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§0. Preliminary remarks.

General Topology, sometimes called Analytic Topology, is the most basic part of
topology. There are other subjects like Geometric Topology, Algebraic Topology, and
Differential Topology, which exploit some of the ideas we shall meet; and much of
Functional Analysis needs others. Broadly speaking, these further subjects deal with
more specialized spaces. My aim will be, therefore, to present an array of facts, ideas,
and definitions that are useful in many contexts, rather than to go very deeply into any
of them. Since the theory arose in several different contexts before it was unified as an
independent topic, there is an amazing amount of terminology that is in constant use
despite being to some extent superfluous; I shall attempt to accustom you to the words
that are most commonly encountered, even though many of them could be circum-
vented in a strictly logical exposition. With one exception, I shall not prove any of the
really difficult theorems. Sometimes I shall just assert results with a proof sign; this
means “prove it yourself”, even if I do not set it as an assignment exercise.

There is also a slight difficulty: because  topology is so widely relevant, itgeneral
is almost inevitable that there will be some duplication of material from other courses.
For instance, I shall have to say something about the axiom of choice (which, be
warned, I shall casually assume throughout, but at some points I shall need in a non-
trivial way) and about metric spaces. I may also mention something about categories.
And I make no apology for the fact that the exposition is rather dry; until quite late in
the course, it is a matter of getting used to the concepts rather than of proving
anything really striking.

The subject was developed with some enthusiasm from about 1922 to about 1955,
and is still active in some quarters and in some flavours. By 1970 or so it was
generally regarded as a little démodé, and I am told Dieudonné, who was given to
dismissive remarks, commented in private that it is only interesting as a necessary
background to the theory of topological vector spaces. Interesting or not, there are
several non-trivial books about it. A relatively accessible one is by Kelley; it has both
advantages and disadvantages (he devotes a lot of space to his own work), but is
rather clearly written. A more modern and far more complete one is by Engelking,
which, despite or because of being comparatively encyclopædic, is not a book for
coherent reading. Indeed it is heavy going however you try to approach it, but it
contains a great deal of information. There are several more elementary books, one of
which (by Munkres) has been used as a textbook for this course.
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§1. Topologies.

Definition 1.1. Let  be any set. A  on, or in,  is a class  of subsets of H H Z Htopology
satisfying the three following properties.

(a)  and .g − −Z H Z
(b) If  and , then .Y − Z − Y ∩ Z −Z Z Z
(c) If , then .h Z Z© Z −-

Y−h

Recall that the “power class” of  is the set  of all subsets of ; thusH c H HÐ Ñ
c HÐÖ"ß #×Ñ Ögß Ö"×ß Ö#×ß Ö"ß #××, for instance, is ). Hence, a topology on  is a sub-
class  of  with certain special properties.Z c HÐ Ñ

It is customary to describe the  of , each of which is a  of , asmembers subsetZ H
open sets of  (with respect to the topology ). Topologies are also often denoted byH Z
the letter  or something similar.g

By a , we mean an ordered pair  consisting of a set and atopological space Ð ß ÑH Z
topology thereon, and we shall sometimes use this ordered pair notation to avoid
ambiguity. Mostly, however, only one topology on a given set  interests us, and weH
may then speak of “open sets” without mentioning  explicitly, and , with theZ H
agreed topology understood in the background, may itself be described as a
“topological space”. Then, the three axioms above may be stated informally as:

the empty set and the whole space are open; the intersection of two open sets is
also open; and the union of any class of open sets is open.

As with vector spaces (and others), one may sometimes speak simply of a “space”
if it is clear that it refers to a topological space.

Where  is concerned, notice that . (It is the set consisting of all the(c) -
Z −g Z œ g

elements of all the members of the class , i.e. of all the members of nothing at all.)g
And, crudely speaking, it does not matter how many open sets there are in the class ;h
the union of (finite or “infinite”, and no matter how “infinite”) of openany number 
sets must still be an open set. The class  may be uncountable, or countable, or finite.h

Lemma 1.2.  If  is a topology on , , and  are open sets in Z H � H8 − Y ßY ßá ßY" # 8

with respect to , then  is also open with respect to .Z ZY ∩ Y ∩á ∩ Y" # 8

Proof.  Use 1.1  and induction on .(b) 8 �

It is very important to grasp that mathematical induction only proves the result to
hold for an arbitrary natural number . For an infinite sequence  of8 Y ß Y ß Y ßá" # $

open sets, the intersection  need not be open, though the Lemma ensures that+
5œ"
∞

5Y+
5œ"
8

5Y 8 is open for each finite .
By contrast,  must be open by 1.1 . As I remarked above, the union of a-

5œ"
∞

5Y (c)
finite countable class of open sets, as in , is open, and the union of a  class of-

5œ"
8

5Y
open sets, as in , is open. (Recall that a class is “countable”, or more-

5œ"
∞

5Y
precisely “countably infinite”, if its elements may be set out in an infinite sequence,
such as  in this case.) But axiom 1.1  applies to  subclass  of ,Y ßY ß Y ßá" # $ (c) any h Z
no matter how large; and  may be massively uncountable. There is no problem inh
defining the union of  subclass of . A silly (because rather obvious) exampleany c HÐ Ñ
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is that the intervals  in  are open sets in the usual topology, soon to be defined,Ð"ß BÑ ‘
on ; there are uncountably many of them, but the axiom says  must also‘ -

B−‘ Ð"ß BÑ

be open in .‘

Definition 1.3.  (a) Let  be any set whatever. If  are topologies on , we sayH Z Z H" #ß
that  is  or  or than  if  (as subclasses of );Z Z Z Z c H" # " #larger finer stronger ª Ð Ñ
that is, if every subset of  that is open with respect to  is also open with respect toH Z#
Z Z Z" # ". In that case we also say that  is  or  or than . Peoplesmaller coarser weaker 
sometimes write . It is easy to see that this is a partial order on the set ofZ Z" #�
topologies on .H

(b) discrete The  topology on  is that topology with respect to which everyH
subset of  is open; that is, .H Z c H³ Ð Ñ

(c) indiscrete The   topology on  is that topology with respect to which the onlyH
open sets are  and ; that is, .g ³ Ögß ×H Z H

The discrete topology is the finest possible topology on ; it is finer than any otherH
topology. In view of 1.1 , it is characterized (i.e. is completely determined) by the(c)
fact that all singletons are open with respect to it. We often say “par abus de langage”
that in the discrete topology .points are open

The indiscrete topology is, likewise, coarser than any other topology on .H
These two topologies are uninteresting. Any statement about them amounts to a

statement about set theory and nothing more. But they are useful as examples.

Definition 1.4.  (a) cofinite topologyThe  on  is the topology whose members (i.e.H
the open sets) are  itself and all those subsets of  whose complements are finite.g H

(b) cocountable The  topology on  is the topology whose open sets are  itselfH g
and all those subsets of  whose complements are finite or countable.H

It is easy to see that these are indeed topologies on , and that the cofiniteH
topology is coarser than the cocountable topology. If  is finite, the cofinite topologyH
is just the discrete topology; if  is countably infinite, the cocountable topology is theH
discrete topology and is strictly finer than the cofinite topology. If  is a singleton (orH
empty), both these topologies coincide with the indiscrete topology as well.

Example 1.5.  Let  be any set with at least two elements, and suppose . LetH H+ −

Z H c HH ³ Ö ß gß Ð ÏÖ+×Ñ× Þ

Then  is a topology on .Z HH

To specify a topology, we should in principle describe all the open sets. However,
there may be less explicit ways of achieving this.

Definition 1.6.  (a) baseLet  be a topology on . A  for  is a subclass Z H Z U Z©
such that every nonempty member of  is a union of members of . (In other words,Z U
U is a class of open sets such that every open set is a union of  of the members ofsome
U U. The empty set  is, of course, the union of the sets in the empty subclass of .)g

(b) second axiom of The topology  (or the topological space ) satisfies the Z H
countability second countable (or, vulgarly, is ) if it has a countable base.

The discrete topology has a very simple base, namely the class of all singletons. It
is a base because, if , then , a union of singletons.g Á E − Ð Ñ E œ Ö+×c H -

+−E
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There are many other possible bases; indeed, it is clear that in this case any class of
subsets that contains all the singletons is a base, and that the class of singletons is the
smallest possible base. (Usually, there will be many bases for a given topology, but
there will not be a smallest possible base.)

It is rather exceptional for a topology to be itself countable (for there to be only
countably many open sets in all), but second countability means that it can be built out
of countably many “building bricks”.

The question arises whether a base for a topology must have any special properties
(in the way that a topology itself is not just an arbitrary subclass of ).c HÐ Ñ

Lemma 1.7.  Let  be a topology on the set , and let  be a base for . ThenZ H U Z
(a) if  and , there exists  such thatF ßF − B − F ∩ F F −" # " #U U

B − F © F ∩ F" # ;
(b) for any , there is some  such that .B − F − B − FH U! !

Proof.  (a) (b)F ∩ F" #  is open by 1.1 , so it is the union of a subclass  of . ThenT U
B − F ∩ F œ E F − B − F © F ∩ F" # " #E−

-
T , and there exists  such that .T

(b) (a) Since  is itself open by 1.1 , it is a union of members of .H U �

Lemma 1.8.  Let  be a class of subsets of  enjoying the properties , . ThenU H 1.7(a) (b)
there is a unique topology on  for which  is a base.H U

Proof.  Let , the class of subsets of  that can be expressedZ T U H³ E À ©e f-
E−T

as unions of sets belonging to . We wish to show that  is a topology in .U Z H
Firstly, , as . And  by 1.7 .g œ E − g © œ E −- -

E−g E−Z U H ZU (b)
Secondly, let . There are subclasses  of  such that Yß Z − ß Y œ TZ h i U -

T−h

and . Hence, if , there must be some  and someZ œ U B − Y ∩ Z T −-
U−i h

U − B − T B − U B − T ∩ Ui  such that  and ; then , and 1.7 tells us there is(a) 
some  such that . For each , we  aFÐBÑ − B − FÐBÑ © T ∩ U © Y ∩ Z BU choose
suitable . Now  is a union of members of , so belongs toFÐBÑ [ ³ FÐBÑ-

B−Y∩Z U

Z.  for each , so . For , ;FÐBÑ © Y ∩ Z B [ © Y ∩ Z B − Y ∩ Z B − FÐBÑ © [
thus . Hence, . [Notice that we have used the axiomY ∩ Z © [ Y ∩ Z œ [ − Z
of choice here.]

Finally, any union of sets from  is a union of unions of sets from , so is itself aZ U
union of sets from .U

Hence, the three axioms for a topology (see 1.1) are satisfied by . It is evidentZ
that  is a base for , and that  is the only possible topology for which  is a base. U Z Z U �

We may say that  is the topology  by the base .Z U generated

Remark 1.9.  (a) Suppose that  is a base for the topology , for . IfU Z %% % œ „"
U U Z Z Z Z %$" " $" " " $"© © œ œ „", then . Furthermore,  if and only if, for ,

each member of  is a union of members of .U U% %$

 (b) (a) Condition 1.7  is satisfied if, for any , either F ßF − F ∩ F −" # " #U U
or . (  may well not contain , but will often contain two disjoint sets.)F ∩ F œ g g" # U
This condition is quite often satisfied, but should not be assumed in general.

(c) (a) In the proof above, I showed from 1.7  (assuming the axiom of choice) that
F ∩ F" #  is itself a union of members of ; this assertion in turn obviously impliesU
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1.7 . We could avoid the axiom of choice, by modifying 1.7  to the requirement(a) (a)
that  be a union of members of .F ∩ F" # U

Definition 1.10. The  (or Euclidean topology, or “usual” topology)standard topology
on  is the topology that has the class of open intervals  as a base.‘ ‘ÖÐ+ß ,Ñ À +, − ×
Here . (Thus  when .)Ð+ß ,Ñ œ ÖB − À + & B & ,× Ð+ß ,Ñ œ g , Ÿ +‘

In this example 1.9  applies.(b)

Definition 1.11. A  on the set  is a function  such that, formetric H H HÒ‘. À ‚
any ,Bß Cß D − H

(a) triangle inequality , [this is the ].ÐBß DÑ Ÿ .ÐBß CÑ , .ÐDß CÑ
(b)  if and only if ..ÐBß CÑ œ ! B œ C
If is weakened to require only that  for each ,  is a(b) .ÐBß BÑ œ ! B − .H

pseudometric. It is easy to deduce that a pseudometric must take nonnegative values
and must be symmetric:  for all ..ÐBß CÑ œ .ÐCß BÑ Bß C − H

A  is a pair  consisting of a set  and a (pseudo)metric(pseudo)metric space Ð ß .ÑH H
. on . One may say that  is a .H H (pseudo)metric space with (pseudo)metric .

If  and , the ((pseudo)metric) B − < −H ‘ ball about  of radius  with respectB <
to the (pseudo)metric . is the set .F ÐBà <Ñ œ FÐBà <Ñ ³ ÖC − À .ÐBß CÑ & <×. H

FÐBà <Ñ B < is often called the  ball about  of radius . It is empty unlessopen
< / ! <, so its definition is often stated with the requirement that  should be positive.

Lemma 1.12. The class of balls in a (pseudo)metric space  satisfies , .Ð ß .ÑH 1.7(a) (b)

Proof.  Suppose that . Then  for .B − FÐB à < Ñ ∩ FÐB à < Ñ .ÐBß B Ñ & < 3 œ "ß #" " # # 3 3

Take , which is the lesser of two positive< ³ Ð< $ .ÐBß B Ñß < $ .ÐBß B ÑÑmin " " # #

numbers and itself positive. I show that .FÐBà <Ñ © FÐB à < Ñ ∩ FÐB à < Ñ" " # #

Suppose that . Then, for each ,C − FÐBà <Ñ 3

.ÐB ß CÑ Ÿ .ÐBß CÑ , .ÐBß B Ñ & < , .ÐBß B Ñ œ < à3 3 3 3

thus  for each , and the assertion is proved. This demonstrates 1.7 .C − FÐB à < Ñ 33 3 (a)
If , then  for any . This establishes 1.7 . B − B − FÐBà <Ñ < / !H (b) �

Definition 1.13.  The topology on the metric space  generated by the class ofÐ ß .ÑH
metric balls is called the  on  defined by the metric .metric topology H .

In most undergraduate courses, the concept of a metric space is introduced before
that of a topology, and a set  is defined to be open with respect to the metric if, forY
every , there is some  such that . (The number  will inB − Y < / ! FÐBà <Ñ © Y <
principle depend on .) This gives the same open sets as 1.12.B

Metric spaces were invented by Fréchet in 1906. There were several attempts to
define topological spaces in the years following; the first really satisfactory definition
(not 1.1, but equivalent) was by Kuratowski in 1922. But it is probably true that most
of the examples of topological spaces that people were thinking of at the time were
metric spaces, and it remains true that those examples are of great interest.
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In  and , there are the standard “Euclidean” or “Hermitian” metrics:‘ ‚8 8

.ÐÐB ß B ßá ß B Ñß ÐC ß C ßá ß C ÑÑ œ B $ C Þ" # 8 " # 8 3 33œ"

8 #É� k k
(Here  are real numbers for  and complex numbers for , and   denotesB ß C3 3

8 8‘ ‚ k k
the absolute value or the modulus accordingly; that 1.11 is satisfied is a standard
consequence of the Cauchy-Schwarz inequality.) In particular, when  the8 œ "
topology on  defined from the standard metric coincides with that described at 1.10.‘

We have seen that a subclass  of  can only be a base for a topology if itU c HÐ Ñ
satisfies 1.7 , . But suppose  is an  subclass of . Is it possible for(a) (b) arbitraryf c HÐ Ñ
f to be a subclass, not perhaps a base, of some topology? Another way of looking at
this question is to ask whether there are any subclasses of  that are disqualifiedc HÐ Ñ
by their “internal structure” from consisting of open sets in some topology.

Remark 1.14. Suppose that  is some class of open sets in a topology , .f Z f Z©
Then all finite intersections of sets in  must also be open:f

f f � f Z© ³ ÖW ∩ W ∩â∩ W À 8 − W ß W ßá ß W − × © ß∩
" # 8 " # 8& (1)

and so must be all unions of finite intersections of sets in :f∩

f f T f Z∩ ∩

E−
© ³ E À © © Þs š ›.

T
(2)

If, on the other hand,  is  class of subsets of , ,  may bef H f c H fany © Ð Ñ s

defined by (1) and (2), and clearly satisfies 1.1 and 1.1 ; and  because we(b) (c) g − sf

may take  to be  in (2). Clearly, then,  is a topology in , for  class T f H H fg ∪ Ö ×s any
of subsets of . Furthermore, it is the coarsest topology for which  consists of openH f
sets. We may say it is the topology  by .generated f

Definition 1.15. A class  of subsets of  is a  for the topology  on  iff H Z Hsubbase
f Z Z fs œ ; that is, if every open set of  is a union of finite intersections of sets of .

Lemma 1.16. The class  is a subbase for the topology it generates if and only if thef
union of the members of  is the whole of . Then  is a base for the topology.f H f∩ �

§2. Other ways of specifying topologies.

The modern definition 1.1 is only one of several equivalent formulations; indeed, the
original definition of Kuratowski in 1922 was the one I am about to give, in terms of a
“closure operation”. These various other definitions of a topology are of no great
importance in themselves, but their associated vocabulary is in common use, although,
logically speaking,  we shall just be dressing the same concepts in different words.

Definition 2.1. A  in a set  is a mapping clclosure operation H c H Ò c HÀ Ð Ñ Ð Ñ
such that the following properties are satisfied.

  cl .(a) ÐgÑ œ g
  For every , cl .(b) E − Ð Ñ E © ÐEÑc H
  For any , cl cl cl .(c) EßF − Ð Ñ ÐE ∪ FÑ œ ÐEÑ ∪ ÐFÑc H
  For any , cl cl cl .(d) E − Ð Ñ Ð ÐEÑÑ œ ÐEÑc H
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Given such a closure operation cl  in , describe  as a clH c HE − Ð Ñ closed set of 
(or as cl ) if cl .closed with respect to ÐEÑ œ E

Lemma 2.2. Let  be a closure operation in , and let  be the class of subsets of cl H Y H
that are closed with respect to  in the sense just defined. Thencl

(i)
(ii)

(iii)

g − −

J ß J − J ∪ J −

U

Y H Y

Y Y

d Y Y

 and ,
if , then ,

if  is any subclass of , then  belongs to .
" # " #

U−
,

d

Proof. 2.1 shows that  is closed. By 2.1 , cl , so cl ;(a) (b)g © Ð Ñ − Ð Ñ œ Ð ÑH H c H H H
thus  is closed.  follows instantly from 2.1 .H (ii) (c)

Suppose in 2.1  that . Then(c) E © F

cl cl cl cl cl (3)ÐEÑ © ÐEÑ ∪ ÐFÑ œ ÐE ∪ FÑ œ ÐFÑ Þ

Now, if , then, for each , , and so, by (3),d Y d© U − U © U! !U−
+

d

cl clŠ ‹,
U− !

d
U © ÐU Ñ Þ

This being so for each ,U −! d

cl clŠ ‹, , ,
U− U− U−d d d

U © ÐUÑ œ U

(recall that cl  for each , by the definition of ). 2.1  gives theÐUÑ œ U U − Y Y (b)
inclusion in the opposite direction; so . This proves .+

U−d U − Y (iii) �

Lemma 2.3. Suppose that  is a class of subsets of  satisfying . ThenY H 2.2(i)–(iii)
there is a unique closure operation in  such that  is the class of its closed sets.H Y

Proof.  Suppose  satisfies 2.2 . Define, for any ,Y c H(i)–(iii) E − Ð Ñ

cl (4)ÐEÑ ³ J Þ,
Y®JªE

Firstly, cl  (for it is the intersection of a class of sets all of which include ).E © ÐEÑ E
Secondly,  if ,  itself appears in the class whose intersection is taken, so thatE − EY
E ª ÐEÑ ª E ÐgÑ œ gcl . This shows that cl , by 2.2 .(i)

By 2.2 , cl , and, therefore, cl cl cl .(iii) ÐEÑ − Ð ÐEÑÑ œ ÐEÑY
Finally, given , cl cl  directly from definition (theEßF − Ð Ñ ÐEÑ © ÐE ∪ FÑc H

right-hand side is the intersection of a smaller class), and similarly for cl . Hence,ÐFÑ

cl cl cl (5)ÐEÑ ∪ ÐFÑ © ÐE ∪ FÑ Þ

But cl cl  by 2.2 . Hence cl cl cl .E ∪ F © ÐEÑ ∪ ÐFÑ − ÐE ∪ FÑ © ÐEÑ ∪ ÐFÑY (ii)
With (5), this demonstrates 2.1 , and completes the proof that cl  is a closure(c)
operation. We have already seen that cl  if and only if .ÐEÑ œ E E − Y

That (4) defines the only possible closure operation giving rise to  as its class ofY
closed sets is left as an . exercise �
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The formula (4), with  2.2 , means that cl  is the smallest member of  that(iii) ÐEÑ Y
includes . This is the most memorable description of the procedure.E

The properties 2.2 recall 1.1 , with unions and intersections inter-(i)–(iii) (a)–(c)
changed. It is therefore natural to make the following definitions.

Definition 2.4.  (a) If  is a topological space with topology , a subset  of  isH Z HJ
described as with respect to  if its complement  belongs to . (In otherclosed Z H ZÏ J
words, a set is closed if its complement is open.) The class  of closed sets then givesY
rise to a closure operation defined by (4).

(b) If cl  is a closure operation in the set ,  becomes a topological space if itsH H
topology  consists of the complements in  of sets closed with respect to cl .Z H

A ritual remark here. Whichever definition you take as basic, a set  is open ifK
and only if its complement  in  is closedH Ï K H . Now, the complement is a set-
theoretic construction: for a point  of ,  if and only if . ThisB B − K B Â Ï KH H
definition is “at the level of points”. However, it is not true (except in some special
topologies, for instance the discrete topology) that  is open if and only if it is notK
closed — this would be the (usually false) statement “at the level of subsets” that
Z c H Y ‘œ Ð Ñ Ï . That it is false in a familiar case like the standard topology on  is

easily seen, for a set like  is neither open nor closed.Ò!ß "Ñ
In most of the interesting topological spaces, the class  of open sets (i.e. theZ

topology) and the class  of closed sets are both “small” subclasses of , relatedY c HÐ Ñ
to each other by  and, equivalently, .Y H Z Z H Yœ Ö Ï K À K − × œ Ö Ï J À J − ×
There is no  reason why a set should not be open and closed, i.e. be aa priori both 
member of . (Sets that are both open and closed do have some importance, forY Z∩
instance in the theory of Boolean algebras, and are occasionally called , whichclopen
is at least unambiguous. Notice that  and  are  both open and closed.)g H always

Example 2.5. Consider the space . A subset  of  is a  (strictly speaking‚ ‚8 8^ variety
a , the word “affine” meaning “in  rather than in complexcomplex affine variety ‚8

projective space”) if there is a finite set  of complex polynomials in Ö: ß : ßá ß : × 8" # 5

variables such that for .^ œ ^Ð: ß : ßá ß : Ñ ³ ÖB − À : ÐBÑ œ ! " Ÿ 3 Ÿ 5 ×" # 5 3
8‚

Thus  is itself a variety corresponding to the singleton of the zero polynomial, and‚8

g is a variety corresponding to the singleton of any nonzero constant polynomial. The
union of two varieties is a variety, for

^Ð: ßá ß : Ñ ∪ ^Ð; ßá ß ; Ñ œ

^Ð: ; ßá ß : ; ß : ; ßá ß : ; ßá ß : ; ßá ß : ; Ñ Þ
" 5 " 6

" " " 6 # " # 6 5 " 5 6

It is less obvious that the intersection of any class of varieties is still a variety. This
follows from a non-trivial algebraic theorem that any ideal of the ring of complex
polynomials in  unknowns has a finite ideal basis — one may formulate the concept8
of a “zero-set”  in terms of an ideal of polynomials instead of a finite set thereof.^

In any case, 2.2 , , and  are all satisfied. The varieties are precisely the(a) (b) (c)
closed sets of a topology on . This topology is the  on . It is‚ ‚8 8Zariski topology
very much coarser than the usual topology defined by the usual “Hermitian” metric.
Indeed, when , the Zariski topology is just the cofinite topology.8 œ "

There is nothing special about  here; any field would do.‚

Definition 2.6. A set  in the topological space  is  if it is the intersec-I H locally closed
tion of an open set and a closed set. [This strange name will be clarified later.]
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For example, the set  in  is locally closed in the standard topology; for it isÒ!ß "Ñ ‘
Ò!ß "Ó ∩ Ð$"ß "Ñ Ò!ß "!!Ó ∩ Ð$ ß "Ñ, or indeed ."

"!!

We have seen that a topology may be specified either directly, by defining the
class of open sets itself, or by giving a base for it, or by giving a subbase, or by
defining instead the class of closed sets (perhaps by a closure operation). There are
still other methods, which are in a sense closer to the motivation for the theory. The
notion of a topological space arose from the idea of “convergence” in the first place,
and that could be expressed in terms of “neighbourhoods”.

Definition 2.7. Let  be a topological space, and . A subset  of  is a H H HB − R neigh-
bourhood of  in  if there is an open set  such that . The classB Y B − Y © RH
consisting of all the neighbourhoods of  in  will be denoted by .B ÐBÑH Á

As often happens, this definition is not universally accepted. Some people insist
that a neighbourhood must itself be open (a “neighbourhood of ” would then be justB
the same as an open set containing ). Authors occasionally write such things as “  isB R
an open neighbourhood of ” either to clarify, by implication, that their convention isB
that of 2.7, or for verbal variety. More seriously, in a metric space, the word “neigh-
bourhood” is quite often used to mean what I called in 312 a “ball”. Such a lack of
complete agreement on terminology is common in mathematics (and not unknown in
other subjects). The reasons are various, but you should be aware that if you open a
mathematical book in the middle you may misunderstand the text because the author
is using familiar words in somewhat different senses from those you have been
accustomed to.

Lemma 2.8. Let  be topological space, and let  denote the class of neighbour-H ÁÐBÑ
hoods of . Then, for any ,B − B −H H

(a) ,ÐaR − ÐBÑÑ B − RÁ
(b)  ,ÐaR − ÐBÑÑ R © Q − Ð Ñ Q − ÐBÑÁ c H Ö Á
(c) ,ÐaR ßR − ÐBÑÑ R ∩ R − ÐBÑ" # " #Á Á
(d) &  ÐaR − ÐBÑÑÐbR − ÐBÑÑ R © R C − R R − ÐCÑÑ ÞÁ Á Ö Á! ! !Ð

Proof. (a) (b) (c) and  are obvious;  follows from the fact that the intersection of open
sets is open; and  is true if one takes  to be the open set “ ” of 2.7.(d) R Y!

Of course  is specific to the space and the topology; I should really writeÁÐBÑ
Á H ZÐ ß ß BÑH . But I shall usually leave it to the context to clarify what is meant.

Lemma 2.9. Suppose that, to each element  of the set , a nonempty class of subsetsB H
ÁÐBÑ  is associated in such a way that the conditions  are satisfied. Then2.8(a)–(d)
there is a unique topology  on  such that, for each ,  is the class of neigh-Z H ÁB ÐBÑ
bourhoods of  in that topology.B

Proof. Let . (In words: define a set in  toZ c H Á H³ ÖY − Ð Ñ À ÐaB − YÑ Y − ÐBÑ×
be open if it is a “neighbourhood” of each of its points).

Certainly  (as it has no points, it is a neighbourhood of each!) For anyg − Z
B − ÐBÑ R − ÐBÑH Á Á, we have required that  is nonempty; thus there is some ,

and by 2.8 ,  and . By definition, . This proves 1.1.(b) (a)R © − ÐBÑ −H H Á H Z
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Suppose . If , then , and, by 2.8 ,Y ßY − B − Y ∩ Y Y ßY − ÐBÑ" # " # " #Z Á (c)
Y ∩ Y − ÐBÑ" # Á . This proves 1.1 .(b)

Similarly, suppose , and . There exists some  suchh Z h© B − Y Y −-
Y− !h

that . But, as , . But , so that, by 2.8 ,B − Y Y − Y − ÐBÑ Y © Y! ! ! ! Y−Z Á -
h (b)-

Y−h Y − ÐBÑÁ Z H. This proves 1.1 , and establishes that  is a topology in .(c)
Let  be a neighbourhood of  in the topology . Thus, there is someQ B − H Z

Y − B − Y © Q Y − ÐBÑZ Z Á with . But this implies, by the definition of , that ,
and so, by 2.8 , that . All the -neighbourhoods of  are in . So(b) Q − ÐBÑ B ÐBÑÁ Z Á
far  2.8  has been irrelevant.(d)

Let . DefineR − ÐBÑÁ

Q ³ ÖC − R À R − ÐCÑ× ÞÁ

Take  as in 2.8 .  Then , so that, by  2.8 , . On the otherR R © Q Q − ÐBÑ! !(d) (b) Á
hand, if , then , and 2.8  asserts the existence of C − Q R − ÐCÑ R − ÐCÑÁ Á(d) "

such that  for every . Hence, , and . ThisR − ÐDÑ D − R R © Q Q − ÐCÑÁ Á" "

shows that  is a neighbourhood of every one of its points, i.e. that ; hence,Q Q − Z
R B ÐBÑ is a neighbourhood of  with respect to the topology . So  is precisely theZ Á
class of all -neighbourhoods of , for each .Z HB B −

Finally,  must be the only topology with this property. Indeed, the open sets ofZ
such a topology must be neighbourhoods of every one of their elements. �

Clearly 2.8  is the “coherence” condition that ensures the various  fit(d) ÁÐBÑ
together to define and be defined by a topology.

Since the topology may be fully described either by the classes  or by theÁÐBÑ
closure operation, it is natural to use them to describe various constructions.

