MATH 452

General Topology

Assignment 1

- 1. Let Ω be any set. Prove that the cofinite topology is indeed a topology on Ω .
- 2. Repeat Question 1 for the cocountable topology.
- 3. Show that \mathbb{R} , with its usual topology, is second countable.
- 4. Suppose that the topological space Ω is second countable. Show that, in that case, it has the following property.

[P]: for any family \mathcal{U} of open sets in Ω , there is a *countable* subfamily $\mathcal{V} \subseteq \mathcal{U}$ such that

$$\bigcup_{U\in\mathcal{V}}U=\bigcup_{U\in\mathcal{U}}U.$$

[If \mathcal{U} is uncountable, most of its members are "redundant" in the union.]

- 5. Define a class \mathcal{G} of sets in \mathbb{R} by the rule that $G \in \mathcal{G}$ if and only if there is a set U, open in the Euclidean topology on \mathbb{R} , such that $G \subseteq U$ and $U \setminus G$ is finite or countable. Show that \mathcal{G} is a topology in \mathbb{R} , and that it is the coarsest topology that is finer than both the standard topology on \mathbb{R} and the cocountable topology on \mathbb{R} .
- 6. Prove that the topology \mathcal{G} just defined in \mathbb{R} is not first countable (*a fortiori* it is not second countable).
- 7. Prove that the topology G still has the property [P] of question 4. (Thus [P] is not equivalent to second countability.)
 - 8. Suppose that A, B are subsets of a topological space Ω such that

$$cl(A) \cap B = A \cap cl(B) = \emptyset$$

(one sometimes says that A and B are *separated* in such a case). Prove that then

$$\operatorname{Fr}(A \cup B) = \operatorname{Fr}(A) \cup \operatorname{Fr}(B)$$
.

Here Fr(A), the *frontier* of A, is defined to be $cl(A) \setminus int(A)$. [It is sometimes also called the *boundary* of A. Both names are a little unsatisfactory, since they suggest to the mind a "geometrical" interpretation that is quite inappropriate.]

9. Suppose A is a subset of the topological space Ω . Define $A^{(1)} := A'$, the derived set of A; inductively, let $A^{(n+1)} := (A^{(n)})'$, the (n+1)th derived set of A.

Give examples of subsets X of \mathbb{R} (where \mathbb{R} has the Euclidean topology) such that

- (a) $X^{(1)} = \emptyset$; (b) $X^{(2)} = \emptyset \neq X^{(1)}$;
- (c) $X^{(3)} = \emptyset$, but $X^{(2)}, X^{(1)}, X$ are all different;
- (d) all of the sets $X, X^{(1)}, X^{(2)}, \ldots$ are different.

countable.			

MATH 452

General Topology

Assignment 1

- 1. Let Ω be any set. Prove that the cofinite topology is indeed a topology on Ω .
- 2. Repeat Question 1 for the cocountable topology.
- 3. Show that \mathbb{R} , with its usual topology, is second countable.
- 4. Suppose that the topological space Ω is second countable. Show that, in that case, it has the following property.

[P]: for any family \mathcal{U} of open sets in Ω , there is a *countable* subfamily $\mathcal{V} \subseteq \mathcal{U}$ such that

$$\bigcup_{U\in\mathcal{V}}U=\bigcup_{U\in\mathcal{U}}U.$$

[If \mathcal{U} is uncountable, most of its members are "redundant" in the union.]

- 5. Define a class \mathcal{G} of sets in \mathbb{R} by the rule that $G \in \mathcal{G}$ if and only if there is a set U, open in the Euclidean topology on \mathbb{R} , such that $G \subseteq U$ and $U \setminus G$ is finite or countable. Show that \mathcal{G} is a topology in \mathbb{R} , and that it is the coarsest topology that is finer than both the standard topology on \mathbb{R} and the cocountable topology on \mathbb{R} .
- 6. Prove that the topology \mathcal{G} just defined in \mathbb{R} is not first countable (*a fortiori* it is not second countable).
- 7. Prove that the topology G still has the property [P] of question 4. (Thus [P] is not equivalent to second countability.)
 - 8. Suppose that A, B are subsets of a topological space Ω such that

$$cl(A) \cap B = A \cap cl(B) = \emptyset$$

(one sometimes says that A and B are *separated* in such a case). Prove that then

$$\operatorname{Fr}(A \cup B) = \operatorname{Fr}(A) \cup \operatorname{Fr}(B)$$
.

Here Fr(A), the *frontier* of A, is defined to be $cl(A) \setminus int(A)$. [It is sometimes also called the *boundary* of A. Both names are a little unsatisfactory, since they suggest to the mind a "geometrical" interpretation that is quite inappropriate.]

9. Suppose A is a subset of the topological space Ω . Define $A^{(1)} := A'$, the derived set of A; inductively, let $A^{(n+1)} := (A^{(n)})'$, the (n+1)th derived set of A.

Give examples of subsets X of \mathbb{R} (where \mathbb{R} has the Euclidean topology) such that

- (a) $X^{(1)} = \emptyset$; (b) $X^{(2)} = \emptyset \neq X^{(1)}$;
- (c) $X^{(3)} = \emptyset$, but $X^{(2)}, X^{(1)}, X$ are all different;
- (d) all of the sets $X, X^{(1)}, X^{(2)}, \ldots$ are different.

countable.			

MATH 452

General Topology

Assignment 1

- 1. Let Ω be any set. Prove that the cofinite topology is indeed a topology on Ω .
- 2. Repeat Question 1 for the cocountable topology.
- 3. Show that \mathbb{R} , with its usual topology, is second countable.
- 4. Suppose that the topological space Ω is second countable. Show that, in that case, it has the following property.

[P]: for any family \mathcal{U} of open sets in Ω , there is a *countable* subfamily $\mathcal{V} \subseteq \mathcal{U}$ such that

$$\bigcup_{U\in\mathcal{V}}U=\bigcup_{U\in\mathcal{U}}U.$$

[If \mathcal{U} is uncountable, most of its members are "redundant" in the union.]

- 5. Define a class \mathcal{G} of sets in \mathbb{R} by the rule that $G \in \mathcal{G}$ if and only if there is a set U, open in the Euclidean topology on \mathbb{R} , such that $G \subseteq U$ and $U \setminus G$ is finite or countable. Show that \mathcal{G} is a topology in \mathbb{R} , and that it is the coarsest topology that is finer than both the standard topology on \mathbb{R} and the cocountable topology on \mathbb{R} .
- 6. Prove that the topology \mathcal{G} just defined in \mathbb{R} is not first countable (*a fortiori* it is not second countable).
- 7. Prove that the topology G still has the property [P] of question 4. (Thus [P] is not equivalent to second countability.)
 - 8. Suppose that A, B are subsets of a topological space Ω such that

$$cl(A) \cap B = A \cap cl(B) = \emptyset$$

(one sometimes says that A and B are *separated* in such a case). Prove that then

$$\operatorname{Fr}(A \cup B) = \operatorname{Fr}(A) \cup \operatorname{Fr}(B)$$
.

Here Fr(A), the *frontier* of A, is defined to be $cl(A) \setminus int(A)$. [It is sometimes also called the *boundary* of A. Both names are a little unsatisfactory, since they suggest to the mind a "geometrical" interpretation that is quite inappropriate.]

9. Suppose A is a subset of the topological space Ω . Define $A^{(1)} := A'$, the derived set of A; inductively, let $A^{(n+1)} := (A^{(n)})'$, the (n+1)th derived set of A.

Give examples of subsets X of \mathbb{R} (where \mathbb{R} has the Euclidean topology) such that

- (a) $X^{(1)} = \emptyset$; (b) $X^{(2)} = \emptyset \neq X^{(1)}$;
- (c) $X^{(3)} = \emptyset$, but $X^{(2)}, X^{(1)}, X$ are all different;
- (d) all of the sets $X, X^{(1)}, X^{(2)}, \ldots$ are different.

countable.			