Bases and confinement

C. J. Atkin

Edwardsville, 16th May 2006

Let E and F be normed spaces, and let U be an open set in E and $f: U \longrightarrow F$. I shall understand differentiability of f in the sense of Fréchet. A function $f: E \longrightarrow F$ is "of bounded support" if the set $\{x \in E : f(x) \neq 0\}$ is bounded.

It is unusual for a Banach space to admit a nonzero realvalued C^{∞} function of bounded support, or "smooth bump function". Any Banach space that does so contains a copy of either c_0 or ℓ^{2q} for some natural number q (for a full discussion, see the book of Deville, Godefroy, and Zizler, V.4). Hence, for most Banach spaces E, C^{∞} partitions of unity are out of the question, and many familiar constructions are unavailable for C^{∞} manifolds modelled on E. In particular: suppose M is a paracompact C^{∞} manifold modelled on a separable Banach space E. Is there always a nonconstant real-valued C^{∞} function on M? One would really like to have many such functions — but the question whether, in general, there exist any at all was raised by Elworthy in 1972 and, so far as I know, remained unanswered for more than 20 years. I believe that the nonseparable case still remains open.

The crucial step is to substitute for the question of "bump functions" an extension question. Let B(R) denote the ball of radius R about the origin in the separable normed space E. If one can prove that

[A] for any C^{∞} function $f: B(R) \longrightarrow F$ into another normed space F, there are a C^{∞} function $g: E \longrightarrow F$ and a radius r, 0 < r < R, such that g|B(r) = f|B(r),

then one can deduce, by a complicated inductive procedure of piecing-together, that

[B] if M is a paracompact C^{∞} manifold modelled on E, and N a closed C^{∞} submanifold, and if $f: U \longrightarrow F$ is a C^{∞} function on a neighbourhood U of N, then there are a neighbourhood V of N, with $V \subseteq U$, and a C^{∞} function $g: M \longrightarrow F$, such that g|V = f|V.

(The neighbourhood V depends only on the geometry of M and V, not on the function f.) In particular, N might be a discrete set in M, and then one discovers that there is a C^{∞} function $M \longrightarrow F$ with values prescribed near N.

The extension property [A] is satisfied if E has the following property (the name "confinement" is due to Lempert):

Definition. The normed space E is confined if there is a C^{∞} mapping $\phi: E \longrightarrow E$ (a "shrinking map") such that, for some numbers r and R with $0 < r < R < \infty$,

 $\phi(E)\subseteq B(R)\quad\text{and}\quad \phi|B(r)=1|B(r)\,.$

(Like [A], this definition does not require E to be separable, and does not depend on the choice of norm in E. But [A] \Rightarrow [B] does require separability.)

The "extension" g sought in [A] can then be $f \circ \phi$.

Confinement is merely a sufficient condition for [A], but it has other applications that make it of considerable independent interest. Thus it is pleasant to know:

Theorem. If the Banach space E admits a Schauder basis, it is confined.

Indeed, the "shrinking map" ϕ can be chosen to satisfy some extra conditions, as I shall explain in a moment. Let the basis be $\{e_1, e_2, e_3, ...\}$, with coefficient functionals $\{\lambda_1, \lambda_2, ...\}$; the projection P_n on the span E_n of $\{e_1, ..., e_n\}$ is given by

$$P_n x \coloneqq \sum_{k=1}^n \lambda_k(x) e_k$$
.

Then $\{P_n : n \in \mathbb{N}\}$ is uniformly bounded, and we can define a new norm on E,

$$|||x||| := \sup\{||P_nx||, ||x - P_nx|| : n \in \mathbb{N}\},\$$

with is "bimonotone" with respect to the basis; that is, all the projections P_n and $P_n^{\perp} := I - P_n$ are norm-nonincreasing. Let $E_n^{\perp} := P_n^{\perp}(E)$.

I claim, then, that, with respect to any bimonotone norm on E, there is for any choice of r and R such that 0 < r < R a C^{∞} mapping $\phi : E \longrightarrow E$ which is a C^{∞} diffeomorphism of E with an open subset of B(R) and such that $\phi|B(r) = \mathbf{1}_{B(r)}$. This statement, notably stronger than the Theorem, has further useful consequences.

The idea is as follows. We take R only slightly larger than r, and write $B_n(r)$ for the r-ball about the origin in E_n . As the norm is bimonotone, $B_n(r) = P_n(B(r))$ etc. For each n > 0, construct in E_{n+1} the following two neighbourhoods of E_n :

$$C_n \coloneqq B_{n+1}(r) \cup (B_{n+1}(\epsilon) + E_n),$$

$$D_n \coloneqq B_{n+1}(r_n) \cup (B_{n+1}(\epsilon_n) + E_n),$$

where $r_n \downarrow r$ and $\epsilon_n \downarrow \epsilon$ and $r_0 + 2\epsilon_0 < R$ (say). E_{n+1} is finite-dimensional, so there is a C^{∞} function $\chi_n : E_{n+1} \longrightarrow (0, 1]$ which is constantly 1 on C_n such that

$$\Phi_n(y) \coloneqq P_n y + \chi_n(y) P_n^{\perp}(y)$$

defines a C^{∞} diffeomorphism of E_{n+1} with an open subset of D_n that is the identity on C_n . Now take a C^{∞} function $\psi_n : E_{n+1} \longrightarrow (0, 1]$ which is 1 on C_n , does not exceed χ_n anywhere, and is very small off D_n . The mapping

$$\Psi_n: E \longrightarrow E: x \mapsto \Phi_n(P_{n+1}x) + \psi_n(P_{n+1}x)P_{n+1}^{\perp}(x)$$

is a C^{∞} diffeomorphism of E with an open subset.

For any $x \in E$, there is some N such that $x \in B(\epsilon) + E_N = B_{N+1}(\epsilon) + E_N$. This implies that $\Psi_n(x') = x'$ for all x' sufficiently close to x and all $n \ge N$, so that the "backwards infinite product" $\Psi_0 \circ \Psi_1 \circ \Psi_2 \circ \cdots$ is in effect locally finite. This product is the "shrinking map".