Definition 2.10.  Let  be a topological space, and let  be a subset of .H HE
(a) adherent point A point  is an  [the name is not completely standard;B − H

Estate Khmaladze likes to call them , for instance] of  if every neigh-contact points E
bourhood of  meets : that is, if .B E ÐaR − ÐBÑÑ R ∩ E Á gÁ

(b) accumulation point  is an  of  if every neighbourhood of  contains a pointB E B
other than : . [The name “accumulation point” is asB ÐaR − ÐBÑÑ R ∩ E Á ÖB×Á
neutral as I can manage. There are several very closely related concepts whose names
depend on the author you are reading. Even worse, they are often equivalent in the
more “natural” cases, so great care is necessary.] The set of accumulation points of E
is called the  of , and may be denoted by .derived set E Ew

(c) deleted punctured neighbourhood A set  is a (or )  of  ifF − Ð Ñ B −c H H
B Â F F ∪ ÖB× − ÐBÑ F B B but . [  is a neighbourhood of  with  itself removed.]  Á

(d) interior point interior  is an  of  if  is a neighbourhood of . The  of C E E C E
(denoted int ) is the set of interior points of : int .ÐEÑ E ÐEÑ ³ ÖB − À E − ÐBÑ×H Á

(e) frontier point  is a  of  if every neighbourhood of  meets both  andC E C E
H HÏ E C − ÐEÑ ∩ Ð Ï EÑ. This means, of course, exactly the same as that cl cl . The
set of frontier points of  is the  Fr  of :E ÐEÑ Efrontier

Fr cl clÐEÑ ³ ÐEÑ ∩ Ð Ï EÑ ÞH

[The frontier is also called the  of , and various other notations areboundary E
used, such as  or . But both the words and the notations tend to be ratherE `E

†

ambiguous, like these examples.]
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Lemma 2.11.  (a) The closure of  is the set of adherent points of .E E
(b)   if and only if every punctured neighbourhood of  meets .B − E B Ew

(c) An adherent point of  is either an accumulation point of  or a point of .E E E
Hence . The union is not always  disjoint.cl [or even “usually”]ÐEÑ œ E ∪ Ew

(d) int int  is the largest open set included in : .ÐEÑ E ÐEÑ œ Y-
EªY−Z

(e) int cl [If we write for the complement of , we can .  ÐEÑ œ Ï Ð Ï EÑ EH H E-

more succinctly state: int cl , and various equivalent formulations.]ÐE Ñ œ Ð ÐEÑÑ- -

Proof. I prove , leaving the rest as an exercise. Suppose cl , which is(a) B Â ÐEÑ
closed. Then cl  is a neighbourhood of  that does not meet cl .H Ï ÐEÑ B E © ÐEÑ

On the other hand, if  and , there is an open set  withR − ÐBÑ R ∩ E œ g YÁ
B − Y © R Y ∩ E œ g Ï Y E, and  ; therefore,  is closed and includes ,a fortiori H

which implies that cl . B Â Ï Y ª ÐEÑH �

Remark 2.12. We saw in 2.9 that a set  in  is open if and only if  is a neighbour-E EH
hood of each of its points; this says precisely that int . Similarly,  is closedÐEÑ œ E E
if and only every adherent point of  belongs to . These facts are often useful;  theyE F  
are perhaps closer to our intuition about the concepts than the definitions we gave.

As with topologies, we can specify  more economically.ÁÐBÑ

Definition 2.13.  (a) base of neighbourhoodsA  at a point  of the topological spaceB
H µ Á Á is a subclass  of  such that, for any , there is someÐBÑ ÐBÑ R − ÐBÑ
F − ÐBÑ F © Rµ  for which .

(b) subbase of neighbourhoods A  at  is a subclass  of  suchB − ÐBÑ ÐBÑH f Á
that the class of finite intersections of members of  (that is, of sets of the formfÐBÑ
R ∩ R ∩á ∩R 5 − R ßR ßá ßR − ÐBÑ" # 5 " # 5, where  and ) is a base of neigh-� f
bourhoods at .B

(c) first axiom of countability first  is said to satisfy the  (or, vulgarly, to be H
countable) if every point has a countable base of neighbourhoods. [In fact it suffices
to know it has a countable subbase of neighbourhoods, as we show next.]

Lemma 2.14. (a) If in a topological space  the point  has a countable subbase ofH B
neighbourhoods, it has a countable base of neighbourhoods.

(b) If  has a countable base of neighbourhoods, then it has a base ofB − S
neighbourhoods that may be listed as a decreasing sequence of sets.

Proof.  (a) Let  be a countable subbase of neighbourhoods of , and enumeratefÐBÑ B
it as . The class  of all  subsets of  is countable (why?), andÖW ß W ß W ßá×" # $ ] �finite
the mapping  is onto the class of all finite intersections of] ® N È W+

4−N 4

members of . So the class of all the finite intersections of members of  is aWÐBÑ ÐBÑf
countable base of neighbourhoods of .B

(b) By hypothesis, there is a base of neighbourhoods  for . ForÖY À 8 − × B8 �
each , let . It is clear that , that each8 − Z ³ Y ∩ Y ∩â∩ Y Z ª Z ª â� 8 " # 8 " #

Z B ÖZ À 8 − ×8 8 is a neighbourhood of , and that  is a base of neighbourhoods for�
B Z © Y 8, since  for each .8 8 �
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It is clear (why?) that a second countable space is first countable. The converse is
not necessarily true.

Lemma 2.15.  A metric space is first countable.

Proof.  The class  is a countable base for .ÖFÐBà "Î8Ñ À 8 − × ÐBÑ� Á �

We shall soon see that there are useful metric spaces that are  second countable.not

We have now met a number of ways of describing closures and interiors of a set
E, and each of them could be taken as the definition. It would, for instance, be quite
possible to define a topological space as a set  with an “interior” operation in H c HÐ Ñ
having suitable properties (complementary to the “closure” properties of 2.1).

Definition 2.16.  Let  and  be subsets of the topological space . We say that  isE F EH
dense in  if cl . [Again, this terminology is logically superfluous, butF F © ÐEÑH

quite common. Usually it is applied when .]E © F

§3. Continuity.

In this section  will be topological spaces, with the topologies H G F Z Z Zß ß ß ßH G F

respectively. I start by labouring a point that I seem to make in all my courses.

Definition 3.1. Suppose that  is a mapping and . Define0 À F − Ð ÑHÒG c G

0 ÐFÑ ³ ÖC − À 0ÐCÑ − F×$" H . (6)

Thus,  is a subset (possibly null) of , called the .0 ÐFÑ$" H inverse image of  under F 0
If , we defineE − Ð Ñc H

0ÐEÑ ³ Ö0ÐBÑ À B − E× ß (7)

which is a subset of  called the .G image of  under E 0

These notations, although they are quite standard, are genuinely confusing,
because (7) might lead one to interpret (6) as the image of  under an “inverseF
mapping”  from  to . But the formula (6)  makes sense, whether or not0$" G H always
0  has an inverse mapping.

Recall that  has an inverse mapping from  to  if and only if it is a0 À HÒG G H
bijection. In that rather unusual case, the inverse mapping would commonly be
denoted , and then the expression  could be interpreted in two ways: as0 0 ÐFÑ$" $"

the image of  under the mapping , as at (7), or according to (6), as the inverseF 0$"

image of  under . However, both interpretations would yield the same subset of .F 0 H
That being so, there is never, in fact, any  confusion in using the notation (6),practical
provided one bears in mind that it does not imply the existence of a mapping inverse
to .0

To make the  confusion worse, the formula (6) establishes a mappingtheoretical

F 0 ÐFÑ À Ð Ñ Ð Ñ ßØ c G Òc H$"

which it would be absurd not to call . Thus the notation  does in all cases0 0$" $"
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denote a legitimate mapping, but it is between the power classes rather than between
the original sets. Similarly, (7) defines a mapping

E 0ÐEÑ À Ð Ñ Ð ÑØ c H Òc G

which might simply be called , although it is not the same as the “ ” we started with.0 0

Lemma 3.2. Suppose  are as above; and let  be an indexed0ß ß ÖE À − ×H G # >#

family of subsets of ,  be an indexed family of subsets of , and letH # > GÖF À − ×#

FßF − Ð Ñw c G . Then

0 F œ 0 ÐF Ñ ß 0 F œ 0 ÐF Ñ ß

0 ÐF Ï F Ñ œ 0 ÐFÑ Ï 0 ÐF Ñ ß 0 Ð Ñ œ ß 0 ÐgÑ œ g ß

0 E œ 0ÐE Ñ ß 0 F © 0ÐF

$" $" $" $"

− − − −

$" w $" $" w $" $"

− − − −

Š ‹ Š ‹. . , ,

Š ‹ Š ‹. . , ,
# > # > # > # >

# # # #

# > # > # > # >
# # #

G H

#Ñ Þ �

It is also obvious that , but  only if  is onto (by definition).0ÐgÑ œ g 0Ð Ñ œ 0H G
In short,  respects  the set-theoretic operations, including0 À Ð Ñ Ð Ñ$" c G Òc H all
the “unary” operations  and “whole space”,  but  need not.g 0 À Ð Ñ Ð Ñc H Ò c G

Notice that, if  and , then ; similarly, ifEßE − Ð Ñ E © E 0ÐEÑ © 0ÐE Ñw w wc H
F © F 0 ÐFÑ © 0 ÐF Ñw $" $" w above, then . These statements follow from 3.2, but are

almost obvious anyway.

Lemma 3.3. Suppose that  and , , and0 À 1 À E − Ð ÑHÒG GÒF c H
F − Ð Ñ Ð1 ‰ 0ÑÐEÑ œ 1Ð0ÐEÑÑ Ð1 ‰ 0Ñ ÐFÑ œ 0 Ð1 ÐFÑÑc F . Then  and . $" $" $" �

I shall normally write  instead of , unless  need to avoid ambiguity.10 1 ‰ 0 I

Definition 3.4.  Let  be any mapping.  is  if, for0 À 0 B −HÒG Hcontinuous at 
any neighbourhood  of  in  (in the topology ), the setR 0ÐBÑ G ZG

0 ÐRÑ ³ ÖC − À 0ÐCÑ − R×$" H (8)

is a neighbourhood of  in  (in the topology ).B H ZH
We say that  is  (without further qualification) if, for every open set 0 Ycontinuous

in ,  is an open set in .G H0 ÐYÑ$"

Remark 3.5. The  definition of continuity, at a point, of a function betweenÐ ß Ñ% $
metric spaces is easily seen to be equivalent in those circumstances to the above.

Lemma 3.6. 0 B G is continuous at  if and only if, for any closed set  in  such thatG
0ÐBÑ Â G B Â, . clHÐ0 ÐGÑÑ$" �

Lemma 3.7. Let  be a subbase for . A mapping  is continuous iff Z HÒGG 0 À
and only if either of the following equivalent conditions is satisfied.

(a) For every closed subset  of , the inverse image  is closed in .G 0 ÐGÑG H$"

(b) For every , .Y − 0 ÐYÑ −f Z$"
H

Proof.  (a) If  is closed,  is open, and, by 3.2, G Ï G 0 Ð Ï GÑ œ Ï 0 ÐGÑG G H$" $"

is open if and only if  is closed; and so on. Similarly for .0 ÐGÑ$" (b) �
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Lemma 3.8. 0 À HÒG  is continuous if and only if it is continuous at each point of
H.

Proof. Suppose that  is continuous at each point of , and let  be an open set of .0 YH G
If , then , so  and (as  is continuous at )B − 0 ÐYÑ 0ÐBÑ − Y Y − Ð0ÐBÑÑ 0 B$" Á
0 ÐYÑ B 0 ÐYÑ$" $" is a neighbourhood of . But this shows that every element of  is an
interior point, so that  is open in .0 ÐYÑ$" H

Conversely, if  is continuous and  and , there is some ,0 B − R − Ð0ÐBÑÑ ZH Á
open in , such that . Then , where G 0ÐBÑ − Z © R B − 0 ÐZ Ñ © 0 ÐRÑ 0 ÐZ Ñ$" $" $"

is open (as  is continuous). This means that . 0 0 ÐRÑ − ÐBÑ$" Á �

Lemma 3.9.  (a) Let  and . If ,  is continuous at0 À 1 À B − 0HÒG GÒF H
B 1 0ÐBÑ 10 B 0 1, and  is continuous at , then  is continuous at . If  and  are
continuous, so is .10

(b) The identity map of any topological space is continuous.
(c) Any constant map (i.e. one whose image is a singleton) is continuous.

Proof.   follows almost instantly from 3.3. For , recall that the identity map (a) (b) "H

of  is defined by setting  for all . Thus, for any open set  in ,H H H"HÐBÑ ³ B B − Y
" "H H
$"ÐYÑ œ Y , which is also open. This proves that  is continuous.

 For , suppose that , or equivalently that  for all .(c) 0Ð Ñ œ Ö-× 0ÐBÑ œ - B −H H
Let . Then, if , , and, if , . In eitherY − - − Y 0 ÐYÑ œ - Â Y 0 ÐYÑ œ gZ HG

$" $"

case,  is open in .0 ÐYÑ$" H �

Those of you who are taking 439 will recognize that  and  say precisely that(a) (b)
topological spaces and continuous maps between them form a , sincecategory
composition of mappings is always associative. As I may possibly have a little more to
say about categories later, let me just comment that:

Definition 3.10. A  may be described as follows. There is a class of .category objects
For any two objects  and  of the category, there is given a set  ofE F Q9<ÐEßFÑ
morphisms “from  to ”. If  are objects of the category, there is a mappingE F EßFßG

Q9<ÐEßFÑ ‚Q9<ÐFßGÑ Q9<ÐEßGÑ À Ð0 ß 1Ñ È 10Ò

(called “composition” of morphisms), which is associative: if ,0 − Q9<ÐEßFÑ
1 − Q9<ÐFßGÑ ß 2 − Q9<ÐGßHÑ Ð21Ñ0 œ 2Ð10Ñ and , then . Further, for each

object , there is an “identity” morphism  which has theF − Q9<ÐFßFÑ"F

properties that  for any  and  for any" "F F0 œ 0 0 − Q9<ÐEßFÑ 1 œ 1
1 − Q9<ÐFßGÑ .

I have formulated this definition a little imprecisely, since set-theoretical niceties
arise if one tries to be more careful. Apart from topological spaces and continuous
maps, other examples of categories are: (all) real vector spaces and linear maps
between them; abelian groups and (group) homomorphisms between them; (all)
groups and (group) homomorphisms between them; rings and ring homomorphisms;
sets and mappings between them;  and increasing functions ; two complex‘ ‘Ò‘
vector spaces  and , the linear maps , and the identity mappings of I J I J IÒ
and of . It is possible to have only one object; the sets of morphisms may also beJ
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small (and even sometimes empty). Only identity morphisms, one for each object,
have to exist.

Lemma 3.11. Suppose that  and  are topologies on the same space . Then Z Z H Z" # "

is finer than , , if and only if the identity map  isZ Z Z H Z Ò H Z# " # " #ª Ð ß Ñ Ð ß Ñ
continuous. �

Definition 3.12. Let  and  be topological spaces. A mapping  is aH G HÒG0 À
homeomorphism (well, really a homœomorphism, but the American spelling is
generally accepted nowadays) if it is continuous and a bijection, and its inverse map is
also continuous. That is:  is a homeomorphism if is continuous and there exists a0
continuous mapping  such that  and .1 À 01 œ 10 œGÒH " "G H

[That is: homeomorphisms are the  in the category of topologicalisomorphisms
spaces and continuous maps.]

A continuous mapping, as defined above, is one for which the inverse image of an
open [or closed] set is open [or closed]. There are also classes of mappings defined by
the behaviour of (direct) images, and their definitions may as well be given here:

Definition 3.13.  A mapping  between topological spaces is0 À HÒG
(a) open  if, for every open set  in ,  is an open set in ; andY 0ÐYÑH G
(b) closed  if, for every closed set  in ,  is a closed set in .G 0ÐGÑH G

Clearly these conditions have no general relation to continuity. But a bijection will
be open (and closed) if and only if its inverse is continuous.

Lemma 3.14. If the mapping  between topological spaces is continuous,0 À HÒG
then, for any , .  is closed if the inclusion isE − Ð Ñ 0Ð 0c H cl clH GÐEÑÑ © Ð0ÐEÑÑ
always an equality. �

§4. The axiom of choice.

I do not wish to spend much time on the axiom of choice as such, because it is
presumably fully treated in the logic courses. But the “pure” axiom is often not the
most convenient version to use. There are other statements that are often more useful
and in a sense equivalent.

The “pure” Axiom of Choice is the assertion that, for any set  whose membersW
are non-empty sets, there is a function  such that  for0 À G 0ÐGÑ − GW Ò -

G−W

each . (In other words, the “choice function”  “chooses” one element fromG − 0W
each of the sets . Notice that  is the domain of the function ; the G − 0W W arguments
of  are the members of , and the values of  are elements of members of .)0 0W W

If  is a singleton, there is certainly a “choice function”, for its only member W G
(being nonnull) has an element  (that being what it means to say ) and then- G Á g
there is a choice function whose only value  is . In any of the standard axiom0ÐGÑ -
systems for formal set theory (like NBG or ZF) one can prove similarly that a choice
function exists if  is finite. Whatever the logical problems involved in formalizingW
the ideas, I think few people would hesitate to assume the existence of a choice
function when  is countably infinite (perhaps we feel that the only difficulty inW



16

making an infinite sequence of choices is the shortness of life). But the historical
prominence of the Axiom of Choice is because it asserts the existence of a choice
function even in cases where  is far too big to conceive of any “practical” way toW
construct one.

At the merely intuitive level, I find the Axiom unexceptionable, and perhaps no-
one would have worried very much about it had not Russell constructed his paradox
and thereby demonstrated the pitfalls of naive set theory. We do know, now, that the
axiom is consistent (Gödel), as is its negation (Mendelson), with NBG or ZF.

There is a large number of statements which were proved quite early to be
equivalent to the Axiom of Choice, in the sense that they may all be derived from each
other if you assume the standard axioms of set theory. I shall not give proofs; you can
find a concise discussion in the appendix to Kelley’s book  (it isGeneral Topology
unimportant that he begins from a stronger axiom) and in many other places, and, in
truth, we do not need more than a smattering of information. The standard joke is that
“mathematics is independent of its foundations”; provided our intuition approves and
no paradoxes arise, we should not worry too much about the details.

A. The  is the assertion that, if  is anMultiplicative Axiom ÖG À − E×α α
indexed class of non-empty sets, the product  (or ) is also non-#

α α αα−E −EG G‚
empty.

What is at issue here is really the definition of the Cartesian product of a general
indexed family, not just of finitely many sets . The usual convention isG ßG ßá ßG" # 5

that  is  the set of “choice functions”  for# -
α α α−E −EG E Gby definition Ò

which  for each . [Thus,  is the set of functions0Ð Ñ − G − E Gα αα αα
#

œ"ß#

0 À Ö"ß #× G ∪ G 0Ð"Ñ − G 0Ð#Ñ − GÒ " # " # for which  and . It is clear that this is,
as it were, “functionally equivalent” to the definition of  as a set of orderedG ‚ G" #

pairs, although it is  the same.] This being so, the Multiplicative Axiom as I havenot
stated it is a rephrasing of the Axiom of Choice as I have stated it, and they arealmost 
very nearly trivially equivalent. [There is a difference; what is it?]

B. The  (also known as , or indeedWell-Ordering Principle Zermelo’s Axiom
Zermelo’s Theorem) states that any set may be well-ordered.

A on a set  is a binary relation  on  which is reflexive ( )partial order W Ÿ W + Ÿ +
and transitive ( & ), such that & .+ Ÿ , , Ÿ - + Ÿ - + Ÿ , , Ÿ + + œ ,Ö Ö
(The last condition excludes trivial examples.) A  on  is a partial orderwell-ordering W
such that every subset of  has a least element with respect to .W Ÿ

The equivalence of the Axiom of Choice and the Well-Ordering Principle is well-
known; in essence it goes back to Zermelo (1908), and may be found in many places
— a sketch is in Kelley’s book, for instance. The WOP is interesting because it allows
one to carry out arguments by so-called transfinite induction, which extends ordinary
induction, and so raises all the problems of transfinite arithmetic.

C.  is perhaps the most generally useful of these statements, andZorn’s Lemma
is so often used that people speak jovially of Zornifying.

Let  be any partially ordered set. A  in  is a subset  that is totallyÐWß Ÿ Ñ W Xchain
ordered by  (that is, if , then either  or ). An Ÿ Bß C − X B Ÿ C C Ÿ B upper bound
for  is an element  such that, for any , . A  ofX , − W B − X B Ÿ , maximal element
W 7 − W 7 Ÿ C − W C œ 7 is an element  such that . (Notice that it need notÖ
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be an upper bound for . For instance, let  be , with  as .W W ÖÖ"×ß Ö"ß #×ß Ö"ß $×× © Ÿ
Then  and  are both maximal in , but neither is greater than the other.)Ö"ß #× Ö"ß $× W
The partial order  on  is  if every chain in  has an upper bound. Zorn’sŸ W Winductive
Lemma then says that

an inductive partial order on a non-empty set has a maximal element.

The statement is superficially plausible. If there were no maximal element, then
any  must allow a greater element, and one could construct a “sequence” of- − W
elements of  that is a chain and must have an upper bound. If a large enough chainW
exists, its upper bound should be maximal in . This is where the Axiom of Choice isW
needed (to construct such a chain). Again, Zorn’s Lemma is equivalent to the Axiom,
and proofs in both directions may be found in many places. At first sight the Lemma
seems over-elaborate, but it can be applied in very diverse situations by suitable
choices of the partially ordered set.

It should be emphasized that  has to be a for Zorn’s Lemma to work. (Other-W set 
wise one can easily derive paradoxes such as Cantor’s or Burali-Forti’s.)

There are at least three other statements equivalent to the Axiom of Choice (the
Hausdorff maximal principle, Kuratowski’s maximal principle, and the minimal
principle) that are very similar to Zorn’s Lemma, and are in fact special cases of it.
There is also another form of the Axiom of Choice (the Teichmüller-Tukey Lemma)
that can easily be deduced from Zorn’s Lemma. So, for many purposes, Zorn’s lemma
is the appropriate form of the Axiom of Choice.

It cannot be too strongly emphasized that the Axiom of Choice or its equivalents
are only likely to be significant in “abstract and general” situations. For instance, we
need them to prove that  vector space has a basis in the algebraic sense, becauseevery
there are vector spaces so enormous that describing a basis explicitly would be
impossible. In “practical” mathematics, one is unlikely to need more than the
countable Axiom, which, as I said, seems intuitively acceptable. These days, however,
we tend to apply the Axiom freely, since no (new) contradictions can result.

§5.  New topological spaces from old.

Whenever mathematicians define a new concept, they ask how it can be manipulated.
For topological spaces, there are many possible ways of obtaining new ones from old.

Definition 5.1. Let  be a subset of the topological space  (whose topology is ).E H ZH
The  (sometimes called the relative topology) on   fromsubspace topology inducedE
the topology on  isH

Z ZE ³ ÖE ∩ Y À Y − × ÞH (9)

In words: a set is open in the subspace topology on  if it is the intersection with  ofE E
an open set of . Of course we must checkH

Lemma 5.2.  ZE , as defined by , is a topology on .(9) E �

Remark 5.3. If , then  (and conversely); that is,E − œ ÖY − À Y © E×Z Z ZH HE

the “relatively open” subsets of an open subset  of  are exactly the same as theE H
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subsets of  that are open in . Similarly, if  is closed in , the subsets of  that areE E EH H
relatively closed in  are precisely the subsets of  that are closed in .E E H

In cases like this, it is reassuring, especially from the viewpoint of category theory,
if the new construct can be “characterized” by a “universal property”; or if it is
“unique” in some suitable class. Recall that the  isinclusion map 3 À EE ÒH
defined by setting  for each .3 ÐBÑ ³ B B − EE

Lemma 5.4. (a) ZE E is the coarsest topology on  such that the inclusion map E 3
is continuous (when  has the given topology ). That is: if  is a topology on H Z ZH E
with the property that  is continuous, then .3 À ÐEß Ñ Ð ß Ñ ªE EZ Ò H Z Z ZH

(b) A mapping , where  is any topological0 À Ð ß Ñ ÐEß Ñ Ð ß ÑG Z Ò Z G ZG GE

space, is continuous if and only if  is continuous.3 0 À Ð ß Ñ Ð ß ÑE G Z Ò H ZG H

(c) (b)  is the only topology on  for which the statement  is true.ZE E

Proof.  (a) Given , . Hence, if Y − 3 ÐYÑ œ Y ∩ E 3 À ÐEß Ñ Ð ß ÑZ Z Ò H ZH HE
$"

E

is continuous,  for each such , and, from (9), . Conversely, ifY ∩ E − Y ©Z Z ZE

Z Z Z ZE E EE
$"© 3 ÐYÑ œ Y ∩ E − Y − 3,  for each , so that  is continuous.H

(b)  is continuous if and only if  for any . But3 0 Ð3 0Ñ ÐYÑ − Y −E E
$" Z ZG H

by 3.3, , and every open set of  is Ð3 0Ñ ÐYÑ œ 0 Ð3 ÐYÑÑ 3 ÐYÑ œ Y ∩ EE E
$" $" $" $"

E EZ

for some . Thus the conditions that  be continuous and that  beY − 3 0 0ZH E

continuous as a map into  are the same.ÐEß ÑZE
(c) (b) Let  be a topology on  such that  is true (if  is substituted for ).Z Z ZE E

Then, taking , which is certainly continuous , we must0 ³ ÐEß Ñ ÐEß Ñ"E Z Ò Z
have  is continuous, so that  by .3 0 œ 3 ªE E EZ Z (a)

However,  is also continuous by , so that, from3 À ÐEß Ñ Ð ß ÑE E E" Z Ò H ZH (a)
our assumption of ,  is continuous. By 3.11, .(b) "E E EÀ ÐEß Ñ ÐEß Ñ ªZ Ò Z Z Z

The two inclusions together show that .Z ZE œ �

One often says simply “  is a (topological)  of the topological space ”,E subspace H
meaning both that  is a subset of  and that it is understood to be furnished with theE H
subspace topology induced from the topology of .H

Lemma 5.5. Let  be a subspace of the topological space , and . ThenG H GE ©

cl clG HÐEÑ œ ∩ ÐEÑ ÞG �

Definition 5.6. Let  be a metric space, and . Define a metric  on Ð ß .Ñ E © . EH H E

to be the restriction of the metric  on , ; that is. . ³ .lE ‚ EH E

ÐaBß C − EÑ . ÐBß CÑ ³ .ÐBß CÑ ÞE

Then  is described as a of . (Of course one rarelyÐEß . Ñ Ð ß .ÑE metric subspace H
bothers with the distinct notation .) One then has.E

Lemma 5.7. The topology defined by the subspace metric  is the subspace.E
topology induced from the topology defined by the metric  on . . H �

Of course, if the Lemma had not been true, we should have considered that the
definitions were inappropriate.
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The general idea of the subspace topology can be extended.

Definition 5.8. Let  be any mapping whatever, and let  be a0 À HÒG [G

topology on . Define (the notation is just for temporary convenience)G

Z [0 $"³ Ö0 ÐYÑ À Y − × ÞG

Then it follows trivially from 3.2 that  is a topology on , the Z H0 topology on H
induced by 0  (from ).[G

Lemma 5.9.   (a) If  has the topology , then  is the coarsest in the class ofG [ ZG
0

topologies  on  such that  is continuous.Z H H Z Ò G [0 À Ð ß Ñ Ð ß ÑG
(b) Let  be any topological space. A mapping  isÐ ß Ñ 1 À Ð ß ÑF Z FÒ H ZF

0

continuous if and only if  is continuous.01 À Ð ß Ñ Ð ß ÑF Z Ò G [F G

(c) (b)  is the only topology on  for which  is true for all mappings . Z H0 1 �

Lemma 5.10.  Suppose that  is a surjection. Then  is not0 0 À Ð ß Ñ Ð ß ÑH Z Ò G [0
G

only continuous, but also open. �

However, there is no essential reason to restrict attention to a single mapping.

Lemma 5.11.  Let  be a class of topologies on the set . There is a coarsestº H
topology  which is finer than all the topologies in .Z º!

Proof.  If , it is only necessary to take  as a subbase for  (theº Z ZÁ g -
Z º−

!

condition of 1.16 is clearly satisfied). If , the indiscrete topology is the coarsestº œ g
possible. �

Hence, in the partial order in the class of all topologies on  (  means H Z Z Z" # #Ÿ
is finer than , ),  has a least upper bound in theZ Z Z" " #© any subclass whatever
class. [The partial order is “complete”. This is at first glance better than Dedekind’s
axiom, which deals with non-empty subsets that are bounded above (or below). But in
this case the class of  topologies anyway has an upper bound, the discrete topology,all
and a lower bound, the indiscrete topology.] It follows, as I proved in 312, that any
subclass also has a greatest lower bound — but the “abstract nonsense” proof I gave
then did not tell us what the g.l.b. is.

Lemma 5.12.  Let  be a class of topologies on the set . There is a finest topologyº H
Z º!  which is coarser than all the topologies in .

Proof. Take . It is easily checked that this is a topology, and it isZ Z! −³ +
Z º

evidently the finest possible topology that is coarser than all the .Z º− �

Corollary 5.13. Let  be any set, and let  be any family of mappingsH Y
0 À HÒG G0 0, where each of the codomains  is a topological space with

topology . There is a coarsest topology  on  such that each mapping in  is[ Z H Y0

continuous.
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Proof. Each  determines a topology  on  (by 5.8), and 5.11 constructs the0 − Y Z H0

coarsest topology finer than all the , which is the desired topology . Z Z0 �

This is of course “abstract nonsense” again. The topology  can be describedZ
“explicitly” by specifying a base. It will consist of all the sets

0 ÐY Ñ ∩ 0 ÐY Ñ ∩â∩ 0 ÐY Ñ" # 5
$" $" $"

" # 5

where  is any natural number and, for each , , .5 3 " Ÿ 3 Ÿ 5 Y −3 0[
3

An analyst would describe the topology  on  as the  on  definedZ H Hweak topology
by the family  of mappings. If  already has a topology  and the mappings in Y H [ Y
are continuous with respect to , then the weak topology  is coarser than .[ Z [

A striking example would be if  consisted of all continuous real-valuedY
functions on the topological space . The resulting weak topology will have exactlyH
the same real-valued functions as the original topology , but it may be much coarser[
if  only allows rather few continuous functions into .[ ‘

Example 5.14. Let  be an infinite set; give it the cofinite topology  (see 1.4 ).H [ (a)
Suppose  is continuous.0 À HÒ‘

For any , , so must be empty or cofinite; likewiseα ‘ α [− 0 ÐÐ$∞ß ÑÑ −$"

0 ÐÐ ß∞ÑÑ 0 ÐÐ$∞ß ÑÑ ∩ 0 ÐÐ ß∞ÑÑ œ g$" $" $"α α α. As , they cannot both be cofinite.
Consider . Clearly ;E ³ Ö − À 0 ÐÐ$∞ß ÑÑ œ g× & − E Ê − Eα ‘ α " α "$"

and , since . But also ; for,E Á g Á œ 0 Ð Ñ œ 0 ÐÐ$∞ß ÑÑ E Á g‘ H ‘ α$" $"
−

-
α ‘

if , then  would be cofinite and  would have to beE œ g 0 ÐÐ$∞ß ÑÑ 0 ÐÐ ß∞ÑÑ$" $"α α
empty for all , which would lead to the same absurd conclusion as before thatα
0 Ð Ñ œ 0 ÐÐ ß∞ÑÑ œ g$" $"

−‘ α-
α ‘ .

