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Abstract. We show that the fact that the first player (“white”) wins every

instance of Galvin’s “racing pawns” game (for countable trees) is equivalent
to arithmetic transfinite recursion. Along the way we analyse the satisfaction

relation for infinitary formulas, of “internal” hyperarithmetic comprehension,

and of the law of excluded middle for such formulas.

1. Introduction

The proof of closed determinacy (Gale-Stewart [GS53]) is often summed up as
“do not lose”, or slightly more formally, picking a move which does not result in
a situation from which the opponent has a winning strategy. This proof masks
a transfinite recursive process. For a more revealing argument, let U be an open
subset of Baire space ωω, and consider the game GU, in which the players (say
I and II) alternate picking natural numbers to eventually produce an element of
Baire space; player I wins the play if the sequence produced is an element of U. For
countable ordinals α, we define subsets Uα and Vα of ωăω (the collection of all finite
sequences of natural numbers). The set Vα will be a collection of positions from
which player II does not have a winning strategy; the set Uα will be a collection of
positions from which player I has a winning strategy. We let U0 be the collection
of strings σ for which rσs, the collection of all infinite extensions of σ, is contained
in U. Given Uα, we let Vα be the collection of strings σ, all of whose immediate
extensions σˆn lie in Uα. And given Văα “

Ť

βăα Vβ , we let Uα be the collection
of strings σ which have some immediate extension σˆn in Văα. Then player I has a
winning strategy for the game GU if the empty sequence xy is “ranked”, that is, if it
is an element of Uăω1

, and player II has a winning strategy if xy is not ranked. The
strategy for player I, given a position σ P Uα, is to choose an extension in Văα; the
strategy for player II, given a position σ R Văω1

, is to choose an extension outside
Uăω1 .

Proof-theoretically, the argument above uses the minimal subsystem of second-
order arithmetic in which a good theory of ordinals is available, namely arithmetical
transfinite recursion (ATR0); an overspill argument in ATR0 shows the existence of
the sets Uα and Vα. A reversal is often given (as in [Sim09]) by Σ1

1-separation.
However, it is possible to give a direct argument: from clopen determinacy, in fact,
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one can deduce the existence of the transfinite iteration Xpαq of the Turing jump
of a set X. While probably well-known, we have not found such an argument in
the literature. In this paper we develop the theory of infinitary logic within second-
order arithmetic, and among other results, use it to give a proof of ATR0 from clopen
determinacy.

We also investigate the strength of determinacy for a particular class of games.
Galvin’s “racing pawns” game FT is played on a well-founded tree T . Two players,
W and B, take turns moving one of two pawns, marked “white” and “black”,
starting at the root of the tree, and at each step moving to a child (an immediate
successor). The player W has the first move. The winner is the player whose pawn
reaches a leaf first. However, each player can move either pawn; the complexity of
the game follows from the fact that an optimal move may be either pushing one’s
own pawn toward a leaf, or the opponent’s pawn away from leaves.

A tricky proof (Galvin; see [Gra85]) shows that for any well-founded tree T , the
player W has a winning strategy for the game FT . Grantham [Gra85] carried out a
detailed ordinal analysis of the games FT and described a winning strategy for W
along the lines described above for an open game GU; Grantham’s analysis for FT
is of course much more complicated. We show that Galvin’s result is equivalent to
ATR0. In other words, while seemingly much more restricted than general clopen
or open games, the determinacy of the racing pawns games is equivalent to the
determinacy of all open games.

In one direction, we analyze Galvin’s original proof and show using the existence
of ω-jumps (ACA`0 ) that the player B has no winning strategy for the game FT ; we
then code Galvin’s game into a clopen game GU and invoke clopen determinacy to
show that Galvin’s theorem is provable in ATR0. We remark that it is still open
whether the bound ACA`0 can be improved. In the other direction, we use infinitary
logic. We in fact show that two natural statements regarding infinitary logic – the
law of excluded middle, and a comprehension principle which we name internal
hyperarithmetic comprehension – are equivalent to ATR0, and follow from Galvin’s
theorem.

For more background on arithmetical transfinite recursion, and on reverse mathe-
matics in general, see [Sim09]. For a detailed account of the interplay of determinacy
and second-order arithmetic, see [MSar].

1.1. Formalising Galvin’s theorem. From now, we work in the system RCA0 of
recursive comprehension, consisting of Σ0

1-induction and ∆0
1-comprehension, namely

the system which corresponds to computable mathematics.

A tree is a partial ordering with a least element, for which every principal initial
segment is linearly ordered and finite; usually the structure on a tree is augmented
by the immediate predecessor relation. Every tree is effectively isomorphic to a
subset of ωăω which is closed under taking initial segments, with the ordering
given by string extension. So from now we assume that all trees are downward
closed subsets of ωăω. A tree is well-founded if it has no infinite paths, that is, if
for no f P ωω do we have f ænP T for all n.

For a well-founded tree T , we code the racing pawns game on T by a clopen
game GWpT q. The details of such coding are not that important, as long as they

are effective. The most direct coding is as follows. Let σ P ωďω. Identifying the
player W with the player I, and the player B with the player II, recursively for
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n ă |σ|, the instruction σpnq “ 2m is interpreted as telling the player moving at
step n (I if n is even, II if n is odd) to move the white pawn from its current location
τ to the location τˆm; the instruction σpnq “ 2m ` 1 is interpreted as telling the
player to move the black pawn from τ to τˆm.

Not all moves are legal: if a string σ tells a player to move a pawn from τ to
τˆm, but τˆm R T , then the move is illegal in the game FT . In the game GWpT q,
this would be interpreted as the player forfeiting the game. The success set WpT q
is thus defined to be the collection of (infinite) strings which determine plays at
which B forfeits first, or the white pawn reaches a leaf of T . We define the racing
pawns game FT to be the game GWpT q.

It is immediate that WpT q is open. In fact, because T is well-founded, it is
clopen: every infinite sequence has a finite initial segment which either determines
an illegal play or which directs one of the pawns to a leaf of T . Indeed, a clopen
code for WpT q (an open code for WpT q and an open code for its complement) can
be effectively obtained from T . So RCA0 implies that for any well-founded tree T ,
WpT q exists.

Definition 1.1. Galvin’s theorem, which we denote by WW, is the statement that
for any well-founded tree T , the player W has a winning strategy for the racing
pawns game FT .

In Section 2.1 we show:

Theorem 1.2 (ACA`0 ). For any well-founded tree T , the player B does not have a
winning strategy for the game FT .

