Proposition 1. The categoricity degrees of computable relatively ∆0
2-categorical

abelian p-groups can only be 0 and 0′.

Proof. Suppose that G is a computable abelian p-group, which is relatively ∆0
2-

categorical but not computably categorical. We will show that G has degree of
categoricity 0′. From the earlier described classifications of categoricity, it follows
that G is of one of the following two forms:

(1)
⊕
ω
Z(pk)⊕

⊕
ω
Z(pm)⊕H, where 0 < k < m ≤ ω; or

(2) Every element of G has finite height, but G contains elements of arbitrarily
large finite heights.

We will handle the two cases separately.

First Case
Consider elements x ∈ G with x 6= 0, p · x = 0 and ht(x) = k − 1. Note that

Z(pk) contains such an element (indeed, p− 1 such elements). By the observation
that G ∼=

⊕
ω
Z(pk) ⊕ G, we may assume that we have an effective enumeration

{an : n ∈ ω} of elements of this sort.

Fix µ the modulus function of ∅′. We will build a second computable copy A
such that the first µ(n) elements of A contain at most n elements of the desired sort.
Then given any isomorphism f : G ∼= A, the function n 7→ f(an) would necessarily
dominate µ. Thus, any isomorphism from G to A would compute ∅′.

The construction is now straightforward. By dom(F ) we denote the domain and
by ran(F ) the range of a function F . We will build a ∆0

2 homomorphism F : G ∼= A
and arrange that A = ran(F )⊕

⊕
ω
Z(pm). We begin with F0 = ∅.

At stage s+ 1, for every n ≤ s, we consider every x ∈ G with n ≤ x ≤ s, x 6= 0,
p · x = 0 and [ht(x)]Gs < k. For each such element, if Fs(x) ≤ µs(n), we define
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Fs+1(x) as some new large element. This requires that we also define Fs+1(y) for
every y dividing such an x, to be some new large element. We let Fs+1(x) = Fs(x)
for every other x. We then extend the domain of Fs+1 to the next element of G.
We let Fs+1 induce the group operation on its range via pull-back.

Let Ds+1 = ran(Fs) − ran(Fs+1). Note that every elements of Ds has height
less than k. We add new elements to extend Ds+1 to a copy of

⊕
l

Z(pm) for some

l < ω. Also, for every a ∈ As+1−ran(Fs+1) and every b ∈ ran(Fs+1), if A does not
yet have an element corresponding to a + b, we add an appropriate element now.
This completes stage s+ 1.

Now we argue that F is a total ∆0
2 function. Fix x ∈ G with x 6= 0 and p ·x = 0.

If Fs+1(x) 6= Fs(x), then either our construction was deliberately redefining F (x),
or it was required to redefine F (x) because it deliberately redefined F (z) for some
z that x divides. The only such z’s are of the form i · x for 1 ≤ i < p. Let s0
be such that µs0(i · x) = µ(i · x) for 1 ≤ i < p. Then at any stage s > s0 with
Fs+1(x) 6= Fs(x), necessarily Fs+1(i · x) > µs(i · x) = µ(i · x), since Fs+1(i · x) is
chosen to be large. Then at any stage t > s, Ft(i · x) > µ(i · x) = µt(i · x), and so
we will have Ft+1(x) = Ft(x), and thus F (x) will reach a limit.

Now, consider y ∈ G with pα+1 ·y = 0. Then p ·(pα ·y) = 0, and Fs+1(y) 6= Fs(y)
only when Fs+1(pα ·y) 6= Fs(p

α ·y). Since we have just argued that F (pα ·y) reaches
a limit, it follows that F (y) reaches a limit.

Note that A = ran(F ) ⊕
⊕
ω
Z(pm) by construction. It follows that A ∼= G. It

also follows that every x ∈ A− ran(F ) with p ·x = 0 has height at least m− 1 ≥ k.
Finally, our construction ensured that there are at most n elements x ∈ G with
p · x = 0, ht(x) < k and F (x) < µ(n). Thus, there are at most n elements x ∈ A
with p · x = 0, ht(x) < k and x < µ(n), as desired.