Hence  or  for some . [This is, IE œ Ð$∞ß Ñ E œ Ð$∞ß Ó ³ E −" " " ‘sup
hope, “obvious”, although the formal reason, namely Dedekind’s axiom, is hidden in
312.] Here

0 ÐÐ$∞ß ÑÑ œ 0 ÐÐ$∞ß ÑÑ œ g Þ$" $"

−E
" α.

α

On the other hand, for , , since  is cofinite,α " α α/ 0 ÐÐ ß∞ÑÑ œ g 0 ÐÐ$∞ß ÑÑ$" $"

as above, as ; and so . It follows thatα " αÂ E 0 ÐÐ ß∞ÑÑ œ 0 ÐÐ ß∞ÑÑ œ g$" $"
/

-
α "

0  takes only the one value . Therefore, the only continuous functions on  with" H
values in  are constant.‘

Thus, in this case, the weak topology on  defined by the class of continuousH
functions on  is in fact the indiscrete topology — which has constants as its onlyH
continuous mappings into  topological space.any

This rather extreme example raises the question, which we shall discuss later,
whether there is some simple way of characterizing or recognizing topological spaces
that allow large numbers of real-valued functions.

Amongst these “weak topologies” (they would more often be called “topologies
induced by the family ”, but there are other situations in which topologies areY
“induced”, as we shall see) is the special case of the .product topology

Definition 5.15. Let  be a family of topological spaces, indexed by theÐ ß ÑH Z" " "−F

set . The  of the Cartesian product  on the “ thF coordinate projection #
" "−F H #

coordinate”  is the mapping . [In thisH 1 H ÒH ## # " #"À À 0 È 0Ð Ñ#
−F
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formulation I am assuming the definition of the product that I gave in §4 . Thus, aA
point of  is, by definition, a function  such that# -

" " ""−F −FH Ò H0 À F

0Ð Ñ − − F" H ""  for each . I believe this is the only way you can  a generaldefine
product; but if, intuitively, we think of it as the set of “ -tuples” , where ofF ÐB Ñ" "−F

course  for each , thenB œ 0Ð Ñ" " "

1# " " #ÐÐB Ñ Ñ œ B Þ−F ]

The  is the topology on  induced by the coordinateproduct topology #
" "−F H

projections.

Unravelling this definition, we see that the product topology is defined so that it
has a subbase of sets of the form , for any  and , and,1 " Z" H

$"ÐYÑ − F Y −
"

therefore, a base consisting of “basic” sets of the form

1 1 1" " "" # 5

$" $" $"
" # 5ÐY Ñ ∩ ÐY Ñ ∩â∩ ÐY Ñ ß (10)

where  may be any finite subset of the index set  and  forÖ ß ßá ß × F Y −" " " Z" # 5 3 "3

" Ÿ 3 Ÿ 5 F. In the vaguer “ -tuple” description of the product, the basic open sets are
the subsets of the form , where  for all the indices  except for#

" " " "−F H H H "s s œ

finitely many,  (where  may be any nonnegative integer), for each of" " "" # 5ß ßá ß 5

which  is an open subset of  (in the representation (10),  for each ).H Z Hs s œ Y 3" " "3 3

Notice that when  is finite (for instance if one has the Cartesian productF
H H" #‚  of just two spaces) there is a base for the product topology consisting of
products of open sets in the individual spaces. In , the product topology has aH H" #‚
base & . The naturally corresponding statement isÖY ‚ Y À Y − Y − ×" # " #Z ZH H" #

false if  is infinite, because only  intersections appear in (10).F finite
There are a couple of significant facts about product topologies that are

conveniently treated as exercises. Firstly, if  is a base for the topology  forU Z" H"

each , then sets of the form" − F

1 1 1" " "" # 5

$" $" $"
" # 5ÐF Ñ ∩ ÐF Ñ ∩â∩ ÐF Ñ ß

where  for each , constitute a base for the product topology in .F − 33 −FU H" ""3
#

Secondly, the product topology construction is “associative” in the (more or less)
obvious sense. In particular, the natural mappings between ,Ð ‚ Ñ ‚H H H" # $

H H H H H H" # $ " # $‚ Ð ‚ Ñ ‚ ‚, and  that correspond to inserting or removing
parentheses are homeomorphisms with respect to the product topologies.

Remark 5.16. The coordinate projections are continuous, because the product
topology is defined to ensure they are; but, in contrast to the general weak topologies
of 5.13, they are also open (compare 5.10). This is an easy exercise.

The product topology has a “universal mapping property”.

Lemma 5.17. Suppose that  is a topological space and that  isG GÒH1 À" "

continuous for each . Then there is one and only one continuous mapping" − F
1 À 1 œ 1 − FGÒ H 1 "#

" " " "−F  such that  for each .
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Proof. Indeed, we define, for each ,  in the “ -tuple”B − 1ÐBÑ ³ Ð1 ÐBÑÑ FG " "−F

notation; that is,  is the choice function  such that1ÐBÑ À F9 Ò HB −F
-

" "

9 " " 1BÐ Ñ ³ 1 ÐBÑ 1 œ 1 1" " " for each . Evidently , and  is the only possible mapping
GÒ H#

" "−F  with this property.  is continuous by 3.7 , since, for any subbasic1 (b)

open set  (where  and ), 1 " Z 1 Z" " "H G
$" $" $" $"ÐYÑ − F Y − 1 Ð ÐYÑÑ œ 1 ÐYÑ −

"

from 3.3. �

It is common to describe this situation by a diagram such as

H

1

G H

1

H

$

$

"
"

#
#

#

ß

à

Å

Æ

---- (11)Ä1

1

$
−F 

where the solid arrows indicate mappings that are , the broken arrow is thegiven
mapping whose existence is being , and the triangles are , i.e. theasserted commutative  
same mapping results from going by either of the routes allowed by the arrows from
one vertex to another; thus , for instance. [functoriality]1# #1 œ 1

Lemma 5.18.  The product topology and the Euclidean topology on  coincide.‘# �

This fact can be generalized (see the exercises).

Lemma 5.19.  The mapping  is continuous.ÐBß CÑ È B $ C À ‘ Ò‘# �

Again this is a very small instance of a very general fact.

So far I have been considering “weak” topologies, where a topology is defined on
a space by means of mappings out of it. But we can also try to define a topology by
means of mappings into a space, which is a “dual” problem.

Definition 5.20.  Let  be a family of topological spaces, let  beÖÐ ß Ñ À − F×G Z " H" G"

a set, and suppose that for each  a mapping  is given. The" G ÒH− F 2 À" "

topology induced on  by the mappings  H 2" is

Z c H " ZH G"³ ÖY − Ð Ñ À Ða − FÑ 2 ÐYÑ − × Þ$"
"

(12)

Lemma 5.21.  Z HH , as defined by , is a topology on .  (12) [Use 3.2.] �

Lemma 5.22.  (a) (12)  The topology  defined by is the finest topology such thatZH
all the mappings  are continuous.2"

(b) Let  be any topological space. Then  isÐ ß Ñ 1 À Ð ß Ñ Ð ß ÑF Z H Z Ò F ZF H F

continuous if and only if  is continuous for every12 À Ð ß Ñ Ð ß Ñ" " G FG Z Ò F Z
"

" − F .
(c) (b)  is the only topology on  making  true for all mappings . Z HH 1 �
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Remark 5.23.  Notice that, if  is defined by (12), then  is closed if andZ c HH E − Ð Ñ
only if  is closed in  for each . (This follows from 3.2.)2 ÐEÑ − F" "

$" G "

A special case is the topology on  induced from the inclusion H GÒH3 ÀG

when  is a subset of  furnished with a topology . In this caseG H ZG

Z c H G ZH G³ ÖY − Ð Ñ À Y ∩ − × Þ

Thus  consists of all unions of open sets of  with (arbitrary) subsets of .Z G H GH Ï
For instance, if  is constant (its image is a single point), then  will be2 À GÒH ZH
the discrete topology.

One reason why this topology is “unsatisfactory” is that the inclusion is not
surjective; all subsets of  are both open and closed. This suggests consideringH GÏ
what happens for surjections.

Remark 5.24. A surjection  defines an equivalence relation  on  by2 À µGÒH G
the rule “  means ”. Conversely, if  is an equivalence relationB µ C 2ÐBÑ œ 2ÐCÑ µ
on , the , denoted , is the set of -equivalence classesG Gquotient of  by  G µ Î µ µ
in . The  (or )  is the mapping defined byG 1 GÒGquotient map projection À Î µ

ÐaB − Ñ ÐBÑ ³ ÒBÓG 1 µ

(where  denotes the -equivalence class containing ).  is surjective.ÒBÓ µ Bµ 1
In this way, any surjection out of  defines an equivalence relation on , and anyG G

equivalence relation defines a surjection. We have a commutative diagram

G

H G

á à
--------Ä Îµ

relating the map  and the quotient projection; the bottom arrow is a bijection, so that,2
from a set-theoretic point of view,  and the quotient  can be regarded asH GÎ µ
“essentially the same”.

Definition 5.25.  Let  be a topological space, and let  be aÐ ß Ñ 0 ÀG Z GÒHG

surjection. In this case the topology  defined by (12) is called the ZH quotient
topology. It is the finest topology such that  is continuous.0

It might be natural to call the topology  of (12) the “strong topology” definedZH
by the family of mappings . This is not standard practice. In fact, I was careful toÐ2 Ñ"
say that an would describe the topology of 5.13 as a “weak topology”, becauseanalyst 
algebraic topologists have been known (in certain special cases) to call the topology of
(12) a “weak topology” instead.

Since 5.22 is a statement which just “reverses the arrows” of 5.13, it is natural to
ask whether there is an object which will reverse the arrows of the universal mapping
property of the product, as illustrated by (11). Such an object would be called a
coproduct in category theory, and would be denoted by . And it does exist here.%
Lemma 5.26.  Let  be a family of topological spaces. There is aÖÐ ß Ñ À − F×H Z "" "

topological space  (customarily called the of the ) and there areH Hdisjoint union "

continuous mappings  such that, for any topological space  and any3 À" "H ÒH F
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system  of continuous mappings , there is a uniqueÐ1 Ñ 1 À" " " "−F H ÒF

continuous map  for which  for each .1 À 13 œ 1 − FHÒF "" "

Proof. As a set,  is the “disjoint union” of the . [If the sets  are already (pair-H H H" "

wise) disjoint, i.e. no two of them have a point in common, their union is already a
disjoint union. But it is entirely possible that they are not disjoint  — in thea priori
most extreme case, they might all be the same nonnull set; but we want the union of
“distinct copies”. The simplest way of overcoming this difficulty is to define the
disjoint union by

& .
" "

" "−F −F
H H "³ Ð ‚ Ö ×Ñ ß (13)

because the summands on the right-hand side are certainly (pairwise) disjoint and each
is in a natural one-one correspondence with . But (partly out of laziness) I shallH"

write  for the th summand anyway, tacitly assuming all summands either areH ""

disjoint or have been made disjoint by some trick like the one above. Although I use
the coproduct sign, people often write an ordinary union  with the verbal-

" "−F H

explanation that they mean the “disjoint union”.] Then  is just3 À" "H ÒH

inclusion [or, if we accept (13),  for any ].3 ÐBÑ ³ ÐBß Ñ B −" "" H

Use (12) to define a topology on . In fact, in this case the open sets of  areH H
precisely the (disjoint) unions , where  is open in  for each .%

" " " "−F Y Y − FH "

Given the family  of continuous mappings as in the statement,  is necessarilyÐ1 Ñ 1"

defined by setting  for each  and each . It is now trivial1ÐBÑ ³ 1 ÐBÑ − F B −" "" H

that  is continuous.1 �

 *****second countable

The conclusion may be expressed by the commutative diagram dual to (11)

H

G H

H

$

$

"
"

#
#

#

á

â

Æ

Å

3

Ã1

1 3

--- &
−F 

§6.  Convergence.

The reason general topology was invented was to embrace ideas of convergence and
continuity more general than just convergence of sequences in metric spaces. There
are several ways of doing this.

Definition 6.1. Let  be a sequence in the metric space , and supposeÐB Ñ Ð ß .Ñ8 8œ"
∞ H

B − ÐB Ñ B 8 Ä ∞ B Ä BH . Then   (or ) to  (as ), denoted  or8 8converges tends
lim8Ä∞ 8 8B œ B B ÐB Ñ (  is the  of the sequence )   iflimit
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Ða / !ÑÐbR − Ñ 8 � R .ÐB ß BÑ & Þ% � Ö %8

[That is to say: however close to  we should like the terms  to be, for instanceB B8
within the distance  for any positive  we choose, they will be as close as that once % % 8
is sufficiently large — at least as large as some number . Notice that  ‘dependsR R
on’ the choice of  in the weak sense that, if we change  to a smaller value, we% %
usually need a larger value of . For this reason people often write  to indicateR RÐ Ñ%
that the  under consideration is one that works for the given .]  ****uniquenessR %

The obvious generalization to topological spaces is the one I gave in 312:

Definition 6.2. The sequence  in the topological space  converges toÐB Ñ Ð ß Ñ8 H Z
B − H  (which may be called a  of the sequence) iflimit

ÐaY − ÐBÑÑÐbR − Ñ 8 � R B − Y ÞÁ � Ö 8

This can be interestingly reformulated. If we write  and ,0Ð"Î8Ñ ³ B 0Ð!Ñ ³ B8

then the statement that   is precisely equivalent to the statement thatB Ä B8

0 À E E ³ Ö"Î8à 8 − × ∪ Ö!×ÒH � is continuous when  is topologized as a
subspace of .‘

That 6.2 is equivalent in a metric space to 6.1 is trivial. Indeed, in a metric space,
the topology can be described in terms of convergent sequences, and more generally

Lemma 6.3. Let  be a first countable topological space . ForH [recall 2.13 and 2.15]
any ,  is the set of limits of sequences in  (i.e. having all their terms inE − EH clÐEÑ
E) that are convergent in .H

Proof. B − ÐEÑ B Ecl  if and only if every neighbourhood of  meets  (2.11 ). By(a)
2.14, there is a decreasing base  of neighbourhoods of . Thus cl  if andÐZ Ñ B B − ÐEÑ8

only if  for each . If that is so, then, for each , there is someZ ∩ E Â g 8 88

B − Z ∩ E ÐB Ñ E B Q − ÐBÑ8 8 8, and the sequence  (in ) converges to . (Indeed, if ,Á
there is some  such that , and thenR − Z © Q� R

8 � R B − Z © Z © Q ßÖ 8 8 R

satisfying 6.2. On the other hand, if  is a sequence in  such that , then,ÐB Ñ E B Ä B8 8

for any , there is (from 6.2) some  such that , and soY − ÐBÑ R B − YÁ R

Y ∩ E Â g B − ÐEÑ.  So cl . �

It is easily seen that, if  is continuous at  and  is a0 À B − ÐB ÑHÒG H 8

sequence in  such that , necessarily  in .H GB Ä B 0ÐB Ñ Ä 0ÐBÑ8 8

Definition 6.4. Let  and  be topological spaces, , and .  isH G HÒG H0 À B − 0
sequentially continuous at  if, for any sequence  in  with ,B ÐB Ñ B Ä B8 8H
0ÐB Ñ Ä 0ÐBÑ8  in .G

Lemma 6.5.  If  is continuous at , then  is sequentially continuous at . 0 B 0 B �

The point is that, in some sense and in some circumstances, sequential continuity
is easier to check than continuity.
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Lemma 6.6. Suppose that  has a countable base of neighbourhoods, and thatB − H
0 À B 0 BHÒG  is sequentially continuous at . Then  is continuous at .

Proof.  Let  be a closed subset of  with , . IfG 0ÐBÑ Â G B Â 0 ÐGÑG $"

B − Ð0 ÐGÑÑ ÐB Ñ 0 ÐGÑcl , then, by 6.3, there is a sequence  in  such thatH
$" $"

8

B Ä B 0ÐB Ñ Ä 0ÐBÑ Ï G8 8. By hypothesis, . But this is absurd, as  is an open setG
containing  but none of the terms . Hence cl , and this0ÐBÑ 0ÐB Ñ B Â Ð0 ÐGÑÑ8

$"
H

proves continuity at , by 3.6.B �

However, the condition that there should be a countable base of neighbourhoods
really cannot be dispensed with. Here is a rather over-subtle example.

Example 6.7. Let  be the set of all continuous functions . Thus  isH Ò HÒ!ß "Ó Ò!ß "Ó
(by definition!) a subset of the product space , which may be given the#

>−Ò!ß"Ó Ò!ß "Ó

product topology. Give  the subspace topology of the product topology.H

Define the mapping  by . The integral will9 HÒ 9À Ò!ß "Ó Ð0Ñ ³ 0Ð>Ñ .>'
!

"

make sense, because  is a continuous real-valued function on .0 Ò!ß "Ó
Suppose that  in . This implies that  for each 1 Ä 1 1 Ð>Ñ Ä 1Ð>Ñ > − Ò!ß "Ó8 8H

(the mapping  is the coordinate projection on the th coordinate, cf. 5.15,0 È 0Ð>Ñ >
and so is continuous); that is,  “pointwise”. Now it is an important theorem1 Ä 18

from integration theory (I shan’t prove it here, but it is the dominated convergence
theorem, whose essential hypothesis is that the functions  all take values in )1 Ò!ß "Ó8

that in these circumstances . Thus the mapping  is' '1 Ä 1 À8 9 HÒ ‘

sequentially continuous.
But it is not continuous. Indeed, if , there is a base of neighbourhoods of 1 − 1H

consisting of sets of the form  for all the variousÖ0 − À 0Ð> Ñ − Y ß " Ÿ 3 Ÿ 5×H 3 3

choices of , of finite subsets  of , and of neighbourhoods5 − Ö> ß > ßá ß > × Ò!ß "Ó� " # 5

Y 1Ð> Ñ 33 3 of  for each . However, you can easily see that there will be functions
0 − 0Ð> Ñ œ 1Ð> Ñ " Ÿ 3 Ÿ 5 0H  such that  for  but  is as close as we like to3 3 '

either  or . Thus the topology on  that we have prescribed (the “topology of" ! H
pointwise convergence”) is just too weak for  to be continuous.9

Although this may seem a rather unnecessarily highbrow example, it is interesting
because it puts on view a situation where sequential continuity arises . In factnaturally
it is related to some important results in functional analysis.

Notice that in the topology of  no point can have a countable base of neighbour-H
hoods (either because of 6.6, or by direct argument).

In rather vague terms, we might say that the idea of convergence of sequences is
enough to express all the concepts of topology provided that we restrict attention to
first-countable spaces. The question arises whether we can modify the notion of
convergence so as to remove the need for first-countability. This was originally done
by E. H. Moore and H. L. Smith as early as 1922, although, both in its details and as a
tool in topology, it was improved gradually over quite a long time. But there is an
alternative approach due to Henri Cartan in 1937, and it has the advantage of giving
snappy proofs of some otherwise nasty theorems. So I shall present both.

The Moore-Smith approach begins by generalizing the idea of a sequence.

Definition 6.8. Let  be a partially ordered set. It is a , and theÐHß Ÿ Ñ directed set
partial order  is called a  (on ), ifŸ Hdirection
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Ða+ß , − HÑÐb- − HÑ + Ÿ - , Ÿ - Þ&

We commonly just say “the directed set ”, understanding that the direction will beH
denoted by  unless there is some reason to choose another notation. Incidentally, itŸ
is often convenient to write  to mean the same as .+ � , , Ÿ +

A subset  of the directed set  is  if, for all , there is anI ÐHß Ÿ Ñ 7 − Hcofinal
element  such that . [Notice the word is “cofinal”, not “cofinite”! The8 − I 7 Ÿ 8
idea is that a cofinal subset contains “arbitrarily large” elements of .]H

Let  be any set. A  (or ) in  is a function H H ÒHnet generalized sequence B À H
together with a direction on . (One may say simply that it is a function from aH
directed set to .) As with sequences, one customarily writes  instead of , andH B BÐ+Ñ+

ÐB Ñ B À H+ +−H  instead of .ÒH

Clearly  is a directed set and a sequence in the usual sense is a net when  is� �
given the standard direction. This suggests the definition:

Definition 6.9. Let  be a topological space and  a net in . If , weH H HÐB Ñ B −+ +−H

say that  or    (for ) or  , or that  is the  ofB ÐB Ñ B + − H B B+ + tends to converges to limit
the net, , or that  (or various other notations), iflim+−H + +

H
B œ B B Ä B

ÐaQ − ÐBÑÑÐb7 − HÑ 7 Ÿ . − H B − Q ÞÁ Ö .

This is of course just the usual definition for sequences, reformulated for nets. [It
is worth noting that it can only apply if . I did not need explicitly to excludeH Á g
the “empty net” in the definitions.]

Lemma 6.10. Let  be a subset of the topological space . Then a point E B −H H
belongs to  if and only if there is a net in  which converges (in ) to .clÐEÑ E BH

Proof.  If  is a net in  convergent to , let . There is someÐB Ñ E B Q − ÐBÑ+ +−H Á
7 − H 7 Ÿ . − H B − Q Q ∩E Á g such that . Thus . As this holds forÖ .

any neighbourhood of , cl .B B − ÐEÑ
Conversely, suppose cl . The crucial observation is that  itself is aB − ÐEÑ ÐBÑÁ

directed set, if we define  to mean . This is clearly a partialQ Ÿ Q Q ª Q" # " #

order; it is a direction because, for  and  in , Q Q ÐBÑ Q Ÿ Q ∩Q − ÐBÑ$ % $ $ %Á Á
and . For each , choose . ThenQ Ÿ Q ∩Q Q − ÐBÑ B − Q ∩ E Á g% $ % QÁ
ÐB Ñ E BQ Q− ÐBÑÁ  is a net in  which converges to . �

Notice that the Axiom of Choice has been used in this proof.

Lemma 6.11. A mapping  between topological spaces is continuous at0 À HÒG
B − ÐB Ñ BH H if and only if, for any net  in  that converges to , the net+ +−H

Ð0ÐB ÑÑ 0ÐBÑ+ +−H  in  converges to .G

Proof.  That the condition is  is an easy exercise.necessary
Suppose, therefore, that it is satisfied. Let  be a closed set in  such thatG G

0ÐBÑ Â G B − Ð0 ÐGÑÑ ÐB Ñ. Now, if cl , then by 6.10 there is a net  inH
$"

+ +−H

0 ÐGÑ B 0ÐB Ñ Ä 0ÐBÑ$"
+ that converges to . But then, by hypothesis, , and each
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0ÐB Ñ G 0ÐBÑ − G+  is in . By 6.10, , contrary to assumption. Consequently,
B Â Ð0 ÐGÑÑ 0 Bcl . But this means that  is continuous at , by 3.6.H

$" �

 For some purposes it is desirable to have an idea of “subnet” generalizing the
concept of “subsequence”. To obtain a definition that is sufficient for the aims in view
is not quite as trivial a matter as you might expect.

Definition 6.12. Let  be a net (in a set ). A  of  is a functionÐB Ñ ÐB Ñ+ +−H +H subnet
9 ÒÀ I H I, where  is a directed set, such that

Ða. − HÑÐb/ − IÑ Ð- − I / Ÿ -Ñ . Ÿ Ð-Ñ Þ& (14)Ö 9

The subnet would usually be denoted .ÐB Ñ9Ð,Ñ ,−I

The condition (14) ensures “cofinality is preserved”. It is true, in particular, if  isI
a cofinal subset of  and  is just the inclusion. At first sight this might seem a moreH 9
natural definition of a subnet, but there are technical reasons (not worth discussing
here) why one sometimes needs the more general definition.

Definition 6.13. Let  be a net in the topological space . A  ofÐB Ñ. .−H H cluster point
this net is a point  such that, for every ,  isB − Q − ÐBÑ Ö. − H À B − Q×H Á .

cofinal in ; i.e., for any , there is some  with  and .H + − H . − H + Ÿ . B − Q.

It should be emphasized that this is a concept that is tied to  (and, of course, tonets
sequences as a special case of nets).

Let me now proceed to Cartan’s method of discussing convergence.

Definition 6.14. Let  be a nonnull set and  a class of subsets of  such thatH Ä H
H Ä Ä c H Ä− œ Ð Ñ. [By far the most important case is when .] A  in  is afilter

nonempty subclass  of  such that¹ Ä
(a)
(b)
(c)

g Â
E − E ª F − E −
EßF − E ∩ F −

¹

Ä ¹ ¹

¹ ¹

,
if  and , then ,
if , then .

If , we speak of a filter in . For most classes ,  and  togetherÄ c H H Äœ Ð Ñ (b) (c)
may be difficult to satisfy unless the intersection of two members of  always belongsÄ
to . The only example that will really interest us is where , the class of allÄ Ä Yœ
closed sets.

If  are filters in  (or in ), we say that  , or that  is a¹ ¹ Ä H ¹ ¹ ¹" # # " #ß refines 
refinement of , if , i.e. every set belonging to  also belongs to .¹ ¹ ¹ ¹ ¹" " # " #©

You may have met filters in other contexts where the condition  is not imposed.(a)
It has the important consequence, with , that (c) any finite intersection of members of ¹
is nonempty (b). Condition  implies (as  is nonempty) that ; it also means that,¹ H ¹−
if  strictly refines  (i.e. refines it and is not the same), then, for any ,¹ ¹ ¹# " "E −
there must be a  such that , where  denotes strict inclusion. ThereF − F § E §¹#
is a coarsest possible filter, consisting of  alone.H

Because of , a filter may often be specified by a small selection of its members:(b)

Definition 6.15. A  in  is a subclass  of  such thatfilter base Ä µ Ä
(a)
(b)

g Â Á g
EßF − G − G © E ∩ F
µ

µ µ

,
if , there exists  such that .
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If  is a filter base in , the  isµ Ä filter in  generated by Ä µ

¹ µ Ä µÐ Ñ ³ ÖI − À ÐbF − Ñ F © I× ß

which is readily seen to be a filter.  is described as a .µ ¹ µbase for the filter  in Ð Ñ Ä
If  are filter bases in , we say that   if  refinesµ µ Ä µ µ ¹ µ" # # " #ß Ð Ñrefines 
¹ µÐ Ñ" .

It is easily seen that  if and only if, for every , there is¹ µ ¹ µ µÐ Ñ © Ð Ñ F −" # " "

some  such that . The word “refinement” is quite appropriate.F − F © F# # # "µ

Lemma 6.16. If  is a topological space and ,  is a filter in . A base ofH H Á HB − ÐBÑ
neighbourhoods at  is exactly the same as a base for the filter .B ÐBÑÁ

Proof.  See 2.8 , , .(a) (b) (c) �

In fact,  is usually called the . If  is taken to beÁ ÄÐBÑ neighbourhood filter at B
the class of closed subsets of , then the  neighbourhoods of  form a filter inH closed B
Ä. (However, so far there need not be many closed neighbourhoods.)

Definition 6.17. Let  be a topological space, , and  a filter in . We say thatH H ¹ HB −
¹ ¹  or  to , or that  is the of , and we write  and so on,converges tends limit  B B Ä B¹
if  refines , i.e. . If  is a filter base in , we say that  converges¹ Á Á ¹ µ H µÐBÑ ÐBÑ ©
to  (with the same synonyms) if  converges to .B Ð Ñ B¹ µ

This is obviously a more “abstract” definition than for nets, and at first sight it is
difficult to see how it relates to the familiar idea of convergence of sequences. Nets
are (in retrospect) a natural generalization of sequences, and often proofs in terms of
nets, valid in spaces that are not first countable, can be constructed by a simple
rephrasing of arguments with sequences, whereas filters are harder to grasp.

Lemma 6.18. Let  be a net in a set , where  is of course a directed set.ÐB Ñ H. .−H H
Then the “segments”  form a filter base  in  as A µ HÐ-Ñ ³ ÖB À - Ÿ . − H× -.

varies over . Furthermore, if  is a topological space and ,  if andH B − B Ä BH H .
H

only if .µÄ B

Proof. Since , 6.15  is immediate. If , then there existsB − Ð-Ñ - ß - − H- " #A (a)
- − H - Ÿ - � - H C − Ð- Ñ C œ B$ " $ # $ . such that , since  is directed. If , then  forA

some , and then  and  also, so that .. � - . � - . � - C œ B − Ð- Ñ ∩ Ð- Ñ$ # " . " #A A
Thus , which establishes 6.15 .A A AÐ- Ñ © Ð- Ñ ∩ Ð- Ñ$ " # (b)

To say  is to assert that, for any , ; in turn thatµ Á ¹ µÄ B Q − ÐBÑ Q − Ð Ñ
says there exists some  with , i.e. that, for some ,F − F © Q - − Hµ
A Á AÐ-Ñ © Q ÐaQ − ÐBÑÑÐb- − HÑ Ð-Ñ © Q. But “ ” is just 6.13. �

Thus a net gives rise in a natural way to a filter base. On the other hand, a filter
base  (or, of course, a filter) is a directed set with respect to “reverse inclusion”,µ
E Ÿ F E ª F meaning . This follows from 6.15  (or 6.14 ). Since each(b) (c)

member of  is nonempty, we may choose an element  for each ,µ µB − F F −F

and the result will be a net . Such a net is in effect a choice function for ;ÐB ÑF F−µ µ
let me call it a net “associated to ”.µ



30

Lemma 6.19. The filter base  in the topological space  converges to the point  ifµ H B
and only if every net associated to  converges to .µ B

Proof. Suppose . Let . There is  such that ;µ Á µÄ B Q − ÐBÑ F − F © Q! !

thus, for  associated net ,  when . The def-any ÐB Ñ B − F © F © Q F � FF F− F ! !µ

inition 6.9 is satisfied.
Conversely, suppose that . Then there is some  such that, forµ ÁÄy B Q − ÐBÑ

every , , that is, . But  is, therefore,F − F § Q F ÏQ Á g ÖF ÏQ À F − ×yµ µ
a filter base (check this), and refines . Any net associated to it will also beµ
associated to , but will not converge to .µ B �

You see that in dealing with nets we are repeatedly forced to use the axiom of
choice (for instance, the proof just given has to assume that there  an associated netis
for the filter base ). Crudely, one might say that filter bases areÖF ÏQ À F − ×µ
inchoate nets before the actual values of the terms of the net are fixed.

