Math 442

Exercise set 4

1. