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Abstract

Every graph has an associated polynomial in two variables called the Tutte poly-
nomial. The Tutte polynomial encodes a considerable amount of information
about the graph, including the number of spanning trees, the chromatic polyno-
mial, the flow polynomial, the all-terminal reliability and the Jones polynomial
of the associated alternating knot. We present proofs that these polynomials are
specialisations of the Tutte polynomial. We also review the history of the Tutte
polynomial. We discuss the computational complexity of the polynomial, and
the fact that evaluating the Tutte polynomial of a graph at a point is #P-hard, apart
from at nine special points and along a curve, for which it is computationally easy.
Finally, we outline related research areas of recent interest and give potential fu-
ture work.
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Chapter 1

Introduction

Every graph has an associated polynomial in two variables called the Tutte poly-
nomial. This polynomial can give us a considerable amount of information about
the graph—the number of ways it can be coloured, the number of ways we can
make flows out of the edges of a graph, and the number of ways we can give
orientations to edges such that there are no oriented cycles, to name just a few.

The information encoded in the Tutte polynomial has a number of applica-
tions, and is useful in a wide variety of domains. One such piece of information is
the number of spanning trees of a graph, which is important in the theory of elec-
trical networks. Another is the number of colourings of a graph. A well-known
application of this information is finding whether a map (such as a map of the
world) can be coloured using four colours with each adjacent region (or country)
a different colour. However, many other applications exist. A graph might rep-
resent a scheduling problem where the edges correspond to items that cannot be
scheduled at the same time. For example, consider a graph where the vertices
correspond to exams, and there is an edge between vertices if there is at least one
student taking both exams. Then, a vertex colouring, where each colour corre-
sponds to a different day for an exam, gives a schedule where no student has to sit
two exams in the same day.

Alternatively, a graph might correspond to a network of nodes, where some-
thing travels between the nodes. An obvious example is a computer network. The
all-terminal reliability, which can be directly calculated given the Tutte polyno-
mial, gives the probability that the whole network is still operational given the
probability that any connection between nodes goes down. A flow is a graph with
values assigned to the edges, which could be used to model traffic in a road sys-
tem, fluid in pipes, or anything where something travels through the network of
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nodes. From the Tutte polynomial of a graph, we can find if a flow is possible for
the graph.

The Jones polynomial, which follows easily when given the Tutte polynomial
of the graph associated with the knot, can be used to identify unique knots, which
has applications in biology and chemistry. For example, it can be used to distin-
guish between knotted molecules, where the same compound behaves in different
ways depending on how the chain of molecules is knotted. Chemists are also in-
terested in identifying when a compound has stereoisomers—molecules that dif-
fer only in their three-dimensional orientation, but may have different properties.
Knowing which knots are chiral (when its mirror image is distinct from the origi-
nal) can help do this. Given the Tutte polynomial (or more specifically, the Jones
polynomial), it is straightforward to find if a knot is chiral.

A final application of the Tutte polynomial that we will mention is relevant to a
branch of physics called statistical mechanics. This branch looks at the aggregate
behaviour of large systems of particles by applying tools of probability theory.
An important model in this field is the Ising model, which can model a system
of particles as it changes state; from a liquid to a gas, for example. The Potts
model is a generalisation which can also be used to model magnetism. Most of
the aggregate quantities in a model of such a system can be described in terms of
what is known as the partition function. Although we will not discuss it further,
the partition function of the Ising or Potts model is another piece of information
hiding in the Tutte polynomial.

Given this plethora of applications, an important question is how we calculate
the Tutte polynomial, and the complexity of such a computation. In what follows,
we start by giving the relevant graph theory preliminaries in Section 1.1, before
defining the polynomial and how to find it for a graph in Section 1.2, and giving
some examples of what this polynomial tells us about the graph in Section 1.3. We
then look at how the polynomial came about and give a short history of its devel-
opment in Chapter 2. In Chapter 3 we present proofs that three graph polynomials
and a knot polynomial can be obtained from the Tutte polynomial. In Chapter 4
we give a visual interpretation of the Tutte polynomial in the plane, then we look
at the complexity of calculating the polynomial in Chapter 5. Finally, in Chapter 6
we look at the recent developments in the area and potential future work.
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Figure 1.1: A planar graph on four vertices that we call GA.

1.1 Graph theory preliminaries
A graph G is a set of vertices, denoted V (G), together with a set of edges, denoted
E(G). Each edge is incident to two vertices that need not be distinct; if the vertices
are equal, then the edge is a loop. Two edges that are incident to the same vertex
are adjacent. If two edges are incident to the same pair of distinct vertices, the
edges are parallel. A graph with loops or parallel edges is sometimes called a
multigraph—we allow graphs to have loops or parallel edges.

A graph can be drawn using a point or small circle for a vertex and drawing
a line between two points if there is an edge incident to the corresponding pair
of vertices. An example is given in Figure 1.1. There are different ways a graph
can be drawn in the plane; each drawing is called an embedding of the graph. A
planar graph can be drawn (that is, it has an embedding) with no edges crossing,
as is the case in the figure.

A path between two vertices v0 and vn is a sequence of edges e1,e2, . . . ,en
where each edge ei is incident to vi−1 and vi, and all of the v j’s (for 0 ≤ j ≤ n)
are distinct. A graph is connected if it has a path between every pair of vertices,
otherwise it is disconnected. A cycle is a path (of at least one edge) beginning and
ending at the same vertex. A forest is a graph with no cycles—if the graph is also
connected, it is a tree. A spanning tree of a connected graph G is a tree containing
all the vertices of G and a subset (possibly all) of the edges. An isthmus is an edge
that is not in any cycle; every edge in a forest is an isthmus.

If a graph is not connected, the vertex set V (G) can be partitioned into disjoint
subsets V1,V2, . . . ,Vk where each vertex vi ∈ Vi has a path to each other vertex in
Vi, but no path to any other vertex v j ∈ Vj where j 6= i. Each subset Vi, together
with the edges incident to vertices in this subset, is called a component of G and
G is said to have k components.

A subgraph of G is a graph H where E(H) ⊆ E(G) and V (H) ⊆ V (G). One
common operation on a graph G that results in a subgraph is edge-deletion: the
subgraph (denoted G\e) is, as the name suggests, G with a single edge e removed,
so V (G\e) = V (G) and E(G\e) = E(G)−{e}. Another common operation on a
graph G and an edge e of G is edge-contraction, denoted G/e (though G/e is not
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Figure 1.2: The plane dual of the planar graph in Figure 1.1.

a subgraph of G unless e is a loop). This graph is obtained from G by replacing
the edge e and the vertices incident to it with a single vertex.

A directed graph assigns a direction to each edge, so for the two vertices
incident to an edge one is the head and one is the tail, and the direction of the
edge is towards the head vertex. A signed graph associates a sign (+ or −) with
each edge.

Two graphs G and H are isomorphic if there exist bijections φ and ψ between
the edges in G and the edges in H, and between the vertices in G and the vertices
in H, respectively, such that an edge e in G is adjacent to the vertices v1 and v2
if and only if the edge φ(e) in H is adjacent to the vertices ψ(v1) and ψ(v2).
Informally, two graphs can be thought of as isomorphic when we can go from one
graph to the other by relabelling the edges and vertices.

Given an embedding of a planar graph, drawn with no edges crossing, we can
obtain its plane dual. In an embedding of a graph, we call a minimal region en-
closed by a cycle of edges a face. Each embedding also has an “outside” region—
this is known as the infinite face. We obtain the plane dual G∗ of an embedding of
a graph G by making each face in the embedding of G a vertex in G∗ (including
the infinite face), with an edge between vertices in G∗ if the corresponding faces
in the embedding of G share an edge. As an example, a plane dual of GA, using
the embedding in Figure 1.1, is given in Figure 1.2.

Bondy and Murty give a thorough introduction to these and other concepts
pertinent to graph theory in [10].

1.2 The Tutte polynomial
Every graph G has an associated polynomial in two variables called the Tutte
polynomial and denoted T (G;x,y). In this section we define the polynomial in
two equivalent ways: a recursive definition on the edges of the graph, and a de-
composition on all the subgraphs of a graph with the same set of vertices and a
subset of the edges. We also give examples of calculating the Tutte polynomial
for graphs by either approach.
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The Tutte polynomial for G is given by the recursive definition:

T (G;x,y) =


1 if G has no edges,
xT (G\e;x,y) if e is an isthmus,
yT (G/e;x,y) if e is a loop,
T (G\e;x,y)+T (G/e;x,y) otherwise,

(1.1)

where e is an edge of G.
In words, we can easily calculate the Tutte polynomial of a graph containing

only loops and isthmuses: for such a graph G we have T (G;x,y) = xrys where r
is the number of isthmuses and s the number of loops. If this is not the case, we
can pick any edge e that is not a loop or an isthmus and find the Tutte polynomials
for G\e and G/e. Finding either of these may require recursively repeating this
process, until we have a graph of just loops and isthmuses. The Tutte polynomial
T (G;x,y) is then the sum of these two polynomials.

For example, the Tutte polynomial of the graph GA, given in Figure 1.1, is
calculated below. T (G;x,y) is written as T (G) for readability, and the dashed
edge indicates the edge that is picked when applying the recurrence equation.

T
( )

= T
( )

+T
( )

= T
( )

+T
( )

+T
( )

= x3 +T
( )

+T
( )

= x3 +T
( )

+T
( )

+T
( )

= x3 + x2 + xy+T
( )

= x3 + x2 + xy+T
( )

+T
( )

= x3 + x2 + xy+T
( )

+T
( )

+T
( )

= x3 + x2 + xy+ x2 + xy+T
( )

= x3 +2x2 +2xy+T
( )

+T
( )

= x3 +2x2 +2xy+T
( )

+T
( )

+ y2

= x3 +2x2 +2xy+ x+ y+ y2 (1.2)



CHAPTER 1. INTRODUCTION 6

Figure 1.3: The Petersen graph, which we label GP.

As a second example, consider the Petersen graph, given in Figure 1.3. The
Petersen graph is a non-planar graph on 10 vertices. Its Tutte polynomial is given
by

T (GP;x,y) = x9 +6x8 +21x7 +56x6 +114x5 +12x5y+170x4 +70x4y

+180x3 +170x3y+30x3y2 +120x2 +240x2y+105x2y2

+15x2y3 +36x+168xy+171xy2 +65xy3 +10xy4 +36y

+84y2 +75y3 +35y4 +9y5 + y6. (1.3)

This can be calculated in the same manner, but the process is rather lengthy. As
an indication, after performing all the edge-deletions and edge-contractions that
are required (1286 times an edge will be picked and the edge-deletion and edge-
contraction performed on the graph), there are 2000 graphs containing just isth-
muses and loops to consider.

An equivalent way to compute the Tutte polynomial is using the notion of
rank. For a graph G where A⊆ E(G), we denote by k(A) the number of connected
components of the graph with edges A and all the vertices of G1. The rank of a
subgraph of G with vertices V (G) and edges A is then defined as

r(A) = |V (G)|− k(A). (1.4)

The Tutte polynomial is then given by

T (G;x,y) = ∑
A⊆E(G)

(x−1)r(E(G))−r(A)(y−1)|A|−r(A). (1.5)

This is equivalent to the recursive definition given in (1.1) [34].
1Note each isolated vertex is a connected component, so adds 1 to k(G).
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number of edges
rank 0 1 2 3 4 5

3 8 5 1
2 10 2
1 5
0 1

Table 1.1: The number of subgraphs of GA with given rank and number of edges.

We can see from this definition that the Tutte polynomial is well-defined. In
particular, the polynomial is the same regardless of the order in which edges are
selected when applying (1.1).

Consider again the graph in Figure 1.1. This graph has five edges; since each
can be present or absent in a subgraph there are 25 = 32 subgraphs on the same
set of vertices. Clearly there is one subgraph with all five edges that, with four
vertices and one component, has rank three by (1.4). Thus it contributes a (y−1)2

term. There are five subgraphs with four edges, one for each edge that can be
absent. Each, being connected so again of rank three, contributes a (y−1) term.
There are ten graphs with three edges: eight are spanning trees so contribute a
1, the other two have rank two and thus contribute (x− 1)(y− 1). There are
ten graphs with two edges: all ten have two components and contribute (x− 1)
terms. There are five graphs with a single edge, each having three components, so
they contribute an (x− 1)2 term each. Finally, there is one graph with no edges,
contributing (x− 1)3. Table 1.1 summarises the number of subgraphs of a given
rank with a given number of edges. The sum of these terms

(y−1)2 +5(y−1)+8+2(x−1)(y−1)+10(x−1)+5(x−1)2 +(x−1)3

matches the value of the Tutte polynomial for the graph of Figure 1.1 found earlier.
We could find the Tutte polynomial of the Petersen graph (Figure 1.3) in the

same way. However, with 15 edges, there are 215 = 32768 subgraphs to consider.
We saw earlier that the Tutte polynomial is not “easy” to calculate using the re-
cursive approach either. The difficulty of finding the Tutte polynomial for a given
graph is looked at further in Chapter 5.



CHAPTER 1. INTRODUCTION 8

1.2.1 Internal and external activities
In the previous section we saw two equivalent definitions of the Tutte polyno-
mial. In this section we describe a third; in fact, this definition was how the Tutte
polynomial was originally defined [33]. Although the definitions given in the pre-
vious section are usually the most practical, we will make use of this definition,
in particular to demonstrate the Jones polynomial is an evaluation of the Tutte
polynomial in Section 3.4.3.

Tutte defined what he called the dichromate χ(G;x,y) of a connected graph
G as follows: if G has no edges, then χ(G;x,y) = 1. Otherwise, give the edges
an arbitrary ordering. Let T be a spanning tree of G. Removing any edge of T
results in a forest of exactly two components. Alternatively, for any edge e ∈
E(G)− E(T ), the subgraph of G with edge set E(T )∪ {e} has a single cycle
containing e. An edge e is internally active in T , where e ∈ E(T ), if it precedes
all other edges in G with ends in different components of T\e. An edge e is
externally active in T , where e /∈ E(T ), if it precedes all other edges in the single
cycle contained in the subgraph of G with edge set E(T )∪ {e}. The internal
activity and external activity of T are then the numbers of edges that are internally
active and externally active for T , respectively. Then

χ(G;x,y) = ∑
T⊂G

xrys, (1.6)

where the sum is taken over each spanning tree T of G, r is the internal activity of
T , and s is the external activity of T .

Tutte showed that the number of spanning trees with internal activity r and
external activity s is independent of the ordering given to the edges, so χ(G;x,y)
is well-defined for any graph G.

The definition can be extended to a disconnected graph G with components
G1, . . . ,Gk as follows:

χ(G;x,y) =
k

∏
i=1

χ(Gi;x,y) (1.7)

Tutte also showed that this definition is equivalent to the recursive definition given
in (1.1).

Since the sum in (1.6) is over each spanning tree of a connected graph, it is
clear to see that setting x and y to 1 gives each term a value of 1, so the sum
gives the number of spanning trees. However this is but one of many pieces of
information about a graph encoded in this polynomial, as we will see in the next
section.
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1.3 Data encoded in the Tutte polynomial
In this section we give an overview of some of the information encoded in the
Tutte polynomial.

As previously mentioned, the Tutte polynomial T (G;x,y) of a graph G eval-
uated at (x,y) = (1,1) gives the number of spanning trees for a connected graph
G. Given T (G;x,y), suitable values for x and y give other information about the
graph. We will see that the number of spanning subgraphs is one such piece of
information.

We also look at some one-variable polynomials that can be obtained from
the Tutte polynomial. These polynomials are referred to as specialisations of
the Tutte polynomial, as they are given by first performing a suitable substitution
for x and y in terms of a variable, say λ , and then normalising by multiplying
by a positive or negative monomial of λ . In Chapter 3 we will demonstrate that
these polynomials—in particular, the chromatic polynomial, flow polynomial, all-
terminal reliability and Jones polynomial—are specialisations of the Tutte poly-
nomial.

To illustrate this information, we will continue to make reference to GA, the
graph given in Figure 1.1 on page 3, and the Petersen graph GP (Figure 1.3,
page 6).

As useful as the Tutte polynomial is, not all information about a graph is en-
coded in it. Two non-isomorphic graphs can have the same Tutte polynomial. For
example, the two graphs in Figure 1.4 both contain three edges, all of which are
isthmuses. Thus they both have Tutte polynomial x3. However, we can see they
are not isomorphic. More generally, we can see from (1.1) that the Tutte polyno-
mial is not concerned with which vertices isthmuses (or loops) are connected to.
Therefore we can delete any isthmus (or loop) from a graph G, and add an edge e
to the resulting graph such that e is an isthmus (or loop), and the Tutte polynomial
of this graph is the same as T (G;x,y). The Tutte polynomial is also unaffected by
isolated vertices.

However, the question remains as to whether two markedly different graphs,
and not just differing in the ways described, can have the same Tutte polynomial.
Are there some families of graphs such that each graph in the family has a unique
Tutte polynomial? These are recent areas of research that will be discussed further
in Chapter 6.
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Figure 1.4: Two non-isomorphic graphs with the same Tutte polynomial.

Figure 1.5: The eight spanning trees of the graph in Figure 1.1.

1.3.1 Counting spanning trees and spanning subgraphs
We first consider all possible spanning trees for the connected graph in Figure 1.1.
We can see that there are eight, as given in Figure 1.5. The evaluation T (GA;1,1)
of this graph’s Tutte polynomial, see (1.2), also gives eight as we expect. Simi-
larly, evaluating the Tutte polynomial of the Petersen graph at (1,1) tells us that it
has 120 spanning trees.

Both of these examples are instances of connected graphs; the question re-
mains as to what the evaluation at (1,1) gives for graphs that are not connected.
A maximal spanning forest of G is a subgraph of G, containing all the vertices of
G, that is a forest with the same number of components as G. In other words, a
maximal spanning forest of G is the union of spanning trees for each component
of G. For a graph G that is not connected, T (G;1,1) gives the number of maximal
spanning forests.

A spanning subgraph of G is like a spanning tree in that it is a graph with all
the vertices of G and for every two vertices with a path between them in G, there
is a path between them in the subgraph. However a spanning subgraph relaxes the
requirement that this subgraph’s edge set is minimal (that is, it does not have to be
a tree). The spanning subgraphs not already in Figure 1.5 are given in Figure 1.6.

It turns out that the number of spanning subgraphs is given by T (G;1,2). In
the case of the graph in Figure 1.1, T (GA;1,2) = 14. This is consistent with the
14 subgraphs in Figures 1.5 and 1.6.
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Figure 1.6: Six spanning subgraphs of the graph in Figure 1.1, on four or five
edges.

