MATH 452

General Topology

Assignment 2

- 1. Prove that the Zariski topology on \mathbb{C} is just the cofinite topology.
- 2. Prove Lemma 3.3.
- 3. Prove that the mapping of power classes $f^{-1}: \mathcal{P}(\Psi) \longrightarrow \mathcal{P}(\Omega)$ induced by a mapping $\Omega \longrightarrow \Psi$ is surjective if and only if f is injective, and is injective if and only if f is surjective. [This has nothing to do with topology!]
 - 4. Prove Lemma 3.14.
- 5. Either: give an example of topological spaces Ω and Ψ and a mapping $f:\Omega\longrightarrow\Psi$ such that, for any $A\in\mathcal{P}(\Omega)$, $f(\mathrm{cl}_\Omega(A))\subseteq\mathrm{cl}_\Psi(f(A))$, and yet f is not continuous; or, prove the converse of 3.14, viz.that, if $f:\Omega\longrightarrow\Psi$ is such that, for every $A\in\mathcal{P}(\Omega)$, $f(\mathrm{cl}_\Omega(A))\subseteq\mathrm{cl}_\Psi(f(A))$, then f must be continuous.
- 6. In the set $\Omega := \mathbb{N} \cup \{*\}$, where * is some point not belonging to \mathbb{N} (think of it as the "point at infinity"), define \mathcal{G} to be the subclass of $\mathcal{P}(\Omega)$ consisting of all those subsets of Ω that are *either* subsets of \mathbb{N} or are subsets of Ω containing * and with finite complements. Show that \mathcal{G} is a topology in Ω .
- 7. Let Ω be a topological space. It is described as a T_1 -space (we shall meet this terminology later) if every singleton in Ω is closed. Show that Ω is a T_1 -space if and only if every singleton in Ω is the intersection of all the open sets that include it.
- 8. In \mathbb{R} , let \mathcal{B} be the set of half-open intervals [a,b) (open on the right, closed on the left). This is the base of a topology \mathcal{T} . Show that in this topology \mathbb{R} is first countable but not second countable.
- 9. Let A and B be subsets of a topological space Ω . We say that A is *dense* in B if $\operatorname{cl}_{\Omega}(A) \supseteq B$. Ω is said to be *separable* if there is a countable subset of Ω that is dense in Ω .

Now let Ω be a metric space. If Ω is separable, show that any subspace of Ω is separable. Prove also that, if Ω is separable, it must be second countable.

10. Prove that, in the topology \mathcal{T} of exercise 8, \mathbb{R} is separable, and any subspace of \mathbb{R} is separable. [This, with question 9, shows that \mathcal{T} cannot be defined by a metric.]