Since ATR0 implies clopen determinacy, since RCA0 is sufficient to show that it is
impossible for both players to have a winning strategy for a given game, and since
ATR0 implies ACA`0 , we get that ATR0 implies Galvin’s theorem WW. As we mentioned
above, we do not know if Theorem 1.2 can be improved; perhaps it is possible to
prove in RCA0 that B does not have a winning strategy for any game FT .

We do get a reversal, but before we indicate how, we explain why we would like
to pass to a narrower class of games. The point is that set-theoretically, Galvin’s
game FT depends only on the isomorphism type of the tree T . The coding necessary
for formalising the game in second-order arithmetic introduces extra information –
the numbers in the sequences which are the elements of T . This information can
be thought of as labels on the nodes of the tree T . This introduces unwarranted
strength to the game. For example, in a general (labelled) tree T Ď ωăω, the
collection of leaves of T is Π0

1pT q, and not necessarily computable in T , and so even
telling when a play has already resulted in a win is not effective.

Consider the tree described in Figure 1. Let xH1sy be an effective enumeration of
the halting set H1. The tree T consists of the empty sequence xy, of the sequence
x0y, the sequences x0ny for all n ă ω, and the sequences x0nsy for all n and s such
that n P H1s. Clearly T is computable, and so RCA0 implies its existence.

Claim 1.3. Any winning strategy for W for the game FT computes H1.

Proof. Fix e R H1, and let σ be a winning strategy for W for the game FT .
We first observe that W’s first move according to σ must be moving the white

pawn to x0y. This is because the only other possible move is moving the black pawn
to x0y. But then B can win the game by moving the black pawn to x0ey.



4 CHRIS CONIDIS, NOAM GREENBERG, AND DANIEL TURETSKY

0

0 1 2

5 6 7

¨ ¨ ¨

3 4

8 9 10

¨ ¨ ¨

¨ ¨ ¨

Figure 1. Computing H1 with a labelled tree. The number 2
enters H1 at stage 5, and the number 4 enters H1 at stage 8. The
numbers 0,1 and 3 are not elements of H1.

Now playing against σ, wanting to enquire whether a given number n is in H1

or not, we let B move the white pawn to x0ny. W’s next move (following σ) tells
us whether n is in H1 or not. If W moves the white pawn to a node x0nsy, where
n P H1s, then certainly n P H1. Otherwise, we claim that n R H1. That is, we claim
that x0ny is a leaf of T , and so that W has already won the play.

Suppose for contradiction that x0ny is not a leaf of T . There are two possibilities:
if W next moves the white pawn, to a node x0nsy where n R H1s, then as x0nsy R T ,
this would be a loss for white, which contradicts the assumption that σ is a winning
strategy for W. Otherwise, W moves the black pawn to x0y; then B can respond by
moving the black pawn to the leaf x0ey and winning – again a contradiction. �

Formalising in RCA0, we see that WW implies ACA0. This is somewhat unsatisfying,
however, because it takes advantage of the difficulty in determining leaves. To
address this, we introduce a restricted notion of trees.

Definition 1.4. A tree T Ď ωăω is unlabeled if for every ρ P T , the set td | ρ̂ d P T u
is an initial segment of ω (not necessarily proper, and possibly empty).

If T is unlabeled, then T can compute whether a string ρ P T is a leaf simply
by checking if ρ̂ 0 P T . We shall refer to trees as labeled trees when we wish to
emphasize that we are not restricting our attention to unlabeled trees.

Definition 1.5. The statement WWU is the restriction of Galvin’s theorem to unla-
belled trees, namely the statement that for any well-founded unlabeled tree T , the
player W has a winning strategy for the racing pawns game FT .

Certainly WW implies WWU. Among other results, our main theorem (1.20) will
state that WW and WWU are both equivalent to ATR0 (over RCA0).

1.2. Infinitary propositional logic. Classically, for a language L, the infinitary
logic Lω1,ω is obtained from the atomic L-formulas by closing under quantification,
negation, and countable conjunctions and disjunctions. There are ordinals hidden
in this definition – formally, we need to define by recursion on α ă ω1 the collection
of formulas of rank α. Usually, implied within the definition, is the fact that the
ranks of formulas are comparable, so that we indeed get an increasing collection of
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formulas. Comparability of well-orderings is equivalent to ATR0. But if we drop the
assumption of comparability, the definition of infinitary formulas can be carried
out in RCA0.

In this paper, an ordinal is simply a well-ordering of a subset of ω. The standard
equivalent definitions of well-orderings (using infinite descending chains or least
elements) are equivalent in RCA0 (Hirst [Hir05]). In our notation, we imagine though
that ordinals follow the von-Neumann pattern. If α “ pα,ăαq is an ordinal and
β P α, then we also write β ă α, and we identify β with the initial segment
tγ P α : γ ăα βu. If β is the ăα-greatest element of α then we also write
α “ β ` 1. The empty ordering is denoted by 0.

Rather than working with an arbitrary signature L and with quantifiers, we
restrict ourselves to the most elementary infinitary logic: sentential propositional
logic. The two atomic sentences are True and False. For connectives we use dis-
junction, conjunction and negation. Informally, given an ordinal α, a propositional
sentence of rank α is the result of applying a connective to a set of propositional
sentences of smaller rank. Formally, the object defined will consist of the sentence
together with all of its subsentences. To be concrete:

Definition 1.6. Let α be an ordinal. A propositional sentence of rank α is a
sequence of functions xψβyβďα such that for all β ď α,

‚ ψβp0q P t ,^,_u;
‚ for all n ě 1, ψβpnq P β Y t´1,´2u;
‚ if ψβp0q “  , then for all n ě 2, ψβpnq “ ´2.

The definition is to be interpreted as follows. The sequence xψβyβďα is a sequence

of sub-sentences of the sentence ψα. We expand it by letting ψ´1 “ True and
ψ´2 “ False. Each sentence ψβ is the result of applying the connective ψβp0q to
the sequence of sentences

@

ψψβpnq
D

ně1
, except that if ψβp0q “  then we really

mean ψβ “  ψψβp1q, so the information given by ψβpnq for n ě 2 is irrelevant – in
this case we require that ψψβpnq “ False for n ě 2 (we are negative people).

However, in the sequel we will not worry about the precise formalisation; we will
informally write sentences of the form ψ “

Ž

n ψn, ψ “
Ź

n ψn and ψ “  ϕ.

Having defined the syntax, we need to consider the semantics – the interpretation
of an infinitary propositional sentence in a model of RCA0. As expected, the standard
definition of semantics can only be carried out in ATR0. Weaker systems lack the
comprehension power to show that the standard satisfaction relation exists.

