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Abstract. Detecting malicious attempts to access computers is difficult
with current security applications. Many current applications do not give
the user the right information to find and analyze possible attempts. We
present VisRAID – a novel visual analytics web application for detecting
intrusions via remote access attempts, and a user study to evaluate the
effectiveness and usability of the application with security profession-
als. The implications of the study will help inform the design of future
security visualization applications.

1 Introduction

As computer networks have become ubiquitous threats to the integrity of the
networks and data have multiplied and diversified extensively. The proliferation
of threats has lead to the design of network applications to monitor for intrusions
[14]. Intrusions are defined as access to systems resources for purposes contrary
to the intended use of the system, or access to the system by an unauthorized
person. Security policies exist as a formal statement of the intended uses of a
system, and misuse can be considered malicious.

There are two main forms of malicious attacks that can be considered: the
outsider and insider. The outsider does not have any legitimate access to the
system and their attempts should be denied. The insider attack is significantly
harder to detect as the attacker has legitimate access rights to the system, but is
using them for unauthorized purposes. Insider attacks prevents simple solutions
being implemented such as blanket denial of access. Further, this complicates
detection of unauthorized access by obscuring illegitimate uses of the system
within legitimate uses which should not be interfered with.

There are two main methods of operation for intrusion detection systems.
Rule based systems flag any attempt that matches defined rules as malicious.
These systems are extremely effective at detecting and blocking known attack
patterns, particularly for outsider access as rules are written for the known attack
patterns. Insider attacks are more difficult to control with rules based systems,



as blanket access blocks are often not suitable as it is not clear if a user is legiti-
mate. Anomaly based systems use machine learning techniques to automatically
classify incoming events as normal or anomalous. Normal events are ignored,
while anomalous events are flagged for operator attention.

Anomaly based systems are able to recognize new intrusion methods but not
able to provide much if any context about events, while Rule based systems
identify which rule was matched. Anomaly based systems are harder to disguise
existing intrusions from, as their classification systems are flexible enough to
recognize small changes in patterns, whereas Rule based systems cannot do this
as easily.

Intrusion detection system can suffer from false positives and false negatives.
False negatives are undesirable as each represents an intrusion that went unde-
tected and potentially un-countered. Note that not all undetected intrusions will
achieve their goals, however security administrators are not able to effectively
ensure the vulnerabilities used are addressed as they may remain unaware of the
intrusion indefinitely unless traces are left elsewhere in the system.

Large numbers of false positives are problematic for secure systems as they
quickly undermine the trust of users [11]. Many intrusion detection systems
offer very limited forms of alerting with email mostly used, and SMS for critical
alerts. The limited range of sensory urgency available via alerting mechanisms
is problematic, as it causes a mismatch between the apparent and importance
of a message [11].

Despite new intrusion techniques and rapidly growing networks, ensuring that
actual intrusions are being detected is important. Existing intrusion detection
systems have a number of problems: they do not scale well to large networks,
cause information overload, and often fail to reveal important information about
logged events.

In this paper we present VisRAID – a novel visual analytics web application
that addresses these problems by allowing security administrators to effectively
monitor remote access attempts to their systems to detect intrusions. VisRAID
currently monitors SSH remote access attempts as the ports used for SSH traffic
are often the focus of intrusion attempts. We present the design, user inter-
face, and implementation of VisRAID, a preliminary user study with security
professionals, and discuss implications for the design of security visualization
applications.

2 Related Work

Related work on visualization of intrusion detection has primarily focused on two
major areas: techniques used to visualize and explore the results of data mining,
and visualization driven techniques. We treat intrusion detection systems (IDS)
as datamining systems. Most of the research to date has focused on network
intrusion detection logs, and relatively little work has considered access or system
log visualization which is the primary focus of our research.



2.1 Data Mining with Visualization

LogView is a visualization application designed to support the understanding
of information extracted through data-mining techniques applied to systems
logs [9]. The visualization component uses treemaps to show clusters of events
in a space efficient manner, with leaf nodes representing events, and branches
showing clusters the events belong to. All leaf nodes are coloured in green, with
shade darkening in four steps representing different statuses: OK, WARN, FAIL,
and OUTLIER. The application allows filtering based on time, and search terms.
Time filtering shows only events occurring on the specified day in the map. Nodes
matching search terms are highlighted red. Detailed information about a given
event is available via a mouseover. The simple filtering and interaction methods,
coupled with very similar shades for clusters leaves the system very vulnera-
ble to producing information overload in users. The overload potential grows
rapidly as the logs grow, as there is very little information hiding present in this
application.