1.3.2 The chromatic polynomial
A vertex colouring, also called a proper colouring or just a colouring, of a graph
assigns a colour to each vertex so that no vertices connected by an edge share
the same colour. The problem of finding such a graph colouring using λ colours
(known as a λ -colouring) has a long and prolific history—most notably, a proof
to the long-standing conjecture that any loopless planar graph has a 4-colouring
was long sought after. A controversial proof was found by Appel and Haken
in 1976 [4], and following the same general idea Robertson et al. came up with
a simpler proof in 1996 [29]. Along the way, efforts to solve the four colour
problem led to a number of new developments in graph theory—one of which
was the concept of the chromatic polynomial [8].

The chromatic polynomial P(G,λ ) gives the number of ways a graph G can be
coloured with λ colours. For example, a graph of v isolated vertices has P(G,λ )=
λ v since each vertex can be coloured with any of the λ colours. Similarly, a graph
G made up of k components G1,G2, . . . ,Gk has P(G,λ ) = ∏

k
i=1 P(Gi,λ ). A tree

G with v vertices has chromatic polynomial P(G,λ ) = λ (λ −1)v−1 (we can start
at any vertex and colour it any of the λ colours, then each adjacent vertex can be
coloured any of the other λ − 1 colours, and we can repeat this process until the
tree is completely coloured). Any graph with a loop has chromatic polynomial
0, as there is no way to colour the vertex at both ends of the loop with different
colours.

The chromatic polynomial can be found by evaluating the Tutte polynomial
T (G;1−λ ,0) and multiplying by a positive or negative monomial in λ that de-
pends on the number of vertices and components of the graph G (more details are
given in Section 3.1.1). For the graph in Figure 1.1, the chromatic polynomial is:

P(GA,λ ) = (−1)3
λT (GA;1−λ ,0)

=−λ
(
(1−λ )3 +2(1−λ )2 +(1−λ )

)
= λ

4−5λ
3 +8λ

2−4λ

Note that this polynomial evaluates to zero when λ is one or two, but P(GA,3)
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equals six. Thus the graph GA is 3-colourable, and can be coloured in six ways
using three colours.

1.3.3 The flow polynomial
Another essential area of graph theory concerns finding flows for graphs [20]. A
flow is an assignment of a value to each edge of a directed graph so that, for each
vertex, the sum of the values of all incident edges where the vertex is the tail (that
is, “outgoing” edges) is equal to the sum of the values of all incident edges where
the vertex is the head (“incoming” edges).

A nowhere-zero flow also requires that each edge value be non-zero. If a graph
has a flow assigning values of an abelian group2 H, it is called an H-flow. A k-flow
is a Z-flow where edges are assigned values between 0 (or 1, if nowhere-zero) and
k−1.

The flow polynomial F(G,λ ) gives the number of nowhere-zero H-flows for
a graph G and abelian group H of order λ . We can calculate the flow polynomial
of the graph in Figure 1.1 from the Tutte polynomial:

F(GA,λ ) = (−1)2T (GA;0,1−λ )

= (1−λ )+(1−λ )2

= λ
2−3λ +2

More detail is given on this evaluation of the Tutte polynomial in Section 3.2.1.

1.4 The recipe theorem
Before demonstrating that the data described in the previous section can be ob-
tained from the Tutte polynomial, it pays to first introduce an important tool in
this process. If a property of a graph can be shown to demonstrate a few simple
rules, there is a general-purpose formula giving this property as an evaluation of
the Tutte polynomial. This formula was discovered by Oxley and Welsh [28] and
this result is now known as the “recipe theorem”.

2An abelian group is a set of elements with an associative, commutative binary operation such
that one element is the identity and every element has an inverse.
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A generalised3 Tutte-Grothendieck invariant (TG-invariant) is a map f taking
a graph as input, that has the same value for isomorphic graphs and satisfies

f (G) = a f (G\e)+b f (G/e) (1.8)

where e ∈ E(G) is not a loop or isthmus, and

f (G1∪G2) = f (G1) f (G2) (1.9)

for any G1 and G2 where the edge sets are disjoint, and the union of a spanning
tree of G1 and a spanning tree of G2 is a spanning tree of G1 ∪G2

4. Note that
G1 ∪G2 is defined as the graph G with vertex set V (G) = V (G1)∪V (G2) and
edge set E(G) = E(G1)∪E(G2).

The recipe theorem states that any such f is a specialisation of the Tutte poly-
nomial that can be expressed as

f (G) = a|E|−r(E(G))br(E(G))T (G;
x0

b
,
y0

a
) (1.10)

where x0 and y0 are the values f takes for a graph consisting of a single isthmus
and single loop respectively.

This will be used in Chapter 3 to show some well-known graph polynomials
are just specialisations of the Tutte polynomial. But first, we look at the history of
the Tutte polynomial.

3A TG-invariant has a = 1, b = 1 in (1.8), whereas a generalised TG-invariant relaxes this
condition. We refer to generalised TG-invariants simply as TG-invariants in the remainder of this
report.

4These conditions on G1 and G2 may seem unusual, but follow more readily when working
with matroids instead of graphs (in which case f (M(G1)⊕M(G2)) = f (M(G1)) f (M(G2)). Often
when just concerned with graphs, authors simplify this condition to disjoint graphs G1 and G2
(where the vertex sets are also disjoint).



Chapter 2

History

The Tutte polynomial is closely related to another bivariate polynomial, known as
the Whitney rank-generating polynomial, and no discussion of the history of the
Tutte polynomial would be complete without mention of this polynomial. Due
to their close connection, these polynomials are collectively referred to as the
Whitney-Tutte (or Tutte-Whitney) polynomials. They have also been given a va-
riety of other names over the years, and their nomenclature can be the source of
some confusion. In this section we discuss how these polynomials came about,
and give a history of the names they have been given.

Like many other areas of graph theory, the origins of the Tutte polynomial
can be traced back to attempts to find a solution to the “4-colour problem”; that
is, given any map, can the regions be coloured using four colours and no adjacent
regions have the same colour? In 1913, Birkhoff approached the problem by look-
ing at the number of ways a map can be coloured using λ colours [7]. He came
up with a formula for the number of such colourings that was a polynomial in λ ,
with coefficients (that he denoted (p,s)) depending on the number of subgraphs
of p edges and s components, with p and s fixed for each term.

Whitney further developed Birkhoff’s work, publishing two papers in 1932 re-
lated to finding the number of vertex colourings of a graph [37, 38]. The problem
of finding a colouring for the regions of a map is equivalent to converting the map
into a graph, treating the boundaries as edges and positioning a vertex at each point
where boundaries meet, and then finding a vertex colouring for the plane dual of
the graph. Whitney interpreted the coefficients (p,s) as mi j (the number of sets
of edges of rank i and nullity j—where the nullity is the number of edges minus
the rank). The mi j give the coefficients of the Whitney rank-generating function,
which we will discuss shortly, with the i index in reverse order (for example, mi j

14
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for the graph in Figure 1.1 is given by the value in the ith row and jth column
of Table 1.1, starting at index 0). For this reason, these papers of Whitney’s are
often cited as the source of these polynomials, even though they are not explicitly
defined in them.

Whitney’s paper was also significant in being the first publication of the dele-
tion-contraction relation that is now a cornerstone of the theory of Tutte-Whitney
polynomials [37]. However, it is included almost as an afterthought, and gives
credit to R. M. Forster for the result. It stated that for a non-loop edge e, the mi j
satisfy the relation mi j(G) = mi j(G\e)+mi−1, j(G/e).

Birkhoff and Lewis later authored a detailed account on the theory of the one-
variable polynomials for map colourings, introducing the name “chromatic poly-
nomials” [8]. It is also worth noting that the problem of finding a map colouring
is closely related to the number of H-flows for the associated graph. In fact, as
we will see in Section 3.2.1, the single-variable polynomial for the number of ver-
tex colourings of a graph’s plane dual is analogous, up to a scaling factor, to the
polynomial known as the flow polynomial.

Tutte published a seminal work in 1947 that first explicitly defined an unnamed
two-variable polynomial denoted Q(G;x,y) that would come to be known as the
Whitney rank-generating function (we will discuss this polynomial shortly) [31].
He arrived at this polynomial by looking at functions on linear graphs that take
the same value on isomorphic graphs and satisfy a simple deletion-contraction
relation (as in (1.8) with a = 1 and b = 1). This laid the groundwork for what
we now know as a Tutte-Grothendieck invariant. The paper also looked at flows
(under the name β -colourings) and gave the key result that the number of H-flows
of a graph for an abelian group H depends only on the order of H.

In 1954, Tutte introduced another two-variable polynomial χ(G;x,y) that gen-
eralised, for a given graph, the two single-variable polynomials: the chromatic
polynomial and the flow polynomial1 [33]. Tutte found this polynomial using the
internal and external activities of a graph, as described in Section 1.2.1. He called
this polynomial the dichromate of a graph—it would only later be known as the
Tutte polynomial. He also identified that the chromatic and flow polynomials sat-
isfy simple deletion-contraction relations (as we will see later, in equations (3.1)
and (3.2.1)), and that the Tutte polynomial does as well, as in the final case of
(1.1).

The Whitney rank-generating function R(G;u,v), as we now know it, is given

1The flow polynomial was not given by this name at this point in time—it is simply referred to
as the number of “colour cycles” over a non-empty finite set.
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by
R(G;u,v) = ∑

A⊆E(G)

ur(E(G))−r(A)v|A|−r(A).

The coefficient of a term uiv j counts the number of subgraphs of rank i with j
edges. For example, recall Figure 1.1 that has subgraphs of rank and edge set size
as given in Table 1.1. Its Whitney rank-generating function is

R(G;u,v) = u3 +5u2 +10u+2uv+8+5v+ v2.