We choose to understand sentences by the games that they define. The idea is
best illustrated by an example. Consider the sentence

ψ “
ł

năω

ľ

măω

ł

kăω

ψn,m,k,

where each ψn,m,k is either True or False. Satisfaction of ψ corresponds to a
game: say player I wants to show that ψ is true. She needs to pick a number n.
The opponent, player II, then responds by picking m. If player I can always respond
with some k such that ψn,m,k is true, then ψ is true. In other words, ψ is true if
and only if player I has a winning strategy for the game GU, where U is the clopen
set consisting of all sequences beginning with xn,m, ky such that ψn,m,k “ True.
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For symmetry, we associate with both players (I and II) games which they win
if a given sentence is true. For our ease, we make the following definition. Let
U Ď ωω.

‚ Player I can force into U if she has a winning strategy for the game GU.
‚ Player II can force into U if he has a winning strategy for the game GωωzU.

In other words, a player i P tI, IIu can force into U if that player has a strategy that
against any play of the opponent will result in an element of U. To motivate parts
of the following definition, we note:

Observation 1.7 (RCA0). Let U Ď ωω. A player i P tI, IIu can force into U if and
only if their opponent can force into

Ť

n nˆU.

Here nˆU “ tn f̂ : f P Uu. For brevity, let U˚ “
Ť

n nˆU.

For an infinitary propositional sentence ψ we define two clopen sets SIpψq and
SIIpψq by recursion:

‚ SIpTrueq “ SIIpTrueq “ ωω and SIpFalseq “ SIIpFalseq “ H.
‚ SIp

Ž

ψnq “
Ť

n n ŜIIpψnq and SIIp
Ž

ψnq “ SIp
Ž

ψnq
˚.

‚ SIIp
Ź

ψnq “
Ť

n n ŜIpψnq and SIp
Ź

ψnq “ SIIp
Ź

ψnq
˚.

‚ SIp ψq “ ωωzSIIpψq, and SIIp ψq “ ωωzSIpψq.

The definition of the clopen sets SIpψq and SIIpψq is performed by effective trans-
finite recursion on the rank of ψ. If ψ “ xψβyβďα for an ordinal α, then effectively

in ψ (and α), we construct a function from α` 1 to ω mapping β ď α to a pair of
ψ-computable indices for clopen codes for SIpψβq and SIIpψβq. This can be carried
out in RCA0, and so RCA0 implies that the sequence xpSIpψβq, SIIpψβqqyβďα exists.

Uniqueness of this sequence, and hence of SIpψq and SIIpψq for all ψ is also prov-
able in RCA0. The point is that if both xYβyβďα and xZβyβďα satisfy the recursive

definition of this sequence, then from a point β ď α such that Yβ ‰ Zβ we can
effectively find some γ ă β such that Yγ ‰ Zγ .

Observation 1.8 (RCA0). There is an arithmetic formula ϕpσ, ψq which states that
σ is a winning strategy for GSIpψq. Indeed, since SIpψq is closed, it suffices to state
that for every τ P ωăω, at the end of the partial game of σ played against τ , σ has
not already lost.

By De Morgan’s law, all sentences are equivalent to sentences omitting the nega-
tion connective (but building from both True and False). For an infinitary propo-
sitional sentence ψ, we define two infinitary propositional sentences P pψq and Npψq
by recursion:

‚ P pTrueq “ NpFalseq “ True and P pFalseq “ NpTrueq “ False.
‚ P p ψq “ Npψq and Np ψq “ P pψq.
‚ P p

Ž

ψnq “
Ž

P pψnq and Np
Ž

ψnq “
Ź

Npψnq.
‚ P p

Ź

ψnq “
Ź

P pψnq and Np
Ź

ψnq “
Ž

Npψnq.

This definition is again performed by effective transfinite recursion on the rank of ψ.
If ψ “ xψβyβďα for an ordinal α, then effectively in ψ (and α), we construct the

sequence xθβyβďα, with θβ “ pP pψβq, Npψβqq. Again, RCA0 proves that xθβyβďα
exists, and is unique.

Intuitively, P pψq is a sentence equivalent to ψ which is obtained by pushing all
negations to the base level, and Npψq is a similar sentence, equivalent to  ψ. These
equivalences are made formal by the following lemma.
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Lemma 1.9 (RCA0). For any infinitary propositional sentence ψ, SIpψq “ SIpP pψqq “
ωωzSIIpNpψqq and SIIpψq “ SIIpP pψqq “ ωωzSIpNpψqq.

Proof. First we argue that this holds by transfinite induction on the complexity
of ψ, then we explain why it holds in RCA0 as well. The point is that RCA0 proves
transfinite Π0

1-induction.
For ψ P tTrue, Falseu, this is immediate.
For  ψ,

SIp ψq “ ωωzSIIpψq

“ SIpNpψqq

“ SIpP p ψqq.

Also,

SIp ψq “ ωωzSIIpψq

“ ωωzSIIpP pψqq

“ ωωzSIIpNp ψqq.

The arguments for SIIp ψq are symmetric.
For

Ž

ψn,

SIp
ł

ψnq “
ď

n ŜIIpψnq

“
ď

n ŜIIpP pψnqq

“ SIp
ł

P pψnqq

“ SIpP p
ł

ψnqq.

Also,

SIp
ł

ψnq “
ď

n ŜIIpψnq

“
ď

n p̂ωωzSIpNpψnqqq

“ ωωz
ď

n ŜIpNpψnqq

“ ωωzSIIp
ľ

Npψnqq

“ ωωzSIIpNp
ł

ψnqq.

Also,

SIIp
ł

ψnq “ SIp
ł

ψnq
˚

“

´

ď

n ŜIIpψnq
¯˚

“

´

ď

n ŜIIpP pψnqq
¯˚

“ SIp
ł

P pψnqq
˚

“ SIIp
ł

P pψnqq

“ SIIpP p
ł

ψnqq
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Finally,

SIIp
ł

ψnq “ SIp
ł

ψnq
˚

“

´

ď

n ŜIIpψnq
¯˚

“

´

ď

n p̂ωωzSIpNpψnqqq
¯˚

“

´

ωωz
ď

n ŜIpNpψnqq
¯˚

“

´

ωωzSIIp
ľ

Npψnqq
¯˚

“ ωωzSIIp
ľ

Npψnqq
˚

“ ωωzSIp
ľ

Npψnqq

“ ωωzSIpNp
ł

ψnqq

The arguments for
Ź

ψn proceed as the arguments for
Ž

ψn.
Thus we have argued that if ψ “ xψβyβďα for an ordinal α, and β is such that

the lemma does not hold for ψβ , then there is some γ ă β such that the lemma does
not hold for ψγ . Moreover, since equality of clopen sets is Π0

1, we can effectively (in

ψ and α) find such a γ.
Thus, if the lemma fails for ψ, RCA0 can construct an infinite decreasing sequence

of subsentences at which it fails, contradicting α being well-founded. �

Lemma 1.10 (RCA0). For any infinitary propositional sentence ψ, player I can
force into SIpψq if and only if player II can force into SIIpψq.