Lemma 6.20.  Let  be a filter base in a set , and . Thenµ H HÒG0 À

0Ð Ñ ³ Ö0ÐFÑ À F − ×µ µ

is a filter base in . G �

Lemma 6.21.  Let  be a mapping between topological spaces. Then  is0 À 0HÒG
continuous at  if and only if, for every filter base  in  such that  inB − Ä BH µ H µ
H µ G, the image filter base  converges in  to .0Ð Ñ 0ÐBÑ �

§7. Separation axioms.

Many early results in topology involved conditions on abstract topological spaces
sufficient to ensure that familiar facts from  would generalize. For instance, the‘8

cofinite topology on an infinite set  has no non-constant real-valued continuousH
functions (see 5.14), whereas one feels that a “respectable” space should have plenty.
Can one invent reasonable conditions that imply there will be many continuous real-
valued functions? As usual, the motivation was the desire to generalize results to more
abstract and general situations.

Definition 7.1. A topological space  is a  or  if, whenever H HT -space is T! ! Bß C −
and , there is an open set  in  such that  is a singleton; in otherB Á C Y Y ∩ ÖBß C×H
words,  contains one of  and  but not the other, and in principle we cannot chooseY B C
which is which.  [Kolmogorov]****Eng p. 70 

H H is a or  if, whenever  and , there is an open set T -space is T" " Bß C − B Á C Y
such that  and . (Here we can choose freely which point will be in B − Y C Â Y Y
and which outside it.) [Riesz, 1907]

The indiscrete topology is the only one we have met that is not T . 1.5 gives an!

example of a space that is T  but not T  (there is no open set except  itself that! " H
contains the “distinguished” point .) Evidently T  implies T .+ " !
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Lemma 7.2.  A space  is T  if and only if all singletons are closed. H " [This is usually
expressed inaccurately as “points are closed”.] �

Definition 7.3. A space  is  if, whenever  and , there are openH HT# Bß C − B Á C
sets  in  such that , ,  and . [Hausdorff, 1914]Yß Z B − Y C − Z Y ∩ Z œ gH

This is overwhelmingly the most commonly cited separation axiom, and such an H
would most often be called a .    ***Eng p.58Hausdorff space

Definition 7.4. A space  is  ifH T$
(a) it is T  (so that points are closed) and"

(b) for any point  and closed set  not containing , there are open sets B J B Yß Z
such that , , and .B − Y J © Z Y ∩ Z œ g

It is clear that a T  space is Hausdorff, T T . It is often alternatively$ $ #Ö
described as . (I need scarcely stress that this word is over-used.) Kelley, in hisregular
book, draws a distinction, making “regular” mean  and “T ” mean & .(b) (a) (b)$

Although this is not silly (cf. the next lemma, where the T  condition is an"

irrelevancy), I doubt whether it is worthwhile, and it has not caught on elsewhere.

Lemma 7.5. H is regular if and only if points are closed and every point has a base of
neighbourhoods consisting of closed sets .[a “base of closed neighbourhoods”]

Proof. Let . By definition, there is an open set  such that .Q − ÐBÑ S B − S © QÁ
Let , which is closed; . Hence, if  is regular, there are open setsJ ³ Ï S B Â JH H
Y Z B − Y J © Z Y ∩ Z œ g and  such that , , and , or in other terms

B − Y © Ï Z © Ï J œ S ÞH H

Hence,  is a closed neighbourhood of  and is included in . Any neighbour-H Ï Z B S
hood of  includes a closed neighbourhood; so closed neighbourhoods form a base ofB
neighbourhoods. The argument reverses rather trivially. �

Lemma 7.6.  Any subspace of a T -space is T . Any subspace of a T-space is T . Any! ! " "

subspace of a T -space is T . Any subspace of a T -space is T . # # $ $ �

Statements of this kind are usually made in the form “Property T  is ”,3 hereditary
i.e. is “inherited” by all subspaces.

Definition 7.7. A space  is ifH T  %
(a) it is T , and"

(b) for any pair  of disjoint closed sets in , there are open sets  suchIßJ Yß ZH
that , , and .I © Y J © Z Y ∩ Z œ g

It is clear that  need only hold for  disjoint closed sets  and  to be(b) nonnull I J
true in absolute generality; that is, if  or  is empty, it is true anyway.I J

Rather as before, T T ; T  spaces are alternatively described as ; and% $ %Ö normal
again, Kelley calls a space “normal” if it just satisfies . But normality is  in(b) not
principle hereditary, the problem being that, if two subsets of the subspace  of  areG H
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closed and disjoint, they may not extend to closed subsets of  that are also disjoint. ItH  
is not easy to find examples of this possibility, but they do exist. On the other hand,

Lemma 7.8.  If  is a closed subspace of a normal space , then  is normal.G H G �

People sometimes say that .normality is hereditary for closed subspaces
The Ts do continue further, but “T ” and “T ” are rarely used in preference to the& '

verbal names.

Definition 7.9. A space  is if it is , i.e. if every subspace of H HT  hereditarily normal&

is normal.

Despite appearances, this is indeed a “separation axiom”, as  below shows.(b)

Lemma 7.10.  The following conditions are equivalent.
(a)  is hereditarily normal.H
(b) For any two subsets  and  such thatE F

E ∩ cl cl (15)ÐFÑ œ g œ F ∩ ÐEÑ ß

there exist open sets  such that , , and .Yß Z E © Y F © Z Y ∩ Z œ g
(c) Every open subspace of  is normal (in the subspace topology).H

(15) is sometimes expressed by saying that  and  are  in . It means,E F separated H
of course, that neither contains any accumulation points of the other.

Proof.  Certainly . Now suppose that  satisfies , and let  and  be(a) (c) (c)Ö H E F
separated subsets of . Then cl cl  is open in , so is normal inH G H H³ Ï Ð ÐEÑ ∩ ÐFÑÑ
the subspace topology; but, from (15), cl , cl , and, by 5.5,F © Ï ÐEÑ E © Ï ÐFÑH H

cl cl cl clG G H HÐEÑ ∩ ÐFÑ œ ÐEÑ ∩ ∩ ÐFÑ ∩ œ g àG G

hence, there exist  open sets  such that cl  andrelatively Yß Z − Y ª ÐEÑ ª EZG G

Y ª ÐFÑ ª F Y ∩ Z œ g Y Zcl  and . However, by 5.3,  and  are open in . ThisG H
shows . [In fact, cl cl cl  and likewise for cl .](c) (b)Ö G H H GÐEÑ œ ÐEÑ Ï ÐFÑ ÐFÑ

Suppose now that  holds, that  is a subspace of , and that  are(b) G H EßF
relatively closed disjoint subsets of . Then, by 5.5,G

E ∩ ÐFÑ œ ÐE ∩ Ñ ∩ ÐFÑ œ E ∩ Ð ∩ ÐFÑÑ

œ E ∩ ÐFÑ œ E ∩ F œ g ß

cl cl cl
cl

H H H

G

G G

and symmetrically cl . Thus, from , there are open sets F ∩ ÐEÑ œ g Yß Z −H H(b) Z
such that , , and . But now ,E © Y F © Z E ∩ F œ g E © Y ∩ −G ZG
F © Z ∩ − ÐY ∩ Ñ ∩ ÐZ ∩ Ñ œ gG Z G G GG , and . So  is normal. �

There is also a condition T , or , which is a little more compli-' perfectly normal
cated and will be better motivated later. The first question that naturally arises is
whether these conditions are often satisfied. They were in fact observed as
successively more demanding properties enjoyed by metric spaces.

Proposition 7.11.  If  is a metric space, it is TH &Þ [It is even T .]'
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It will help in the proof  if I make a short digression here (which will also be
relevant later).

Remark 7.12.  Let  be a subset of . A number  is a  for  ifE 6 − E‘ ‘ lower bound

Ða+ − EÑ 6 Ÿ + Þ

If  has a lower bound (say ), we say it is  (by ).E 6 6bounded below
It is important to appreciate that  is to be an honest real number here (not a6

“symbolic” or “ideal” construct like “ ”). For instance,  itself is not bounded$∞ ‘
below as a subset of ; nor is , nor is ; but  is bounded below by , or by , or by‘ ™ * � " !

"Î $ # Ð!ß "Ñ !1 , or by , and the “open interval”  is bounded below by  or by anyÈ
negative number. The null set is bounded below by any real number whatsoever.

We shall need the property of the real numbers usually called :Dedekind’s axiom

if  is a  subset of  and is bounded below, it has a GREATEST lower bound.E nonempty ‘

To clarify this: if  is bounded below, its lower bounds form a nonnull subset of .E ‘
This subset  contain a largest element. (Thus, for instance, it cannot consist of allmust
negative numbers, because there is no greatest negative number; if , thenα & !
α α α& & !"

# , so  is not a candidate for the greatest negative number.)
Dedekind’s axiom is in a sense the characteristic property of real numbers; we

shall see later, if it is not obvious anyway, that it says they have no “gaps”. If you
think of real numbers as “infinite decimals”  you can easily convince yourself in
intuitive terms that it is true; but a formal proof in those terms is difficult — indeed
that definition of the reals makes almost everything messy to prove.

If  is a nonempty subset of  and is bounded below, we denote its greatest lowerE ‘
bound by  (the infimum of ). An older and less pretentious notation isinfE E
g.l.b. . If  has a least element, then  is that least element; but if, as forE E Einf
Ð!ß "Ñ E, there is no least element, then  is the best we can do — it is less thaninf
each element of , and is the largest number with that property. For instanceE

inf infÐ!ß "Ñ œ ! ß ÖB − À B / ! B / (× œ ( Þ‘ & $ È$

Definition 7.13. Let  be a metric space; suppose that , .Ð ß .Ñ B − g Á E ©H H H
The set  is nonnull and bounded below by , so has an infimum.Ö.ÐBß +Ñ À + − E× !
We call this infimum . (This notation is quite.ÐBß EÑ ³ Ö.ÐBß +Ñ À + − E×inf
standard; the obvious ambiguity can never cause confusion.) Then:

Lemma 7.14.  (a) cl  if and only if ..ÐBß EÑ œ ! B − HÐEÑ
(b) If , then . In particular,  isBß C − .ÐBß EÑ $ .ÐCß EÑ Ÿ .ÐBß CÑ .ÐBß EÑH k k

continuous as a function of .B

Proof.    if and only if no positive number is a lower(a) infÖ.ÐBß +Ñ À + − E× œ !
bound for ; for any , there is some  (“depending onÖ.ÐBß +Ñ À + − E× / ! + − E%
+ +”, i.e. it may be necessary to choose a different  if the value of  is changed) such%
that . But this says that  for any , which is.ÐBß +Ñ & FÐBà Ñ ∩ E Á g / !% % %
equivalent to cl .B − ÐEÑH

(b) Suppose . Then there is some  with , andα α/ .ÐBßEÑ + − E .ÐBß +Ñ &
so ; hence , and.ÐCß +Ñ Ÿ .ÐBß CÑ , .ÐBß +Ñ & .ÐBß CÑ , .ÐCß EÑ & .ÐBß CÑ ,α α



34

.ÐCß EÑ $ .ÐBß CÑ & / .ÐBßEÑα α. This is true for any . Consequently ,‡

.ÐCß EÑ $ .ÐBß CÑ Ÿ .ÐBßEÑ ß .ÐCß EÑ $ .ÐBßEÑ Ÿ .ÐBß CÑ Þ

This, and the symmetrical inequality with  and  interchanged, prove . The deduc-B C (b)
tion that  is continuous in  is trivial. .ÐBß EÑ B �

[ This is a common form of reasoning, and I have given it more or less as it would‡

usually appear. But the full argument is this. If, in fact, ,.ÐCß EÑ $ .ÐBß CÑ / .ÐBßEÑ
we can take , and the proof shows thatα³ .ÐCßEÑ $ .ÐBß CÑ

.ÐCß EÑ $ .ÐBß CÑ & œ .ÐCß EÑ $ .ÐBß CÑ Þα

This is absurd, and the conclusion must be that .].ÐCß EÑ $ .ÐBß CÑ Ÿ .ÐBßEÑ

Lemma 7.15. Suppose that  is a topological space and that  areH HÒ‘0ß 1 À
continuous. Then  is also continuous.0 $ 1 À À B È 0ÐBÑ $ 1ÐBÑHÒ‘

Proof.  Define . This is continuous by 5.17. Then2 À À B È Ð0ÐBÑß 1ÐBÑÑHÒ‘#

the mapping  is continuous by 5.19; so the compositionÐ ß Ñ È $ Àα " α " ‘ Ò ‘#

of these two maps is continuous by 3.9 .(a) �

Proofs of this kind are very common. However, it would not be difficult to prove
the statement directly.

We can now return to the proof of 7.11. It will be clear that, without our
digression, the argument would be quite messy, although possible.

Proof of 7.11. Any subspace of a metric space is also a metric space (with a metric
that defines the subspace topology; see 5.7). So it suffices to show that  a metric space
is normal. Let  and  be disjoint nonnull closed sets in the metric space . DefineE F H
0 À À B .ÐBß EÑ $ .ÐBßFÑHÒ‘ Ò . This is a continuous function (by 7.14(b)

and 7.15). Thus  and  are dis-Y ³ ÖB − À 0ÐBÑ & !× Z ³ ÖB − À 0ÐBÑ / !×H H
joint open sets in . But, by 7.14 ,  and . H (a) E © Y F © Z �

If  or  is empty, 7.11 remains true, trivially so.E F
The principal reason why normality is an interesting condition is Urysohn’s

lemma. This is the first place where we create a continuous mapping that is not just an
automatic concomitant of some abstract construction.

Theorem 7.16. (Urysohn’s lemma.) Let  and  be disjoint nonempty closed sets inI J
a normal space . Then there is a continuous function  such thatH HÒ0 À Ò!ß "Ó

0ÐIÑ œ Ö!× 0ÐJ Ñ œ Ö"× Þand

[Incidentally,  with its topology as a subspace of  is customarily denoted byÒ!ß "Ó ‘
M. I cannot understand why the authors of recent elementary textbooks believe their
readers cannot cope with calling the set of integers . Although a name is just a name,™
it seems pointless to change two that have been accepted for several generations.]

Proof.  (a) Normality of  is equivalent to the property that, for any closedH
nonempty set  and any open , there is an open  such that  andI [ ª I Y E © Y
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cl . (In 7.7, take . Then cl , sinceÐYÑ © [ J ³ Ï[ ÐYÑ © Ï Z © Ï J œ [H H H
H Ï Z YÐEß[Ñ is closed.) Choose one such set and call it .

(b) dyadic rational Let  be the set of  numbers in , that is, of numbersH Ò!ß "Ó
whose binary expansions, consisting of s and s, terminate. Our aim is to construct,! "
for each , an open set . We do this by induction on the length of the binary0 − H Y0

expansion of , which I shall call the length of ; it is the (least) number of places0 0
(after the point) beyond which only s occur. We also wish to arrange that!

if  in , then cl . (16)0 (& H ÐY Ñ © Y0 (

The only numbers in  of length zero are  and . Let Ò!ß "Ó ! " Y ³ YÐIß Ï J Ñ! H
and .Y ³ Ï J" H

Now suppose  has been defined for all  of length  than , andY − H 5 −α α �less
that (16) is satisfied for those dyadic rationals at least. Let  be of length . The" − H 5
last nonzero digit (in the th place) in the expansion of  must be  (if it were  it5 " !"
would not count towards the length!) and so there are two possibilities: the last two
digits in the expansion of  may be  or they may be ." !" ""

Let  be the immediate predecessor of  in the class of members of  ofα "− H H
length not exceeding ;  must be of length less than  (it is obtained by deleting the5 5α
final “ ” from , and, if , will have length exactly  only if the last two" 5 / " 5 $ ""
digits of  are ). Let  be the immediate successor of  in the class of members" α α"" w

of  of length  than  (for instance, if , the immediate successor of lengthH 5 5 œ %less
less than  of 0 011  is , and  has immediate successor ). Then% † ! † "!! ! † !" ! † !""
α " α "w w/ , and indeed  is the immediate successor of  in the class of dyadic

numbers of length not exceeding .  and  have already been defined. Let5 Y Yα αw

Y ³ YÐ ÐY Ñß Y Ñ ß" α αcl w

in the notation of . Then, by , (16) holds for  and for . In this way (a) (a) α " "ß ß + Yw
"

may be defined for all  of length , and (16) remains true for  and  of length " 0 (5 not
exceeding , since it suffices that it should hold for immediate neighbours in that5
class.

By induction on , we shall obtain the desired family .5 ÖY À − H×0 0

(c) Suppose that . If  does not belong to any , define .B − B Y 0ÐBÑ ³ "H 0

Otherwise, define .0ÐBÑ ³ Ö − H À B − Y ×inf 0 0

If cl , where , then, for any  with , B − ÐY Ñ H ® & " − H / B − Yα -α - - α
by (16). Hence, , for any such . But . We0ÐBÑ Ÿ Ö − H À / × œ- - - - α αinf
deduce that . (17)0ÐBÑ Ÿ α

If , then , and so . If , then  does not belong toB − I B − Y 0ÐBÑ œ ! B − J B!

Y Y 0ÐBÑ œ "" , or, consequently, to any , and so .0

(d) (b) We finish by showing that  is continuous. By 5.4 , it makes no difference0
whether  is continuous as a mapping into  or as a mapping into .0 M‘

Given , let . Assume, for convenience, that ;B Q − Ð0ÐB ÑÑ ! & 0ÐB Ñ & "! ! !Á‘

the arguments if  or  are simpler, each being the appropriate0ÐB Ñ œ ! 0ÐB Ñ œ "! !

half of the two-sided proof that follows.
Take dyadic numbers  and  such thatα α " "ß ßw w

! Ÿ & & 0ÐB Ñ & & Ÿ " Ð+ ß Ñ © Qα α " " "w w w w
! and  .

If , then  by definition. (18)B − Y 0ÐBÑ Ÿ &" " "w
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Also, . Indeed, if , then  for any  by (16). ThusB − Y B Â Y B Â Y &! ! !" " 0 0 "

" 0 " is a lower bound for , and, by the definition of , ;Ö − H À B − Y × 0 0ÐB Ñ �0 !

which is impossible.
(17) shows that, if cl , then . It follows that cl ;B − ÐY Ñ 0ÐBÑ Ÿ B Â ÐY Ñα αα !

H Ï ÐY Ñ B C Â ÐY Ñ C Â Ycl  is an open set containing . Further, if cl , then  forα α 0!

any , so  as in the previous paragraph; hence . (19)0 α α αŸ 0ÐCÑ � 0ÐCÑ / w

Putting together (18) and (19), cl  is an open set, , and] ³ Y Ï ÐY Ñ B − ]" α !

0Ð] Ñ © Ð ß Ñ © Q 0 Bα "w w
!. Thus,  is continuous at . �

The conclusion may be summarized informally as “if closed sets may be separated
by open sets, they may also be separated by continuous functions”.

The conception of this proof is rather easy, although the details are a little
laborious. As I have already stressed, the point is the construction of a continuous
function from entirely “abstract” data. In a metric space we already have continuous
functions  and , and  can be defined by.ÐBß EÑ .ÐBßFÑ 0

0ÐBÑ ³ Þ
.ÐBß EÑ

.ÐBß EÑ , .ÐBßFÑ

From the bare statement of 7.16, you might suppose that  andE œ 0 ÐÖ!×Ñ$"

F œ 0 ÐÖ"×Ñ$" . In the proof, however, one sees clearly that this is not what has been
asserted. Indeed, there may be essential hindrances to its being true.

Definition 7.17. Let  be a topological space. A subset  of  is a -set if it may beH H ZE $

expressed as a countable intersection of open sets: , where eachE œ Y+
8œ"
∞

8

Y − F − Ð Ñ8 Z Z c H. The class of all such sets is denoted . Complementarily,  is$

an -set if it is a countable union of closed sets: , where eachY5 F œ J-
8œ"
∞

8

J −8 Y Y; and the class of such sets is called .5

Lemma 7.18.  In a metric space , every open set is  and every closed set isÐ ß .ÑH Y5

Z Z Y Y Z$ 5 $: that is,  and .© ©

Proof. The two statements are equivalent (by taking complements), so I prove the
first. Let  be an open set. Define for Y 8 − �

J ³ ÖB − À FÐBà "Î8Ñ © Y× œ ÖB − À .ÐBß Ï YÑ � "Î8× © Y Þ8 H H H  

By 7.14  and 3.7 , this set is closed. But, by definition,  if and only if there(b) (a) B − Y
is some  such that . Take  to be so large that , and then% % %/ ! FÐBà Ñ © Y 8 "Î8 Ÿ
B − J Y œ J8 88œ"

∞. So , and is .- Y5

Y Z5 is usually bigger than , since it contains closed sets as well as open ones.

Lemma 7.19. Let  and  be topological spaces, and  a continuousH G HÒG0 À
mapping. If  is a  [or ] set in , then  is  [or ] in . I 0 ÐIÑZ Y G Z Y H$ 5 $ 5

$" �

Corollary 7.20. If  is continuous (  being a topological space), then0 À HÒ‘ H
0 ÐÖ!×Ñ 0 ÐÖ"×Ñ$" $" and  are closed  in . Z H$ �
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One often writes  instead of the more correct notation , and so0 Ð!Ñ 0 ÐÖ!×Ñ$" $"

on, just as one says “points are closed” rather than “singletons are closed”.

Proposition 7.21. Let  be a normal topological space, and suppose that  and H E F
are disjoint nonnull closed subsets in , and that  is . Then there is a continuousH ZE $

function  such that  and . If  is also , then0 À M 0 Ð!Ñ œ E 0 Ð"Ñ ª F FHÒ Z$" $"
$

0 0 Ð"Ñ œ F 0 Ð!Ñ œ E may be constructed so that  and .$" $"

Proof.  Suppose that , where each  is open; take ,E œ K K L ³ K Ï F+
8œ"
∞

8 8 8 8

and , where  is open and . By Urysohn’s lemma,E œ L L F © ÏL+
8œ"
∞

8 8 8H

there is a continuous function  such that  and0 À Ò!ß "Ó 0ÐEÑ œ Ö!×8 HÒ
0Ð Ï L Ñ œ Ö"× B − JÐBÑ ³ # 0 ÐBÑH H8 88œ"

∞ $8. For each , define . This sum�
converges uniformly, by comparison with . It therefore defines a continuous� #$8

function with values in , and it is clear that its value on  is , whilst, for anyM F "
B Â E 8 B Â L JÐBÑ � #, there is some  such that , so that . ******8

$8 �

I have assumed some facts here about uniform convergence, and perhaps I should
say what they are, since they will soon be used again. Suppose that  is a netÐJ Ñ. .−H

(commonly a sequence) of continuous functions . [The example I have inHÒ‘
mind above is that  in the usual sense of addition of functions, i.e.J œ # 07 88œ"

7 $8�
pointwise addition: . As this is a finite sum ofÐaB − Ñ J ÐBÑ ³ # 0 ÐBÑH 7 88œ"

7 $8�
continuous functions, it is continuous.] We say that the net converges uniformly on H
to the function  ifJ

Ða / !ÑÐb. − HÑÐaB − Ñ . � . J ÐBÑ $ JÐBÑ & Þ% H Ö %! ! 8k k
This is the usual definition of convergence for each individual  of theB − H
numerical net  to the limit , but with the added demand that the ÐJ ÐBÑÑ J ÐBÑ .. .−H !

whose existence (for the given ) is asserted should “work” for the given  and  % % for all
B .simultaneously

The standard example (apologies to those who have done 312) is the sequence of
functions , where  for each . In this case the numericalJ À M M J Ð>Ñ ³ > 88 8

8Ò
sequences  all converge; the limit is  when  and is  otherwise.  If youÐ> Ñ " > œ " !8

take for instance , there is no  such that  for . Whatever%³ R > & ! Ÿ > & "" "
# #

Rk k
R > � > " is chosen,  for some  very close to . So the convergence of this sequenceR

"
#

of functions is non-uniform. [On the other hand, in the proof above, where
J ³ # 0 J7 88œ"

7 $8� , the sequence does converge uniformly to , since

ÐaB − Ñ J ÐBÑ $ J ÐBÑ œ # 0 ÐBÑ

Ÿ # œ # Þ

H k k ¹ ¹�
�

7 88œ7,"

∞ $8

8œ7,"

∞ $8 $7 ]

The important result about uniform convergence is the following.

Lemma 7.22. Let  be a net of functions on the topological spaceÐJ À Ñ. .−HHÒ‘
H HÒ‘, and suppose it converges  to a limit function . If each uniformly J À J.
is continuous at , then  is also continuous at .B − J B! !H
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Proof.  Take any . There exists some  such that% / ! . − H!

ÐaB − Ñ . � . J ÐBÑ $ JÐBÑ & ÞH Ö %! .
"
$k k (20)

But  is continuous at , so there exists a neighbourhood  of  withJ B Q B. ! !!

B − Q J ÐBÑ $ J ÐB Ñ & ÞÖ %k k. . !
"
$! !

(21)

Thus, if ,B − Q

k k k k k k k kJÐBÑ $ JÐB Ñ Ÿ JÐBÑ $ J ÐBÑ , J ÐBÑ $ J ÐB Ñ , J ÐB Ñ $ JÐB Ñ

& , ,

œ Þ

! . . . ! . ! !

" " "
$ $ $

! ! ! !

% % %

%

by (20) and (21)

Thus,  is continuous at .J B! �

It follows that, indeed, the function  constructed in the proof of 7.21 isJ
continuous, as we required it to be.

Definition 7.23. The topological space  is  or T  if it is normal andH perfectly normal '

if every closed subset of  is .H Z$

It requires no new argument to observe that a metric space is perfectly normal.
Urysohn’s lemma is a special case of

Theorem 7.24. (The Tietze-Urysohn extension theorem.) Let  be a normal space,H
and let  be a closed subset. If  is given the subspace topology and  isE E 0 À EÒ‘
continuous, then there is a continuous function  such that .1 À 1lE œ 0HÒ‘
Furthermore, if  is bounded above (or below, or both), then  may be chosen to have0 1
the same bounds; and if a bound for  is not attained, it is not attained by .0 1

The last sentence means that, if  for all , then  may be0ÐBÑ Ÿ B − E 1α
constructed so that  for all ; if  for all , then1ÐBÑ Ÿ B − 0ÐBÑ & B − Eα H α
1ÐBÑ & B −α H for all ;  and similarly for lower bounds.

Proof. Suppose to begin with that  is continuous, for some .9 ÒÀ E Ò$-ß -Ó - / !
The sets  and  are disjoint and closed inE ³ ÐÒ$-ß$ -ÓÑ E ³ ÐÒ -ß -ÓÑ$ ,

$" $"" "
$ $9 9

E, and consequently are closed and disjoint in . By Urysohn’s lemma 7.16, there is aH
continuous  such that  and . Define5 À Ò!ß "Ó 5ÐE Ñ œ Ö!× 5ÐE Ñ œ Ö"×HÒ " ,

<ÐBÑ ³ -Ð5ÐBÑ $ Ñ à# "
$ #

then  for all ,  for all . [Check this].k k k k< H 9 <ÐBÑ Ÿ - B − ÐBÑ $ ÐBÑ Ÿ - B − E" #
$ $

 So now suppose that  is continuous. By the previous paragraph0 À E Ò$"ß "ÓÒ
(taking , ), there is a continuous function   such that9 HÒ ‘³ 0 - ³ " 1 À"k k k k1 ÐBÑ Ÿ B − 0ÐBÑ $ 1 ÐBÑ Ÿ B − E" "

" #
$ $ for all  and  for all . This is the firstH

step of an induction; suppose now that  have been defined so1 ß 1 ßá ß 1 À" # 5 HÒ‘
that, for  and for all ," Ÿ 3 Ÿ 5 B − H

 , (22)k k ˆ ‰1 ÐBÑ Ÿ3
" #
$ $

3$"

and, for all ,B − E



39

¹ ¹� ˆ ‰0ÐBÑ $ 1 ÐBÑ Ÿ Þ
3œ"

5
3

#
$

5
(23)

Take  and  above, to deduce the existence of a continu-9 ³ 0 $ 1 - ³� ˆ ‰
3œ"
5

3
#
$

8

ous function  such that  and1 À 1 ÐBÑ Ÿ5," 5,"
" #
$ $

5
HÒ‘ k k ˆ ‰

ÐaB − EÑ 0ÐBÑ $ 1 ÐBÑ $ 1 ÐBÑ Ÿ Þ¹ ¹� ˆ ‰
3œ"

5
3 5,"

#
$

5,"

In this way we obtain a series of functions, , satisfying (22) and (23) for all .� 1 33

On  it converges uniformly, by comparison with the numerical series ,H � ˆ ‰" #
$ $

3$"

which converges with sum ; thus, certainly,  for all ." 1 ÐBÑ Ÿ " B −k k�
3œ"
∞

3 H

Define  for each ; then  is continuous by 7.22, and1ÐBÑ ³ 0ÐBÑ B − 1�
3œ"
∞ H

1lE œ 0 1ÐBÑ Ÿ " B − 1 À Ò$"ß "Ó by (23). And  for all , so .k k H HÒ
Of course if  attains the value  at some point of , then  must necessarily do so0 " E 1

as well. But suppose that  for all . It is at least possible that our0ÐBÑ & " B − E
construction allows  to take the value  at some points of . Define1 " H

F ³ 1 Ð"Ñ à$"

this is a closed set in , and is disjoint from  (by our assumption on ). By 7.16,H E 0
there is a continuous function  such that  and; HÒ ;À Ò!ß "Ó ÐFÑ œ Ö!×
; ; HÒÐEÑ œ Ö"× 2ÐBÑ ³ 1ÐBÑ ÐBÑ À Ò $ "ß "Ó. The function  is continuous and

extends , but does not take the value . A similar trick can be used to construct0 "
extensions of  that do not take the value  if  does not; or either of the values0 $" 0
$"ß " 0 if  does not.

If  and  is continuous, then set$∞ & + & , & ∞ 0 À E Ò+ß ,Ó! Ò

ÐaB − EÑ 0ÐBÑ ³ Þ
#0 ÐBÑ $ Ð+ , ,Ñ

, $ +
!

0 E Ò$"ß "Ó " $" is a continuous function , and does not take the value  (or )Ò
when  does not take the value  (or ). It has a continuous extension to0 , +!

1 À Ò$"ß "Ó " $" 0HÒ , which does not take the value  or  if  does not; and then

1 ÐBÑ ³ ÖÐ, $ +Ñ1ÐBÑ , Ð+ , ,Ñ×!
"
#

is an extension of  to a continuous function , which does not take0 1 À Ò+ß ,Ó! ! HÒ
the value  (or ) if  does not.+ , 0!