In 1967, Tutte further developed the theory of the polynomial he denoted
Q(G;x,y), now calling it the dichromatic polynomial of a graph [34]. As men-
tioned earlier, this polynomial is in effect the Whitney rank-generating function,
in terms of x and y, but it is multiplied by a factor of xk(G). Compare this to the
Tutte polynomial, given in terms of rank, in (1.5). It is clear that these polyno-
mials are equivalent: we can go from the Tutte polynomial to the Whitney rank-
generating function, for example, by substituting x = u+ 1 and y = v+ 1. This
connection was also identified by Tutte [34] and Crapo [14].

Although this project focuses on the Tutte polynomial as it relates to graphs,
the definition can be extended to matroids (abstract structures that capture the
notion of dependence), as was done by Crapo [14]. His 1969 paper was also
significant in introducing the names “rank-generating function” and “Tutte poly-
nomial”. Brylawski extended the theory of Tutte invariants, as he called them, to
matroids [13] (his paper also identified the relevancy of the Grothendieck ring;
the “TG-invariant” naming convention came later). Both Crapo’s and Brylawski’s
extensions of the Tutte polynomial to matroids were in fact in Tutte’s PhD the-
sis, completed at Cambridge University in 1948, but these results were not pub-
lished [19].

In 1979, Oxley and Welsh generalised the set of conditions for a TG-invariant,
as given in (1.8), and introduced what would come to be known as the recipe
theorem [28], as was described in Section 1.4.

A considerable amount of literature around this time and since has been iden-
tifying connections to the Tutte polynomial, over a broad spectrum of areas. Of
particular note is the connection with the Jones polynomial [23]. Vaughan Jones
discovered this polynomial while working on the previously unrelated branch of
von Neumann algebras when he came across a set of relations bearing a strik-
ing resemblance to the braid group. Apart from being a breakthrough in terms
classifying knots (initiating a flurry of research on the previously dormant area of
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knot polynomials), this tied together previously unconnected areas of mathemat-
ics and he was awarded the Fields medal for this work in 1990. Thistlethwaite
identified the connection between the Jones polynomial and the Tutte polynomial
in 1987 [30] which we will discuss in Section 3.4.3.

Since the Tutte polynomial was discovered, a large number of specialisations
have been found for graphs, matroids, and even other structures, such as linear
codes. We have touched on a few of these already, and in the following chapter
we concentrate on four of them.



Chapter 3

Specialisations of the Tutte
Polynomial

In this chapter we look in more detail at three graph polynomials and a knot poly-
nomial that are specialisations of the Tutte polynomial. We can obtain these one-
variable polynomials (in λ , say) by performing a substitution for x and y in terms
of λ , and “scaling” by an easily-calculated factor—a monomial in λ . In this chap-
ter rather than just stating it is so, we aim to show why each specialisation can be
obtained from the Tutte polynomial. We present proofs that these polynomials are
specialisations, and give the scaling factors for each case.

This chapter is by no means a complete account of all Tutte-polynomial spe-
cialisations. Specialisations also include evaluations such as the number of span-
ning trees (as mentioned in Section 1.2.1) and the number of spanning subgraphs
(as mentioned in Section 1.3.1). In particular, it is clear that (1,1) gives the
number of spanning trees from the definition of the Tutte polynomial in terms
of internal and external activities (Section 1.2.1). In Chapter 4 we see a visual
representation of how these specialisations relate.

Specialisations are not even limited to graphs polynomials, knot polynomi-
als and enumerative properties of graphs. For more specialisations of the Tutte
polynomial, refer to [12, 17, 36].

3.1 The chromatic polynomial
Recall that the chromatic polynomial P(G,λ ) counts the number of ways a graph
G can be coloured in λ colours. The chromatic polynomial can be given by the

18
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recursive definition:

P(G,λ ) = P(G\e,λ )−P(G/e,λ ) (3.1)

To see why this is so, first consider P(G\e,λ ). There are at least as many colour-
ings of the graph G\e as there are for the graph G: P(G\e,λ ) includes all the
proper colourings of G but also colourings where the vertices at either end of e
are the same colour. Since G/e treats this edge and its endpoints as a single ver-
tex, P(G/e,λ ) enumerates exactly those “improper” colourings of G\e. Thus the
difference gives the number of proper colourings of G.

3.1.1 As a specialisation of the Tutte polynomial
We now present a proof that the chromatic polynomial is a specialisation of the
Tutte polynomial. This is not a new result; Tutte outlined an inductive proof
by comparing, firstly, the deletion-contraction relations of the Tutte polynomial
and chromatic polynomial, and secondly, the formulas for graphs containing only
loops and edges of the two polynomials [33]. More recently, Brylawski and Ox-
ley gave a proof using the recipe theorem [12]. In both, they first prove that a
related polynomial θ(G,λ ) (following Tutte’s notation) is a specialisation of the
Tutte polynomial. The polynomial θ(G,λ ) is related to the chromatic polynomial
by θ(G,λ ) = λ−k(G)P(G,λ ). This approach is necessary when using the recipe
theorem, as we will discuss shortly.

We take a different approach, bypassing this intermediate polynomial. We give
an inductive proof using simple, known properties of the chromatic polynomial
that were described in Section 1.3.2.

Proposition 3.1. The chromatic polynomial is a specialisation of the Tutte poly-
nomial given by:

P(G,λ ) = (−1)r(E(G))
λ

k(G)T (G;1−λ ,0) (3.2)

Proof. We will prove this by induction on the number of edges of G. Let G0 be
a graph with 0 edges. We know the chromatic polynomial for a graph with |V |
isolated vertices is given by λ |V |. Additionally, since T (G0,1−λ ,0) = 1 by (1.1),
k(G0) = |V | and r(E(G0)) = |V |− |V |= 0, we have

P(G0,λ ) = (−1)0
λ
|V |(1) = λ

|V |.

So (3.2) holds for graphs with zero edges.
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Now suppose (3.2) holds for any graph with n− 1 edges; for such a graph
Gn−1,

P(Gn−1,λ ) = (−1)r(E(G))
λ

k(Gn−1)T (Gn−1;1−λ ,0). (3.3)

This is our induction assumption.
Consider Gn. If Gn is not a forest, it contains at least one edge that is not

an isthmus. First consider the case where this edge e is also not a loop. We can
delete or contract such an edge to get Gn\e or Gn/e respectively. Since the edge
is not an isthmus, the number of connected components will not change for either
case. Since the edge is not a loop, contracting an edge will decrease the number
of vertices by one. Thus, the rank of these graphs is given by

r(E(Gn\e)) = |V (Gn)|− k(Gn)

= r(E(Gn)) (3.4)

and

r(E(Gn/e)) = |V (Gn)|−1− k(Gn)

= r(E(Gn))−1. (3.5)

Now, from the recursive definition of the chromatic polynomial in (3.1), the
chromatic polynomial of Gn satisfies

P(Gn,λ ) = P(Gn\e,λ )−P(Gn/e,λ )

= (−1)r(E(Gn\e))λ k(Gn\e)T (Gn\e;1−λ ,0)

− (−1)r(E(Gn/e))
λ

k(Gn/e)T (Gn/e;1−λ ,0)

by the induction assumption in (3.3); so

P(Gn,λ ) = (−1)r(E(Gn))λ
k(Gn)T (Gn\e;1−λ ,0)

− (−1)r(E(Gn))−1
λ

k(Gn)T (Gn/e;1−λ ,0)

from (3.4) and (3.5) and the fact that the number of connected components does
not change when a non-isthmus edge is deleted or contracted. Thus

P(Gn,λ ) = (−1)r(E(Gn))λ
k(Gn)(T (Gn\e;1−λ ,0)+T (Gn/e,1−λ ,0))

= (−1)r(E(Gn))λ
k(Gn)T (Gn;1−λ ,0)



CHAPTER 3. SPECIALISATIONS OF THE TUTTE POLYNOMIAL 21

from the Tutte-polynomial recurrence equation (1.1), satisfying (3.2) for this case.
Secondly, we consider the case where the graph contains a loop. We know

for such a graph the chromatic polynomial is identically zero. By (1.1) the Tutte
polynomial is T (Gn,1− λ ,0) = 0 · T (Gn/e,1− λ ,0) = 0, so (3.2) holds in this
case as well.

Finally, consider the case where all edges that are isthmuses; Gn is a forest.
As discussed in Section 1.3.2 the chromatic polynomial for a forest GF with com-
ponents GT1,GT2, . . . ,GTk is known to be

P(GF ,λ ) =
k

∏
i=1

λ (λ −1)|V (GTi)|−1

= λ
k(λ −1)|V (GF )|−k.

This directly follows from the fact that the chromatic polynomial of a discon-
nected graph is the product of each of its components, and the chromatic polyno-
mial of a tree.

We can easily evaluate the Tutte polynomial for a forest GF using the recur-
rence equation (1.1), since every edge is an isthmus:

T (GF ;x,y) = xT (GF\e;x,y)

= x|E(GF )|

= x|V (GF )|−k

using the fact that each component of GF is a tree with one less edge than its
number of vertices.

Thus

(−1)r(GF )λ
kT (GF ;1−λ ,0) = (−1)|V (GF )|−k

λ
k(1−λ )|V (GF )|−k

= λ
k(λ −1)|V (GF )|−k

= P(GF ,λ ).

So (3.2) holds for any graph of n edges, thus by induction the chromatic polyno-
mial is a specialisation of the Tutte polynomial satisfying (3.2).

As stated earlier, another approach to prove this result is to use the recipe
theorem, as done by Brylawski and Oxley [12]. One might look at (1.10) and
think it would be as simple as plugging in a = 1, b = −1, x0 = λ (λ − 1) and
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y0 = 0. However, the chromatic polynomial in its normal form is not, strictly
speaking, a TG-invariant.

Consider the connected graph I2 of two isthmuses. We can decompose this
graph into the union of two graphs, I1 and I′1, each with a single isthmus, sharing
a vertex. The chromatic polynomial for these graphs is P(I1,λ ) = P(I′1,λ ) =
λ (λ−1). But the chromatic polynomial for the union of these graphs is P(I2,λ )=
λ (λ −1)2, not λ 2(λ −1)2, violating (1.9).

A workaround for this problem is to instead use θ(G,λ ) = λ−k(G)P(G,λ ),
which is a TG-invariant, when invoking the recipe theorem. For the aforemen-
tioned example, we see that θ(I1,λ ) = θ(I′1,λ ) = λ −1 and θ(I2,λ ) = (λ −1)2,
so (1.9) holds in this case. In fact, (1.9) always holds [12]. To then find the spe-
cialisation for the chromatic polynomial, we just multiply the specialisation of
θ(G,λ ) by λ k(G).

3.2 The flow polynomial
Recall that the flow polynomial F(G,λ ) gives the number of nowhere-zero H-
flows for a graph G and abelian group H of order λ . The flow polynomial for a
graph G is given by

F(G,λ ) = ∑
A⊆E(G)

(−1)|E(G)−A|
λ
|A|−r(A). (3.6)

This is a result of the fact that for a connected graph G with a spanning tree T , if
we consider the H-flows where the edge-values for each edge in G but not T are
fixed (that is, they are given some value in H), there is exactly one H-flow [20].

In turn, this implies that the number of H-flows for an abelian group H de-
pends only on the order of the group. As a further consequence to this, Tutte
showed that a directed graph has a nowhere-zero k-flow if and only if it has a
nowhere-zero H-flow for an abelian group H of order k [32, 33]. Thus (3.6) also
gives the number of k-flows for a graph G.

3.2.1 The flow polynomial and the recipe theorem
As with the chromatic polynomial, Tutte first gave an outline of a proof that the
flow polynomial was a specialisation of the Tutte polynomial [33]. It used the
same approach: comparing the deletion-contraction relations for edges that are not
loops or isthmuses, and comparing formulas for graphs of just loops or isthmuses.
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Brylawski and Oxley give a proof using the recipe theorem [12]—our proof is
similar.

Proposition 3.2. The flow polynomial is a specialisation of the Tutte polynomial,
given by

F(G,λ ) = (−1)|E(G)|−|V (G)|+k(G)T (G;0,1−λ ). (3.7)

Proof. To show this, we use the recipe theorem (1.10). In order to apply this
theorem the flow polynomial must be a TG-invariant, so must satisfy the recursion
(1.8) for any edge e that is not an isthmus or loop. Consider the flow polynomial
as given in (3.6). We can pick any edge e that is not an isthmus or a loop, and split
the terms of the sum into two groups: one for subsets A containing e, and one for
subsets A that do not. The resulting equation is

F(G,λ ) = ∑
e∈A

A⊆E(G)

(−1)|E(G)−A|
λ
|A|−r(A)+ ∑

e/∈A
A⊆E(G)

(−1)|E(G)−A|
λ
|A|−r(A). (3.8)

First, examine the left sum. Since e∈ A, for each such A there is a correspond-
ing A−{e} (we label this B in subsequent summands to avoid confusion) such
that |E(G)−A| = |E(G/e)− (A−{e})|, because both E(G/e) and A−{e} will
have one less edge. Since we are just concerned with when e is not a loop, to
satisfy (1.8), r(A/e) = r(A)−1 (there is one less vertex and the same number of
connected components) so |A|−r(A) = |A−{e}|−r(A/e). Moreover, the subsets
of E(G) that contain the edge e are precisely the subsets of E(G/e). Thus we have

∑
e∈A

A⊆E(G)

(−1)|E(G)−A|
λ
|A|−r(A) = ∑

e∈A
A⊆E(G)

(−1)|E(G/e)−(A−{e})|
λ
|A−{e}|−r(A/e)

= ∑
B⊆E(G/e)

(−1)|E(G/e)−B|
λ
|B|−r(B)

= F(G/e,λ ).

In the right-hand side sum of (3.8), since e /∈ A, the subsets of E(G) not con-
taining e are exactly the subsets of E(G\e). Furthermore, |E(G)−A|= |E(G\e)−
A|+1 since E(G) contains e and A does not.

∑
e/∈A

A⊆E(G)

(−1)|E(G)−A|
λ
|A|−r(A) = ∑

A⊆E(G\e)
(−1)|E(G\e)−A|+1

λ
|A|−r(A)

=−F(G\e,λ )



CHAPTER 3. SPECIALISATIONS OF THE TUTTE POLYNOMIAL 24

Therefore
F(G,λ ) = F(G/e,λ )−F(G\e,λ )

satisfying the first condition for a TG-invariant (1.8).
The second condition (1.9) is also satisfied; if we have two edge-disjoint

graphs G1,G2 such that the union of a spanning tree of G1 and a spanning tree
of G2 is a spanning tree of G, each flow of G1 can be combined with every flow
of G2 to get a flow for G1∪G2 (the flows of the edge-disjoint graphs are indepen-
dent) so F(G1∪G2,λ ) = F(G1,λ )F(G2,λ ). Thus, applying the recipe theorem,
as in (1.10), gives (3.7).

This specialisation bears a resemblance to that for the chromatic polynomial
in (3.2)—the flow polynomial is a specialisation at (x,y) = (0,1− λ ) while the
chromatic polynomial is a specialisation at (x,y) = (1−λ ,0). The Tutte polyno-
mial of a planar graph G has the following relationship with the Tutte polynomial
of a plane dual G∗:

T (G;x,y) = T (G∗;y,x).

This can be proven from (1.5) [12]. Thus, we have a relationship between the
chromatic polynomial of a graph G and the flow polynomial of a plane dual of
G. In particular, the chromatic polynomial of G can be obtained by scaling the
flow polynomial of G∗ by a positive or negative power of λ . For example, since
it is known that every loopless planar graph has a 4-colouring, every planar graph
without an isthmus has a nowhere-zero 4-flow.

3.3 All-terminal reliability
The all-terminal reliability of a connected graph G gives the probability that a
corresponding graph G′ is also connected, where each edge of G is, independently
of other edges, retained in G′ with a probability p and removed with a probability
q = 1− p. If the graph were to represent a network where each link is operational
(or open) with probability p, the reliability would give the probability that there
would still be a path between every pair of nodes. The reliability R(G; p) of a
graph G with probability p that each edge is open is given by

R(G; p) = ∑
A∈S

p|A|q|E(G)−A|, (3.9)

where S is the set of edge sets for each spanning subgraph of G, and q = 1− p.
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3.3.1 All-terminal reliability and the recipe theorem
The following result was first given by Oxley and Welsh [28], but under the name
the “percolation probability”. Our proof follows the same approach as theirs, but
we provide more detail as to why the all-terminal reliability is a TG-invariant.

Proposition 3.3. The all-terminal reliability is given by:

R(G; p) = q|E|−|V |+1 p|V |−1T (G;1,
1
q
).

Proof. As with the flow polynomial, we can rearrange the all-terminal reliability
as given in (3.9) to show it is a TG-invariant. If we pick any edge e that is not an
isthmus or a loop and partition S into the sets containing e and those not containing
e, the reliability is given by

R(G; p) = ∑
e/∈A
A∈S

p|A|q|E(G)−A|+ ∑
e∈A
A∈S

p|A|q|E(G)−A|.

The first sum evaluates to

∑
e/∈A

p|A|q|E(G)−A| = ∑
e/∈A

p|A|q|E(G)−({e}∪A)|+1

= q ∑
e/∈A

p|A|q|E(G\e)−(A)|

= qR(G\e; p).

Now consider the second sum. Every A contains e and is a subgraph of G spanning
V (G). If we were to contract e for each A, we would have all the subgraphs of
G/e spanning V (G/e). Therefore, the right sum is

∑
e∈A

p|A|q|E(G)−A| = ∑
e∈A

p|A−{e}|+1q|E(G)−((A−{e})∪{e})|

= p ∑
e∈A

p|A−{e}|q|E(G/e)−(A−{e})|

= pR(G/e; p).

So the all-terminal reliability satisfies the first requirement (1.8) of a TG-
invariant:

R(G; p) = qR(G\e; p)+ pR(G/e; p)
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with a = q and b = p.
We now show that the all-terminal reliability satisfies the second requirement

of a TG-invariant. For a graph G that is the edge-disjoint union of G1 and G2 and
the union of the spanning trees (or equivalently, spanning subgraphs) of G1 and
G2 are spanning trees (or spanning subgraphs) of G, we can consider G1 and G2
separately: the probability that G is still connected is the probability G1 and G2
are still connected. So

R(G1∪G2; p) = R(G1; p)R(G2; p),

and the second requirement (1.9) is also satisfied.
We can now apply the recipe theorem (1.10). We have found a = q and b = p.

Looking at the values of R(G; p) for a graph of a single edge that is an isthmus or
loop respectively:

x0 = R(Gisthmus; p) = p1(1− p)0 = p

y0 = R(Gloop; p) = p1(1− p)0 + p0(1− p)1 = 1

So the all-terminal reliability is another specialisation of the Tutte polynomial, as
follows:

R(G; p) = a|E|−r(E(G))br(E(G))T (G;
x0

b
,
y0

a
)

= q|E|−|V |+1 p|V |−1T (G;1,
1
q
)

Note r(E(G)) = |V |−1 since G must be connected.