Proof. The proof is by cases, depending on the structure of ψ. We emphasise that
the proof is not a transfinite induction on the complexity of ψ.

For ψ “ True and ψ “ False, the lemma is clear. For ψ a conjunction or
a disjunction, the lemma follows from Observation 1.7. By Lemma 1.9, we may
assume that ψ contains no negations. �

Definition 1.11. An infinitary propositional sentence is strategically true if player
i P tI, IIu can force into Sipψq.

Basic behaviour of semantics is provable in RCA0:

Proposition 1.12 (RCA0).

(1) True is strategically true and False is not strategically true.
(2)

Ž

ψn is strategically true if and only if for some n, ψn is strategically true.
(3)

Ź

ψn is strategically true if and only if for all n, ψn is strategically true,
and there is a list xσny of strategies for some player i, with σn witnessing
that i can force into Sipψnq.

(4) For no sentence ψ are both ψ and  ψ strategically true.
(5) A sentence ψ is strategically true if and only if   ψ is strategically true.

However, the familiar behaviour of propositional logic depends on the law of
excluded middle. We say that a sentence ψ is strategically false if  ψ is strategically
true.

Definition 1.13. The law of excluded middle, denoted by LEM, states that every
infinitary propositional sentence is either strategically true or strategically false.
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It is immediate that clopen determinacy implies LEM: for a sentence ψ, consider
the game GSIpψq. By clopen determinacy, either player I or player II has a winning
strategy for this game. If player I does, then ψ is strategically true. If player II has
the winning strategy, then player II can force into ωωzSIpψq “ SIIp ψq, and thus
 ψ is strategically true.

Definition 1.14. The axiom conjunction introduction, denoted by CI, states that
for every infinitary propositional sentence

Ź

n ψn, if every ψn is strategically true
then

Ź

n ψn is strategically true.

Claim 1.15 (RCA0). The law of excluded middle implies conjunction introduction.

Proof. Unfurling the definition, we see that

SI

´

 
ľ

ψn

¯

“
ď

n

n p̂ωωzSIpψnqq.

If
Ź

ψn is not strategically true, then by the law of excluded middle, player I
can force into

Ť

n nˆωωzSIpψnq. Let n be the first move according to a strategy
σ witnessing this fact. Then the rest of the strategy σ shows that player II can
force into ωωzSIpψnq (i.e. player II has a winning strategy for the game GSIpψnq).
In other words, player I cannot force into SIpψnq, and so ψn is not strategically
true. �

Indeed, this result is not surprising. In light of Observation 1.8 and Proposition
1.12(3), conjunction introduction follows from Σ1

1-AC, the principle of Σ1
1-choice.

In Section 3 we prove the following:

Theorem 1.16 (RCA0). The law of excluded middle implies ATR0.

Since ATR0 implies Σ1
1-AC, it follows that LEM proves CI.

We relate the racing pawns game to LEM in Section 2.2:

Theorem 1.17 (RCA0). WWU implies LEM.

We also investigate a comprehension principle related to infinitary logic. A
sequence xψnynăω of infinitary propositional sentences can be thought of as an
infinitary propositional formula ψpxq, with ψpnq stating that ψn is strategically
true. The sets defined by infinitary propositional formulas are the same as the
subsets of ω defined by computable infinitary formulas of first-order arithmetic,
and so we expect (and can prove in ATR0) that they coincide with the relatively
hyperarithmetic sets.

Definition 1.18. The principle of internal hyperarithmetic comprehension, de-
noted by IHC, is the statement that for any infinitary propositional formula ψpxq,
the set tn ă ω : ψpnqu defined by ψ exists.

The principle IHC is not equivalent to ∆1
1-comprehension, which is weaker than

ATR0, and in fact the separation can be observed by ω-models, the most promi-
nent example being the model of all hyperarithmetic sets. The reason is that IHC

requires comprehension for formulas internal to the model, which may include ill-
founded formulas. For example, in the model of hyperarithmetic sets, Harrison’s
linear ordering is a well-ordering, and it supports an infinitary formula (namely the
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iteration of the Turing jump) which if it defined a set, that set would compute all
hyperarithmetic sets.

In Section 3 we prove:

Theorem 1.19 (RCA0). LEM implies IHC, and IHC implies ATR0.

And so since clopen determinacy immediately implies LEM, IHC is equivalent
to ATR0. Indeed, the proof that IHC implies ATR0 does not pass through clopen
determinacy, and so as promised above, Theorem 1.19 gives a direct argument
showing that clopen determinacy implies ATR0.

We sum our results in the following theorem:

Theorem 1.20. The following are equivalent over RCA0:

(1) Galvin’s theorem for labeled trees (WW).
(2) Galvin’s theorem for unlabeled trees (WWU).
(3) The law of excluded middle (LEM).
(4) Internal hyperarithmetic comprehension (IHC).
(5) Arithmetical transfinite recursion (ATR0).

We leave the following question open:

Question 1.21. Can Theorem 1.2 be proved in a weaker system than ACA`0 ? Does
it hold in RCA0?

2. Racing Pawns

Here we show that ATR0 implies Galvin’s theorem, and that Galvin’s theorem
implies the law of excluded middle.

As discussed above, to show that ATR0 implies WW, it is sufficient to prove Theo-
rem 1.2: a proof from ACA`0 that player B does not have a winning strategy for the
game FT , where T is a well-founded tree.

2.1. Player B does not have a winning strategy.

Proof of Theorem 1.2. We first present Galvin’s argument. Let T be a well-founded
tree. Let σ be a strategy for player B in the game FT . Galvin’s idea is to play
infinitely many games in parallel. At the root of the tree T we place infinitely many
pawns, pn, one for each n ă ω. The game Gn considers the pawn pn as the white
pawn, and the pawn pn`1 as the black pawn. At each game, the player B follows
the instructions of the strategy σ. The multi-game is played in several rounds, until
one of the pawns reaches a leaf of T , that is, until one of the games Gn ends.