Second Case
By a result of Khisamiev [36] and independently of Ash, Knight and Oates [5],

we know that

G ∼= Z(pk0)⊕ Z(pk1)⊕ · · · ,
where the sequence (ki)i∈ω is uniformly computable from below. That is, there is
a computable function g : ω × ω → ω such that for all i and s, g(i, s) ≤ g(i, s+ 1),
and for all i, ki = lims g(i, s). Fix such a function g. By our assumptions on G, we
know that the ki’s are unbounded.

We will construct a computable function h and a ∆0
2 function ι such that:

(1) For all i and s, h(i, s) ≤ h(i, s+ 1);

(2) ι : ω → ω is a bijection;

(3) For all i, lims h(i, s) = lims g(ι(i), s); and

(4) For all n and all x ∈ G with x < µ(n) and x 6= 0, ht(x) + 1 < lims h(2n, s).

We will then let A = Z(plims h(0,s)) ⊕ Z(plims h(0,s)) ⊕ · · · . By the first property
above, this is a computable structure. By the second and the third properties,
A ∼= G. By the fourth property, given an isomorphism f : A ∼= G, for any element
x of the (2n)th summand of A with x 6= 0 and p·x = 0, it must be that f(x) ≥ µ(n).
Thus, f computes ∅′.

It remains to construct h and ι. We begin with ι0 = ∅ and h(i, 0) = 0 for all i.
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At stage s+ 1, if there is an n with 2n ∈ dom(ιs) and an x ∈ G with x < µ(n),
x 6= 0 and [ht(x)]Gs ≥ h(2n, s), we search for a large pair (j, t) with g(j, t) >
h(2n, s), and define ιs+1(2n) = j and h(2n, s+ 1) = g(j, t). We then choose a large
m and define ιs+1(2m+ 1) = ιs(2n). We let ιs+1(k) = ιs(k) for every other k.

We then choose the least a 6∈ dom(ιs+1) and the least b 6∈ ran(ιs+1), and define
ιs+1(a) = b. Then, for every i ∈ dom(ιs+1) with h(i, s + 1) not yet defined, we
define h(i, s + 1) = max{g(ιs+1(i), s + 1), h(i, s)}. For every i 6∈ dom(ιs+1), we
define h(i, s+ 1) = 0. This completes stage s+ 1.

First, note that, by construction, h(i, s) ≤ h(i, s+ 1) for every i and s.

Next, we argue that ι is a total ∆0
2 function. Note that, by construction, for

every i, there is eventually a stage s0 with ιs(i) defined for all s ≥ s0. If i is odd,
then ιs(i) = ιs0(i) for all s ≥ s0. If instead i = 2n, then at every stage s with
ιs(i) 6= ιs(i+1), we have h(i, s+1) ≥ h(i, s)+1. Let u = max{ht(x) : x ∈ G∧x <
µ(n)}. So for sufficiently large s1, h(i, s1) > u, and then h(i, s) = h(i, s1) for all
s ≥ s1.

Next, we argue that ι is surjective. If b = ιs0(a), then either b = ιs(a) for all
s > s0, or there is a stage s1 > s0 with b = ιs1(c) for some odd c. By construction,
ι never changes on odd inputs, so b = ιs(c) for all s ≥ s1. By construction, every
element is eventually added to the range of some ιs, so every element is in ran(ι).

By induction on s, h(i, s) ≤ lims g(ιs(i), s) for all i and s, and so in particular,
lims h(i, s) exists and equals at most lims g(ι(i), s). On the other hand, h(i, s) ≥
g(ιs(i), s) for all i and s by construction, and so lims h(i, s) = lims g(ι(i), s), as
desired.

Finally, for all n and all x ∈ G with x < µ(n) and x 6= 0, ht(x)+1 < lims h(2n, s),
as we deliberately increase h(2n, s) whenever this appears to be false. This com-
pletes the proof. �
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[22] A. Fröhlich and J. Shepherdson, Effective procedures in field theory, Philosophical Transac-

tions of the Royal Society, ser. A, 248 (1956), pp. 407–432.
[23] A.N. Frolov, Categoricity degrees of computable linear orderings, in preparation.

[24] S.S. Goncharov, Autostability of models and abelian groups, Algebra and Logic 19 (1980),

pp. 13–27 (English translation).
[25] S.S. Goncharov, The quantity of nonautoequivalent constructivizations, Algebra and Logic

16 (1977), pp. 169–185 (English translation).
[26] S.S. Goncharov, Selfstability and computable families of constructivizations, Algebra and

Logic 14 (1975), pp. 647–680 (Russian).