3.4 The Jones polynomial
A key problem in knot theory, a branch of topology that looks at the theory of
mathematical knots, is identifying whether two drawings of a knot are really the
same knot. The Jones polynomial gives a way of associating a polynomial to a
knot drawing such that if two drawings have different polynomials, the knots are
different. The Jones polynomial is a specialisation of the Tutte polynomial, which
we will demonstrate in Section 3.4.3. First we introduce some preliminaries in
Section 3.4.1 for readers unfamiliar with mathematical knots, and then describe
the connection between knots and graphs in Section 3.4.2.
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(a) A knot diagram (b) Another knot diagram of the
same knot

Figure 3.1: Ambient isotopic diagrams of the trefoil knot.

3.4.1 Knot theory preliminaries
A knot is a closed curve sitting in three-space that does not intersect with itself.
It is convenient to consider a knot as projected onto a plane, but at each crossing,
where two strands (parts of the curve) are projected to the same position on the
plane, one strand is considered above (an over-crossing) and the other strand is be-
low (an under-crossing). A knot diagram is a drawing of a knot; an over-crossing
is demonstrated using a solid line and an under-crossing by a broken line. Such a
knot diagram is given in Figure 3.1(a). A knot diagram partitions two-space into
a finite number of regions. The outermost region is called the infinite region. We
say that regions are adjacent if they share a strand.

A knot can be deformed, whereby any part can undergo a continuous stretching
or shrinking in any direction in three-space such that the curve remains connected,
closed, and avoids intersection. The result of such a continuous deformation,
called an ambient isotopy, is still considered the same knot—we are concerned
only with how the curve is intertwined with itself. As a result, a knot has a number
of diagrams. For example, two diagrams for a knot (known as the left-handed
trefoil knot) are given in Figure 3.1; the two diagrams are ambient isotopic.

A link is a collection of knots sitting in the same three-space, that may be
intertwined. Each knot is a component of the link. A link is splittable if there is
a diagram such that each component has no crossings with any other component.
An invariant of a link is a property that does not change by ambient isotopy, for
example the number of components. If a link has a diagram such that, when we
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(a) +1 (b) −1

Figure 3.2: The values associated with crossings when calculating the writhe.

trace a path along any component of the link, the crossings alternate between
an over-crossing and an under-crossing (or vice versa, depending on the starting
position), the link is alternating. The trefoil knot in Figure 3.1 is alternating.

An oriented link assigns a direction to each component of the link. The writhe
of an oriented link is a measure of how “twisted” the link is. We find the writhe
by assigning a value to each crossing; the writhe is the sum of each these values.
If the crossing is viewed so the two strands point towards the northeast and north-
west, taking into account their orientation, then the two possible crossings and the
values they are given are as in Figure 3.2. The writhe of the left-handed trefoil
knot in Figure 3.1 is −3, as each of the three crossings contributes a −1. The
writhe of a knot does not change if the orientation is changed (this will change the
direction of both strands in each crossing) but the writhe of a link can be affected
by changing the orientation of some but not all of its components.

A key problem in knot theory is identifying whether two knot diagrams corre-
spond to the same knot. One approach that can assist in this process is associating
polynomials to knots. If we can do this in such a way that the polynomial is an
invariant (that is, every ambient isotopy has the same polynomial) then it is called
a knot polynomial. If two knots have a different knot polynomial, the knots are
distinct up to ambient isotopy.

The Jones polynomial is a knot polynomial that is an invariant for oriented
links containing powers of the term t

1
2 with integer coefficients [23]. For example,

the Jones polynomial of the left-handed trefoil knot, whether calculated for the
diagram in Figure 3.1(a) or Figure 3.1(b), is V (t) = t−1 + t−3− t−4. Another
relevant polynomial for unoriented links is Kauffman’s bracket polynomial [24].
It is closely related to the Jones polynomial as given by

VL(A−4) = (−A)−3w(L)〈D〉, (3.10)

where L is the oriented link corresponding to the unoriented link D, w(L) is the
writhe of L, VL(t) is the Jones polynomial of L and 〈D〉 is the bracket polynomial
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(a) Shading of the trefoil
knot

−

− −

(b) The corre-
sponding graph

Figure 3.3: The associated signed planar graph of the trefoil knot.

of the link D in terms of the variable A. The Jones polynomial for a link can
be found by calculating the bracket polynomial as described by Kauffman [24],
calculating the writhe, and then using (3.10).

A thorough introduction to knot theory is given by Adams [1].

3.4.2 Links and signed graphs
There is a one-to-one correspondence between links and signed planar graphs:
every knot or link diagram has an associated signed planar graph, and conversely
every signed planar graph has a corresponding link diagram.

To find the graph corresponding to a link, we first need to find a shading
(also commonly known as a black-white or Tait colouring) of a link diagram.
For any link diagram, we can shade some of the regions, such that for any two
adjacent regions exactly one is shaded. There are precisely two shadings of any
link diagram satisfying these criteria. By convention, we are interested in the
shading where the infinite region is not shaded1. The shading of the trefoil knot is
given in Figure 3.3(a).

Once we have a shading of a link, we obtain the associated signed planar graph
by creating a vertex for each shaded region and an edge for each crossing, joining
the vertices of the two shaded regions that share a crossing. The sign of the edge
depends on the type of crossing, as given in Figure 3.4. For an alternating knot,
the signs on all the edges of the graph are the same. The graph for the left-handed
trefoil knot is in Figure 3.3(b).

1The other shading would give the resulting graph’s planar dual.
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(a) + (b) −

Figure 3.4: The sign given to the edge corresponding to a crossing of a link.

3.4.3 As a specialisation of the Tutte polynomial
As discussed in Section 3.4.1, the Jones polynomial is a knot polynomial that
is an invariant for oriented links. It is also another specialisation of the Tutte
polynomial [30].

Proposition 3.4. For an alternating link L with associated connected, planar
graph G, the Jones polynomial of L is given by the Tutte polynomial of G evaluated
at (−t,−t−1) multiplied by a weighting; that is,

VL(t) = fL(t)T (G;−t,−t−1).

The weighting is given by

fL(t) = (−1)w(L)t
1
4 (|E|−2(|V |−1)+3w(L)),

where w(L) is the writhe of L, and |E| and |V | are the number of edges and vertices
of G respectively.

We will now demonstrate this connection and show why the weighting is as given
above.

As described in Section 1.2.1, Tutte constructed the Tutte polynomial for a
graph by decomposing the graph into spanning trees, each corresponding to one
term of the polynomial. Each internally active edge of the spanning tree con-
tributes an x to the term, and each externally active edge contributes a y, so a
spanning tree with internal activity r and external activity s will have the follow-
ing term:

xrys (3.11)

Thistlethwaite was the first to observe the connection between the Jones poly-
nomial and the Tutte polynomial [30]. He builds a polynomial of one variable
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for the graph associated with a link in a similar way, where each internally ac-
tive edge contributes −A−3 and each externally active edge contributes −A3. But
whereas edges of each spanning tree that are not internally active or not externally
active (called internally inactive and externally inactive edges respectively) have
no effect on the corresponding term in the Tutte polynomial, each internally and
externally inactive edge also contributes an A and an A−1 respectively to Thistleth-
waite’s polynomial. Thus a spanning tree with internal activity r, external activity
s, internal inactivity u and external inactivity w will have the following term:

(−A−3)rAu(−A3)s(A−1)w (3.12)

This is referred to as the weight of each spanning tree. Note that the contribu-
tions for internally active (or inactive) edges and externally active (or inactive)
edges are inverses of each other (remembering our substitutions for x and y in the
Jones polynomial specialisation of the Tutte polynomial, that is−t and−t−1, will
be also). Thistlethwaite demonstrated that this polynomial is in fact the bracket
polynomial.

In order to understand the relationship between the Tutte polynomial and Jones
polynomial, we need to look at the difference between the bracket polynomial and
Jones polynomial, as well as the effect of the different weights.

Recall that the Jones polynomial is given by VL(A−4) = (−A)−3w(L)〈D〉 where
〈D〉 is the bracket polynomial in terms of the variable A. In other words, the Jones
polynomial in terms of t is found by performing a variable substitution of A = t−

1
4

and then multiplying by a power of−t
3
4 , the power depending on the writhe of the

link.
Now we look at the effect of the different weights. Consider a graph of |V |

vertices and |E| edges. Let each spanning tree of the graph have f edges—we
know that f = |V |− 1. Furthermore, let g = |E|− f : the number of edges in the
graph that are not in the spanning tree. Consider a spanning tree with internal
activity r and external activity s. Each term in the Tutte polynomial is as given
in (3.11), whereas for the bracket polynomial we have

(−A−3)rA f−r(−A3)s(A−1)g−s = (−1)r+sA f−gA−4r+4s.

Since the Jones polynomial substitutes each A with a t−
1
4 (ignoring the extra fac-

tor depending on the writhe for now), and r and s are non-negative integers (so
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(−1)r+s = (−1)r−s) we see that for each term we have

(−A−3)rA f−r(−A3)s(A−1)g−s = (−1)r−st
1
4 (g− f )tr−s

= t
1
4 (g− f )(−t)r−s

= t
1
4 (g− f )(−t)r(−t−1)s. (3.13)

Comparing (3.13) to each term of the Tutte polynomial, see (3.11), we can con-
clude that the Jones polynomial is an evaluation of the Tutte polynomial multiplied
by a factor, with (x,y) = (−t,−t−1).