At the beginning of each round, we move the first pawn p0 to an arbitrary child
of its current location, being a move of the player W in the game G0. As promised,
this prompts a move by the player B in the game G0, as determined by the strategy
σ. The instruction is to move either the white pawn (p0) or the black pawn (p1).
In the first case, we end the round and start the next round. In the second case,
we think of p1’s move as a move by the player W in the game G1, and as promised,
we now let player B move according to σ in the game G1, moving either the white
pawn (p1) or the black pawn (p2). In the first case, we consider p1’s move as a
move by player W in the game G0 (moving the black pawn), and go on to player
B’s response in the game G0, following σ. In the second case, we consider p2’s move
as a move by player W in the game G2 (moving the white pawn), and follow σ’s
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response in the game G2. We repeat... in general, at some step of the round, a
pawn has been moved by player W in a game Gn. Assuming that a leaf has not
been reached, we follow σ’s instruction for player B’s response, moving either the
white pawn (pn) or the black pawn (pn`1). In the latter case, we consider pn`1’s
move as a play by W in the game Gn`1 and move to the next step, playing Gn`1.
In the second case, if n ą 0, we consider pn’s move as a play by W in the game
Gn´1 and move to the next step, playing Gn´1. If n “ 0, we end the round.

It is possible that a round goes on for infinitely many steps. But in this case, ev-
ery pawn pn makes only finitely many moves during the round: an infinite sequence
of moves which does not pass through a leaf of T witnesses that T is ill-founded.
This means that the position of each pawn pn is well-defined at the end of the
round, and so we can proceed to a new round. Further, each game witnesses an
even number of moves during the round, and so, by induction, each game begins
the next round waiting for a move by player W.

Similarly, we see that it is impossible to play infinitely many rounds of the multi-
game. At the beginning of each round we move the first pawn p0; we cannot do so
infinitely many times without reaching a leaf along the way. This shows that the
last round must end with some pawn, say pn, reaching a leaf. But this means that
the player W won the play of the game Gn, as pn is the white pawn of the game
Gn, while player B followed the strategy σ. This shows that σ is not a winning
strategy for player B for the game FT .

In the context of second-order arithmetic, let X be a set which computes both
T and σ. Inductively, we see that the sequence of positions of the pawns at the
beginning of the kth round of the multi-game is computable from Xpkq (uniformly in
k). This is because given the starting position, carrying out the round is computable
from X. In particular, this means that if some pawn moves infinitely many times
during the kth round, then Xpkq computes an infinite path through T . If there is
no such path, then each pawn moves finitely many times, and Xpk`1q “ pXpkqq1

can follow the kth round and tell when each pawn has stopped moving for the rest
of the round, thus finding the pawn’s position at the beginning of the next round.

If there are infinitely many rounds, then Xpωq can follows p0’s path and so find an
infinite path in T . In other words, working in a model of second-order arithmetic,
if Xpωq exists (within the structure) and T has no infinite paths in the structure,
then the multi-game, which also exists in the structure, is only played for finitely
many rounds, and so must end with a pawn reaching a leaf of T and yielding the
counter-example witnessing that σ is not a winning strategy for B. Thus Galvin’s
argument can be carried out in ACA`0 , the system which ensures the existence of

Xpωq. �

2.2. When player W has a winning strategy.

Theorem 2.1 (RCA0). WWU implies the law of excluded middle.

Proof. Given an infinitary propositional sentence ψ, we will construct a tree T such
that W’s winning strategy for the game FT gives a winning strategy for GSIpψq,
either for player I or player II. Recall that an open set is given by a set U Ď ωăω,
with the interpretation that the corresponding open set is

U “ tf P ωω | f ænP U for some n P ωu.

We may assume that U is an anti-chain.
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Since SIpψq is clopen, it is represented by some anti-chain U1, and ωωzSIpψq is
represented by some anti-chain U2. As a first attempt, consider the tree T whose
leaves are the strings in U1, and the strings σ 0̂ for σ P U2. That is,

T “ pU1 Y U2q
Ď
Y pU2 0̂q ,

where UĎ indicates the closure of U under the taking of initial segments, and
U2 0̂ “ tσ 0̂ | σ P U2u. Note that since U1 Y U2 is an anti-chain covering all
of ωω, the set pU1 Y U2q

Ď
is computable from U1 Y U2: a string σ is an initial

segment of an element of U1YU2 if and only if no proper initial segment of σ is an
element of U1 Y U2. Thus the tree T exists by recursive comprehension. This tree
is well-founded because U1 and U2 represent complementary open sets.

Suppose for the moment that the racing pawns game on this tree were to play
out as two sequential sprints: first W and B take turns moving the white pawn
until it reaches an element of U1 Y U2; then, if the game is not yet won, B and W
again alternate moving the black pawn until it reaches an element of U1 Y U2, this
time with B taking the first move. At the end of such a play, if the white pawn
reaches an element of U2 and the black pawn reaches an element of U1, B has won.
So a winning strategy for W that adheres to this restricted play-style will either
guarantee that the white pawn reaches an element of U1 or, failing that, guarantee
that the black pawn reaches an element of U2. Thus it gives a winning strategy for
the game GSIpψq, either as player I or as player II. So the theorem would be proven.

Of course, although we can assume that B plays in the manner described above
(by restricting our attention to those which do), there is no reason a priori to assume
that W’s winning strategy will do so. W might move the black pawn before the
first sprint is over, or it might move the white pawn before the second sprint is
over. There is also the possibility that the white pawn reaches an element of U2 on
B’s turn; then the rules of the game do not allow B to take the first move of the
second sprint. Indeed, an obvious winning move for W in this case is to move the
white pawn to the adjacent leaf.

We address the final concern first, because it is a simple change: we add the sets
of strings U2 0̂0 Y U2 0̂00 to the tree. Now if the white pawn reaches a σ P U2 on
B’s turn, W can take its turn moving the white pawn to σ 0̂, and the black pawn
sprint can begin next. In fact, U2 0̂0 alone would suffice for this, but we will later
need that if the white pawn did not reach an element of U1, then it did not end its
sprint on either a leaf or the parent of a leaf.

Now we describe how we ensure that W plays as desired. Consider the tree in
Figure 2. Suppose the black pawn is at the root of this tree, and suppose the white
pawn is somewhere on the tree which is not a leaf nor the parent of a leaf; so W
has not yet won the game, and W cannot win in a single move. Suppose also that
W is playing a winning strategy, and it is B’s turn to play. Then if B moves the
black pawn to some xny, W must respond by moving the black pawn again. For
if W instead moves the white pawn, then since by assumption W has still not yet
won the game, B can win by moving the black pawn to xn0y.

In general, by attaching a leaf to every odd height vertex, we can ensure that W
always takes its turn moving the black pawn whenever the black pawn reaches an
odd height. This also ensures that W never moves the black pawn from an even
height vertex to an odd height vertex; if it were ever to do so, B could immediately
win by moving the black pawn to the appropriate leaf.
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¨ ¨ ¨

1

0 1

¨ ¨ ¨
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Figure 2. By having a leaf originating from every odd height
vertex, W is required to move the black pawn whenever B moves
it.

Returning to our earlier tree, consider those σ in the tree of odd length which
are not in U1 Y

Ť3
i“0 U2 0̂i. If every such σ is the parent of a leaf, then we know

that a winning strategy for W will play as desired: W will not move the black pawn
from the root before the game ends, as that would result in a loss; during the white
sprint, W will move the white pawn from even heights to odd heights, and B will
move it from odd heights to even heights; during the black sprint, if the game is not
yet over, W will not move the white pawn before the black sprint ends; and during
the black sprint, if the game is not yet over, W will move the black pawn from odd
heights to even heights, and B will move it from even heights to odd heights. These
can all be shown using bounded induction.

Of course, there is no reason to assume that every odd height vertex is the parent
of a leaf, so we add such leaves when constructing our tree T . To aid with that,
consider the function f : ωăω Ñ ωăω, with |fpσq| “ |σ| and for all n ă |σ|,

fpσqpnq “

"

σpnq if n is even,
σpnq ` 1 if n is odd.

(We must slide over all the even levels to make room for the extra leaf at that level.)
This function is computable, so exists by recursive comprehension; and furthermore,
for any set of strings A, f rAs exists. We define our tree T to be

T :“
 

fpσq | σ P pU1 Y U2q
Ď
(

Y
 

fpσq̂ 0 | |σ| is odd, and σ P pU1 Y U2q
Ď
zpU1 Y U2q

(

Y U2 0̂Y U2 0̂0Y U2 0̂00.

Recursive comprehension suffices to show that T exists.
T is well-founded, because if g were an infinite path through T , then gpnq ą 0

for all odd n, and so f´1pgq would be an element of ωω not covered by U1 Y U2;
f´1pgq would exist by recursive comprehension.
T is also unlabeled. Consider any τ and any n ă m with τˆm P T . Then

τ P T . If |τ | is odd and n “ 0, then τ 0̂ P T by construction. If n ‰ 0 or |σ| is
even, then since m ą 0, f´1pτˆmq P pU1 Y U2q

Ď
. Since U1 Y U2 is an anti-chain,

f´1pτq R U1YU2. Since U1YU2 cover ωω, some extension (not necessarily proper)
of f´1pτˆnq must be in U1 Y U2, so τˆn P T by construction.
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As argued earlier, for a W winning strategy, if some B play results in the white
sprint reaching an element of U2, then W’s strategy from that point on computes a
strategy for player II to force into ωωzSIpψq “ SIIp ψq (using f and f´1 to perform
the computation). If no B play results in the white sprint reaching an element of U2,
every B play must result in it reaching an element of U1. So W’s strategy computes
a strategy for player I to force into SIpψq. �

3. Infinitary Sentences

Here we show that LEM (the law of excluded middle) implies IHC (internal hyper-
arithmetic comprehension) and that IHC implies ATR0. Since clopen determinacy
immediately implies LEM, this will be sufficient to prove Theorem 1.19.

Theorem 3.1 (RCA0). LEM implies IHC.

Proof. Given an infinitary propositional formula ψpxq, consider the infinitary propo-
sitional sentence θ “

Ź

npψpnq _ ψpnqq. By Proposition 1.12(2), LEM implies that
ψpnq _  ψpnq is strategically true. Then by Claim 1.15, LEM implies that θ is
strategically true.

So there is a strategy by which player II can force into SIIpθq. Unpacking the
definitions,

SIIpθq “
ď

n

rn 0̂̂ SIIpψpnqq Y n 1̂̂ SIIp ψpnqqs.

So if player I begins by playing n, and then player II, following this strategy, re-
sponds by playingm P t0, 1u, then the remainder of this strategy forces into SIIpψpnqq
(if m “ 0) or SIIp ψpnqq (if m “ 1). So the set of n such that player II’s strategy
responds to n by playing 0 is precisely tn | ψpnqu. This set exists by recursive
comprehension. �

3.1. Some consequences of IHC. Before we can prove IHC implies ATR0, we need
several preliminary results. First, we will need ACA0, arithmetic comprehension.

Lemma 3.2. [RCA0] IHC implies ACA0.

Proof. Fix a set X. The set Y “ tpe, sq | ΦXe,speqÓu is recursive in X, and so exists
by recursive comprehension. Let ψe,s “ True if pe, sq P Y , and ψe,s “ False if
pe, sq R Y . Let ψpeq “

Ž

s ψe,s. Note that the sentence ψpeq is recursive from Y
uniformly in e, and so the sequence xψpeqy exists by recursive comprehension. By
Proposition 1.12(2), ψpeq is strategically satisfied precisely if e P X 1. So by IHC,
Z “ te | ψpequ exists, and Z is precisely X 1. �

We also need CI, the axiom of conjunction introduction. To show that IHC

implies CI, we show that IHC allows us to effectively determine a satisfying strategy
for any strategically satisfied sentence ψ. We first describe what this strategy is.

Suppose ψ contains no negations, and let σ be a sequence of moves in the
game GSIpψq. Then σ determines a subsentence of ψ: at a disjunction, player I’s
next move chooses a disjunct (if it is player II’s turn, player II’s move is irrelevant);
at a conjunction, player II’s next move chooses a conjunct (if it player I’s turn,
player I’s move is irrelevant).

We formalize this with the following definition, which is effective in ψ. For
σ P ωăω:

‚ If σ is the empty string, σpψq “ ψ.
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‚ If σpψq “ True, pσ d̂qpψq “ True for all d P ω.
‚ If σpψq “ False, pσ d̂qpψq “ False for all d P ω.
‚ If σpψq “

Ž

n θn and |σ| is even, pσ d̂qpψq “ θd for all d P ω.
‚ If σpψq “

Ž

n θn and |σ| is odd, pσ d̂qpψq “ σpψq for all d P ω.
‚ If σpψq “

Ź

n θn and |σ| is odd, pσ d̂qpψq “ θd for all d P ω.
‚ If σpψq “

Ź

n θn and |σ| is even, pσ d̂qpψq “ σpψq for all d P ω.

Now, for a sentence ψ, let xψβyβďα be the sequence of subsentences of ψ. IHC

implies that the set of β ď α such that ψβ is strategically true exists. So we can
define the strategy “always choose the satisfied subsentence” for player I in GSIpψq.
More formally, if σ is the (possibly empty) sequence of moves which have been
played so far, the strategy instructs us thus:

‚ If σpψq “ True or False, play 0.
‚ If σpψq “

Ź

n θn, play 0.
‚ If σpψq “

Ž

n θn and σpψq is strategically true, play the least d such that
θd is strategically true. If σpψq is not strategically true, play 0.

We call this strategy the satisfaction strategy for ψ. Note that this definition
requires RCA0 + IHC. We can extend this to sentences with negations by letting the
satisfaction strategy for ψ be the satisfaction strategy for P pψq, the sentence which
is equivalent to ψ but contains no negations.

Lemma 3.3 (RCA0 + IHC). For any infinitary propositional sentence ψ, if ψ is
strategically satisfied, then the satisfaction strategy for ψ is a winning strategy
for GSIpψq.

Proof. By Lemma 1.9, we may assume that ψ contains no negations.
Let xψβyβďα be the sequence of subsentences of ψ. We claim that for all β ď α,

if ψβ is strategically satisfied, then the satisfaction strategy for ψ is a winning
strategy for GSIpψβq. Note that the set X “ tβ ď α | ψβ is strategically satisfiedu
exists by IHC, and the satisfaction strategy for ψβ is computable from xψβy and
X uniformly in β. Thus the sequence of satisfaction strategies exists by recursive
comprehension, and so by Observation 1.8, the set

Y “ tβ ď α | the satisfaction strategy for ψβ is not a winning strategy for GSIpψβqu

exists by arithmetic comprehension. Then X X Y exists and is the set of β ď α at
which the claim fails. Since this set exists, we may proceed by induction.

Fix β. If ψβ is not strategically satisfied, the claim is trivially true. So henceforth,
we assume that ψβ is strategically satisfied.

If ψβ “ True, the result is immediate.
It cannot be that ψβ “ False, since ψβ is strategically satisfied.
If ψβ “

Ž

n θn, then the first play of the satisfaction strategy for ψβ will be a d
with θd strategically satisfied. There are now several cases:

‚ If θd “ True, then SIIpθdq “ ωω. So d̂ ωω Ď SIpψβq, and thus the satisfac-
tion strategy for ψβ will always produce an element of SIpψβq.

‚ It cannot be that θd “ False, since θd is strategically satisfied.
‚ If θd is a disjunction, then SIIpθdq “ pSIpθdqq

˚. So d̂ â SIpθdq Ď SIpψβq for
any a P ω. Further, the satisfaction strategy for ψβ above d̂ a is the same as
the satisfaction strategy for θd, and by hypothesis the later strategy always
produces an element of SIpθdq. So the satisfaction strategy for ψβ always
produces an element of SIpψβq.
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‚ If θd “
Ź

n χn is a conjunction, then â SIpχaq Ď SIIpθdq for any a P ω. So
d̂ â SIpχaq Ď SIpψβq. Further, the satisfaction strategy for ψβ above d̂ a is
the same as the satisfaction strategy for χa, and by hypothesis the later
strategy always produces an element of SIpχaq. So the satisfactoin strategy
for ψβ always produces an element of SIpψβq.

If ψβ “
Ź

θn, then the first play of the satisfaction strategy for ψβ will be 0.
Then for any a which player II might play, θa is strategically satisfied. So by
hypothesis, the satisfaction strategy for θa always produces an element of SIpθaq.
But the satisfaction strategy for θa is the same as the satisfaction strategy for ψβ
above 0̂ a, and 0̂ â SIpθaq Ď SIpψβq. So the play of the satisfaction strategy for ψβ
always produces an element of SIpψβq. �

Lemma 3.4 (RCA0). IHC implies CI.

Proof. Suppose
Ź

n θn is an infinitary propositional sentence with each θn strate-
gically satisfied. If each θn “ xθβ,nyβďαn , then by IHC the set X “ tpβ, nq |

θβ,n is strategically satisfiedu exists, and the satisfaction strategy for θn is com-
putable from

Ź

n θn and X, uniformly in n. So the sequence of satisfaction strate-
gies exists by recursive comprehension, and by Lemma 3.3, this is a sequence of
winning strategies. So by Proposition 1.12(3), we know that

Ź

n θn is strategically
satisfied. �

Finally, we will need LEM.

Theorem 3.5 (RCA0). IHC implies LEM.

Proof. Fix an infinitary propositional sentence ψ, and let xψβyβďα be its sequence of

subsentences. We claim that for all β ď α, either ψ or  ψ is strategically satisfied.
The set of β for which this fails exists by IHC. The claim then follows by induction
(using CI at the appropriate step). �

3.2. A digression. Although our intention is to directly show that IHC implies
ATR0, we derail the progression a moment to show that IHC implies clopen deter-
minacy, since the proof is straightforward.

Lemma 3.6 (ACA0). Every clopen set is of the form SIpψq, for some infinitary
propositional sentence ψ. Moreover, ψ can be obtained uniformly from a represen-
tation of the clopen set.

Proof. Fix a clopen set U, and let U1 and U2 be disjoint anti-chains representing U

and ωωzU, respectively. Consider the tree

T “ tσ P ωăω | σ P pU1 Y U2q
Ďu.

Here again UĎ indicates the closure of U under the taking of initial segments. As
argued in Theorem 2.1, T exists by recursive comprehension.

Totally order T with the Kleene-Brouwer ordering. ACA0 proves that the Kleene-
Brouwer ordering is a well-ordering since T is well-founded [Sim09]. Define infini-
tary propositional sentences ψσ for σ P T as follows:

‚ If σ P U1, ψσ “ True.
‚ If σ P U2, ψσ “ False.
‚ If σ R pU1 Y U2q and |σ| is even, ψσ “

Ž

n ψσ d̂.
‚ If σ R pU1 Y U2q and |σ| is odd, ψσ “

Ź

n ψσ d̂.
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We claim that for σ P T , tf P ωω | σ f̂ P Uu is precisely GSjpψσq, for j “ I if |σ|

is even, and j “ II if |σ| is odd. Since equality of clopen sets is a Π0
1 statement, the

set of σ for which this fails exists by arithmetic comprehension. The claim then
follows by induction.

Thus U “ SIpψλq, where λ is the empty string. �

Theorem 3.7 (RCA0). IHC implies clopen determinacy.