[27] S.S. Goncharov and V.D. Dzgoev, Autostability of models, Algebra and Logic 19 (1980), pp.
28–37 (English translation).

[28] S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R. Miller, and R. Solomon, Enumerations

in computable structure theory, Annals of Pure and Applied Logic 136 (2005), pp. 219–246.
[29] S. Goncharov, V. Harizanov, J. Knight and R. Shore, Π1

1 relations and paths through O,

Journal of Symbolic Logic 69 (2004), pp. 585–611.

[30] K. Harris, ∆0
2-categorical Boolean algebras, preprint.

[31] D. Hirschfeldt, K. Kramer, R. Miller, and A. Shlapentokh, Categoricity properties for com-

putable algebraic fields, Transactions of the American Mathematical Society (2015), pp.

3981–4017.
[32] D.R. Hirschfeldt, B. Khoussainov, and R.A. Shore, A computably categorical structure whose

expansion by a constant has infinite computable dimension, Journal of Symbolic Logic 68

(2003), pp. 1199–1241.
[33] D.R. Hirschfeldt, B. Khoussainov, R.A. Shore, and A.M. Slinko, Degree spectra and com-

putable dimensions in algebraic structures, Annals of Pure and Applied Logic 115 (2002), pp.
71–113.

[34] W. Hodges; A Shorter Model Theory, Cambridge University Press, 1997.
[35] A. Kach and D. Turetsky, ∆0

2 categoricity of equivalence structures, New Zealand Journal of
Mathematics 39 (2009), pp. 143–149.

[36] N.G. Khisamiev, Constructive Abelian p-groups, Siberian Advances in Mathematics 2 (1992),

pp. 68–113 (English translation).
[37] B. Khoussainov and R.A. Shore, Computable isomorphisms, degree spectra of relations and

Scott families, Annals of Pure and Applied Logic 93 (1998), pp. 153–193.
[38] O. Kudinov, An autostable 1-decidable model without a computable Scott family of ∃-

formulas, Algebra and Logic 35 (1996), pp. 458–467.

[39] P. LaRoche, Recursively presented Boolean algebras, Notices AMS 24 (1977), A552–A553.

[40] S. Lempp, C. McCoy, R. Miller and R. Solomon, Computable categoricity of trees of finite
height, Journal of Symbolic Logic 70 (2005), pp. 151–215.



COMPUTABILITY-THEORETIC CATEGORICITY AND SCOTT FAMILIES 25

[41] C.F.D. McCoy, ∆0
2-categoricity in Boolean algebras and linear orderings, Annals of Pure and

Applied Logic 119 (2003), pp. 85–120.

[42] C.F.D. McCoy, On ∆0
3-categoricity for linear orders and Boolean algebras, Algebra and Logic

41 (2002), pp. 295–305 (English translation).

[43] T. Millar, Recursive categoricity and persistence, Journal of Symbolic Logic 51 (1986), pp.

430–434.
[44] R. Miller, d-computable categoricity for algebraic fields, Journal of Symbolic Logic 74 (2009),

pp. 1325–1351.

[45] R. Miller, The computable dimension of trees of infinite height, Journal of Symbolic Logic 70
(2005), pp. 111–141.

[46] R. Miller and A. Shlapentokh, Computable categoricity for algebraic fields with splitting

algorithms, to appear in the Transactions of the American Mathematical Society.
[47] R. Miller and H. Schoutens, Computably categorical fields via Fermat’s Last Theorem, to

appear in Computability.
[48] J.B. Remmel, Recursively categorical linear orderings, Proceedings of the American Mathe-

matical Society 83 (1981), pp. 387–391.

[49] J.B. Remmel, Recursive isomorphism types of recursive Boolean algebras, Journal of Symbolic
Logic 46 (1981), pp. 572–594.

[50] R.L. Smith, Two theorems on autostability in p-groups, in Logic Year 1979–80, Univ. Con-

necticut, Storrs, Lecture Notes in Mathematics 859, (Springer, Berlin, 1981), pp. 302–311.
[51] I.N. Soskov, Intrinsically hyperarithmetical sets, Mathematical Logic Quarterly 42 (1996),

pp. 469–480.