The factor, still excluding the effect of writhe, is t
1
4 (g− f ). Remembering g =

|E|− f and f = |V |−1 (the graph is connected), we get t
1
4 (|E|−2(|V |−1)). Finally,

we obtain the Jones polynomial by multiplying the bracket polynomial, in terms
of t, by (−t

3
4 )w(L). Thus we can compute the factor:

fL(t) = t
1
4 (|E|−2(|V |−1)) · (−1)w(L)(t

3
4 w(L))

= (−1)w(L)t
1
4 (|E|−2(|V |−1)+3w(L))

Since the writhe is the sum of either a +1 or −1 associated with each edge, the
writhe must be odd when the number of edges is odd, and even when the number
of edges is even. Thus 3w(L)+ |E| is even, and hence the factor is plus or minus
an integer power of t

1
2 .

We can generalise this result to links with corresponding planar graphs that
are not connected. Such a link is splittable as each component of the graph corre-
sponds to a component of the link that has no crossings in common with any other
component. A property of the Jones polynomial (and bracket polynomial) is that
if L is composed of two splittable links L1 and L2 that each share no crossings with
the other, the Jones polynomial is given by VL(t) = (−t−

1
2 − t

1
2 )VL1(t)VL2(t) [24].

Since the Tutte polynomial of a disconnected graph G is the product of the Tutte
polynomial for each component as given in (1.7), we need to include a power of
−t−

1
2 − t

1
2 for each disconnected component to the weighting. Let L be a link as

described of k such components with a total of |V | vertices and |E| edges in the
corresponding graph, and let |Vi| and |Ei| be the number of vertices and edges,
respectively for the ith component. The weighting is given by

fL(t) = (−t−
1
2 − t

1
2 )k

k

∏
i=1

(−1)w(Li)t
1
4 (|Ei|−2(|Vi|−1)+3w(Li))

= (−1)w(L)t
1
4 (|E|−2(|V |−k)+3w(L))(−t−

1
2 − t

1
2 )k.



Chapter 4

The Tutte Plane

We can visualise the various specialisations and evaluations of the Tutte polyno-
mial by looking at the Tutte plane as given in Figure 4.1.

In this figure we plot each piece of information about a graph that we have
discussed in Section 1.3 and Chapter 3 (see [17, 35] for a visualisation of the Tutte,
or Tutte-Whitney, plane containing more evaluations that we have not mentioned).
For example, recall that the chromatic polynomial is given in (3.2) on page 19, so
evaluations of the chromatic polynomial P(G;λ ) are (after scaling) evaluations of
the Tutte polynomial at (x,y) = (1−λ ,0). Therefore, the number of colourings
for a graph are found along the line y = 0, varying the value for x. Similarly,
the flow polynomial is given along the line x = 0 and the all-terminal reliability
is along x = 1 (but only values y ≥ 1 are possible since 0 ≤ p ≤ 1). The Jones
polynomial, being a specialisation at (x,y) = (−t,−t−1) is given by the hyperbola
xy = 1. We also plot the points discussed in Section 1.3.1: the number of maximal
spanning forests at (1,1) and spanning subgraphs at (1,2).

The Tutte plane allows us to envision the different specialisations and eval-
uations for the Tutte polynomial in general. For a specific Tutte polynomial
(the Tutte polynomial for a graph G, say), the bivariate polynomial gives us a
3-dimensional surface that we can plot on the Cartesian coordinate system.

For example, recall the graph we saw in Figure 1.1 (on page 3) with Tutte
polynomial as given in (1.2). A plot of this surface is in Figure 4.2. The intersec-
tion of this surface with the plane y= 0 gives a curve, along which a scaled version
of the chromatic polynomial is defined. Similarly, the curve sitting in the surface
given by restricting the surface to values where x = 0 gives the flow polynomial.

Recall also the Petersen graph we saw in Figure 1.3 (on page 6) with Tutte
polynomial as given in (1.3). A plot of this surface is in Figure 4.3.

33
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Figure 4.1: The Tutte plane.
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Figure 4.2: Plot of the Tutte polynomial for the graph in Figure 1.1.

Figure 4.3: Plot of the Tutte polynomial for the Petersen graph.



Chapter 5

Complexity of the Tutte Polynomial

Given the usefulness of the Tutte polynomial, an important question is: can we
compute the Tutte polynomial for an arbitrary graph “quickly”? If we can, then we
can easily find the specialisations we have discussed earlier, like whether a graph
is λ -colourable, or if it has an H-flow. In this section we answer this question,
but first we need to introduce the relevant concepts of computational complexity,
which we do in Section 5.1. We then detail the complexity of the Tutte polynomial
in Section 5.2.

5.1 Preliminaries
In order to identify when an algorithm (a well-defined process to solve a problem)
is a viable approach, even when the problem size is large, we need a definition of
the computational complexity of an algorithm.

Although we are ultimately interested in the length of time an algorithm will
take to run, this depends on the speed at which the computations are performed.
This variability makes such a time measurement meaningless; it is more valuable
to consider the number of steps in an algorithm. Since this value is still propor-
tional to the time taken, it is still loosely referred to as such.

This “time” also varies wildly between different instances of a problem, so it
is most beneficial to look at this value relative to the size of the problem. Suppose
the size of the problem is n and the time taken by the algorithm in a worst-case
scenario can be expressed as a polynomial in n—this is called a polynomial-time
computable algorithm.

A decision problem is a problem that takes a simple “yes” or “no” as an
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answer. For example, one decision problem is: does a graph G have a proper
vertex-colouring using four colours? The class of all decision problems that can
be computed in polynomial time is denoted P. These problems can be solved us-
ing algorithms that are considered “fast” or “tractable”, as the time taken does not
grow too rapidly as the size of the problem increases.

The aforementioned decision problem of finding if a graph has a 4-colouring
is easy to check—that is, given a proposed 4-colouring for a graph, we can find
in polynomial time if it is a proper colouring. Such decision problems, where we
can verify a solution in polynomial time, are called non-deterministic polynomial-
time computable and belong to the complexity class NP. P is a subclass of NP,
but it is an open problem (and in fact a key unsolved problem in mathematics) as
to whether P = NP.

A problem A is polynomial-time reducible to B, written A ∝ B, if it is possi-
ble to solve A with subroutine calls to B in polynomial time when treating each
call to B as a single step. An NP-problem is also in the class NP-complete if any
other NP problem can be polynomial-time reduced to it. As a consequence, if
a NP-complete problem can be solved in polynomial time, then so can all other
problems in NP, and P = NP. NP-complete problems can be thought of as the
hardest of the NP-problems. A problem (that need not be in NP) is NP-hard if
some NP-complete problem is polynomial-time reducible to it; informally, the
NP-hard problems are those that are at least as difficult as the NP-complete prob-
lems.

Whereas a decision problem finds if there is a solution to some problem, an
enumeration problem finds the number of solutions. We have seen numerous ex-
amples of enumeration problems that we can solve by a simple substitution once
we have the Tutte polynomial: the number of spanning trees of a graph, the num-
ber of λ -colourings of a graph, and the number of H-flows of a graph for an
abelian group of order |H|.

The complexity class #P is the analogue of NP for enumeration problems;
namely, the structures being counted can be recognised in polynomial time. As
with the NP-complete class for decision problems, the #P-complete class contains
a problem A in #P if for any other problem B in #P, B ∝ A. Just as a problem is NP-
hard if some NP-complete problem is polynomial-time reducible to it, a problem
is #P-hard if some #P-complete problem is polynomial-time reducible to it.

For an introduction to computational complexity, in the context of problems
relating to graphs, see [2]. For a more detailed account of these concepts, refer to
[35].
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5.2 Computational complexity of the Tutte polyno-
mial

Jaeger, Vertigan and Welsh showed that evaluating the Tutte polynomial of a graph
(or more generally, a matroid) is #P-hard, apart from for nine special points and
along a curve (x−1)(y−1) = 1, for which it is easy [21].

They identify three problems: finding the Tutte polynomial of a graph, π1[G];
evaluating the Tutte polynomial of a graph at a point (a,b), π2[G,a,b]; and finding
the Tutte polynomial along a curve L in the xy-plane, π3[G,L]1. It is straightfor-
ward that for a point (a,b) on the curve L, π2[G,a,b]∝ π3[G,L], since evaluating at
a point is easy when we have the polynomial along a curve containing the point;
and π3[G,L] ∝ π1[G], since evaluating along a curve is easy when we have the
polynomial. However, they also show that the converse polynomial time reduc-
tions also hold in some cases.

They define a special curve as one where (x−1)(y−1) = α for some constant
α , and prove the following important result2:

Theorem 5.1. Finding the Tutte polynomial along a special curve is polynomial
time reducible to evaluating it for any point on the curve, other than nine special
points.

In other words, finding the Tutte polynomial at any non-special point is at least as
difficult as finding it along a special curve containing the point.

For a special curve where α ≥ 3, the curve contains the point (1−α,0), for
which evaluating the Tutte polynomial is known to be #P-hard since this corre-
sponds to the problem of finding an α-colouring of a graph. Therefore, finding the
Tutte polynomial along any such special curve is #P-hard. In fact, for any special
curve such that α 6= 1, there is at least one point known to be #P-hard by a similar
approach, so finding the Tutte polynomial along any such curve is #P-hard. Thus
by Theorem 5.1, finding it at any non-special point, other than those sitting on
(x−1)(y−1) = 1, must also be #P-hard.