Itoh et al. created a hierarchical system for visualizing intrusion system de-
tection logs [7]. Intrusion detection system messages are lacking in the context
needed to support an evaluation of the priority and accuracy of the report. The
application shows the entire network under surveillance using a rectangle pack-
ing algorithm to group machines by subnets. The number of incidents sent and
received from a given machine are displayed as a coloured bar rising out of the
plane. The amount of data produced quickly leads to navigability and readability
problems as the number of incidents reported grows. Simple filtering applications
are available to limit by severity, time, IP, and signature ID. The application is
highly reliant on an IDS with both a low false positive, and false negative rate,
as almost all information about the actual events is hidden, and there is no easy
method to drill down to detailed information.

Xu et al. present a system log data mining application [13]. The log syntax
is automatically recovered through source code analysis, allowing the system
to be applied to any source available. Once log syntax is extracted, logs are
parsed and machine learning algorithms used to perform feature extraction. Once
the features are extracted the principle component analysis anomaly detection
algorithm are applied to this data, to find interesting patterns in log messages.
This approach identified many issues in the tested software, but was forced
to be extended from a pure data-mining approach as users found the black
box nature of data-mining algorithms caused difficulty in understanding why
the results were as they are. To assist with this, a very simple decision tree
visualization was added. This visualization was created with the intention of
showing the logic used by the data-mining systems to give context for decisions.
As the processing required for feature extraction and anomaly detection is highly
parallel this approach readily scales to millions of entries, and shows very strong
performance in detecting anomalous patterns in logs. From a security standpoint,
however, decision trees alone do not give sufficient context to easily determine if
an anomaly represents an intrusion as the the trees depends on data not always
included in the raw logs.



2.2 Visualization Driven Techniques

Picvis is an application created to generate parallel co-ordinate plots of log
data [12]. Picviz has features to automate data extraction from several common
log formats for use with their plot description language. This language allows
a great deal of control over what variables are shown on a plot. Parallel co-
ordinate plots can show strong clustering extremely well. However there are
issues of scalability, as clusters and patterns can easily be hidden in background
noise unless axes are well chosen. Filtering features are available to help address
this limitation, but still require significant knowledge of the data structure and
content. This application would be excellent for confirmatory analyses however.

Spiralview is an application that displays time-series data which uses a spiral
visualization technique and has been used to visualize static logs and dynamic
data streams [1]. The aim of Spiralview is to reveal repeating patterns in time
series data from intrusion detection system reports and access logs. An evalua-
tion of the spiral technique asked participants to identify regions of high and low
activity in cellphone calling records [3]. Participants were also asked to estimate
the time period of patterns in the cellphone data. Participants were presented
with both a spiral view and linear timeline views of the data. The study claims
that the spiral view approach will offer higher performance than a linear timeline
due to the reinforcement of repeating patterns. The results showed that users
were significantly faster, more accurate, and more satisfied with a linear timeline
presentation for identifying regions of high and low activity. Users were signifi-
cantly more accurate at identifying time periods for repeating patterns with the
Spiralview.

The integrated visualization system is an IDS log based visualization appli-
cation, focusing on attacks originating inside the monitored network [10]. The
application provides a unified logical, geographic and temporal display of data,
using three orthogonal planes. Multiple layouts of the three planes are available,
with animated transitions. The timeline plane in the visualization shows events
for the entire subnet. Individual IP’s can be chosen by shifting the timeline plane
along the IP plane. Filtering features are made available to control what kinds
of events are shown. The application relies on colour to distinguish ports on the
timeline frame, which is easily subject to visual overload, as the human eye is
not able to reliably distinguish fine differences in colours. Vertical position of the
line indicates the number of events. With poorly described filtering systems and
reliance on colour coding to distinguish ports, this system is extremely vulnera-
ble to producing information overload. This leads to missing important events.
The lack of data hiding creates visual clutter which can easily mask important
intrusions composed of a small number of events. The application appears in-
teresting as an attempt to correlate attack information with machine location
through GeoIP systems. Where the number of events is “low enough” lines are
drawn from IP plane to physical location on the lower plane. The exact number
of lines drawn is not clear.



3 VisRAID

VisRAID is a novel web application for network security professionals to visually
explore monitoring of network traffic for intrusion detection. VisRAID adopts a
visualization driven technique design. There are several goals we have used to
help guide the design of VisRAID:

G1: Deploy visualizations over the web.
G2: Strong filtering and highlighting options.
G3: Show surrounding context for anomalous accesses.
G4: Support sharing of work and saving work in progress.
G5: GeoIP support to add context to login attempts.
G6: Allow the user control over which machine is monitored at any given time.
G7: Show network context for currently monitored machine.
G8: Support extensible log parsing.

3.1 User Interface and Timeline Visualization

Figure 1 shows the web-based user interface of VisRAID. The main features are
a timeline overview, vertical scaling, colour-coding of event types, and mouseover
tooltips. Within each timeline, blocks are vertically scaled proportional to the
block with the largest number of events to help with information hiding so
important data is not masked. In Figure 1 the first block consists of 5 events
total, the second block is absent indicating no events occurred in that time, and
the third block shows 25 events of three different classes.

As networks can become extremely busy by producing lots of activity the in-
formation can overwhelm an analyst’s ability to comprehend and detect mean-
ingful patterns. To address this problem we adopted data hiding techniques,
used a time series based approach for displaying the data, and used time bin-
ning to aggregate entities. In our approach all entries in a short time period are
displayed as a single entity, with icons indicating some simple features of the hid-
den data. Such features include superuser accesses, number of abnormal failed
access attempts, number of abnormal access attempts, abnormal login locations
for a user, abnormal login times for a user. Each time a bin can be zoomed in
on, allowing the analyst to see greater detail within the bin. For busy systems
and longer time periods there may be multiple levels of binning to aggregate
sufficiently. This approach reduces the visual complexity, but allows access to
detailed information on demand.

Flags for abnormal login time and location are the most complicated flags,
as they require creating a profile of each user’s access times over repeated access
attempts. This complexity can produce false positives while a user is learning
the application and may be tripped up by a legitimate change in their behaviour.

Timelines are required to have independent vertical scales as the number of
events in a given time period may be highly variable. This is demonstrated in
Figure 1 where the top timeline shows 25 events in the largest bin, and the third
timeline shows in excess of 20K events. Without independent scaling for each



Fig. 1. VisRAID - showing an overview of the Honeynet dataset, slider to navigate,
filtering options to make changes, and legend for different types of events.



Fig. 2. VisRAID - Tooltip showing statistics for a block.

timeline all features of the upper two lines would be overwhelmed by the third.
This led to the inclusion of the black scale indicators found between the controls
and timelines. They are logarithmically scaled such that the timeline with the
highest maximum events per bin is represented by a full bar. These provide a
quick visual indication of how much variability there is between scales.

Each block is subdivided into four colours to represent different classes of
events. Each event must be in exactly one event class, this allows the colour
sections to be linearly scaled to block height (i.e. if half the events are failed
connections, half of the block will be red). The colour coding was added to give an
instant overview of the breakdown of event types within each bin. Hovering the
mouse over a block produces a tooltip showing a detailed statistical breakdown of
the events within that block (see Figure 2). Double-clicking on any block zooms
in on that block, with all four timelines reloading to show only data from the
selected block. Zooming can be performed until either there is only one event in
the chosen block, or each block covers 1 second. Where there is only one event
to display, mousing over the block will show the raw log line in a popup.

Above the timelines a slider can be used to navigate the dataset. The position
of the slider gives an approximate indication of how far through the timeline the
view is currently at. The extreme left is when the first log event occurred. The
extreme right is the latest log event. The slider can be dragged and moved in
steps. Each step covers exactly as long as is currently shown in the timelines (see
Figure 3).



Fig. 3. VisRAID - Showing 2 weeks of the Honeynet dataset.



Mar 16 08:25:22 app-1 sshd[4884]: Server listening on :: port 22.
Mar 16 08:25:22 app-1 sshd[4884]: error: Bind to port 22 on 0.0.0.0 failed: Address already in use.
Apr 19 05:55:20 app-1 sshd[12996]: Accepted password for root from 219.150.161.20 port 55545 ssh2
Apr 19 05:55:20 app-1 sshd[12997]: Invalid user pauline from 219.150.161.20
Apr 19 05:55:21 app-1 sshd[12990]: Failed password for root from 219.150.161.20 port 54890 ssh2
Apr 20 00:00:51 app-1 sshd[24442]: subsystem request for sftp
Jun 8 01:03:34 machine0 sshd[1796]: Received disconnect from 38.165.101.19: 11: Bye Bye

Fig. 4. Examples of SSHD logs, showing each type of message.

3.2 Implementation

While there are many kinds of events, and metadata about connections that can
be logged, extended information is highly dependent on SSH demon configura-
tion. The listed message types can be relied on to be present in all useful logging
levels. A log event will typically be represented by a single log line at the standard
level of logging for OpenSSH. A typical user interaction may generate between
two and three log events: connection, disconnection, and transferring files across
the secure connection. Malicious access attempts may generate between two and
three log events: connection, disconnection, and if the username provided is not
recognised. Rates of log generation can vary widely between networks.

We used the following event types from the SSHD logs: connection attempts,
disconnection messages, subsystem requests, invalid usernames, and system mes-
sages. All events contain a timestamp, server name, service name, and process
ID. The remainder of a message is free text. Each entry contains metadata,
for example a connection attempt contains information about authentication
method, username, source address, and status. Whereas a disconnection mes-
sage contains a code, and source IP. Figure 4 shows an example of some of the
messages contained in the SSHD log files.

A log parsing tool was implemented in two layers: log reader and writer/analyser.
The reader layer is responsible for reading any number of log files into a sorted
list of events. The list of events is then passed to the analyzer/writer layer, which
is responsible for checking connection attempts to see if the location and time are
frequently used by the user and writing the analyzed metadata to the datastore.
The results of the parser are stored in a MySQL database.

To address the design goal of deploying visualizations over the web we im-
plemented a web-based application. The user interface was implemented with
JQuery and visualizations with D3 [2]. Apache Tomcat was used for the server
along with SQL generation from the jOOQ library [4]. The server contained two
layers implemented as servlets. The data access servlet was responsible for fetch-
ing data from the underlying datastore. The servlet takes values from the client
communication layer and returns lists of matching log entries. The servlet can
be easily modified to communicate with different kinds of datastores. The client
communication servlet was responsible for aggregating data returned by the data
access layer, and building HTTP(S) responses from the aggregated data.



4 Evaluation

To evaluate the effectiveness of VisRAID we performed a preliminary user study
with security professionals. We obtained human ethics approval from our Uni-
versity to conduct this user study.

4.1 Participants

Six people were recruited for the user study. Four of the participants were security
professionals who had security components as part of their day jobs, and are
regularly involved in log analysis tasks. The other two were computer science
students who had passed a graduate security course.

4.2 Datasets

Two datasets were used in this study which represent real systems exposed to
the public internet.

Honeynet Forensic Data: from Challenge 10 which is publicly available and
anonymized [6]. The data covers a single server, with 35K log entries covering
16 March to 2 May (approx. 729 events/day).

ECS Data: from our computer science department which are network logs,
anonymized, cover three servers for two disjoint weeks, and contain 74K log
entries. (approx. 5300 events/day).

The Honeynet dataset has been extensively analyzed, over the course of two
forensic challenges. Multiple successful brute force and scattergun attacks have
been identified in this dataset. There were few usernames which showed a pattern
of usage in the log data gathered. The Honeynet dataset was from the GMT-5
timezone.

The ECS dataset is more complex than the Honeynet dataset. The ECS
dataset covers three separate servers, with more active users. The ECS dataset
shows approximated 5300 events/day, more than seven times as many as the Hon-
eynet dataset. The ECS dataset contains disconnection messages absent from
the Honeynet dataset. These messages can account for at most a doubling of
event rates, as there may be at most one disconnection per connection attempt,
and a connection attempt may produce more than one event. As disconnection
messages are not currently useful, they add a significant amount of noise. This
dataset was extensively analyzed before the user study to search for existing at-
tacks. Several attempted brute force and scattergun attacks were found, though
all were unsuccessful.