Proof. Fix a clopen set U. Since IHC implies ACA0, U “ SIpψq for some infinitary
propositional sentence ψ. Since IHC implies LEM, either ψ is strategically true, and
thus player I has a winning strategy for GSIpψq “ GU, or  ψ is strategically true,
and thus player II has a winning strategy for GωωzSIIp ψq “ GSIpψq “ GU. �

We can also use Lemma 3.6 to analyze CI. Montalbán introduced the following
axiom, which we express in our own notation:

Definition 3.8 (Montalbán [Mon06]). The axiom of choice for determined games,
denoted by DG-AC, states that if U “

Ť

n npUn is a clopen set, and for every n,
one of the players has a winning strategy for GωωzUn , then one of the players has a
winning strategy for GU.

Montalbán showed that over RCA0, Σ1
1-AC implied DG-AC and DG-AC implied ∆1

1-
comprehension. We shall show that DG-AC is equivalent to CI. First we require ACA0.

Lemma 3.9 (RCA0). CI implies ACA0.

Proof. This is similar to the proof of Lemma 3.2. Again, fix X and let ψpeq be as
before. Note that ψpeq is strategically satisfied precisely if e P X 1, and  ψpeq is
strategically satisfied precisely if e R X 1. So ψpeq _  ψpeq is strategically satisfied
for all e. By CI, ψ “

Ź

epψpeq _  ψpeqq is strategically satisfied. So fix a strategy
for player II to force into SIIpψq.

If player I begins by playing e, player II must either play 0 or 1 (choosing ψpeq
or  ψpeq). If player II chooses ψpeq, then the strategy above xe0y is a strategy for
player II to force into SIIpψpeqq. Similarly, if player II choses  pψpeqq, then the
strategy above xe1y is a strategy for player II to force into SIIp ψpeqq. So X 1 is
precisely the set of e such that player II plays 0 in response to player I beginning
with e. Thus X 1 exists by recursive comprehension. �

Theorem 3.10 (RCA0). DG-AC is equivalent to CI.

Proof. First we show that CI implies DG-AC. Fix a clopen set U “
Ť

n npUn such
that for every n, one of the players has a winning strategy for GωωzUn . If for some n,
player II has a winning strategy for GωωzUn , then player II has a strategy to force
into Un. Then a winning strategy for player I in GU is straightforward: play n,
then follow player II’s strategy to force into Un.

So suppose that for every n, player I has the winning strategy for GωωzUn .
Since CI proves ACA0, for each n there is a ψn such that SIpψnq “ ωωzUn. Then
player I can force into SIpψnq, and so ψn is strategically satisfied. Moreover, the
sequence xψnynPω exists by uniformity, and so ψ “

Ź

n ψn exists. Also note that
SIIpψq “ ωωzU. By CI,

Ź

n ψn is strategically satisfied, and so player II can force
into ωωzU. Thus player II has a winning strategy for GU, and DG-AC follows.

Now we show that DG-AC implies CI. Fix an infinitary propositional sentence
Ź

n ψn, such that every ψn is strategically satisfied. Let Un “ SIIp ψnq “ ωωzSIpψnq.
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Then for every n, player I has a winning strategy for GωωzUn “ GSIpψnq. Let
U “

Ť

n npUn. By DG-AC, some player has a winning strategy for GU. If player I
has the winning strategy, then player I can force into npUn for some n. Consider-
ing the strategy for this above n, player II can force into Un “ SIIp ψnq. But this
contradicts ψn being strategically satisfied, and so is impossible.

So it must be that player II has the winning strategy. But

U “
ď

n

nppωωzSIpψnqq “ ωωz

˜

ď

n

npSIpψnq

¸

“ ωωzSIIpψq,

and so player II can force into SIIpψq. Thus ψ is strategically satisfied, and CI

follows. �

3.3. IHC implies ATR0. As promised, we show that IHC implies ATR0 directly.

Theorem 3.11 (RCA0). IHC implies ATR0.

Proof. Given an ordinal α and a set X, we must show that Xpαq exists. Here Xpαq

is any set Z satisfying:

‚ Zr0s “ X; and
‚ For all β ă α with β ą 1, Zrβs “ pZrăβsq1.

RCA0 proves that any such Z is unique.
Note that, by arithmetic comprehension, the sets

Cpβ, eq “ tσ P ωăω | σ Ă ωrăβs & teuσpeqÓu

exist uniformly in β and e. We construct sentences ψpβ, eq for all β ă α and e P ω
as follows:

‚ If e P X, ψp0, eq “ True.
‚ If e R X, ψp0, eq “ False.

‚ For β ą 0, ψpβ, eq “
Ž

σPCpβ,eq

”´

Ź

σpxγ,yyq“1 ψpγ, yq
¯

^

´

Ź

σpxγ,yyq“0 ψpγ, yq
¯ı

.

These are constructed from X and α by effective transfinite recursion.
By IHC, the set Z “ txβ, ey | ψpβ, eq is strategically satisfiedu exists. We claim

that Z satisfies the criteria to be Xpαq. By arithmetic comprehension, the set of β
at which it fails to meet the criteria exists. So we may proceed by induction.

If e P Zrβs, then ψpβ, eq is strategically satisfied. Thus, by Proposition 1.12(2),
for some σ P Cpβ, eq,

¨

˝

ľ

σpxγ,yyq“1

ψpγ, yq

˛

‚^

¨

˝

ľ

σpxγ,yyq“0

 ψpγ, yq

˛

‚

is strategically satisfied. By Proposition 1.12(3), each ψpγ, yq with σpxγ, yyq “ 1 is
strategically satisfied, as is every  ψpγ, yq with σpxγ, yyq “ 0. Thus, by definition
of Z, y P Zrγs for every σpxγ, yyq “ 1, and y R Zrγs for every σpxγ, yyq “ 0. Thus σ
is an initial segment of Zrăβs, and so e P pZrăβsq1.

Conversely, if e P pZrăβsq1, there is some σ P Cpβ, eq with σ an initial segment
of Zrăβs. By definition of Z, ψpγ, yq is strategically satisfied for every σpxγ, yyq “ 1,
and ψpγ, yq is not strategically satisfied for every σpxγ, yyq “ 0. By LEM,  ψpγ, yq
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is strategically satisfied for every σpxγ, yyq “ 0. By CI,
¨

˝

ľ

σpxγ,yyq“1

ψpγ, yq

˛

‚^

¨

˝

ľ

σpxγ,yyq“0

 ψpγ, yq

˛

‚

is strategically satisfied. By Proposition 1.12(2), ψpβ, eq is strategically satisfied,
and thus e P Zrβs. �
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