Evaluating the Tutte polynomial at any of the nine special points is known to
be easy. One such point, (0,0), is trivial. Another, (1,1), which counts the number
of maximal spanning forests, can be found in polynomial time by what is known

1In each case they state the input of the problem as a “succinct” matroid rather than a graph,
but, in line with the rest of this report, we just consider graphs (which, essentially, fall into the
class of succinct matroids).

2This proof, in their words, is “rather technical”—for details refer to the source material or [27].
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as Kirchoff’s matrix-tree theorem (see [6] for details). Of the six special points
that have real values, the others are (−1,−1), (−1,0) and (0,−1).

Along the curve (x− 1)(y− 1) = 1, we can show evaluating the Tutte poly-
nomial to be easy by giving a formula for the polynomial in this case, using only
the rank and cardinality of E(G). This result is often stated as trivial following
from (1.5), but we give an explicit proof.

Lemma 5.2. Evaluating the Tutte polynomial is easy for any (x,y) on the curve
(x−1)(y−1) = 1.

Proof. From (1.5) and using (x−1) = (y−1)−1 we get

T (G;x,y) = (y−1)−r(E(G))
∑

A⊆E(G)

(y−1)|A|

= (y−1)−r(E(G))
|E(G)|

∑
i=0

{(
|E(G)|

i

) i

∑
j=0

(−1) j
(

i
j

)
yi− j

}
,

since the number of i-element subsets of E(G) is given by
(|E(G)|

i

)
and from the

binomial expansion of (y−1)|A|. We can change the order of the summations and
rearrange to get

T (G;x,y) = (y−1)−r(E(G))
|E(G)|

∑
i=0

{
yi
|E(G)|−i

∑
j=0

(−1) j
(
|E(G)|

j+ i

)(
j+ i

j

)}
,

and then use the fact that(
|E(G)|

j+ i

)(
j+ i

j

)
=

|E(G)|!
(|E(G)|− j− i)!i! j!

=

(
|E(G)|

i

)(
|E(G)|− i

j

)
to get

T (G;x,y) = (y−1)−r(E(G))
|E(G)|

∑
i=0

{
yi
(
|E(G)|

i

) |E(G)|−i

∑
j=0

(−1) j
(
|E(G)|− i

j

)}
.

(5.1)
It is a well-known property of binomial coefficients that

n

∑
j=0

(−1) j
(

n
j

)
= 0
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when n > 0, therefore the terms of the rightmost sum in (5.1) are only non-zero
when i = |E(G)|, giving

T (G;x,y) = (y−1)−r(E(G))y|E(G)|.

Collectively these give a main result of [21]:

Theorem 5.3. Evaluating the Tutte polynomial of a graph is #P-hard, apart from
for nine special points and along the curve (x−1)(y−1) = 1, for which it is easy.

This is an important result which has a number of implications. For a given
graph, although finding the number of spanning trees is easy by Kirchoff’s matrix-
tree theorem, finding the number of spanning subgraphs is #P-hard since (1,2) is
not a special point. Likewise, counting the number of nowhere-zero k-flows for
k ≥ 3 is #P-hard, as is finding the all-terminal reliability of a graph.

One further result of this paper worth mentioning is that determining the Tutte
polynomial on the plane is polynomial time reducible to finding it along a non-
special curve. Since this means that the Tutte polynomial for a non-special curve is
at least as difficult as finding the polynomial for the whole plane, finding the Jones
polynomial of an alternating link (a non-special curve on the Tutte plane) is also
#P-hard. We discussed in Section 3.4.1 the importance of the Jones polynomial
in finding if two knot diagrams correspond to the same knot—this result shows
that finding the Jones polynomial in the interest of distinguishing knots is not
straightforward.

Finally, the result of Theorem 5.3 has been strengthened when looking at a
some specific classes of graph, such as planar graphs, or bipartite graphs. In par-
ticular, although polynomial-time algorithms for evaluating the Tutte polynomial
can be all but ruled out, polynomial-time algorithms have been found we looking
at the class of graphs with bounded tree-width. Noble gives a survey of these
findings, and other results regarding the complexity of polynomials for graphs
in [27].



Chapter 6

Recent Developments and Open
Problems

The Tutte polynomial is still an active area of research. Kung (2008) gives a
valuable overview of areas of recent interest in [26]. He identifies two key areas:
investigating to what extent the Tutte polynomial determines a graph, and find-
ing generalisations of the Tutte polynomial. Another area of recent interest that
we will discuss briefly is finding approximate values for evaluations of the Tutte
polynomial.

In Section 1.3 we saw that the Tutte polynomial is not a graph invariant—
that is, there are graphs with the same Tutte polynomial that are not isomorphic.
However the question remains, can this be considered the general case, or are
such graphs in the minority? A graph G for which any other graph that has the
same Tutte polynomial is isomorphic to G is called T -unique. Which graphs are
T -unique? Recent work has answered these questions to some degree, but it is
still very much an open area.

A graph G for which the only graphs that have the same chromatic polynomial
as G are isomorphic to G is called χ-unique. A number of families of graph are
known to be χ-unique, and since the chromatic polynomial is a specialisation of
the Tutte polynomial, it follows that they are also T -unique. These include com-
plete graphs (a graph that contains a single edge between every pair of vertices),
cycle graphs (a graph containing a single cycle on n vertices that visits every ver-
tex, denoted Cn) and complete bipartite graphs Kp,q (graphs where the vertices
can be put into two groups of size p and q such that any vertex is adjacent to every
vertex of the other group) where p,q≥ 2 [25].

More recently, a number of families of graph have been found that are T -
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unique but not necessarily χ-unique. For example, a graph on n+ 1 vertices is
called a wheel if it can be obtained from the cycle graph Cn by adding a single
vertex adjacent to every other. De Mier and Noy (2005) [15] showed that wheels
(for n ≥ 3) are T -unique. They also proved that complete multipartite graphs
(graphs where the vertices can be partitioned into a number of parts such that a
vertex is adjacent to every vertex not in the same part) and hypercubes (projections
of a n-dimensional cube onto the plane, with the obvious vertices and edges) are
also T -unique, among others. Duan et al. (2009) proved that another family known
as twisted wheels are also T -unique [16]. Obvious future work is to find all such
families, but, as stated by De Mier and Noy, a difficulty is that proving a family
of graphs is T -unique seems to require a different approach each time.

As seen earlier, some graphs that are not T -unique are easy to find, such as
those containing an isthmus1. However, the problem becomes more difficult as
the connectivity (the minimum number of vertices that need to be removed to dis-
connect a graph) increases. A k-connected graph that is not T -unique has been
shown to exist for any k [9, 11]. However, work still remains to see if there are
large families of T -unique graphs with high connectivity. It has also been conjec-
tured that almost every graph is T -unique; more precisely, that the probability of
a graph on n vertices being T -unique tends to one as n tends to infinity [9].

A considerable amount of research exists, and is still being developed, on gen-
eralisations of the Tutte polynomial. Farr gives a survey of generalisations in the
literature as of 2006 in [17]. These generalisations take various forms that Farr
neatly categorises into four types. The first type is generalisations to mathematical
objects that have less structure than graphs. An obvious example, that we men-
tioned previously, is the generalisation of the Tutte polynomial to matroids. The
Tutte polynomial has also been generalised to specific types of matroids (such as
representable matroids) and structures more general than matroids (such as gree-
doids and semimatroids). The second type of generalisation is to objects that
have more structure than graphs, for example signed graphs, or graphs with one
or more weightings assigned to each edge. The third type is generalisations to
objects analogous to graphs, and the fourth type is generalisations of the polyno-
mials. We will touch on this final type some more; for details on these or the other
types of generalisations refer to Farr [17].

A number of generalisations of the Tutte polynomial exist that contain as spe-

1Note that not every graph containing an isthmus is T -unique. The graphs containing an isth-
mus that might not have a non-isomorphic graph with the same Tutte polynomial are those such
that any repositioning of the isthmus results in an isomorphic graph. A trivial example is the
complete graph on two vertices.
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cialisations other useful polynomials in graph theory, or even other related areas.
Many of these introduce another variable (or in some cases, more than one). As
recently as 2010, Averbouch, Godlin and Makowsky introduced a three-variable
polynomial that generalises the Tutte polynomial [5]. A matching is a set of edges
of a graph, none of which have any vertices in common. The matching polyno-
mial, a generating function for the number of matchings of varying sizes for a
graph, and in fact generalisations of this polynomial (such as the independent set
polynomial and vertex-cover polynomial), are contained as specialisations. Their
polynomial satisfies a recurrence relation in terms of not only edge deletions and
contractions, but edge extractions (deletion of an edge, its incident vertices and
adjacent edges). Furthermore, they show that their polynomial is the most general
satisfying a linear recurrence relation with respect to the three edge-elimination
operations.

We saw earlier that computing the Tutte polynomial for an arbitrary graph
can be an insurmountable problem. However, recent research has investigated in-
stead finding approximations to the evaluation for a graph at a given point. A fully
polynomial randomised approximation scheme (FPRAS) is a polynomial-time ap-
proximation algorithm with a high probability of having arbitrarily small relative
error. An FPRAS is known to exist for any point (x,y) on the Tutte plane satisfying
(x−1)(y−1) = 2 and y > 1 [22]. An FPRAS is also known to exist when plac-
ing certain restrictions on the input graph, in particular for dense graphs, where
each vertex has at least α|V (G)| neighbours for some fixed α > 0 [3]. However,
a number of points on the Tutte plane have been shown to have no FPRAS in the
general case. Most recently, Goldberg and Jerrum (2008) substantially widened
the area over which it is known no FPRAS exists [18]. The problem of finding all
points where an FPRAS can and cannot exist is still open.
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