The difference in attack success rates between datasets reflects differences in
the purposes of the networks. The ECS network is provided for use by staff and
students in our department at our university. This network can reasonably be
expected to have significant amounts of sensitive information stored. Therefore
the school expends significant effort in protecting these systems. In contrast, the



Honeynet system is deliberately exposed to lure in attackers, and as such has
significantly less effort expended on securing it.

The ECS dataset was altered, to introduce a successful scattergun attack on
one server. This was introduced, as there were no naturally occurring successful
attacks discovered after thorough analysis with both VisRAID, and direct ex-
ploration through the database. The introduced scattergun attack in the ECS
dataset had a relatively small attack signature, with only 204 log entries in-
volved, of 4.7K entries for that day. Some successful attacks on Honeynet had
similar numbers of access attempts, though often a much higher proportion of
invalid or failed attempts for a given day.

The ECS dataset is recorded from a live network in normal operation. The
log produced contains IP addresses and usernames of everyone to use the system
during the recording period. As this information could easily be used to identify
people, it requires being anonymized to be ethically used without each user’s
consent. SSHD logs contain usernames and raw IP addresses. Both usernames
and IP addresses can be useful to malicious people. IP addresses allow for ap-
proximate location of a user’s home through GeoIP databases, as well as direct
attacks on the security of their computers. Usernames do not carry as significant
a risk to the owner, though these could be useful to mount an attack on the ECS
system directly.

Both datasets were anonymized, but the procedures were different. The Hon-
eynet dataset is publicly available in an anonymized form, hence we did not have
to do anything further to the data [6]. The ECS dataset was recorded from In-
ternet facing servers in the ECS network. The ECS dataset was anonymized by
system admin staff within our department. The data required anonymizing both
usernames and IP addresses. IP addresses were anonymized with CryptoPAN
a prefix preserving IP address anonymize tool extended with support for IPv6
addresses [5]. CryptoPAN uses strong encryption to generate codes which are
combined with the IP address to produce a new valid IP address. This cannot
be reversed without knowledge of the key, or an efficient means of cracking AES
encryption. Usernames were anonymized through a script, where each username
was replaced with the string “user” and a unique number.

4.3 Procedure

The user study was conducted in a controlled lab, with only the participant
and session instructor present. Audio recordings were made as a record of events
during the study as an addition to handwritten observational notes. Participants
were provided with a desktop computer running at 1920x1080 resolution and the
Chrome web browser.

Participants were given up to ten minutes to familiarize themselves with
VisRAID. After familiarization, participants were asked to answer four questions
about each dataset for a total of eight tasks. Questions were presented to users
in a random order to avoid any learning bias. Participants were given up to eight
minutes for each task. The participants were not given the opportunity to read



questions before the study began which limited their opportunity to learn the
answers to later questions while answering a question.

The four questions are listed below. Tasks 1 through 4 were based on ques-
tions 1 and 2, with tasks 1 and 4 using the ECS dataset, and tasks 2 and 3 using
the Honeynet dataset. Tasks 5 through 8 were based on questions 3 and 4, with
tasks 5 and 7 using the ECS dataset, and tasks 6 and 8 using the Honeynet
dataset. Table 1 lists the combinations of tasks, questions, and datasets.

Q1 Find an instance of a successful brute force attack on root.
Q2 Find an instance of a successful scattergun attack. (an instance where the

attacker attempts many common username/password pairs at random).
Q3 Find an instance of a legitimate user logging in from an abnormal location.
Q4 Find an instance of a legitimate user logging in at an abnormal time.

Q1 and Q2 are based on the most commonly found attack signatures in
SSH logs with many botnets and automated systems carrying out brute force or
scattergun attacks against any IP address responding to connection requests. As
these attacks are very common and can lead to serious compromises determining
success or failure of such attacks is a core function of any log analysis tool. Q3 and
Q4 are based on finding anomalous behaviour by legitimate accounts. Anomalous
behaviour by legitimate accounts can be an indication that their account has
been compromised, or that the account owner has become malicious.

For each task a brief questionnaire was completed indicating participants’
subjective opinions about different aspects of VisRAID [8]. Participants were
asked to complete the following three questions using a 7 point likert scale,
where 7 is Strongly Disagree, and 1 Strongly Agree.