Hence, if  is a bounded continuous function and ,0 À E + ³ 0 ÐEÑ! !Ò‘ inf
, ³ 0 ÐEÑ 0sup ! !, there is a continuous extension of  to a bounded function
1 À! HÒ‘  with the same supremum and infimum, and it attains either of them on
H if and only if  attains it originally on .0 E!

There is a similar argument if  is bounded below, , but not0 + ³ 0 ÐEÑ! !inf
above; then one defines for B − E

0ÐBÑ ³ ß
0 ÐBÑ $ Ð+ , "Ñ

" , 0 ÐBÑ $ +
!

!

which maps into .  may be extended to , as before, which doesÒ$"ß "Ñ 0 1 À EHÒ
not attain the value  on  and attains the value  only if  attains it on . Define" $" 0 EH
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ÐaB − Ñ 1 ÐBÑ ³ + $ " ,
#

" $ 1ÐBÑ
H !  ; 

this is the desired extension of , which attains its infimum  at a point of  if and0 +! H
only if  attains its infimum on .0 E!

Finally, if  is bounded neither above nor below, define0 À E! Ò‘

ÐaB − EÑ 0ÐBÑ ³ Þ
0 ÐBÑ

" , 0 ÐBÑ
!

!k k
Then  has unattained infimum  and supremum . It has a conti-0 À E $" , "Ò‘
nuous extension  (i.e.  too does not attain its supremum or infi-1 À Ð$"ß "Ñ 1HÒ
mum), and  is a continuous extension of . 1 À À B È 1ÐBÑÎÐ" $ 1ÐBÑ Ñ 0! !HÒ‘ k k �

Remark 7.25. Although the above proof is long, that is partly because there are
several distinct statements to deal with.

There are two other versions of this theorem that I know of. Tietze’s original
theorem, proved in 1915, was for metric spaces. As for Urysohn’s lemma, the metric
can be used to construct the extension, at least when  is bounded, by a simple0
formula. One may suppose that  andinfÖ0ÐBÑ À B − E× œ "
supÖ0ÐBÑ À B − E× œ # , and then one can set

ÐaB − Ñ 1ÐBÑ ³

0ÐCÑ.ÐBß CÑ

.ÐBß EÑ
À C − E B Â E

0ÐBÑ B − E

H

Ú
ÛÜ

œ inf when , and

when .

The proof that  is continuous on  and extends  is not entirely trivial.1 0H
There is also a famous theorem due to Dugundji about the extension of continuous

functions with values in a locally convex topological vector space. But it requires
paracompactness of , which we have not yet discussed.H

The general question of extension of continuous mappings with values in a
topological space led Borsuk to invent the “theory of retracts”.

If one studies the proof of Urysohn’s lemma, it becomes apparent that normality is
used in an essential way; even if both  and  are singletons, the sets  will notE F Zα
usually be. Thus, in particular, there is no analogous result about “using a continuous
function to separate a point  from a closed set  such that ” in a regularB J B Â J
space, despite the similarity of the definitions of T  and T . However, a “functional$ %

separation property” for points and closed sets has some importance later.

Definition 7.26. The topological space  is [the spelling is variable, forH Tikhonov 
obvious reasons], or , or — this is no longer a joke, despitecompletely regular
presumably being invented as one — T , if it is T  and, for any  and any$ ""

#
B − H

closed subset  of  such that , there is a continuous functionJ B Â JH
0 À Ò!ß "Ó 0ÐBÑ œ ! 0ÐJ Ñ œ Ö"×HÒ  such that  and .

An equivalent formulation is that, for each point , the setsB − H

 ÖC − À 0ÐCÑ $ 0ÐBÑ & ×H %k k
where  ranges over the continuous functions  and  over the positive real0 HÒ‘ %
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numbers, form a base of neighbourhoods for . T  implies T  by Urysohn’s lemma,B % $ "#

and T  implies T .$ $"
#

8 Compactness.

It is quite common to give the definitions and so on for ; however, mostspaces
applications deal with compact  of a space, so I shall begin from that.subsets

Definition 8.1. Let  be a subset of a set . A  of  is a class  of subsets ofE EH hcovering
H h c H h H (that is, ) such that . If every  is an open set in ,© Ð Ñ Y ª E Y −-

Y−h

h h is described as an  of . Similarly, if every  is a closed set inopen covering E Y −
H h,  is a  of .closed covering E

Let  and  be coverings of .   is a  of  (sc. “of ”) ifh h h h" # " #E Esubcovering
h h c H h h h" # " # "© Ð Ñ as subsets of ; that is, if every member of  is a member of . 

is a  of  if every member of  is  a member of :refinement included inh h h# " #

ÐaY − ÑÐbZ − Ñ Y © Z Þh h" #

Notice that, whereas a subcovering may have fewer members than the original
covering, a refinement may have many more.

Definition 8.2. The subset  of the topological space  is  if every openE H compact
covering of  has a finite subcovering.E

The definition is sometimes formulated in two other ways: every open covering of
E has a finite open refinement, or has a finite refinement. It is clear that these state-
ments are equivalent to 8.2, and their only advantage over it is that they are closer to
some later definitions.

As I remarked, compactness is often defined for “whole spaces”, and then a
compact  is a subset that is compact as a topological space with respect to thesubset
subspace topology. This is equivalent to my definition, and emphasizes that
compactness is “intrinsic to the set ” — it depends only on the subspace topology ofE
E E, not on any subtler properties of the way  lies in .H

My definition is pretty standard, but in some sources you will find slightly
different formulations. Engelking demands that a compact space be T ; what I call#

“compact”, he calls “quasi-compact”. I am not sure why. Russian authors, by contrast,
used to use the word “bicompact” to mean “compact T”.#

Compactness is a remarkable property. If  is a finite set, it is evidently compactE
(why?), but except for that trivial case it is at first sight difficult to imagine other
examples. Of course, I gave some in 312 and 441.

H will denote a topological space from now on.

Lemma 8.3. Let  be a compact subset of  and  a closed subset of . ThenO GH H
O ∩ G  is compact. [A (relatively) closed subset of a compact set is compact.]
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Proof.  Let  be an open covering of . Then  is an openh h HO ∩ G ∪ Ö Ï G×
covering of . Hence, it has a finite subcovering . Define ;O ³ Ï Ö Ï G×h h h Hw ww w

this is an open covering of , because any point of  belongs to someO ∩ G O ∩ G
member of  but that member cannot be ; and it is a subcovering of , andh H hw Ï G
finite. �

Lemma 8.4.  Let  be Hausdorff. Then any compact subset  of  must be closed.H HO
Furthermore, if  is a second compact subset disjoint from , there are open subsetsG O
Yß Z Y ∩ Z œ g G © Y O © Z such that , , and .

Proof. Suppose . Then, for any , there are open sets  suchB Â O 5 − O YÐ5Ñß Z Ð5Ñ
that , , and . Thus  is anB − YÐ5Ñ 5 − Z Ð5Ñ YÐ5Ñ ∩ Z Ð5Ñ œ g ÖZ Ð5Ñ À 5 − O×
open covering of , so it has a finite subcovering . LetO ÖZ Ð5 Ñ À " Ÿ 3 Ÿ 7×3

YÐBÑ ³ YÐ5 Ñ Þs ,
3œ"

7
3

Then  is an open set; it contains  (as each  does). SetYÐBÑ B YÐ5 Ñs
3

Z ÐBÑ ³ Z Ð5 Ñs -
3œ"
7

3 , and then

YÐBÑ ∩ O © YÐBÑ ∩ Z ÐBÑ œ ÐYÐBÑ ∩ Z Ð5 ÑÑs s s s

© ÐYÐ5 Ñ ∩ Z Ð5 ÑÑ œ g Þ

.
.

3œ"

7
3

3œ"

7
3 3

Hence, in the first place, ; this proves that  is a neighbourhoodYÐBÑ © Ï O Ï Os H H
of ; and, as  was an arbitrary point of ,  is open in .B B Ï O Ï OH H H

Secondly, applying the argument to each  gives open sets B − G YÐBÑß Z ÐBÑs s

such that , , . Now  is anYÐBÑ ∩ Z ÐBÑ œ g B − YÐBÑ O © Z ÐBÑ ÖYÐBÑ À B − G×s s s s s

open covering of , so has a finite subcovering . LetG ÖYÐB Ñ À " Ÿ 5 Ÿ 8×s
5

Y ³ YÐB Ñ ß Z ³ Z ÐB Ñ Þs s. ,
5œ" 5œ"

8 8
5 5 �

This result need not be true if  is not T . Similarly,H #

Lemma 8.5. Suppose that  is compact Hausdorff. Then it is normal.H

Proof. If  are disjoint closed sets in , they are compact by 8.3, so 8.4 applies. EßF H �

Regular****

Lemma 8.6.  Let  be compact subsets of . Then  is compact.OßP O ∪ PH

Proof.  If  is an open covering of , then it is an open covering of , in whichh O ∪ P O
capacity it has a finite subcovering , and also an open covering of , having a finiteh" P
subcovering . Then  is a finite subcovering of , sinceh h h# " #∪ O ∪ P

. . .Š ‹ Š ‹
Y− ∪ Y− Y−h h h h" # " #

œ ∪ Y ª O ∪ P Þ �
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Lemma 8.7. The subset  of  is compact if and only if it has the “finite intersectionE H
property”: if  is a class of closed sets such that, for any finite subclassV
ÖG ßG ßá ßG × E ∩ G ∩ G ∩â∩ G Á g ÐE ∩ GÑ Á g" # 5 " # 5 G− of , , then .V +

V

Proof.  Complementation (with respect to ) and the contrapositive.O �

Possibly the most striking fact about compact sets (though it is not profound) is
the following:

Lemma 8.8. If  is continuous and  is compact in , then  is0 À E 0ÐEÑHÒG H
compact in .G

Proof. Let  be an open covering of . Then  is an openh h0ÐEÑ Ö0 ÐYÑ À Y − ×$"

covering of . As such, it has a finite subcovering, , and thenE Ö0 ÐY Ñ À " Ÿ 5 Ÿ 8×$"
5

ÖY À " Ÿ 5 Ÿ 8× 0ÐEÑ5  is a finite subcovering of . �

The last step is not quite obvious, the point being that, for any ,F © G
0ÐE ∩ 0 ÐFÑÑ œ 0ÐEÑ ∩ F$" .

Corollary 8.9. Suppose that  is compact,  is Hausdorff, and  isH G HÒG0 À
continuous. Then  is closed (recall ); that is, for every closed set  in ,0 E3.13(b) H
0ÐEÑ  is closed in .G

Proof.  8.3, 8.8, and 8.4. �

This has a remarkable consequence:

Corollary 8.10.  If  in  is a bijection, then it is a homeomorphism. If  is a0 08.9
surjection, then the topology on  is the topology induced by  from the topology ofG 0
H (see ), i.e. the quotient topology . ****5.20 (5.25) �

This is interesting because in the familiar  categories (groups, rings,algebraic
fields, vector spaces) — although not in some less familiar ones like semigroups — a
bijective homomorphism is automatically an isomorphism, and, in the category of
topological spaces and continuous maps, the corresponding statement is certainly false
(as the discrete topology shows). But in the category of compact Hausdorff spaces and
continuous maps, it is again true.

Lemma 8.11. The subset  is compact if and only if every net in  has a subnetE E
convergent to a point of .E

This is, of course, the immediate analogue of “sequential compactness” in the case
of metric spaces. Before proving it, we need a little introduction.

Lemma 8.12. B ÐB Ñ is a cluster point of  if and only if it is the limit of a. .−H

convergent subnet.

Proof.  Let  be a cluster point. Define , with partial orderB I ³ ÐBÑ ‚ HÁ

ÐQ ß . Ñ Ÿ ÐQ ß . Ñ ÐQ ª Q . Ÿ . Ñ Þ" " # # " # " #× &
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Given ,   to be such that  and/ œ ÐQß .Ñ − I Ð/Ñ − H Ð/Ñ � .choose 9 9
B − Q9Ð/Ñ . This is possible, by the definition 10.2. The mapping  thus defined9

satisfies Definition 6.12, and so is a subnet. But it also converges to  (6.9).B
The converse argument is left as an exercise. �

Proof of 8.11.  Suppose that  is compact, and that  is a net in . If it has noE ÐB Ñ E. .−H

cluster points in , then, for each , there is some open set  withE B − E YÐBÑ
B − YÐBÑ Ö. − H À B − YÐBÑ× H and  not cofinal in ; this means that there is some.

.ÐBÑ − H .ÐBÑ Ÿ . B Â YÐBÑ ÖYÐBÑ À B − E× such that, if , . Now  is an open.

covering of , so it has a finite subcovering .E ÖYÐB Ñ À " Ÿ 3 Ÿ 7×3

As  is directed, there is some  such that  for .H . .ÐB Ñ Ÿ . " Ÿ 3 Ÿ 7! 3 !

Suppose that ; then  for . And this is absurd,. Ÿ . − H B Â YÐB Ñ " Ÿ 3 Ÿ 7! . 3

since it implies that . This proves that  has a cluster point in .B Â E ÐB Ñ E. . .−H

Suppose  is not compact. By 8.7, there is a class  of closed sets the intersectionE V
of all of which does  meet , but such that any finite intersection of them not doesE
meet . Direct the family of finite subclasses of  by inclusion. The result is aE H V
directed set. For each , choose an element . This defines. − H B − E ∩ G. G−.� �+
a net in . I claim that it has no cluster point in .E E

Indeed, if  were a cluster point, then, for any , B Q − ÐBÑ Ö. − H À B − Q×Á .

would be cofinal. This implies  is adherent to each , and so belongs to eachB G − V
G E ∩ G œ g. And this in turn contradicts the hypothesis that . � �+

G−V �

Although the above argument is satisfactory enough, it uses the axiom of choice
repeatedly in a rather irresponsible way (and needs the unpleasant definition of a
subnet). Filters make for a better theory, albeit one based on the same ideas.

Definition 8.13.  Let  be a filter (or filter base) in .  is a  of ¹ H H ¹B − cluster point
if, for any  and , ; or equivalently cl .Q − ÐBÑ J − Q ∩ J Á g B − ÐJ ÑÁ ¹ +

J−¹

[Of course cl  is a filter in the class  of closed sets in .]Ö J À J − ×¹ Y H

Lemma 8.14.  B is a cluster point of  if and only if it is a limit of a filter refining .¹ ¹

Proof. If  is a cluster point of , then &  is a filterB ÖQ ∩ J À Q − ÐBÑ J − ×¹ Á ¹
base in , and the filter it generates is clearly a refinement of  that converges to .H ¹ B
Conversely, if , then . If  and , then¹ ¹ ¹ ¹ Á ¹ Á© Ä B © ª ÐBÑ J − Q − ÐBÑ" "

J ßQ − J ∩Q Á g¹" , and so . �

Lemma 8.15. E E is compact if and only if every filter in  has a refinement
convergent in , or equivalently has a cluster point in .E E

Proof. Suppose  is compact, but the filter  in  lacks a cluster point in . Then, forE E E¹
each , there is an open set  such that  and, for some ,B − E YÐBÑ B − Y JÐBÑ − ¹
YÐBÑ ∩ JÐBÑ œ g ÖYÐBÑ À B − E× E. Then  is an open covering of , with a finite

subcovering . But  (as  is a filter), andÖYÐB Ñ À " Ÿ 3 Ÿ 7× JÐB Ñ −3 33œ"
7+ ¹ ¹
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, , . ,Š ‹ Š ‹ Š ‹
. � �

4œ" 4œ" 3œ" 4œ"

7 7 7 7
4 4 3 4

3œ"

7
3 3

JÐB Ñ œ E ∩ JÐB Ñ © YÐB Ñ ∩ JÐB Ñ

© YÐB Ñ ∩ JÐB Ñ œ g .

This is absurd, as  is a filter in . So  must have a cluster point in .¹ ¹E E
Conversely, suppose that  is not compact. By 8.7, there is a class  of closed setsE V

of  such that any finite intersection of them meets , but the intersection of them allH E
does not. Thus  is a filter base in . But, by construction, it has noÖE ∩ G À G − × EV
cluster point in . E �

These proofs do not require choices, unlike the ones with nets. However, the
mention of “refinements” of the filters suggests something else. Let  be the class of F
all filters in . Then “refinement” is a partial order in ;  meansE ŸF ¹ ¹" #

“ ”. It is easily checked (with a little argument *****) that this partial order is¹ ¹# "ª
inductive (§4 ), and so, by Zorn’s lemma, any filter is included in a maximal filter.C

Definition 8.16. A maximal filter (in the class of filters of subsets of the set ) is anE
ultrafilter ultrabase.  in . A base for an ultrafilter may be called an (These conceptsE
are purely set-theoretical. Notice that an ultrabase is not necessarily maximal itself in
any obvious class.)

If one considers a topology on  and filters in the class of closed subsets of , oneE E
can similarly construct ultrafilters; they are sometimes called .maximal closed bases
The name is consistent, because a filter base (in whatever class of subsets) that is
maximal in the class of filter bases will itself be a filter.

An ultrafilter or maximal closed base  is  if ; intersections¹ free finite +
J−¹ J œ g

of its members are nonempty by definition. It is if there exists some principal + − E
such that  consists of all the sets [or all the closed sets, when  is a maximal closed¹ ¹
base] containing .+

Lemma 8.17.  (a) An ultrafilter is free if and only if it is not principal.
(b) T If  is  in the relative topology, a maximal closed base in  is free if andE E"

only if it is not principal. �

Lemma 8.18. A filter base  in a set  is an ultrabase if and only if any of theµ E
following equivalent conditions holds.

(a) If  and  for all , then there is someI − ÐEÑ F ∩ I Á g F −c µ

F − F © I I! !µ µ such that . (Then  belongs to the filter generated by .) 
(b) If , then either there is some  such that  orI − ÐEÑ F − F © Ic µ! !

there is some  such that .F − F © E Ï I" "µ
(c) If  and , then thereI ßI ßá ßI − ÐEÑ I ∪ I ∪â∪I ª F −" # 5 " # 5 !c µ

exists an index , with , such that  for some .3 " Ÿ 3 Ÿ 5 I ª F − F −3 " "µ µ
(d) If , , and = ,I ßI ßá ßI − ÐEÑ F − I ∩ I ∩â∩I ∩ F g" # 5 ! " # 5 !c µ

then there exists an index , with , such that for some3 " Ÿ 3 Ÿ 5 I ∩ F œ g3 "

F − Þ" µ �

Of course the statements for filters and ultrafilters are more elegant.
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Lemma 8.19. The set  in the topological space  is compact if and only if everyE H
ultrafilter in  converges (or, equivalently, every ultrabase converges).E �

Lemma 8.20. Let  be an ultrabase in the set , and let  be a mapping.µ H HÒG0 À
Then  is an ultrabase in .0Ð Ñµ G

Proof. 0Ð Ñµ  is a filter base by 6.20. If it is not an ultrabase, then, by 8.18 , there is(a)
some  such that  for every , but there is noI − Ð Ñ I ∩ 0ÐFÑ Á g F −c H µ
F − 0ÐF Ñ © I 0 ÐIÑ ∩ F Á g F © 0 ÐIÑy! !

$" $"µ  such that . So , but , for every
F − 0Ð Ñµ µ µ. This, however, contradicts 8.18  for . So  is an ultrabase. (a) �

Proposition 8.21. Suppose that, for ,  is a topological space; let" H− F
"

H H 1 HÒH³ À#
" " " "−F , and let  be the coordinate projection. A filter base

µ H H " 1 µ in  converges to  if and only if, for each , the filter base  inB − − F Ð Ñ"

H 1 H" " " converges to  in .ÐBÑ

Proof. “Only if” results from 6.21. Suppose that, for each ,  in" 1 µ− F Ð Ñ Ä B" "

H H" " ", and let . A neighbourhood  of  in  will include a “basic openB ³ ÐB Ñ Q B−F

set” of the form  (see (10) of 5.15), where[ ³ ÐY Ñ ∩ ÐY Ñ ∩â∩ ÐY Ñ1 1 1" " "" # 5

$" $" $"
" # 5

B − Y " Ÿ 3 Ÿ 5 F − ÐF Ñ © Y" "3 33 3 3 3 for . But then there is some  such that ,µ 1

which is the same as ; hence , but, as  is aF © ÐY Ñ F ∩ F ∩â∩F © [3 3 " # 5
$"1 µ"3

filter base, there is some  such that , and soF − F © F ∩ F ∩â∩F! ! " # 5µ
F © Q Ä B! . This shows that  in . µ H �

Now for the big theorem on compactness.

Theorem 8.22. (Tikhonov’s theorem.) Let the topological spaces , for ,H "" − F
be compact. Then their product  is compact.H H³#

" "−F

Proof. Let  be an ultrafilter [or ultrabase] in . For each ,  is an ultra-¹ H " 1 ¹− F Ð Ñ"

base in , by 8.20. By 8.19,  converges in , say to . In , by 8.21,H 1 ¹ H H" " " "Ð Ñ B  
¹Ä ÐB Ñ" . The result follows by 8.19. �

This is the most memorable proof of the theorem that I know, because, as one
hopes will ideally be the case, all the difficult bits have been moved into the “abstract
nonsense” about filters. I believe the proof was first formulated in this way by
Bourbaki, although previous proofs were essentially equivalent. In particular, the
(first) proof given by Kelley relies on the “Alexander subbase lemma” instead, which
was not originally formulated using filters. Here it is:

Lemma 8.23.  Let  be a subbase for the topology of the topological space . Then f H H
is compact if and only if every covering by members of  has a finite subcovering.f

Proof. “Only if” is obvious. Suppose, on the other hand, that every covering by
members of  has a finite subcovering, but that  is not compact. Then there is anf H
ultrafilter  in  that is not convergent. For each , there is some neighbour-¹ H HB −
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hood  of  that is not in ; by 8.18 , there exists  such that .Q B J − Q ∩ J œ g¹ ¹(a) ! !

But  must include a “basic open neighbourhood” of  of the formQ B
W ∩ W ∩â∩ W W − W ∩â∩ W ∩ J œ g" # 5 3 " 5 !, where each , and then . Byf
8.18 , there is some  and there is some index , , such that(d) J − 3 " Ÿ 3 Ÿ 5" ¹
W ∩ J œ g3 " .

This proves that, for each , there is some  such that B − WÐBÑ − B − WÐBÑH f
and, for some , . Thus,  is an openJÐBÑ − WÐBÑ ∩ JÐBÑ œ g ÖWÐBÑ À B − ×¹ H
covering of  by sets of ; by hypothesis, it has a finite subcoveringH f
ÖWÐB Ñ À " Ÿ 3 Ÿ 7× J ³ JÐB Ñ −3 33œ"

7, and then  and+ ¹

J œ J ∩ œ ÐJ ∩ WÐB ÑÑ œ g ÞH .
3œ"

7
3

This is absurd. So, in fact,  must be compact. H �

In the case of finite Cartesian products, it is not necessary to use the axiom of
choice at all; one may prove quite easily that the product of two compact spaces is
compact****. But in general the axiom of choice is indispensable in the proof of
Tikhonov’s theorem. (It is, of course, needed to assure us that the product space is
nonempty if each factor is nonempty; but it is conceivable that the theorem might
remain true even if, in some cases, the product were empty.) In fact, Tikhonov’s
theorem is to the Multiplicative Axiom, and the implication Tikhonovequivalent 
Ö Multiplicative is a rather easy exercise.*****

It scarcely needs pointing out that so far I have given in this course no non-trivial
examples of compact sets.

Proposition 8.24.  Let . The interval  is compact.+ß , − Ò+ß ,Ó‘

This is usually quoted as “closed bounded intervals are compact”. In 312 and 441,
I present a well-known proof that quite explicitly relies on Dedekind’s Axiom for ‘
(by appealing to the properties of suprema). The Proposition is in a sense equivalent to
Dedekind’s Axiom, and to the General Principle of Convergence; that is, each can be
deduced from either of the others, granted that  is an ordered field. This is why these‘
three basic facts about  are expounded in different orders in various sources.‘

Proof. It is clear that the cases when  are trivial, and that, for , it suffices+ � , + & ,
to consider the interval .Ò!ß "Ó

Let , the product of countably many copies of the space withH³ Ö!ß "×#
5œ"
∞

two points and the discrete topology. By Tikhonov’s theorem,  is compact. TheH
mapping

9 HÒ % %À Ò!ß "Ó À Ð Ñ È #5 5− 55œ"

∞ $5
� �

(where each  is  or ) is a surjection, because each number in  has a binary%5 ! " Ò!ß "Ó
expansion, and is quite easily seen to be continuous *****. By 8.8, this proves that
Ò!ß "Ó  is compact. �

This proof apparently makes essential use of the Axiom of Choice to prove a result
that does not need it. However, the particular case of Tikhonov’s theorem (countable
products of doubletons) that was appealed to can easily be proved without the Axiom.
As usual, the Axiom is required to establish the abstract general result for incon-
ceivably large objects, but the “small practical cases” are true anyway. Putting it
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slightly differently and rather inaccurately, the Axiom is needed when there is no hope
of constructing either the desired object (a subcovering, in Tikhonov’s theorem) or an
explicit contradiction to the denial of its existence.

Lemma 8.25.  A compact set  in  is bounded.E ‘

Proof.  is an open covering of , and so of ; there is aÖÐ8 $ "ß 8 , "Ñ À 8 − × E™ ‘
finite subcovering of , . ThenE ÖÐ8 $ "ß 8 , "Ñ À " Ÿ 3 Ÿ 5×3 3

E © Ð Ð8 ßá ß 8 Ñ $ "ß Ð8 ßá ß 8 Ñ , "Ñ , "Ñ ßmin max" 5 " 5

which evidently shows that  is bounded.E �

Theorem 8.26.  A set in  is compact if and only if it is closed and bounded.‘8

At the cost of reiterating the oft-repeated, let me observe that this is a result about
‘8  and the standard (Euclidean) metric thereon. It would not be true in most metric
spaces, or even in  itself if “boundedness” were understood in terms of some other‘8

metric.

Proof.  Suppose first that  is compact. Each of the coordinate projectionsE © ‘8

1 0 0 0 05 " # 8 5À Ð ß ßá ß Ñ È

is continuous, so that  is compact in , and bounded: for some ,1 ‘ α5 5ÐEÑ � !

1 α α5 5 5ÐEÑ © Ò$ ß Ó Þ

Hence , and is bounded in . Indeed, it isE © Ò$ ß Ó ‚â‚ Ò$ ß Óα α α α ‘" " 8 8
8

included in the closed ball of radius  about the origin.Èα α"
#

8
#,â,

That  is closed follows instantly from 8.4.E
Conversely, if  is closed and bounded, it is a closed subset of the productE

Ò$ ß Ó ‚â‚ Ò$ ß Ó � !α α α α α α for some suitable  (for instance  might be the radius
of a ball about the origin including ). The product is compact by Tikhonov’sE
theorem. Apply 8.3. �

Lemma 8.27.  A compact nonnull subset of  contains its supremum and infimum. ‘ �

Corollary 8.28. Let  be a continuous real-valued function on the topo-0 À HÒ‘
logical space . If  is a compact subset of , thenH HE

Ðb+ß , − EÑÐaB − EÑ 0Ð+Ñ Ÿ 0ÐBÑ Ÿ 0Ð,Ñ Þ �

This is normally stated as “a continuous function on a compact set is bounded and
attains its bounds”, “bound” being an abbreviation for “least upper bound” or
“greatest lower bound” as the case may be. By “attaining” a “bound” is meant that the
“bound” is itself a value of the function. In general this will not be true; for instance,
the function  is bounded on the open interval , with infimum  and0Ð>Ñ ³ > Ð!ß "Ñ !
supremum , neither of which is a value of  on the interval." 0
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The attaining of bounds is obviously an important question, not least because
some differential equations of physics and geometry have solutions that are critical
points of related scalar-valued functions. In such cases the compactness of the domain
may be quite difficult to establish. But it is also possible sometimes to “put the
compactness into the function” in some way.

9. Compactifications.

How special are compact spaces? The very special properties they have, such as 8.10,
might suggest they are very rare. This is not quite the case. Let us begin simply.

Definition 9.1. A topological space  is locally compact if every point of  has aH H
base of neighbourhoods consisting of compact sets. [Naturally enough,  one often
speaks of a base of compact neighbourhoods.]

As with the definitions of “regular” and “normal”, Kelley had a slightly different
definition, requiring each point to have only one compact neighbourhood; and, as
before, this is not silly, but has not been generally accepted.

Lemma 9.2.  A locally compact Hausdorff space is regular. �

Kelley’s version was that every point in a regular “Kelley-locally-compact” space
has a base of compact neighbourhoods. *****

Suppose that  is any set. Then the axioms of set theory imply that there is someH
element  that does not belong to  (we know, for instance, by Cantor’s theorem, that‡ H
c H HÐ Ñ ‡ cannot be a subset of ). It is not very important what we take for , provided
that it is a “new” element. But let ,  with one extra element.H H H‡ ³ ∪ Ö‡×

Theorem 9.3. Let  be a locally compact Hausdorff space. There is a uniqueH
compact Hausdorff topology on  such that  is an open subset and the originalH H‡

topology on  is the subspace topology.H

Proof. Define the topology on  by requiring the “open” sets to be either openH‡

subsets of  itself (these are the “open” sets not containing ) or complements in H H‡ ‡

of compact subsets of  (these are the “open” sets containing , and meet  in openH H‡
sets of ).H

g g is an open set of ,  is the complement in  of the compact set  in . IfH H H H‡ ‡

Y ßY O ßO O ßO" # " # " # are open sets of  and  are compact sets of , then  are closedH H
in  by 8.4, so  is open in ;  is open in ; andH H H HY ∩ Ð Ï O Ñ œ Y Ï O Y ∩ Y" " " " " #

‡

Ð Ï O Ñ ∩ Ð Ï O Ñ œ Ï ÐO ∪O ÑH H H H‡ ‡ ‡ ‡
" # " #  is again the complement in  of a

compact set in , by 8.6. Finally, for any class  of “open” sets in , there are twoH h H‡

possibilities. Either they are all open subsets of ; then their union is also an openH
subset of , and so an “open” set of ; or else at least one of them contains  andH H‡ ‡
has a complement compact in , in which case  andH ‡ − Y-

Y−h
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H H‡ ‡

Y− Y−
Ï Y œ Ð Ï YÑŠ ‹. ,

h h

is the intersection of a compact subset of  with closed subsets of , so is compact byH H
8.3. In either case, the union is an “open” set of . This completes the proof that theH‡

“open” sets form a topology on . Evidently  is itself “open”, and its originalH H‡

topology is the same as the subspace topology.
Any “open” covering  of  must have one member  containing . Asi H‡ Z ‡

H H H i‡ Ï Z ÖY ∩ À Y − ×  is a compact subset of , and is covered by , there are
finitely many members  of   such that ;Y ßY ßá ßY Ï Z © ÐY ∩ Ñ" # 8 3

‡
3œ"
8i H H-

hence

H‡

3œ"

8
3© Z ∪ Y ßŠ ‹.

so that  has a finite subcovering. Hence,  is compact.i H‡

H H H‡  is Hausdorff. If  and , then there are open sets of ,  andBß C − B Á C Y
Z B − Y C − Z Y ∩ Z œ g Y Z,  such that , , and . But  and  are also open sets in the
topology of . If , there is, by hypothesis, a compact neighbourhood  of H H‡ B − O B
in : int , which is open in , and , which is also open in .H H H HB − O ‡ − Ï OH

‡ ‡ ‡

These “open” sets are disjoint. Thus,  is Hausdorff.H‡

That the topology specified is unique subject to the stated conditions is easy. �

Definition 9.4. The space  just constructed is called the Aleksandrov compactifi-H‡

cation or one-point compactification of the Hausdorff locally compact space .H

Definition 9.5. Let  be any topological space. A compactification of  is a mappingH H
5 À \ \HÒ , where  is a second topological space, such that

(a)  is compact, (b)   is dense in , i.e. cl ,  and\ 5Ð Ñ \ Ð5Ð ÑÑ œ \H H\

(c)  is a homeomorphism of  with , for the subspace topology on 5 5Ð Ñ 5Ð ÑH H H
induced from .\

I shall consider seriously only compactifications for which the compactified space
\ is T , because of 8.9 (see below), but the definition can be given more generally.#

The condition (b) ensures that  is not bigger than it need be. The Aleksandrov\
compactification has the property that the “embedding”  is an open continuous5
mapping, which is not usually the case.

Example 9.6. Let , which is Hausdorff locally compact. The one-point com-H ‘³
pactification of , which I shall call , is homeomorphic with the circleH H"

W ³ ÖÐBß CÑ − À B , C œ "× 5 À W" # # # "
"‘ HÒ. The embedding   may be

> È ß œ Ð Ð# >Ñß Ð# >ÑÑ Þ
" $ > #>

" , > " , >
Œ 

#

# #
$" $"cos tan sin tan

The “ideal point” or “point at infinity”  corresponds to .‡ Ð$"ß !Ñ
There is another well-known Hausdorff compactification of , a “two-pointH

compactification”  homeomorphic with .  may be takenH HÒ# #Ò$"ß "Ó 5 À Ò$"ß "Ó
as . Thus  is the open interval .> È #Ð >ÑÎ 5 Ð Ñ Ð$"ß "Ñtan$" #1 H
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There is a continuous mapping  defined by2 H ÒHÀ # "

2 1 1Ð=Ñ ³ Ð Ð >Ñß Ð >ÑÑ ßcos sin

and .2 ‰ 5 œ 5# "

There are other possible non-Hausdorff compactifications of . One might, for‘
instance, define † , with the open sets being defined as\ ³ ∪ Ö‡ß ×H

the open sets of ; and
the sets of  that contain , or †, or both, 

but meet  in the complement of a compact set.

H

H

\ ‡

Then  is compact, but not T .\ "

The existence of a T  two-point compactification of  is a consequence of the fact# ‘
that  has two “ends” (a technical term).‘

Example 9.7. Let . Then the Aleksandrov compactification of  is homeo-H ‘ H³ 8

morphic with . ****W8

On the other hand, for ,  is homeomorphic to the unit ball  in 8 / " FÐ!à "ÑH ‘8

with respect to the Euclidean distance. But the closed ball  is compact; weGÐ!à "Ñ
may regard it as a Hausdorff compactification of , with the inclusion as theFÐ!à "Ñ
embedding “ ”. In this way we obtain a compactification of  in which the ideal5 H
points form an -dimensional sphere.Ð8 $ "Ñ

Projective -space is another Hausdorff compactification of . In this case, the8 H
ideal points, the “points at infinity”, form a copy of projective -space. ****Ð8 $ "Ñ

9.5 has one consequence that is worth noting. The of the one-pointconstruction 
compactification may still be performed if the locally compact Hausdorff space  is inH
fact compact to begin with; the ideal point  is then both open and closed, and the‡
inclusion of  in  is not a compactification, because 9.5  does not hold. MoreH H‡ (b)
generally, a compact Hausdorff space may be characterized as a space for which the
only Hausdorff compactifications are homeomorphisms (i.e. for which  is onto).5

These various examples suggest a partial order.

Definition 9.8. Let  be a topological space, and suppose that  andH HÒ5 À \" "

5 À \ 5 5# # " #HÒ H are Hausdorff compactifications of .  dominates , and we
write , if there is a continuous mapping   such that5 � 5 À \ \" # "# " #2 Ò
2"# " #‰ 5 œ 5 .

Since I did not introduce these ideas earlier, let me have here a tiny digression.

Definition 9.9.  Let  and  be subsets of the topological space .  is dense in  ifE F E FH
F © ÐEÑ E © Fcl . [Commonly  when this nomenclature is used.]H

Lemma 9.10.  Suppose  and  are topological spaces,  is Hausdorff,  and  areH G G E F
subsets of , and  are continuous. If  and  are subsets of  and H HÒG H0ß 1 À E F E
is dense in  and , then .F 0lE œ 1lE 0lF œ 1lF

In words: continuous extension from dense subsets into Hausdorff spaces is
unique.
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Proof.  Suppose  and . Then there are open sets  in  suchB − F 0ÐBÑ Á 1ÐBÑ Y ß Z G
that , , and . But  is an open0ÐBÑ − Y 1ÐBÑ − Z Y ∩ Z œ g 0 ÐYÑ ∩ 1 ÐZ Ñ$" $"

neighbourhood of  in ; as such, it contains a point  of ; and, by hypothesis,B C EH
0ÐCÑ œ 1ÐCÑ 0ÐCÑ − Y 1ÐCÑ − Z, which is absurd, since  and . �

Of course, not every continuous mapping defined on  with its subspace topologyE
will extend to a continuous mapping defined on .H

Lemma 9.11.  If a mapping  exists as in , it is unique. It must be a surjection,2"# 9.8
and the topology on  must be the topology induced from  via . If \ \ 5 � 5# " "# "#2
as well, then  is a homeomorphism with inverse .2 2"# #"

Proof. The image of  must be compact, and so closed, in , and includes2"# #\
5 Ð Ñ \# #H . Thus by 9.5  it must be the whole of . The assertion about the induced(b)
(quotient) topology follows from 8.10. As ,  is completely2 2"# " # "#‰ 5 œ 5
determined on  , and, as this is dense in , the uniqueness of  follows5 Ð Ñ \" " "#H 2
from 9.10. If  also exists (with ), then2 Ò 2#" # " #" # "À \ \ ‰ 5 œ 5
2 2 2 2 2#" "# " #" # " #" "#‰ ‰ 5 œ ‰ 5 œ 5 ‰, and uniqueness shows that is the

identity of ; similarly,  is the identity of . Thus,  and  are\ ‰ \" "# #" # #" "#2 2 2 2
inverse homeomorphisms. �

In effect, if  and , the two Hausdorff compactifications are5 � 5 5 � 5" # # "

“equivalent”. For instance, a noncompact Hausdorff locally compact space has
essentially only one one-point compactification — which, of course, is obvious
anyway.

Remark 9.12. It is clear that the relation  between Hausdorff compactifications is�
transitive and reflexive; it is a “weak” partial order (not antisymmetric).

Lemma 9.13.  Suppose that  are Hausdorff compactifications, for 5 À \α αHÒ α
in an index set . Then there is a Hausdorff compactification  such thatE 5 À \HÒ
5 � 5 − Eα  for each .α

Proof.  Let , which is compact T . Define] ³ \#
α α−E #

5 À ] À B È Ð5 ÐBÑÑHÒ α α−E

and  is the coordinate projection, as usual. Clearly  for1 Ò 1α α α αÀ ] \ ‰ 5 œ 5
each , and it follows that  is continuous and injective. Let cl . Thenα 5 \ ³ Ð5Ð\ÑÑ]

\ 5 \ 5Ð Ñ \ is compact T ,  maps into , and  is dense in .# H
Let  be open in . Then (taking some )  is, by hypothesis,Y − E 5 ÐYÑH α α

relatively open in , so there is some  open in  such that5 Ð Ñ Z \α αH
5 Ð Ñ ∩ Z œ 5 ÐYÑ 5Ð Ñ ∩ ÐZ Ñ œ 5ÐYÑ 5ÐYÑα α αH H 1. But then , which shows that  is$"

relatively open in . This completes the proof. 5Ð ÑH �

Of course we do not yet know that a Hausdorff compactification of  exists.H
However, it might appear from 9.13 that, if any Hausdorff compactification exists,
there must be a greatest one. Unfortunately, there is also the set-theoretic problem that
the class of all Hausdorff compactifications is not obviously a set — and, in principle,
the construction may therefore not give a set either. There is, however, a construction
which not only avoids this difficulty, but also has an interesting extension property.
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Remark 9.14. If  has a Hausdorff compactification, , then  isH HÒ5 À \ \
normal, and so its subspace  is completely regular (Tikhonov). But, as  is a5Ð Ñ 5H
homeomorphism of  with its image,  itself must be Tikhonov.H H

Conversely, suppose  is completely regular. Let  denote the class of allH HJÐ Ñ
continuous functions , and set . By Tikhonov’s0 À M ³ MHÒ ËH H

#
0−JÐ Ñ

theorem,  is compact Hausdorff, and there is a mapping :Ë HÒËH H H5 À

ÐaB − Ñ 5 ÐBÑ ³ Ð0ÐBÑÑ ÞH H H0−JÐ Ñ

5 ‰ 5 œ 0 0 is continuous (as  is continuous for each ). It is one-one, since, if10 H

B Á C 0 − JÐ Ñ 0ÐBÑ Á 0ÐCÑ in , there is some  with .H H
I claim that  is a homeomorphism of  with . Given an open set  of 5 5 Ð Ñ YH HH H H

and any , there is some  such that . ThenB − Y 0 − JÐ Ñ Z ³ 0 Ð$∞ß "Ñ © YH 0
$"

5 ÐZ Ñ œ 5 Ð Ñ ∩ ÐZ Ñ 5 Ð ÑH H H0 00
$"H 1 H, and so is relatively open in . As this holds for

each ,  is relatively open in . Hence,  is a homeomorphismB − Y 5 ÐYÑ 5 Ð Ñ 5H H HH
with .5 Ð ÑH H

Finally, define cl . Then   is a Hausdorff compact-\ ³ Ð5 Ð ÑÑ 5 À \Ë H HH
H HÒ

ification of . It is called the Stone-Cech compactification, customarily denoted .H "H
v

Lemma 9.15.  If  is compact, then  is a homeomorphism.H HÒ "H5 ÀH

Proof.  In this case  is compact, so it is closed in  and . 5 Ð Ñ 5 Ð Ñ œH H HH Ë H "H �

Lemma 9.16.  If  is a continuous mapping between Tikhonov spaces,9 HÒGÀ
there is a unique continuous mapping  such that the diagram< "HÒ "GÀ

H Ò G
9

"H Ò "G
<

5 Æ Æ 5H G (24)

commutes. [It follows easily that  is a covariant functor from the category of"
Tikhonov spaces and continuous maps to the category of compact Hausdorff spaces
and continuous maps, and the embeddings constitute a natural transformation5H  
between the identity functor and . It would be natural to write instead of .]" <"9  

Proof.  There is a mapping . (I am not proposingJÐ Ñ À J Ð Ñ J Ð Ñ À 1 È 1 ‰9 G Ò H 9
any topology on  or ; this is just a set-theoretic construction as far as weJÐ Ñ J Ð ÑG H
are concerned. Notice that it is , i.e. goes in the opposite direction fromcontravariant
9 F Ë ÒË.)  In turn, there is an induced mapping ,À H G

FÐÐ> Ñ Ñ ³ Ð> Ñ Þ0 0−JÐ Ñ JÐ Ñ1 1−JÐ ÑH 9 G

This formula is more comprehensible if we think of  as sets of “choiceË ËH Gß
functions” (§4 ). If  is a choice function, then . A = À J Ð Ñ M Ð=Ñ œ = ‰ J Ð ÑH Ò F 9 F
is a continuous mapping, since its composite with any coordinate projection  of1 F1 ‰
Ë 1 Ë FG 9 H is the coordinate projection  of . Notice that  is , i.e. goes in1‰ covariant
the same direction as . It is easily checked that9
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H Ò G
9

Ë Ò Ë
F

5 Æ Æ 5H G

H G

(25)

commutes, by the calculation:

F F 9

9 9

‰ 5 ÐBÑ œ ÐÐ0ÐBÑÑ Ñ œ ÐÐJ Ð Ñ1ÑÐBÑÑ

œ Ð1Ð ÐBÑÑÑ œ 5 Ð ÐBÑÑ Þ

H H G

G G

0−JÐ Ñ 1−JÐ Ñ

1−JÐ Ñ

As  is continuous, cl cl , so that  restricts to a con-F F H G FÐ Ð5 Ð ÑÑÑ © Ð5 Ð ÑÑË H Ë GH G

tinuous mapping . The commutative diagram (24) results from (25).< "HÒ "GÀ
Uniqueness is assured by the fact that  is dense in , 9.10.5 Ð ÑH H "H �

Proposition 9.17. Let  be a Tikhonov space, and let  be its Stone-H HÒ "H5 ÀH

Cech compactification. If  is any compact Hausdorff space and  is
v

G 9 HÒGÀ
continuous, there is a unique continuous mapping  such that< "HÒGÀ
< 9‰ 5 œH .

Proof. In this case  is a homeomorphism, by 9.15. So “ ” here may5 ÀG GÒ "G <
be what in the notation of 9.16 would be called . 5 ‰G

$" < �

Theorem 9.18. The Stone-Cech compactification  of a completely
v

5 ÀH HÒ "H
regular space  has the following properties.H

(a) It dominates any other Hausdorff compactification of .H
(b) Any continuous mapping of  into a compact Hausdorff space  has aH G

unique continuous extension to a continuous mapping of  into ."H G
(c) Any bounded real-valued continuous function on  has a unique extensionH

to a continuous real-valued function on  (having the same supremum and"H
infimum).

(d) (a) (b) Any Hausdorff compactification having either of the properties or  is
equivalent to the Stone-Cech compactification.

v

Proof. (b) (b)is 9.17. If  is any Hausdorff compactification, then, by ,5 À \HÒ
there is a unique  such that ; this proves . Given a2 "HÒ 2À \ 5 œ ‰ 5H (a)
bounded continuous function , let , in the0 À ³ Ò 0Ð Ñß 0Ð ÑÓHÒ‘ G H Hinf sup
subspace topology; then  follows from .  is an obvious consequence of 9.11. (c) (b) (d) �

The Stone-Cech compactification clearly has a privileged position among
v

Hausdorff compactifications of Tikhonov spaces, but for more restricted classes of
spaces and for specific problems there are other possible compactifications. (A
notable example is Carathéodory’s theory of the boundary behaviour of conformal
transformations of regions in . I pointed out at 9.7 that the closed unit disk in  is a‚ ‚
compactification of the open unit disk; there are many others.
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Although  is obviously important, it is rather obscure. Even in simple cases, it"H
lacks a simple and attractive description. For instance the space  occasionally"�
appears, and is described simply as ."�

10. Connectedness.

Definition 10.1. A topological space  is  if  and  are the only subsets ofH Hconnected g
H H that are both open and closed. A subset  of  is connected if it is connected in theQ
subspace topology.

Lemma 10.2.  is connected if, whenever  are open sets of  such thatQ Yß Z H
Q © Y ∪ Z Y ∩ Z ∩Q œ g Q © Y Q © Z and , either  or ; or, equivalently,

if, whenever  are closed sets of  such that  andGßH Q © G ∪HH
G ∩H ∩Q œ g Q © G Q © H, either  or . �

Recall from 7.10 that subsets  of  are “separated” ifEßF H

E ∩ ÐFÑ œ F ∩ ÐEÑ œ gcl cl .H H

Lemma 10.3. Q  is connected if and only if it cannot be expressed as the union of two
non-empty separated sets. [The proof of 7.10 is relevant.] �

Lemma 10.4.  Let  be a continuous mapping between topological0 À HÒG
spaces. If  is a connected subset of ,  is a connected subset of . Q 0ÐQÑH G �

In this respect, connectedness is like compactness. As with compactness, I have
not given any example so far.

Proposition 10.5.  Any closed bounded interval in  is connected.‘

Proof.  As before, it will suffice to consider . Suppose there are open setsM œ Ò!ß "Ó
Y ß Z Y ∩ Z ∩ M œ g M © Y ∪ Z ! − Y in  such that  and , and assume that . Let‘

W ³ Ö> − M À Ò!ß >Ó © Y× Á g ß = ³ W Þsup

(  is of course bounded above by .)W "
I claim that . This is obvious, if we note that  is relatively closed= − Y ∩ M Y ∩ M

in , and so closed in , and that , as the supremum of , is an adherentM = W © Y ∩ M‘
point of  and so of . But here is an (equivalent) elementary proof.W Y ∩ M

Certainly . If , then . But  is open in ; so! Ÿ = Ÿ " = Â Y ∩ M ! & = − Z ∩ M Z ‘
there is some  such that , and .$ $ $ $ $/ ! Ð= $ ß = , Ñ © Z Ð= $ ß = , Ñ ∩ M © Z ∩ M
This is absurd, since it implies that . Thus, indeed,W © Ò!ß Ð!ß = $ ÑÓmax $
= − Y ∩ M .

However, there is some  such that ; if , it follows% % %/ ! Ð= $ ß = , Ñ © Y = & "
that . Then , and thisÒ=ß = , Ð ß " $ =ÑÓ © Y ∩ M Ò=ß = , Ð ß " $ =ÑÓ © Wmin min" "

# #% %

contradicts the definition of  as the supremum of , which is absurd. The conclusion= =
must be that , and, consequently, that .= œ " Ò!ß "Ó © Y
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What has just been proved is that, if , then . But the same proof! − Y M © Y
( ) shows that, if  instead, then . mutatis mutandis ! − Z M © Z �

Proposition 10.6.  The closure of a connected set is connected.

Proof. Suppose that  is connected, and that  and  are closed sets such thatQ G H
cl , cl . Then , .H HÐQÑ © G ∪H G ∩H ∩ ÐQÑ œ g Q © G ∪H G ∩H ∩Q œ g

But then either , when, as  is closed, cl  too, or , whenQ © G G ÐQÑ © G Q © HH

cl . HÐQÑ © H �

Lemma 10.7.  Let  be a Tikhonov space. Then  is connected if and only if  isH H "H
connected.

Proof. Let  be the canonical embedding. If  is connected, then so is0 À HÒ "H H
0Ð Ñ œ Ð0Ð ÑÑH "H H, and so is cl ."H

Conversely, suppose that  is not connected (“disconnected”). Then ,H H œ G ∪H
where  and  are closed, disjoint, and nonnull. Thus the function G H À M9 HÒ
defined by , , is continuous. By 9.18 ,  extends to a9 9 9ÐGÑ œ Ö!× ÐHÑ œ Ö"× (c)
unique continuous function  such that . But, as  is9 "HÒ 9 9 Hs sÀ M ‰ 0 œ 0Ð Ñ

dense in , 3.14 shows that cl , and  also takes only"H 9 H 9 "H 9 H 9Ð Ñ © Ð Ñ © Ð Ð ÑÑs s
M

the values  and  (and both). Hence  are closed disjoint nonnull! " Ð Ñ Ö!×ß Ð Ñ Ö"×s s9 9$" $"

sets whose union is , so that  is also disconnected. "H "H �

 Of course it also follows that cl , and likewise for . TheÐ Ñ Ö!× œ Ð0ÐGÑÑ Hs9 $"
"H

closure in  of a clopen subset of  is clopen in ."H H "H

Lemma 10.8. Let  be any family of nonnull connected subsets of . If no twoT H
members of  are separated, then  is also connected.T Q ³ E-

E−T

Proof. Suppose that  are closed sets in  such that  andGßH Q © G ∪HH
G ∩H ∩Q œ g E − E © G ∪H G ∩H ∩ E œ g. For any ,  and , and soT

either  or , but not both (as ). Thus  is the disjoint union ofE © G E © H E Á g T
two subclasses,  and .T T T T" #³ ÖE − À E © G× ³ ÖE − À E © H×

However, let  and . Then cl , and consequentlyE − E − ÐE Ñ © G" " # # "T T

clÐE Ñ ∩ E © G ∩ ÐH ∩QÑ œ g Þ" #

Similarly, cl . This is contrary to the hypothesis that  are notE ∩ ÐE Ñ œ g E ßE" # " #

separated. It must, therefore, be the case that either  or  is empty, and the otherT T" #

is . If we suppose that , then . If , thenT T T# "E−œ g Q œ E © G œ g-
T"

Q © H . Thus, the condition of 10.2 is satisfied. �

In particular, if , then  is connected.+ -
E− E−T TE Á g E

Definition 10.9. Say [unofficially] that two   are “connected” in  ifpoints Bß C − H H
there is some connected subset  of  such that . This is clearly aQ Bß C − QH
reflexive and symmetric relation in ; but 10.8 shows that it is also transitive. Thus itH
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is an equivalence relation  (we may [unofficially] call it the “connectednessµ
relation”).

The equivalence classes of  under the connectedness relation  are called theH µ
components connected(or, if there is any ambiguity — and there quite often is — the 
components) of . [The components of a subset of  are its components with respectH H
to the subspace topology.] The component in  of a point  is its -equivalenceH + µ
class. This is not, perhaps, the standard definition, which is stated below:

Lemma 10.10. The component in  of  is the largest connected subset of H H H+ −
that contains . Indeed, it is the union of all the connected subsets that contain . + + �

Lemma 10.11.  Each component of  is closed.H

Proof.  Since the closure of a component is also connected by 10.6, it must be equal to
the component itself, by 10.10. �

Proposition 10.12. Suppose that the topological space  is connected for eachH"

index  in the index set . Then  is connected." H HF ³#
" "−F

Proof.  Suppose that  are two points of the product. If they differ in onlyÐ? Ñß Ð@ Ñ" "

the th coordinate (  unless ), they are connected in , since the# " # H? œ @ œ" "

subset  of  is homeomorphic to  and soÖÐB Ñ − À Á Ê B œ ? ×" " " #H " # H H

connected. But, by transitivity, it follows that the component of the point ? ³ Ð? Ñ"
includes the set of all points differing from  in only finitely many coordinates. This?
set, however, is dense in  (because of the definition of the product topology). ByH
10.11, the component of  must be the whole of .? H �

If  is a subset of  for each , then  is a subset ofQ Q ³ Q" " ""H " #
−F

H H³ Q#
" "−F , and the subspace topology on  is the same as the product of the

subspace topologies on the . This remark offers a version of 10.12 for subsets.Q"

If  is expressed as the disjoint union of two open (and closed) sets  and , andH Y Z
U U © Y U © Z is a component of , then necessarily  or . It is tempting toH
suppose that the “converse” of this statement holds: that the component of a point
+ − +H  is the intersection of all the open-and-closed sets containing . This is not true

in general***. In fact its falsity is expressed in a definition:

Definition 10.13. Let . The  of  in  is the intersection of all+ − +H Hquasicomponent
the open-and-closed sets containing .+

We can define two points  to be  if every clopen set+ß , − H quasiconnected
containing  contains , and . This is an equivalence relation on .***+ , vice versa H

Lemma 10.14.   The quasicomponents of the points of  form a partition of  by(a) H H
closed sets.

(b) For each , the component of  in  is included in the+ − +H H
quasicomponent of  in .+ H

(c) Each quasicomponent is a union of some components of .  H �
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Example 10.15. Let  be the subset of  consisting of the points  and E Ð!ß !Ñ Ð!ß "Ñ‘#

and the line segments . Evidently the components of  are theÖÐ ß CÑ À ! Ÿ C Ÿ "× E"
8

singletons  and  and the individual line segments. The line segmentsÖÐ!ß !Ñ× ÖÐ!ß "Ñ×
are also quasicomponents, but the quasicomponent of  is the doubletonÐ!ß !Ñ
ÖÐ!ß !Ñß Ð!ß "Ñ× Ð!ß !Ñ. This is because any (relatively) open set that contains  must
also meet all the segments for sufficiently large , but if it is also (relatively) closed it8
must then include all these segments, and in consequence must also contain .Ð!ß "Ñ

Theorem 10.16. Let  be a compact Hausdorff space, and . Then theH H+ −
component of  in  is the same as its quasicomponent.+ H

Proof.  All we have to show is that the quasicomponent  of  is connected.  isU + U
closed, so it will suffice to suppose there are nonnull closed sets  in  such thatGßH H
U œ G ∪H G ∩H œ g + − G and . We may suppose .  is normal by 8.5, so thereH

are open sets  such that , , and , and .Yß Z G © Y H © Z Y ∩ Z œ g U © Y ∪ Z
By definition, , where  is the class of open-and-closed setsU œ \+

\−Ë Ë

containing . The intersection of any finite number of members of  is still in .+ Ë Ë
Suppose, if possible, that  for each . These sets are all\ Ï ÐY ∪ Z Ñ Á g \ − Ë

closed, and, by the hypothesis, they form a system with the finite intersection property
(see 8.7). As  is compact,  too, by 8.7. This says thatH +

\−Ë Ð\ Ï ÐY ∪ Z ÑÑ Á g

U Ï ÐY ∪ Z Ñ Á g , which is absurd. The conclusion must be that there is some
\ − \ © Y ∪ ZË  for which .

In that case, however,  is also open-and-closed, and it contains \ ∩ Y œ \ Ï Z +
(recall that  and ). So ; which implies that+ − G © Y + − U © \ U © \ ∩ Y
U ∩H © U ∩ Z œ g U © G U, and, consequently, that . This shows that  is indeed

connected. �

Although there is quite a lot more that could be said about connectedness, I shall
finish this section with a few definitions of concepts that are often enough mentioned
to deserve elucidation, even though there is no reason to discuss them further here.

Definition 10.17. A topological space  is described as a  if it is compactH continuum
and connected.

Definition 10.18. H H is  if each point of  has a base of connectedlocally connected
neighbourhoods.

Definition 10.19. H is if all its connected components aretotally disconnected 
singletons. [Some people call this , a rather silly name.]hereditarily disconnected

Definition 10.20. H is if its topology has a base of open-and-closedzero-dimensional 
sets.

Definition 10.21. H H is  if the closure of every open set of  isextremally disconnected
open. [I have seen the phrase , but suspect it is a typist’s error.]extremely disconnected
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11 Paracompactness.

Paracompactness is where the geometers and the analysts part company. Let me start
with the historical background.

Remark 11.1. Let  be a separable metric space, with a countable dense subsetÐ ß .ÑH
] ÖFÐCà Ñ À C − ] 8 − ×. The class &  of open balls is a base for the topology of"

8 �

H H $; indeed, if  is an open set in  and , there is some  such thatY B − Y / !
FÐBà Ñ © Y 8 − Ÿ C − FÐBà Ñ ∩ ]$ � $, and some  such that . Take , and then" "

8 #8

B − FÐCà Ñ © FÐBà Ñ © Y Þ" "
#8 8

(Both the symmetry of the metric and the triangle inequality have been used.) Thus, in
fact,  is second countable, with the countable base consisting of open balls.H

Let  be any open covering of . Then  has a countable  consisting ofh H h refinement
open balls — in fact, of those balls that belong to the base just constructed and are
included in a member of . [I recall that a covering   or  ah i refines is a refinement of
covering  if every member of  is a subset of some member of . It is clear that ah i h
refinement of a refinement is a refinement.]

Now suppose that  is any covering of  by open balls, whereÖFÐ+ à < Ñ À 3 − ×3 3 � H
each . Define, for each ,< / ! 5 −3 �

[ ³ FÐ+ à < Ñ Ï GÐ+ à < $ Ñ ß5 5 5 3 33œ"

5$" "
5Š ‹.

where  denotes the closed metric ball ,GÐ+ à < $ Ñ ÖB − À .ÐBß + Ñ Ÿ < $ ×3 3 3 3
" "
5 5H

which is a closed set in  (and may be empty, if ). Hence,  is also an openH < & [3 5
"
5

set in .H
More surprisingly,  is also an open covering of . If ,Ö[ À 5 − × B −5 � H H

certainly there exists some  for which , and, that being so, there must5 B − FÐ+ à < Ñ5 5

exist a  natural number  for which . But then .least 5 B − FÐ+ à < Ñ B − [5 5 5

However, more is true. As , , and there existsB − FÐ+ à < Ñ .ÐBß + Ñ & <5 5 5 5

6 − #Î6 Ÿ < $ .ÐBß + Ñ 6 Ÿ 7 −� � such that ; this ensures that, whenever ,5 5

FÐBà Ñ © FÐ+ à < $ Ñ © GÐ+ à < $ Ñ ß" " "
6 7 75 5 5 5

by the triangle inequality. Thus  when . The effect of thisFÐBà Ñ ∩ [ œ g 7 � 6"
6 7

is that, for any point of , there is a neighbourhood of  (the ball ) whichH B FÐBà Ñ"6
meets only finitely many of the sets .[5

The argument just given is due to Dieudonné, who also proposed the most
important definitions that follow.

Definition 11.2. Let  be any class of subsets of the topological space .  is V H V locally
finite if, for each , there exists  such that B − Q − ÐBÑ ÖG − À Q ∩ G Á g×H Á V
is finite.  is  if, for each , there exists  such thatV H Ádiscrete B − Q − ÐBÑ
Q ∩ G œ g G − ÖG − À Q ∩ G Á g× for all  except at most one; that is, isV V

empty or a singleton. [Notice that here we are speaking of a discrete class of subsets
— a discrete subset is something different.]
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The class  is -locally finite if it can be expressed as a union  inV 5 V Vœ -5œ"
∞

8

which each summand  is locally finite; it is -discrete if it can be expressed as aV 58

countable union of discrete classes.

Notice that any subclass of a locally finite [  discrete  -discrete  -locallyor or or5 5
finite] class has the same property.

Lemma 11.3. Let  be a locally finite class of sets. Then  is alsoV ÖclÐGÑ À G − ×V
locally finite, and

cl clŠ ‹. .
G− G−V V

G œ ÐGÑ Þ

In particular, the union of a locally finite class of closed sets is also closed.