1. I am satisfied with the ease of completing this task.
2. I am satisfied with the amount of time it took to complete this task.
3. I am satisfied with the support information (e.g. online help, documentation)

when completing this task.

Timing and accuracy for each task was recorded. For each task a date, time,
source IP, and where applicable username involved were recorded. This informa-
tion combined with the dataset provides sufficient details to allow checking of
answers for accuracy from the raw logs, database directly, or using VisRAID.

4.4 Results

Each Task was given a pass/fail grade based on accuracy. Time taken to complete
each task was also measured. Results are shown in Table 1. A dash indicates the
task was not completed in time, hence an incorrect answer. Ticks represents
correct answers and crosses incorrect answers.

When participants were working on Tasks 1 and 4 (ECS), they had difficulties
in navigating the timeline which was a significant aspect for carrying out these
tasks. Task 1 involved finding a brute force attack which compromised root.
There was no such attack present in the dataset. Demonstrating the absence



Table 1. Time and accuracy results for each task by participant (Professionals and
Students). Dashes represent tasks not completed within 8 mins. Ticks represents correct
answers and Crosses incorrect answers.

T# Q Dataset P1- P P2 - P P3 - S P4 - S P5 - P P6 - P Correct

1 Q1 ECS 3:05 3 5:46 7 - 7 - 7 - 7 - 7 1
2 Q1 Honeynet - 7 - 7 2:26 3 2:09 3 3:55 3 3:08 3 4
3 Q2 Honeynet 5:10 3 - 7 4:18 3 4:51 3 8:00 3 2:20 7 4
4 Q2 ECS - 7 - 7 4:18 3 3:18 7 - 7 - 7 1
5 Q3 ECS 1:09 3 1:22 3 1:07 3 0:39 3 1:04 3 1:10 3 6
6 Q3 Honeynet 0:31 3 1:07 3 1:02 3 1:13 7 1:00 3 2:15 3 5
7 Q4 ECS 0:45 3 1:59 3 0:42 7 0:44 3 2:06 3 - 7 4
8 Q4 Honeynet 0:32 3 1:10 7 1:32 7 1:07 3 1:15 3 0:55 3 4

Total 26.32 6/8 34.44 3/8 22.45 5/8 20.81 5/8 32.8 6/8 33.08 4/8 29/48

of an item in a dataset can be significantly harder than finding the presence
of it similar to finding bugs in software. Only one participant was successful in
completing Task 1 and we believe the combination of navigation difficulties in
the visualization with increased task difficulty was the cause of the very high
failure rate for this task. Task 4 involved participants looking for a successful
scattergun attack in the ECS dataset. Only one participant was successful in
completing Task 4. Poor navigation support caused problems as the relatively
small attack signature was easily swamped in other data.

Tasks 2 and 3 (Honeynet) were to find a brute force and scattergun attack
respectively. There were multiple successful brute force attacks, and scattergun
attacks with much larger attack signatures (higher number of attempts). These
questions were quickly and reliably answered by most participants. Poor accu-
racy, and significantly slower times with the ECS data coupled with observations
of participants attempting these tasks suggest that navigation difficulties and
limited filtering options were a greater issue in the more complicated dataset,
with smaller attack signatures, and greater noise. Participants performed much
better for tasks 5–8.

The introduced scattergun attack in the ECS dataset had a relatively small
attack signature, with only 204 log entries involved, of 4.7K entries for that day.
Some successful attacks on the Honeynet dataset had similar numbers of access
attempts, though often a much higher proportion of invalid or failed attempts for
a given day. There were many more legitimate access attempts to the ECS net-
work, and much higher event density. Logging of disconnect messages introduced
further noise to the system.

Participant 2 (Professional) had a great deal of difficulty in identifying brute
force and scattergun attacks on both datasets. Feedback and observation of the
participant in action suggest severe difficulties with navigation, combined with
the lack of ability to hide all attempts from a specified set of IP addresses
caused significant difficulties for this participant. Participant 2 commented that
in the normal course of investigating such incidents using tools such as grep,
they would build up a blacklist of IP’s to hide from results as they were fully



investigated and discarded. VisRAID does not currently support this analysis
feature. Participant 2 has significantly more experience in analyzing SSHD logs
using traditional tools where stronger filtering tools are available, such as regular
expressions.

Figure 5 shows the perceived effectiveness for the questions in the survey
participants completed at the end of each task. Each question in the survey was
answered with a score on a 7 point likert scale, where 1 is Strongly Agree and
7 is Strongly Disagree. There were variations between participants as could be
expected in an early prototype, which can be caused by many factors. The results
of the survey match well with the accuracy and time results, as each participant
gave a higher score (Disagree) for tasks they found difficult. For ease and amount
of time to complete a task the perceived effectiveness had a similar range with
median of 2 and an outlier at 7. Amount of time did not have any outliers. For
support the perceived effectiveness had a smaller range with a median of 3. The
results shows that participants felt VisRAID was easy to use, allowed them to
find the answers within a reasonable amount of time, but better support was
required for helping participants to use VisRAID.
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Fig. 5. Perceived Effectiveness of Ease of use, completion Time, and Support available.

5 Discussion

Based on our evaluation we discuss how VisRAID meets the design goals, weak-
nesses, suggested improvements, and limitations of the user study.

5.1 Design Goals

Several goals were presented to help guide the design of VisRAID. Some design
goals were met while others were not.



G1: Deploy visualizations over the web. VisRAID was developed as a
web-based application and can display visualizations using JQuery and D3 inside
a web browser.

G2: Strong filtering and highlighting options. Participants were able to
successfully answer questions about both datasets with VisRAID. Highlighting
is not currently implemented. Extensions could be added to make the filtering
stronger and implementing highlighting.

G3: Show surrounding context for anomalous accesses. The time-
line display shows the surrounding time, with each level of zoom reducing the
surrounding time that is visible. This provides context to users, but requires
improvement due to navigation difficulties when transitioning.

G4: Support sharing of work and saving work in progress. These
goals were not tested, but VisRAID is designed to support sharing of work
through URL passing and saving work in progress through browser bookmarking.

G5: GeoIP support to add context to login attempts This is currently
used for abnormal location detection, but is not currently made available to the
user directly.

G6: User control over machine monitoring. Users have direct control
over which machine’s log data is shown at any time through the server menu,
which is populated with a list of all servers known to the database.

G7: Show network context for currently monitored machine. Due
to time this design goal was not met.

G8: Extensible log parsing. Only SSHD logs are supported, but integra-
tion of other syslog formats is possible.

5.2 Weaknesses

Navigation. Difficulties were experienced by most participants, where abrupt
transitions between zoom levels lead to loss of context, and difficulty building
up a mental map of the timeline. Most users demonstrated improved navigation
as they became more familiar with VisRAID. These issues could be addressed
in two major ways: showing a radar view to assist users in maintaining context,
and animating transitions to build up a mental map of the log.

Filtering. Analysis of the difficulties experienced by participant 2, and sug-
gestions from other participants several new filtering options would significantly
enhance the ability to deal with potential information overload. Implementing
IP blacklisting would be extremely useful for some users, as it would support
an interaction model where one IP is fully investigated, then hidden, and the
process repeated until all suspicious IP’s have been investigated. One partici-
pant suggested allowing filtering by an authentication method. This is strongly
supported by the difficulties users had in Task 1, as on multiple occasions, a
successful root login would occur mixed in with many failed attempts. This
successful login would be from a different IP address, using an authentication
method not amenable to brute force, such as host-based authentication. Allow-
ing filtering by authentication method, would assist users in avoiding this pitfall,
by hiding a class of logins which cannot be involved in attacks.



Information Hiding. Information hiding is an issue for VisRAID as the
timezone display caused all participants to query the discrepancy in times for the
Honeynet dataset. This caused some confusion at first, however, results suggest
that once informed of the issue users could compensate.

5.3 Suggested Improvements

Animated Zooming. Users complained that they get lost when zooming. A
common feature used to smooth out such transitions and ease navigation is ani-
mating the zoom level. Animated zooming offers the potential for improvements
by helping to address the navigation issues experienced by participants. As each
timeline is currently updated independently and zooming replaces the contents of
all timelines. The most common zooming action would be for the selected block
to grow to fill all four timelines, replacing their data with a detailed breakdown.