Proof. Suppose that  is an adherent point of . As  is locally finite, there isB G-
G−V V

some  such that  is finite, beingQ − ÐBÑ ÖG − À G ∩Q Á g×Á V

ÖG ßG ßá ßG × Q ∩ G œ Q ∩ G" # 5 3G− 3œ"
5 say. Hence, .� �- -Š ‹V

Let . Then , and by the definition of adherent pointR − ÐBÑ Q ∩R − ÐBÑÁ Á

Q ∩R ∩ G œ Q ∩R ∩ G Á g ÞŠ ‹ Š ‹. .
3œ" G−

5
3

V

Hence,  is an adherent point of . ThusB G-
3œ"
5

3

B − G œ ÐG Ñ © ÐGÑ ßcl cl clŠ ‹. . .
3œ" 3œ" G−

5 5
3 3

V

and this shows that cl cl . The converse inclusion is obvious.� �- -
G− G−V VG © ÐGÑ �

Given  and , letB − Q − ÐBÑH Á

V VÐQÑ ³ ÖG − À Q ∩ G Á g× Þ (26)

Obviously . If there is a neighbourhood  of  suchQ © Q ÐQ Ñ © ÐQ Ñ Q B" # " #ÖV V
that  is finite, then there must be a neighbourhood  such that V VÐQÑ R © Q ÐRÑ
has the least possible number of members. Then, for each , cl .G − ÐRÑ B − ÐGÑV
(Any neighbourhood of  that is included in  must meet exactly the same membersB R
of  as .) Conversely, cl  is .V V VR ÖG − À B − ÐGÑ× ÐRÑ

If  is a locally finite covering of , then, for each , there isV H HB −
8ÐBÑ − ∪ Ö!× G − B − ÐGÑ� V which is the number of  such that cl . ****

Definition 11.4. The topological space  is  if it is Hausdorff and everyH paracompact
open covering of  has a locally finite open refinement.H

I remarked about the definition of compactness that it made no difference whether
we required a finite subcovering or a finite refinement. For paracompactness, it is
essential to speak of a locally finite . For instance, any space with therefinement
discrete topology is trivially paracompact in the sense above, since the open covering
by singletons is locally finite (indeed discrete) and refines any open covering
whatsoever; but, for instance,  with the discrete topology has an open covering�
ÖÖ"ß #ßá ß 8× À 8 − ×�  that cannot have a locally finite subcovering, since any
subcovering must have infinitely many members, all containing ."
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As with regularity and normality, Kelley chose to present a slightly different
definition that has not caught on. In his book a paracompact space is defined to be
regular in his sense, but not necessarily Hausdorff. As before, this is by no means
silly, because it adds some precision to the statements of the theorems, but it is not
particularly useful either.

The form of the definition allows certain modifications.

Lemma 11.5. Suppose that every open covering of an arbitrary topological space H
has a  locally finite refinement. Then every open covering of  has an openclosed H
locally finite refinement.

Proof.  Let  be an open covering of . Let  be a closed locally finite refinement ofh H V
h H, and, for each , suppose that  is an open neighbourhood of  such thatB − RÐBÑ B
ÖG − À G ∩ RÐBÑ Á g× ÖRÐBÑ À B − ×V H is finite. By hypothesis, the covering 
also has a closed locally finite refinement ; each member of  meets only finitelyW W
many members of .V

For each , setG − V

Z ÐGÑ ³ Ï H ÞH Š ‹.
H− G∩HœgW &

This is an open set, since the union is closed by 11.3, and it includes , since theG
union is disjoint from . Thus  is an open covering of . If G ÖZ ÐGÑ À G − × J −V H W
and , then ; conversely, if , thenJ ∩ G œ g J ∩ Z ÐGÑ œ g J ∩ Z ÐGÑ œ g
J ∩ G œ g Z ÐGÑ ª G J Z ÐGÑ (as ). Thus  can meet only finitely many of the sets 

(namely, those for which it meets ).G
For each , choose  such that . LetG − YÐGÑ − G © YÐGÑV h

[ÐGÑ ³ Z ÐGÑ ∩ YÐGÑ Þ

Certainly , so these sets cover . They are open. For any , there isG © [ÐGÑ B −H H
a neighbourhood  of  that meets (and is covered by) only finitely many membersQ B
of . Each of these meets only finitely many ; so  can meet only finitelyW Z ÐGÑ Q
many of the sets . Hence  is the desired open locally finite[ÐGÑ Ö[ÐGÑ À G − ×V
refinement of .h �

Lemma 11.6.  A compact Hausdorff space is paracompact. �

Lemma 11.7.  A separable metric space is paracompact.

Proof.  Indeed, this is the result of Dieudonné’s argument at 11.1. �

The most famous result of this kind is the theorem of A. H. Stone:

Theorem 11.8.  Any metric space is paracompact.

The proof is an extremely clever modification of Dieudonné’s argument, and
proves rather more than you might expect.

Proof.  Let  be an open covering of , whose metric is . Well-h Hœ ÖY À = − W× .=

order . Now define, inductively over , a family  ofW 8 − ³ ÖZ À = − W×� i8 =ß8
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subsets of , also indexed by , as follows. Suppose  has been defined for allH iW 7

indices . (If , this is automatically true.) Define  for7 & 8 8 œ " [ ³ Z7 >ß7>−W
-

each .7 & 8
Given  and , let  be the set of points  of  such that= − W 8 − UÐ=ß 8Ñ C� H

 ;
 for ;

for any  and for any , ; that is, ;

.

(a)
(b)

(c)

(d)

C − Y

C Â Y > & =

7 & 8 > − W C Â Z C

FÐCà $Î# Ñ © Y

=

>

>ß7

8
=

Â [.
7&8 7

(Of course if  is the least element of , condition  is vacuously satisfied, whilst if= W (b)
8 œ " , the condition  is vacuously satisfied.) Then set(c)

Z ³ FÐCà # Ñ Þ=ß8 C−UÐ=ß8Ñ

$8. (27)

From (27),  is open, and  ensures that . (28)Z Z © Y=ß8 =ß8 =(d)
The family  is discrete. (In fact, it is even “uniformly discrete” with respect toi8

. B − Z, although it is not worth defining what this means.) Suppose that  and" = ß8"

B − Z = & =# = ß8 " ##
, where we may choose the notation so that . By (27), there are

points  such that  for . But then, by ,C − UÐ= ß 8Ñ B − FÐC à # Ñ 3 œ "ß #3 3 3 3
$8 (b)

C Â Y FÐC à $Î# Ñ © Y .ÐC ß C Ñ � $Î## = " = " #
8 8

" "
, and, by , . Consequently , and(d)

.ÐB ß B Ñ � .ÐC ß C Ñ $ .ÐB ß C Ñ $ .ÐB ß C Ñ / # Þ" # " # " " # #
$8

So any point of  is distant at least  from any point of . Any ball ofZ # Z= ß8 = ß8
$8

" #

radius  can meet at most one of the sets  in the class , which is,# Z$8$"
=ß8 8i

therefore, discrete. (29)
Take any . As  is a covering of , there is a member of  containing .B − BH h H h

As  is well-ordered, there is, in fact, a   such that ; and, as  is thenW = B − Y Yleast = =

open, there is some  such that . It is possible that 8 − FÐBà $Î# Ñ © Y B − Z� 8
= >ß7

for some  and some , i.e. that . But, if this is not true,7 & 8 > − W B − [-
7&8 7

then , and so . Either way, we have shown that,B − UÐ=ß 8Ñ FÐBà # Ñ © Z © [$8
=ß8 8

for some , . Hence,  is an open covering of . It is a7 Ÿ 8 B − [ ³7 88−i i H-
�

refinement of , by the remark (28). And we have shown it is -discrete.h 5
It remains to show that  is locally finite. Given , there are  and  suchi HB − > 7

that , and so by (27) there is some  with . ButB − Z C − UÐ>ß7Ñ .ÐBß CÑ & #>ß7
$7

there is some  such that . Now suppose that .5 − FÐBà # Ñ © Z 8 � 7, 5� $5
>ß7

For any  and for each ,  says that , so that= − W C − UÐ=ß 8Ñ C Â Z(c) >ß7

.ÐCß BÑ � # FÐBà # Ñ ∩ FÐCà # Ñ œ g$5 $7$5 $8. But then , since otherwise

.ÐBß CÑ & # , # Ÿ # Ÿ # Þ$7$5 $8 $8," $5

This holds for each , so by (27) , wheneverC − UÐ=ß 8Ñ FÐBà # Ñ ∩ Z œ g$7$5
=ß8

8 � 7, 5 = − W FÐBà # Ñ (irrespective of ). Thus   can meet only members of$7$5

i i i" # 7,5$"ß ßá . However, (29) tells us that it meets at most one member of each
of these classes. So, in fact, it meets at most  members of , and  is7, 5 $ " i i
locally finite. �
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Corollary 11.9.  If  is pseudometrizable (i.e. its topology may be defined by aH
pseudometric), then any open covering of  has a refinement that is simultaneouslyH
locally finite and -discrete.5 �

The proof used -discreteness as a step towards local finiteness. There was no5
place where  had to be a metric rather than a pseudometric — only the triangle.
inequality was used. However, we cannot simply say that any pseudometric space is
paracompact, since our definition of paracompactness requires  to be T . Kelley’sH #

modified definition would have an advantage here.

Corollary 11.10.  The topology of any metrizable space has a -discrete base.5

Proof.  Take a metric  defining the topology. For , let. 8 − �

h HÐ8Ñ "
8³ ÖFÐBà Ñ À B − × ß

which is an open covering of . By 11.8, there is a -discrete (and locally finite) openH 5

refinement  of this covering. The family  is also -discrete, and it is ai i 5Ð8Ñ Ð8Ñ
8œ"
∞-

base for the topology. ***** �

It is obvious that a -discrete family is -locally finite as well.5 5

Lemma 11.11.  Let  and  be disjoint closed subsets of a paracompact space .E F H
Suppose that, for each , there are disjoint open sets  such thatB − F Y ß ZB B

E © Y B − Z Yß Z E © YB B and . Then there are disjoint open sets  such that 
and .F © Z

Proof.  Since  is an open covering of , it has an openÖ Ï F× ∪ ÖZ À B − F×H HB

locally finite refinement . Let . Then clearlyj j j! ³ Ö[ − À [ ∩ F Á g×

F © [ Þ.
[−j!

(30)

However, if , it must be included in  for some  (because it can’t[ − Z B − Fj! B

be included in ). Thus , and cl , andH Ï F Y ∩[ œ g Y ∩ Ð[Ñ œ gB B

E ∩ Ð[Ñ œ g E ∩ Ð[Ñ œ gcl . It follows that cl . By 11.3,ˆ ‰-
[−j!

G ³ Ð[Ñ œ [. .Š ‹
[− [−j j! !

cl cl

is closed. Thus , and take . On the other hand, by (30),E © Ï G Y ³ Ï GH H
F © Z ³ [ G ª Z Y ∩ Z œ g-

[−j!
. As ,  . �

Theorem 11.12.  Any paracompact space  is normal.H

Proof.  Given disjoint nonempty closed sets  and  in , and , take in 11.11O P 5 − OH
E ³ Ö5× F ³ P and . The hypothesis of 11.11  is satisfied because  is Hausdorff.H

Thus there are disjoint open sets  such that , . (Thus  isY ß Z 5 − Y P © Z5 5 5 5 H
regular.) But now we may apply 11.11 again, this time with  and E ³ P F ³ O
(and the symbols “ ”,“ ” interchanged!), and the result follows.Y Z �
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Lemma 11.13. Let  be any topological space, and let  be a -locally finite openH h 5
covering of . Then  has a locally finite refinement, not necessarily open.H h

Proof. Suppose that , where each  is a locally finite class. Defineh h hœ -8œ"
∞

8 8

h h h h8 8
w w

8 55&8³ Ï 8� �-  for each ; then the classes  are disjoint (i.e. a member of
h h h h h belongs to only one of the subclasses ), but, as  for each ,  is still8 8 8

w w w
8© 8

locally finite; furthermore,  still. For each , defineh h hœ Y −-
8œ"
∞

8 8
w w

Y ³ Y Ï Zµ

5&8 Z −
Š ‹. .

h5
w

. (31)

Then  is a covering of . Indeed, given , there is a least  suchÖY À Y − × B − 8µ h H H
that , and then, for any  such that ,  too.B − Z Y − B − Y B − Y-

Z − 8
w µ

h8
w h

However, for each , there is some neighbourhood  that meets5 − Q − ÐBÑ� Á5

only finitely many members of . Thush5
w

Q ³ Y ∩Q ∩Q ∩â∩Q" # 8

is a neighbourhood of  in  that meets only finitely many members  ofB ZH- -
5Ÿ8 5Ÿ85

w
5h hœ , and consequently only finitely many of the corresponding

smaller sets . (31) shows that   meets no sets  if  Z Q © Y − [ [ −µ µ w
8 7h h

for . This proves that  is locally finite in . (But  is not7 / 8 ÖY À Y − × Yµ µh H
usually open.) �

Lemma 11.14.  Suppose that  is regular, and that every open covering of  has aH H
locally finite refinement (consisting of arbitrary sets). Then any open covering has a
closed locally finite refinement.

Proof. Let  be an open covering of . For each  there is some  withh H H hB − Y −

B − Y Z ÐBÑ B − Z ÐBÑ. By regularity of , there is some open set  such that  andH
cl . Thus,  is an open covering of ; by hypothesis, itÐZ ÐBÑÑ © Y ÖZ ÐBÑ À B − ×H H

has a locally finite refinement  (by arbitrary sets). For each , choosef fW −
YÐWÑ − BÐWÑ − YÐWÑ W © Z ÐBÐWÑÑ ÐZ ÐBÐWÑÑÑ © YÐWÑh  and  such that  and cl .

Now, for each , letY − h

XÐYÑ ³ W ß

ÐX ÐYÑÑ œ ÐWÑ © Y Þ

.

.
YÐWÑœY

YÐWÑœY
cl cl

The equality holds by 11.3, because any subclass of  is locally finite.f
Consider the sets , for . The classes -

YÐWÑœY W Y − ÖW À YÐWÑ œ Y×h

partition  (i.e. for different , the corresponding classes are disjoint, but everyf Y
member of  appears in some class). Consequently, in the first placef

. .
Y− W−h f

XÐYÑ œ W œ ßH

but also, if an open set  meets only finitely many members of , say ,Z W ßá ß Wf " 5

and, as a result, amongst their closures meets only cl cl , then it meetsÐW Ñßá ß ÐW Ñ" 5

only  amongst the sets , and amongst their closuresXÐYÐW ÑÑßá ß XÐYÐW ÑÑ X ÐYÑ" 5
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only cl cl . So the sets cl  form a locally finiteÐX ÐYÐW ÑÑÑßá ß ÐX ÐYÐW ÑÑÑ Ð X ÐYÑÑ" 5

closed covering of . Finally, for each H fW −

cl clÐWÑ © ÐZ ÐBÐWÑÑÑ © YÐWÑ ß

whence cl , and cl  is a closed refinement of .ÐX ÐYÑÑ © Y Ö ÐXÐYÑÑ À Y − ×h h �

Corollary 11.15. The closed locally finite refinement cl , indexedÖ ÐX ÐYÑÑ À Y − ×h

by , has the property that, for each , cl .  h hY − ÐXÐYÑÑ © Y �

In other words, the sets of the original open covering  may be “shrunk”h
individually to create a closed locally finite refinement.

Remark 11.16. Suppose that  is paracompact (and therefore regular), and that  isH h
an open covering thereof (which may but need not be locally finite). Then, for each
Y − Z ÐYÑ © Yh , one may construct an open set  in such a way that
cl  for each  and the class  is a locally finiteÐZ ÐYÑÑ © Y Y ÖZ ÐYÑ À Y − ×h

covering of . Indeed, one may suppose that , in the above proof, consists of H f open
sets, and then the sets  are also open. Thus, in a paracompact space, each set XÐYÑ Y
of an open covering may be shrunk to a smaller open set whose closure is included in
Y , in such a way that the shrunken sets constitute a locally finite covering. It should
be emphasized that this is not directly stated in the original definition of
paracompactness, in which the refinement might in principle have many more
members than the original covering.

Theorem 11.17. Let  be regular. Then the following properties are equivalent.H
(a)  is paracompact.H
(b) Every open covering of  has a -locally finite open refinement.H 5
(c) Every open covering of  has a locally finite refinement (by arbitrary sets).H
(d) Every open covering of  has a closed locally finite refinement.H

Proof.  (b) (c)  by 11.13, — it is obvious that a refinement of a refinement is aÖ
refinement. (c) (d)  by 11.14. Then (d) (a)  by 11.5. Of course (a) (b); aÖ Ö Ö
locally finite covering is certainly -locally finite. 5 �

The sufficiency of property (b) has a valuable consequence. So far we have only
had two classes of paracompact spaces: compact spaces and metrizable spaces.

Definition 11.18. A topological space  has the Lindelöf property or is Lindelöf ifH
every open covering of  has a countable subcovering.H

It is clear that it is immaterial whether we speak here of a “countable refinement”
(by arbitrary sets) or of a countable subcovering. The definition I have just given is the
usual one, but Engelking requires a Lindelöf space to be regular as well. Obviously a
compact space is Lindelöf.

Lemma 11.19.  Any second countable space is Lindelöf. �

Definition 11.20. H 5 is -compact if it can be expressed as a countable union of
compact subsets.
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Lemma 11.21. A -compact topological space is Lindelöf. 5 �

There are interesting spaces that are -compact but not second countable. In any5
case, we get from 11.24 a considerable widening of the class of paracompact spaces.

Proposition 11.22. A regular Lindelöf space is paracompact.

Proof. Indeed, a countable subcovering is -locally finite. 5 �

Definition 11.23. Let  be a covering of . If , the star of  with respect toh H HE © E

h h h, St , is the union of the members of  that meet . If  is a singleton ,ÐEß Ñ E E ÖB×
we write St . Then a covering  of  is a star-refinement of  if, for eachÐBß Ñh i H h
Z − Y − ÐZ ß Ñ © Yi h i, there is some  such that St . It is a pointwise star-refine-

ment if, for every , there is some  such that St .B − Y − ÐBß Ñ © YH h i

Lemma 11.24. Suppose that an open covering  of the topological space  has ah H

closed locally finite refinement. Then it also has an open pointwise star-refinement.

Proof. Let  be a closed locally finite refinement of . For each , chooseV h VG −

YÐGÑ − G © YÐGÑ B − ÐBÑ œ ÖG − À B − G×h H V V such that . For each , let ;
this is certainly a finite subset of , and so  is open. Of courseV +

G− ÐBÑV YÐGÑ

V V VÏ ÐBÑ G is locally finite, as  is, so that  is closed, and-
V VÏ ÐBÑ

Z ÐBÑ ³ YÐGÑ ∩ Ï GŠ ‹ Š ‹, .Š ‹
G− ÐBÑ G− Ï ÐBÑV V V

H (32)

is open in . But , so that  is an open covering of .H H HB − Z ÐBÑ ÖZ ÐBÑ À B − ×
Let , and choose  such that . If , the secondC − G − C − G C − Z ÐBÑH V! !

factor in (32) implies that   necessarily , so that . ButC Â G G − ÐBÑ-
G− Ï ÐBÑ !V V V

then the first factor shows that . This shows that  is aZ ÐBÑ © YÐG Ñ ÖZ ÐBÑ×!

pointwise star-refinement of .h �

The next lemma is purely set-theoretic.

Lemma 11.25. Let  be any covering of . If  is a pointwise star-refinement of h H i h

and  is a pointwise star-refinement of . Then  is a star-refinement of .j i j h

Proof. Suppose . For each , choose some  such that[ − B − [ Z ÐBÑ −j i

[ © ÐBß Ñ © Z ÐBÑ à

Ð[ ß Ñ œ ÐBß Ñ © Z ÐBÑ Þ

St then

St St

j

j j. .
B−[ B−[

On the other hand, take a specific . Then  for each ,A − [ A − [ © Z ÐBÑ B − [
and  St . The result follows.=9 Z ÐBÑ © ÐAß Ñ-

B−[ i �
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The next lemma is more substantial, and indeed difficult.

Lemma 11.26. Suppose that every open covering of the topological space  has anH

open star-refinement. Then every open covering has an open -discrete refinement.5

Proof. Let  be an open covering of . Define a sequence  of open coverings,h H hÐ Ñ8
where  and  is a star-refinement of  for each . For eachh h h h! 8," 8œ 8 � !
Y − 8 � " Yh  and each , define a corresponding subset of 

Y ³ ÖB − À ÐbQ − ÐBÑÑ ÐQß Ñ © Y× Þ8 8H Á hSt (33)

Then  is an open covering of  for each , and refines .ÖY À Y − × 8 � "8 h H h
Well-order  by , and define for each  and  an open set.h hŸ Y − 8 � !

Y ³ Y Ï Z ÞÐ8Ñ
8 8,"Z &Y
Š ‹Š ‹.cl (34)

If , there is some  such that St , by[ − \ − Ð[ß Ñ © \h h h8," 8 8,"

construction. If , where , then  and, by (33),B − [ ∩ Y Y − B − \8 h
\ © ÐBß Ñ © Y Ð[ß Ñ © Y [ © YSt ; thus, St , which entails , again byh h8 8," 8,"

(33). This has the consequence that

if , , and , 
there can be no  with .

(35)
Y − B − Y C Â Y

[ − Bß C − [

h

h
8 8,"

8,"

Now take any  (for given ). I claim that  meets at most one of the[ − 8 [h8,"
sets  (see (34)) for . If it meets  and , where , there isY Y − Y Z Y & ZÐ8Ñ Ð8Ñ Ð8Ñh

some , and some ; but (35) showsC − [ ∩ Z © [ Ï Y B − [ ∩ Y © YÐ8Ñ Ð8Ñ
8," 8

that this is impossible.
Therefore, the family  is discrete, for .ÖY À Y − × 8 œ "ß #ßáÐ8Ñ h

To complete the proof we must show that &  is aÖY À Y − 8 − ×Ð8Ñ h �
covering of . Given a point , there is (by well-ordering) a least member  ofH HC − Y
h � such that  for some . (Recall that, for each , the sets  forC − Y 8 − 8 Y8 8

Y − Z & Y C Â Zh H cover .) For any , then . From (35),8,#

StÐCß Ñ ∩ Z œ g ßh8,# 8,"

and, taking the union, St , so that indeedÐCß Ñ ∩ Z œ gh8,# 8,"Z &Y� �-
St cl  .ÐCß Ñ ∩ Z œ gh8,# 8,"Z &Y

Š ‹.
But this shows that cl , and  by (34). C Â Z C − Y� �-

Z &Y 8,"
Ð8Ñ �

Theorem 11.27. Suppose that the topological space  is T . Then the followingH "

conditions are equivalent.
(a)  is paracompact.H
(b) Every open covering of  has an open pointwise star-refinement.H
(c) Every open covering of  has an open star-refinement.H
(d)  is regular, and every open covering of  has an open -discreteH H 5

refinement.
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Proof.  (a) (b)  by 11.17(d) and 11.24. (b) (c)  by 11.25. (d) (a)  byÖ Ö Ö
11.17(b). As for (c) (d), 11.26 settles everything but regularity.Ö

Let , and let  be a closed set of  not containing . As  is T , there is anB − J BH H H "

open covering  of . Take an open star-refinement  of thisÖ Ï J ß Ï ÖB××H H H h
covering; there is some  such that . But St  is not included inY − B − Y ÐYß Ñh h
H h HÏ ÖB× ÐY ß Ñ © Ï J; thus St . However,

St St clÐY ß Ñ œ Ð ÐYÑß Ñh h

(any open set meets  only if it meets cl ), so thatY ÐYÑ
cl St cl . Hence,ÐYÑ © Ð ÐYÑß Ñ © Ï Jh H

B − Y ß Ï ÐYÑ ª J ßH cl

which proves the regularity. �

It is possible to say a great deal more about paracompactness, which is a sort of
crossroads where many different properties meet, but I shall not go further here.

12. Partitions of unity.

As before,  denotes a topological space.H

Definition 12.1. Let . The support of  isx xÀ HÒ‘

supp cl . (36)Ð Ñ ³ ÖB − À ÐBÑ Á !×x xH H

There are analogous definitions in some other circumstances (the codomain need
not be , for instance), and sometimes the word “support” is used without the‘
assumption that the closure has been taken.

Definition 12.2. A family  of functions  is locally finite if the classX HÒ‘

V³ Ö Ð Ñ À − ×suppx x X

is locally finite in the topological space . A locally finite partition of unity in  is aH H
locally finite class  of functions  such thatX HÒ Ò!ß∞Ñ

ÐaC − Ñ ÐCÑ œ " ÞH �
x X−

x (37)

Let  be a covering of . The partition of unity  is said to be subordinate to  ifh H hX

V h is a refinement of .

In the literature, slightly different definitions may be found. In particular, I think
the phrase “partition of unity” as commonly used assumes the requirement that it
should be locally finite. Because of 11.3, it is unimportant for this definition whether
we take closures in (36) or not.

We shall be concerned here only with partitions of unity consisting of continuous
functions, but in many practical applications other classes of functions (more
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particularly C  functions) have to be used, and the construction cannot then rely∞

simply on Urysohn’s lemma as below.
Granted the definition above, there is, for each , a neighbourhood  of B − R BH

such that  is finite (see (26)); then, for any , the only nonzero terms ofVÐRÑ C − R
the sum (37) are those for which supp , so that, in effect, the sum reducesÐ Ñ − ÐRÑx V
on  to a finite sum. This is the reason for the importance of partitions of unity (andR
of the idea of local finiteness).

Lemma 12.3. Let  be paracompact. Then, for any open covering  of , there is aH h H

locally finite partition of unity consisting of continuous functions and subordinate to
h.

Proof.  has a locally finite open refinement , which (see 11.16) has an openh i
refinement  such that, for each , cl . (ThisÖYÐZ Ñ À Z − × Z − ÐYÐZ ÑÑ © Zi i
refinement is necessarily locally finite too.) In turn,  there is a closed refinement
ÖGÐZ Ñ À Z − × ÖYÐZ Ñ À Z − × GÐZ Ñ © YÐZ Ñ Zi i of  such that  for each . By
11.12,  is normal; by Urysohn’s lemma 7.16, there is for each  a continuousH iZ −
function

0 À Ò!ß "ÓZ HÒ

such that , . It follows that0 ÐGÐZ ÑÑ œ Ö"× 0 Ð Ï YÐZ ÑÑ œ Ö!×Z Z H

suppÐ0 Ñ © YÐZ Ñ ßZ

and that the sum  is “locally finite” or, more precisely, “locally finitely non-�
Z − Zi 0

zero”; this means that, for any , there is a neighbourhood  of  such that atB − Q BH
most finitely many of the functions  can take a nonzero value at any point of .0 QZ

Indeed, this will be true if  meets only finitely many of the sets , sayQ YÐZ Ñ
YÐZ Ñß YÐZ Ñßá ßYÐZ Ñ C − Q C Â YÐZ Ñ" # 7 . If , then  for any
Z − Ï ÖZ ß Z ßá ß Z × 0 ÐCÑ œ ! Z B − Qi " # 7 Z, and so  for such . Hence, for , the

(formal) sum

0ÐCÑ ³ 0 ÐCÑ�
Z − Z

i

has nonzero terms only corresponding to the indices  , and so makesZ ß Z ßá ß Z" # 7

sense (being in effect a finite sum) and defines a continuous function on . This isQ
true on a suitable neighbourhood of any point of ; it follows that the function  isH 0
defined and continuous on the whole of .H

Furthermore,  takes strictly positive values, indeed values not less than . For any0 "
B − Z − B − GÐZ Ñ ÖGÐZ Ñ À Z − ×H i i, there is some  such that , since  is a

covering of . But then .H 0ÐBÑ � 0 ÐBÑ œ "Z

It is therefore legitimate to define for each B − H

1 ÐBÑ ³ Þ
0 ÐBÑ

0ÐBÑ
Z

Z

Then supp supp , so that  is also locally finite, and,Ð1 Ñ œ Ð0 Ñ © YÐZ Ñ 1Z Z ZZ −
�

i

for any , the sumB − H
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� �
Z − Z

Z − Z

i

i1 ÐBÑ œ œ " ß
0 ÐBÑ

0ÐBÑ

so that  is indeed a locally finite partition of unity subordinate to .Ö1 À Z − ×Z i h �

It is possible to use partitions of unity to derive some of the properties of
paracompact spaces that we obtained by set-theoretic arguments.

13 Uniform spaces

The theory of topological spaces began with metric spaces, and has been very success-
ful in generalizing ideas connected with continuity. But there are other concepts that
arise in metric spaces and are lost in the passage to topologies. Perhaps the most
obvious candidate for generalization is uniform continuity. If  is a0 À HÒG
mapping between metric spaces, it is  ifuniformly continuous

Ða / !ÑÐb / !Ñ . ÐBß CÑ & . Ð0ÐBÑß 0ÐCÑÑ & à% $ $ Ö %H G

that is, the “ ” that, for a given , is demanded by the definition of continuity at a$ %
specific point , can be chosen so as to work for all points of  simultaneously. ThisB H
is in principle a much stronger requirement than simple continuity: for instance, if ‘
carries the standard metric, the function  is continuous but notB È B , B À$ ‘Ò‘
uniformly continuous, since

k k k k0ÐBÑ $ 0ÐCÑ œ B $ C Ð" , B , BC , C Ñ Þ# #

However small we make , this will be arbitrarily large if  isk k k kB $ C B , BC , C# #

large enough. But if we give the domain the metric

3ÐBß CÑ ³ lÐB , BÑ $ ÐC , CÑl$ $

(which also defines the Euclidean topology), whilst keeping the Euclidean metric on
the codomain, then  is uniformly continuous. This shows that uniform continuity is0
dependent on the metrics used, even when they define the same topology.

The difficulty, put crudely, is that continuity depends on measuring “closeness to a
given point”, whilst uniform continuity requires a measure of “closeness” defined for
pairs of points located anywhere in the space. This suggests that, instead of a metric,
one need only have a notion of “closeness”. We shall see that “uniform” concepts may
be defined in a non-metrizable topological group, for instance.

The definition of a  was invented by Weil in 1938, but, as withuniformity
topologies, it has been reformulated in several ways. I shan’t attempt to list them. It is
in fact curious that the concept has not had more attention — but it may just be that I
have not noticed, or that, in truth, there is not too much to say. Even so, I shall not try
to discuss uniformities in any depth.