Filtering by subnet. Adding options to filter IP addresses by subnet would
potentially be useful, as it would allow more controllable filtering on IP than is
currently present. Currently filters are restricted to matching against dotted
quad forms of address. There would be some difficulty in implementing the fil-
tering approach, as IP addresses are currently stored in human readable formats,
not suitable for matching against less common subnets. Matching against sub-
nets in 1 byte increments (/8, /16, /24) would be easy, as these match with the
dotted quad format used.

IP Address Hiding. The inverse of the IP of interest filter is IP address
hiding which shows all addresses except those selected. This would allow sup-
port of another interaction model, as used by participant 2. Implementing IP
hiding, or blacklisting is relatively simple from a server side perspective, as the
datastore is able to efficiently handle complex selection criteria. The difficulty
is maintaining the stateful URL for this filter. Blacklists can grow potentially
quite large, and URLs have an implementation defined maximum size. Larger
URLs can be too long to email, hence a new approach may be needed.

Filter events by authentication type. This will help reduce false detec-
tion rates for brute force and similar attacks, as some authentication methods are
not vulnerable to these attacks. Adding filtering for authentication type would
offer the ability to hide all events that cannot be involved in specific types of
attacks. This would be straightforward to implement but requires changes in sev-
eral places. The data access layer of the server would have to be modified with
an optional where clause in the query, and the URL would have to be modified
with another optional filtering clause.

Suppress abnormal time and place warnings for invalid and failed
attempts. This will cut down the number of abnormalities reported, and help
to reduce false positives and information overload. The ability to spot abnormal
logins would be improved. Implementation would require a change to the server,
to ignore time and location flags when producing the aggregated data.

Separate disconnection messages into their own type. This would
allow hiding of disconnection messages in the same way failed and successful
connections can be hidden, reducing noise in the dataset. Implementation would



require changes in the aggregation code to count disconnections separately, and
draw a 5th category of event.

Scaling to larger datasets. VisRAID was only tested on two datasets,
where ECS was the largest and contained up to 75K log entries. Testing on
much larger datasets will determine how well VisRAID scales and performs.

Larger Evaluation. Once VisRAID has been improved a further evaluation
should be conducted with a larger scope, statistically significant sample size, and
larger and more varied datasets to address the weaknesses. A further improve-
ment to the evaluation procedure would be the inclusion of a training dataset
to allow participants to become familiar with the application.

5.4 Limitations

There were some limitations with the user study and the datasets. The user
study was conducted in a controlled lab environment, for a set period of time,
and an application that the participants were not familiar with. Only six partic-
ipants were involved, two of whom were computer science students. Students are
less ideal for this kind of study, as their experience and domain knowledge are
more limited than those that have been working in the industry for some time.
Obtaining security professionals for user studies is difficult as we found there
were a limited number in the city where the study was conducted. We could
obtain more participants by evaluating in different locations. Small, exploratory
evaluations have advantages in cost and time required. With small numbers of
participants, the evaluation can be conducted in a short time and non-viable
approaches can be discarded before significant development effort is invested.

Both datasets are in the 10’s of thousands of entries, We have not tested
VisRAID with much larger networks such as over 100K log entries. The addition
of a successful scattergun attack to the ECS dataset represents a potential weak-
ness of this study, however, great care was taken to ensure that the inserted log
entries matched the patterns found in other scattergun attacks on both datasets.
Participants were using datasets that they were not familiar with. Testing on
much larger datasets in the future will determine how VisRAID scales.

6 Conclusion

Detecting malicious attempts to access computers is difficult with current se-
curity applications. Many current applications do not give the user the right
information to find and analyze possible attempts. In this paper we presented
VisRAID – a novel visual analytics web application for detecting intrusions via
remote access attempts, and conducted a preliminary user study to evaluate the
effectiveness and usability of the application with security professionals.

The user study involved six participants four of whom were security profes-
sionals. Participants were able to effectively answer the questions in the user
tasks using different sized data sets. Some questions proved to be more difficult
than others. The results showed that participants felt VisRAID was easy to use,



allowed them to find the answers within a reasonable amount of time, but better
support was required for helping users learn the application. VisRAID could be
improved by allowing easier navigation of the visualizations, providing better
support for filtering by IP, and the ability to hide information more effectively.
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