We require a few preliminary remarks. If  are subsets of , they areVß W ‚H H
relations on  and so we can construct their compositeH
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V ‰ W ³ ÖÐBß DÑ − ‚ À

ÐbC − Ñ ÐBß CÑ − V ÐCß DÑ − W×

H H

H &

and the inverse relations such as

V ³ ÖÐCß BÑ À ÐBß CÑ − V× Þ$"

V V œ V ÐV Ñ œ V is  if . In general, .symmetric $" $" $"

It will be convenient to define, for any ,E − Ð Ñc H

VÒEÓ ³ ÖC − À ÐbB − EÑ ÐBß CÑ − V× ßH

and then  trivially. When , we can write  as anÐV ‰ WÑÒEÓ œ VÒWÒEÓÓ E œ ÖB× VÒBÓ
abbreviation for .VÒÖB×Ó

The identity relation on  is the   in :H ? H Hdiagonal ‚

? H³ ÖÐBß BÑ À B − × Þ

Definition 13.1. Let  be a set. A  in  is a filter  in the class of subsetsH H huniformity
of  that satisfies the following additional properties:H H‚

  for each , ;(a) Y − © Yh ?
  if , then ;(b) Y − Y −h h$"

  if , there is some  such that .(c) Y − Z − Z ‰ Z © Yh h
The members  of the uniformity  are sometimes called  or Y h vicinities entourages

of the uniformity. As with topological spaces, the pair  of a set and aÐ ß ÑH h
uniformity thereon is called a , and explicit mention of the uniformityuniform space
may be suppressed when no ambiguity is possible.

Remark 13.2.  In 13.1 ,  (because of  13.1 ).(c) (a)Z © Y

These properties of a uniformity are abstracted from those of the sets
ÖÐBß CÑ À .ÐBß CÑ & × ‚ Ð ß .Ñ% H H H % in  when  is a metric space. As  varies over
positive values, these sets form a filter form a filter  for which  holds, sincebase (a)
.ÐBß BÑ œ ! .ÐBß CÑ œ .ÐCß BÑ / !;  holds since ; and  holds since, for any ,(b) (c) %

ÖÐBß CÑ À .ÐBß CÑ & × ‰ ÖÐBß CÑ À .ÐBß CÑ & ×

© ÖÐBß CÑ À .ÐBß CÑ & × Þ

" "
# #% %

%

In general, the symmetric vicinities of a uniformity will constitute a base (i.e. a filter
base) for the uniformity, since, if ,  by  and is symmetric.Y − Y ∩ Y −h h$" (b)

Definition 13.3. Let  be uniformities on . We say that  is or h h H h" # "ß finer stronger
than , or that  is  or  than , if .h h h h h# # " # "coarser weaker ©

There is clearly a finest possible uniformity on ; a set  is a vicinityH H HY © ‚
of this uniformity if . The conditions of 13.1 are trivially obvious — in ,? © Y (c)
one may take . This may be called the . There is also aZ œ ? discrete uniformity
coarsest possible uniformity; since  is a filter and nonempty, necessarilyh
H H h‚ − , and the coarsest possible uniformity, which might be called the

indiscrete uniformity, must be . It is easy to see that it is a uniformity.Ö ‚ ×H H
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Definition 13.4. A subclass  of the uniformity  is a for  if the finitef h hsubbase 
intersections of the members of  form a base for .f h

Definition 13.5. Let  be a uniformity on . The topology  on  induced by ,h H Z h H hÐ Ñ
or the , is defined byuniform topology

Z h c H hÐ Ñ ³ ÖE − Ð Ñ À Ða+ − EÑÐbY − Ñ YÒ+Ó © E× Þðóóóóóóóóóóóóóóñóóóóóóóóóóóóóóò
(P)

(38)

Lemma 13.6.  The class of subsets of  is a topology on .Z h H HÐ Ñ

Proof. Clearly  (the condition (P) being vacuously satisfied) and ((P) beingg − Ð ÑZ h
automatic) . Let  be any subclass of . Then, if , thereH Z h i Z h− Ð Ñ Ð Ñ B − Z-

Z −i

is some  with , and there is some  such that .Z − B − Z Y − Y ÒBÓ © Z! ! ! ! !i h
Then . This proves that the union satisfies (P).Y ÒBÓ © Z! Z −

-
i

If , and , then there exist  such thatZ ß Z − Ð Ñ B − Z ∩ Z Y ß Y −" # " # " #Z h h

Y ÒBÓ © Z ß Y ÒBÓ © Z Þ" " # #

But , and . This showsY ∩ Y − Ð Ñ ÐY ∩ Y ÑÒBÓ © Y ÒBÓ ∩ Y ÒBÓ © Z ∩ Z" # " # " # " #Z h
that  satisfies (P). Hence,  is a topology. Z ∩ Z Ð Ñ" # Z h �

It is slightly surprising that this lemma requires so little of the class  (really, justh
that, if , there exists  such that ). But the otherY ßY − Y − Y © Y ∩ Y" # $ $ " #h h
properties of  are needed to ensure that the topology and the uniformity are related inh
a reasonable way. It is clear that the discrete uniformity defines the discrete topology
and the indiscrete uniformity defines the indiscrete topology.

Lemma 13.7.  Let  be a uniformity on , and let  be the induced topology.h H Z hÐ Ñ
(a) The interior of  with respect to  isE − Ð Ñ Ð Ñc H Z h

FÐEÑ ³ ÖC − E À ÐbY − Ñ YÒCÓ © E× Þh

(b) For each ,  is a base of neighbourhoods at  in theB − ÖYÒBÓ À Y − × BH h
topology .Z hÐ Ñ

(c) Each vicinity  is a neighbourhood of  in  with respect to theY − ‚h ? H H
product topology induced by .Z hÐ Ñ

[Recall that “  is a neighbourhood of ” means “  includes an open set thatY Y?
includes ”. I shall write “int” to denote the interior with respect to .]? Z hÐ Ñ

Proof. Suppose . If int , there is an open set  with ;E − Ð Ñ C − ÐEÑ S C − S © Ec H
hence, by the definition of , there is some  such that ,Z h hÐ Ñ Y − YÒCÓ © S © E
and so . Thus int .C − FÐEÑ ÐEÑ © FÐEÑ

Conversely, suppose ,   for some . By 13.1 , thereC − FÐEÑ YÒCÓ © E Y − h (c)
is some  such that . For any , .Z − Z ‰ Z © Y D − Z ÒCÓ Z ÒDÓ © YÒCÓ © Eh

I  this is the first place where we really have to appeal to 13.1 . We wish tothink (a)
conclude from the last paragraph that ; but, although , weD − FÐEÑ Z ÒDÓ © E
should not know that  without  13.1 , which tells us . That beingD − E D − Z ÒDÓ(a)
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so, however (for any ), . As  was any element of ,D − Z ÒCÓ Z ÒCÓ © FÐEÑ C FÐEÑ
FÐEÑ − Ð Ñ FÐEÑ © E FÐEÑ © ÐEÑZ h , from (38).  by definition, so int . We have

now proved the inclusion in both directions. Hence, int , which is .FÐEÑ œ ÐEÑ (a)
In the same way, if , then . So  is aZ ‰ Z © Y − B − Z ÒBÓ © FÐYÒBÓÑ Y ÒBÓh

neighbourhood of . If  is any neighbourhood of , there is an open set containing B Q B B
and included in , and by (38) there is some  such that . So theQ [ − [ÒBÓ © Qh
sets  form a base of neighbourhoods at . This is .YÒBÓ B (b)

Again, given a vicinity , take  such that . For anyY − Z − Z ‰ Z © Yh h
ÐBß BÑ − Z ÒBÓ ‚ Z ÒBÓ ÐBß BÑ? ,  is a neighbourhood of  in the product topology$" $"

(by 13.1 ). But, if ,  and , so that(b) ÐCß DÑ − Z ÒBÓ ‚ Z ÒBÓ ÐBß CÑ − Z ÐBß DÑ − Z$" $"

ÐCß BÑ − Z ÐBß DÑ − Z ÐCß DÑ − Z ‰ Z © Y and , . Each point of  has a neigh-?
bourhood included in . This proves .Y (c) �

Definition 13.8.  The uniformity  on  is  if .h H ?separated +
Y−h Y œ

Lemma 13.9.  The uniformity  is separated if and only if the topology  is .h Z hÐ Ñ T!
But also, if  is separated, then  is Hausdorff.h Z hÐ Ñ

Proof. Let . If  is T , either there is some open setÐBß CÑ − Ð ‚ Ñ Ï Ð ÑH H ? Z h !

containing  but not , or vice versa. In the former case, by 13.7, there is someB C
Y − C Â YÒBÓ ÐBß CÑ Â Y Z −h h such that , that is, . In the latter case, there is 

such that  or ; but then . In either case,B Â Z ÒCÓ ÐCß BÑ Â Z ÐBß CÑ Â Z $"

ÐBß CÑ Â Y Þ,
Y−h

This holds for any , and so  is separated. The argument reverses.ÐBß CÑ Â ? h
Suppose  is separated and  in . There exists  with ,h H hB Á C Y − ÐBß CÑ Â Y

and there exists  such that  and . If ,Z − Z œ Z Z ‰ Z © Y D − Z ÒBÓ ∩ Z ÒCÓh $"

then , so  too, and ; hence ,ÐCß DÑ − Z ÐDß CÑ − Z ÐBß DÑ − Z ÐBß CÑ − Z ‰ Z © Y
and this is denied. So in fact , and  are disjoint neigh-Z ÒBÓ ∩ Z ÒCÓ œ g Z ÒBÓß Z ÒCÓ
bourhoods of  and .B C �

I motivated the idea of a uniformity as a generalization of a metric. But there are
other important ways for uniformities to arise, and I want briefly to point out one of
them.

Definition 13.10.  A is a pair  of a group  and a topologytopological group ÐKß Ñ KZ
Z Z on  such that (all) the group operations are continuous with respect to  and theK
product topology on . In brief, this means that the mappingK ‚K

ÐBß CÑ È BC À K ‚ K K$" Ò

is continuous when  is given the product topology.K ‚K

There are many important examples of topological groups; for instance, the
general linear group  of all real invertible  matrices, furnished withKPÐ8à Ñ 8 ‚ 8‘

the subspace topology it inherits from , or the “classical groups” like  and‘8# SÐ8Ñ
YÐ8Ñ .



74

If  is a topological group, it has two natural uniformities: the K left uniformity hP
and the  . Write  for the identity element of . One customarilyright uniformity hV / K
writes, if  and ,  for  and so on.E © K B − K BE ÖB+ À + − E×

Definition 13.11. h Á

h Á

P 1−K

$"

V 1−K

$"

³ ÖY © K ‚K À 1 YÒ1Ó − Ð/Ñ× ß

³ ÖY © K ‚K À YÒ1Ó1 − Ð/Ñ× Þ

,
,

Remark 13.12. It may be clearer to define these uniformities by saying, for instance,
that a  for  is given by the sets  as  varies overbase hP P

$"Z ³ ÖÐBß CÑ À B C − Z × Zs

Á hÐ/Ñ Z ³ ÖÐBß CÑ À BC − Z ×s, and a base for  is given by the sets  forV V
$"

Z − Ð/ÑÁ . This formulation shows that the left uniformity has a countable base if
and only if  is first countable, and similarly for the right uniformity.     ****K

Both the left and the right uniformity define the original topology on . If  isK K
abelian, they coincide.      ****

Theorem 13.13. Let  be a uniform space, and suppose that  has a countableÐ ß ÑH h h
base. Then there is a pseudometric  on  which defines the uniformity .. H h

A result equivalent to the Theorem itself, albeit not in the language of
uniformities, was apparently proved by Alexandrov and Urysohn (together) in 1923.

Proof.  Suppose  has a base . Define , ; ifh H HÐ[ Ñ Y ³ ‚ Y ³ [ ∩[8 ! " "8œ"
∞ $"

"

8 − Y − Z −� h h and  has been defined, choose in the first place  so that8 8,"

Z ‰ Z ‰ Z © Y ß8," 8," 8," 8

using 13.1 , and then set . In this way(c) Y ³ ÐZ ∩[ Ñ ∩ ÐZ ∩[ Ñ8," 8," 8," 8," 8,"
$"

ÐY Ñ8  is a base for  consisting of symmetric vicinities, and such that, for eachh
8 � ! ,

Y © Y ‰ Y © Y ‰ Y ‰ Y © Y Þ8," 8," 8," 8," 8," 8," 8 (39)

Define  by setting9 H HÒÀ ‚ Ò!ß "Ó

9
�

ÐBß CÑ ³
# ÐBß CÑ − Y Ï Y 8 −
! ÐBß CÑ − Yœ +
$8

8$" 8

8œ!
∞

8

if  for some ,
if .

(40)

Clearly  for all . From this function, which is a! Ÿ ÐBß CÑ œ ÐCß BÑ Ÿ Bß C −9 9 H"
#

“first approximation to the distance”, we construct a pseudometric by an argument
which is not unfamiliar in other contexts. For any finite sequence  inÐ+ ß + ßá ß + Ñ! " 5

H 9, we define its “length according to ”

PÐ+ ß + ßá ß + Ñ ³ Ð+ ß + Ñ Þ! " 5 3$" 33œ"

5� 9

Then . For any , letPÐ+ ß + ßá ß + Ñ œ PÐ+ ß + ßá ß + Ñ ÐBß CÑ − ‚! " 5 5 5$" ! H H

.ÐBß CÑ ³ ÖPÐ+ ß + ßá ß + Ñ À B œ + C œ + 5 − × ßinf ! " 5 ! 5& & (41)�

it being understood that, if , then  are otherwise unrestricted.5 / " + ßá ß + −" 5$" H
The infimum is defined (as the set is non-empty and bounded below by  in ). It is! ‘
clear that , and that, for any ,.ÐBß CÑ œ .ÐCß BÑ Bß Cß D − H
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.ÐBß DÑ Ÿ .ÐBß CÑ , .ÐCß DÑ ß

since a sequence used in defining  and one used for  may be concaten-.ÐBß CÑ .ÐCß DÑ
ated to form a sequence for . Thus,  is a pseudometric; and (from the.ÐBß DÑ .
sequences of length ) , so that# .ÐBß CÑ Ÿ ÐBß CÑ9

Y © ÖÐBß CÑ À .ÐBß CÑ & # ×8
$8 (42)

But  might in principle be identically zero..
I wish to prove that

if , where , then . (43)PÐ+ ß + ßá ß + Ñ & # 5ß 8 − Ð+ ß + Ñ & #! " 5 ! 5
$8 $8,"� 9

This is true (for all ) when . Suppose it is true for all  and8 5 œ " 8
" Ÿ 5 Ÿ 7 − ! & PÐ+ ß + ßá ß + Ñ & # 8� . Now suppose that , where  is the! " 7,"

$8

largest possible integer for which the inequality holds. There is a largest  (with5
! Ÿ 5 Ÿ 7, " PÐ+ ß + ßá ß + Ñ & # 5 & 7, ") such that ; in fact , as! " 5

$8$"

otherwise we could have taken  instead of . Then, by the inductive hypothesis,8 , " 8
9Ð+ ß + Ñ & # 5! 5

$8 . But also, as  is the largest possible,

# / PÐ+ ßá ß + Ñ � #$8 $8$"
! 5," ,

and so . Again by the inductive hypothesis, as! Ÿ PÐ+ ßá ß + Ñ & #5," 7,"
$8$"

7$ 5 Ÿ 7 Ð+ ß + Ñ & # Ð+ ß + Ñ & #, . Certainly  also (as it is a9 95," 7," 5 5,"
$8 $8

term in the sum ).PÐ+ ßá ß + Ñ! 7,"

From the original definition of  at (40),  .9 Ð+ ß + Ñß Ð+ ß + Ñß Ð+ ß + Ñ − Y! 5 5 5," 5," 7," 8

From (39), , and so .Ð+ ß + Ñ − Y Ð+ ß + Ñ & #! 7," 8$" ! 7,"
$8,"9

This proves (43) for , unless . But in that5 œ 7, " PÐ+ ß + ßá ß + Ñ œ !! " 7,"

case  for , so that  for any .9 �Ð+ ß + Ñ œ ! ! Ÿ 3 Ÿ 7 Ð+ ß + Ñ − Y ; −3 3," 3 3," ;,7

Thus, applying (39) inductively, we have for  any;

Ð+ ß + Ñ − Y ßá ß Ð+ ß + Ñ − Y ß Ð+ ß + Ñ − Y ß! # ;,7$" ! 3," ;,7$3 ! 7," ;

and    by (40). This completes the inductive proof of (43).9Ð+ ß + Ñ œ !! 7,"

Now suppose , where . By definition (41), there is some.ÐBß CÑ & # 8 −$8$# �
sequence  with  and  andÐ+ ß + ßá ß + Ñ B œ + + œ C! " 5 ! 5

PÐ+ ß + ßá ß + Ñ & # ÐBß CÑ œ Ð+ ß + Ñ & #! " 5 ! 5
$8$# $8$". But then , by (43), and9 9

ÐBß CÑ − Y8  by (40). With (42), this shows that

ÖÐBß CÑ À .ÐBß CÑ & # × © Y © ÖÐBß CÑ À .ÐBß CÑ & # × ß$8$# $8
8

and the uniformity defined by the pseudometric  is the same as .. h �

It is clear that, conversely, a uniformity defined by a pseudometric will have a
countable base.

The pseudometric  will be a metric if and only . This is equivalent. Y œ+
8œ"
∞

8 ?

to saying that the uniformity is separated. Thus the uniformity is  if andmetrizable
only if it is separated and has a countable base.

Essentially the same proof (it is necessary, however, to use the specific bases for
h hP Vß  suggested at 13.12) yields in the case of topological groups a result
sometimes called the Birkhoff-Kakutani theorem, which they proved (separately) in
1936.
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Theorem 13.14. Let  be a topological group. It is metrizable if and only if itK
possesses a countable base of neighbourhoods of the identity. In that case there are a
left-invariant metric and a right-invariant metric that both define the topology. �

Thus, for instance,  has a  metric defining the topologyKPÐ8à Ñ‘ left-invariant
which was originally constructed from a non-invariant metric. ****

Remark 13.15. The construction of  in 13.13 can be performed whenever one has a.
sequence  of symmetric vicinities satisfying (39). But  symmetric vicinityÐY Ñ8 any
Y − Yh  may be the “ ” term of such a sequence, from 13.1. Thus there is a pseudo-"

metric  on  such that.Y H

h ® ÖÐBß CÑ À .ÐBß CÑ & # × © Y © ÖÐBß CÑ À .ÐBß CÑ & # × ß$$ $"

and, for any ,  (as  for some ). Briefly,% % h %/ ! ÖÐBß CÑ À .ÐBß CÑ & × − / # 8$8

the uniformity  may be defined by a collection  of pseudometrics, in the sense thath W
the collection of sets  as  varies over  and  varies overÖÐBß CÑ À .ÐBß CÑ & × .% W %
Ð!ß∞Ñ  forms a subbase for . This is an alternative way of describing uniformities.h

Notice that the pseudometric  is continuous as a function on  with respect. ‚H H
to the product topology. ****

It is natural to ask whether the topologies induced from uniformities are in any
way special. There is a very simple answer.

Theorem 13.16. The topology  on  is induced by a uniformity if and only if, forZ H
any  and any closed set  not containing , there is a continuous function+ − J +H
0 À Ò!ß "Ó 0Ð+Ñ œ ! 0ÐJ Ñ œ Ö"×HÒ  such that  and .

[Thus a T  topology on  is generated by a uniformity if and only if it is! H
completely regular, i.e. Tikhonov. From 13.9, the uniformity must be separated, and
the topology must be T ; but, in fact, we see now that it must be T ]# $ "#

Þ

Proof. Suppose that . Given  and  as in the statement, there is someZ Z hœ Ð Ñ + J
Y − YÒ+Ó ∩ J œ gh  such that . According to 13.15, there is a continuous pseudo-

metric  such that . Define. ÖÐBß CÑ À .ÐBß CÑ & # × © Y$$

0ÐBÑ ³ Ö# .Ð+ß BÑß "× àmin $

this is continuous, and , whilst  whenever . Thus  has0Ð+Ñ œ ! 0ÐCÑ œ " C Â YÒ+Ó Z
the asserted property.

Conversely, for each continuous function , define an associated0 À Ò!ß "ÓHÒ
pseudometric . These pseudometrics define a uniformity . ÐBß CÑ ³ 0ÐBÑ $ 0ÐCÑ0 k k h

as at 13.15, and it is a tedious exercise to prove that . ***Z h ZÐ Ñ œ �

§14.  Uniform notions for uniformities

Now that we have uniformities, there are “categorical” questions to ask. We can also
generalize various concepts that previously seemed to need a metric, and specialize
others that only needed a topology. It is to be understood that the topology on a
uniform space is always the uniform topology.
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Definition 14.1. Let  and  be uniform spaces, and  aÐ ß Ñ Ð ß Ñ 0 ÀH h G i HÒG
mapping.  is  (with respect to the given uniformities) if, for0 uniformly continuous
every , . [Here  denotes the mappingZ − Ð0 ‚ 0Ñ ÐZ Ñ − 0 ‚ 0i h$"

H HÒG G‚ ‚ À ÐBß CÑ È Ð0ÐBÑß 0ÐCÑÑ . The definition says, in effect, that, for
any , there is some  such that, if , then .Z − Y − ÐBß CÑ − Y Ð0ÐBÑß 0ÐCÑÑ − Zi h
This clearly does generalize the idea of uniform continuity of mappings between
metric spaces.]

Remark 14.2. A uniformly continuous mapping is continuous with respect to the
uniform topologies.

Uniform spaces and uniformly continuous mappings between them form a
category. The isomorphisms in this category are the , i.e.uniform homeomorphisms
uniformly continuous mappings that have uniformly continuous inverses. One may
ask questions such as those of §5.

Definition 14.3. Let  be a set. If, for each ,  is a uniform space, andH " G h− F Ð ß Ñ" "

0 À" "HÒG h H is a mapping, then a uniformity  on  may be defined by specifying
that the sets , where  and  are arbitrary, shouldÐ0 ‚ 0 Ñ ÐY Ñ − F Y −" " " " "

$" " h

form a subbase for .  is the , and ish h uniformity induced on  by the mappings H 0"
the coarsest uniformity on  making each  uniformly continuous. ***H 0"

Two special cases are of interest. If  is a uniform space, and , thereÐ ß Ñ E ©G i G
is a uniformity on  induced by the inclusion . This is the E 3 À EE ÒG subspace
uniformity i i iE E on , which is easily seen to be .  isE ÖÐE ‚ EÑ ∩ Z À Z − × ÐEß Ñ
a  of .uniform subspace Ð ß ÑG i

 Similarly, if , the projections  induce a uniformH G 1 HÒG³ À#
" " " "−F

structure on , the .H product uniformity

Results to those of §14 are easily derived.

Definition 14.4. Let  be a uniform space with uniformity . A filter  on  isH h ¹ H
Cauchy if, for any , there is some  such that . A netY − U − U‚U © Yh ¹
ÐB Ñ Y − - − H. .−H  in  is Cauchy if, for any , there is some  such that,H h
whenever , ..ß / � - ÐB ß B Ñ − Y. /

Remark 14.5. Of course these two definitions, for filters and for nets, are related as I
explained at 6.18 and 6.19, and I shall not bother to present the arguments for nets
henceforth.

Lemma 14.6. If  is a filter in the uniform space  and converges to  in the¹ H HB −
uniform topology, then  is Cauchy.¹

Proof. Suppose that . Choose  such that  and .Y − Z − Z œ Z Z ‰ Z © Yh h $"

Then, by definition 6.17, there is some  such that .U − U © Z ÒBÓ¹
Take any . Then , so , and consequentlyÐ+ß ,Ñ − U ‚U + − Z ÒBÓ ÐBß +Ñ − Z

Ð+ß BÑ − Z œ Z , − Z ÒBÓ ÐBß ,Ñ − Z Ð+ß ,Ñ − Z ‰ Z © Y$" ; and , so . Hence, .
This proves that .U‚U © Y �
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Definition 14.7. A subset  of the uniform space  is  if every CauchyE Ð ß ÑH h complete
filter in  (in the subspace uniformity) converges to some point of .E E

Remark 14.8. The limit of a convergent filter in a Hausdorff space is (trivially)
unique (I did not point this out previously); and, therefore, the limit, if any, of a
Cauchy filter in a separated uniform space is also unique. Evidently uniform 
homeomorphisms preserve completeness of subsets.

Lemma 14.9.  If a subset of a uniform space is compact, it is complete. �

[For a Cauchy filter then has a refinement that converges, by 8.15, and that is
enough to ensure the original filter converges.]

Theorem 14.10. Let  be a uniform space.Ð ß ÑH h

(a) There exist a complete uniform space  and a mapping Ð ß Ñ 3 Às ssH h HÒH
such that  is a uniform homeomorphism of  with the uniform subspace  of3 3Ð ÑH H

Ð ß Ñ 3Ð Ñs ssH h H H and  is dense in .
(b) Furthermore, if  is a complete uniform space and  aÐ ß Ñ 0 ÀG i HÒG

uniformly continuous mapping, there is a unique continuous mapping 0 Às sHÒG

such that ;  is also uniformly continuous.0 ‰ 3 œ 0 0s s

(c) Finally, if  is another mapping of  into a complete uniform4 À HÒH H"

space  enjoying the property , then there is a uniform homeomorphismH" (b)
; À ;3 œ 4sHÒH"  such that .

Proof. [Sketch only.] Take the set of all Cauchy filters in . For each , sayH hY −

Ð ß Ñ − Y ßs¹ ¹ ¹ ¹" # " # for the Cauchy filters  if

ÐbJ − bJ − Ñ J ‚ J © Y" " # # " #¹ ¹& ,

and introduce an equivalence relation by

¹ ¹ h ¹ ¹" # " #µ ÐaY − Ñ Ð ß Ñ − Y Þsif and only if

Let  be the set of equivalence classes; the  determine the uniformity  on , andH h Hs sYs s

the mapping  carries each point into the equivalence class of the3 À sHÒH
principal ultrafilter it generates, which is certainly Cauchy. �

  is called the  of . (It is almost traditional to treat this theoremÐ ß Ñs sH h Hcompletion
as obvious.)

Definition 14.11. Let  be a subset of the uniform space .  is  if,E Ð ß Ñ EH h precompact
for any , there is a finite subset  of  (depending on ) such thatY − J Yh H
E © YÒJ Ó .

This is of course a “uniform” notion, requiring vicinities for its statement.

Lemma 14.12.  E is precompact as a subset of  if and only if it is precompact as aH
subset of itself in the subspace uniformity. �

That is, the same sets would be indicated if the subset  were required to be aJ
subset of  and  were required to be a vicinity of the subspace uniformity.E Y
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Lemma 14.13. (a) The image of a precompact set under a uniformly continuous
mapping is precompact.

(b) A set compact in the uniform topology is precompact. �

Lemma 14.14.  The subset  of the uniform space  is precompact if and only ifE H
every ultrafilter in  is Cauchy.E

Proof. We may suppose . Let  be precompact and  an ultrafilter, andE œ H H ¹
suppose . Choose  such that  and . Then thereY − Z − Z œ Z Z ‰ Z © Yh h $"

are points  such that .  being an ultrafilter, oneB ß B ßá ß B − Z ÒB Ó œ" # 8 33œ"
8H H ¹-

of the sets  must belong to  (see 8.18 ). But then , and itZ ÒB Ó Z ÒB Ó ‚ Z ÒB Ó © Y3 3 3¹ (c)
follows that  is Cauchy.¹

Suppose, conversely, that  is not precompact. Thus, there exists some H hY −
such that, for any finite set  in , . As ,J YÒJ Ó Á YÒJ Ó ∪ YÒJ Ó œ YÒJ ∪ J ÓH H " # " #

the complements  form a filter base  in ; let  be an ultrafilter includingH µ H ¹Ï YÒJ Ó
µ ¹ H H ¹. As  contains  for each , it does not contain . However, if Ï YÒBÓ B − YÒBÓ
were Cauchy, there would be some  (necessarily nonempty) such thatU − ¹
U‚U © Y ; − U U © YÒ;Ó Y Ò;Ó −, and so, for any , . But then , which¹

contradicts the construction of ; and  cannot be Cauchy. ¹ ¹ �

Lemma 14.15. The subset  of the uniform space  is compact if and only if it isE H
complete and precompact.

Proof.  8.19, 14.9, 14.14. �

Lemma 14.16.  Let  be a continuous map between uniform spaces. If 0 À HÒG H
is compact,  is uniformly continuous.0

Proof. Let  be a vicinity of the uniformity  on . Choose  such thatZ [ −i G i
[ œ [ [ ‰[ © Z B − [Ò0ÐBÑÓ$"  and . For each ,  is a neighbourhood ofH
0ÐBÑ 0 Ð[ Ò0ÐBÑÓÑ B in , so  is a neighbourhood of  in  and there exists a vicinityG H$"

Y Y ÒBÓ © 0 Ð[Ò0ÐBÑÓÑ X −B B B
$" of the uniformity  on  such that . Choose h H h

such that . As int  by 13.7 , int  is anX ‰ X © Y B − ÐX ÒBÓÑ Ö ÐX ÒBÓÑ À B − ×B B B B B(b) H
open covering of , with a finite subcovering given by . LetH HBÐ"Ñß BÐ#Ñßá ß BÐ8Ñ −

X ³ X ∩ X ∩â∩ X −BÐ"Ñ BÐ#Ñ BÐ8Ñ h .

Now suppose that . There is some  such that , andÐBß CÑ − X BÐ3Ñ B − X ÒBÐ3ÑÓBÐ3Ñ

consequently  and alsoB − Y ÒBÐ3ÑÓBÐ3Ñ

C − X ÒBÓ © X ÒX ÒBÐ3ÑÓÓ © X ÒX ÒBÐ3ÑÓÓ © Y ÒBÐ3ÑÓBÐ3Ñ BÐ3Ñ BÐ3Ñ BÐ3Ñ .

By the definition of ,  and . HenceY 0ÐCÑ − [Ò0ÐBÐ3ÑÑÓ 0ÐBÑ − [Ò0ÐBÐ3ÑÑÓBÐ3Ñ

Ð0ÐBÑß 0ÐCÑÑ − [ ‰[ © Z Þ$"
�
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Theorem 14.17. A compact Hausdorff space  admits one and only one uniformityH
defining the topology.

Proof. Indeed, there is a uniformity defining the topology by 13.16 (since 8.5 assures
us that  is normal, and so Tikhonov). If two uniformities  on  both defineH h h H" #ß
the topology, the identity is a homeomorphism  and 14.16 showsÐ ß Ñ Ð ß ÑH h Ò H h" #

that it is uniformly continuous; this shows that . The reverse inclusion musth h" #ª
also hold, by symmetry. �

********************************************


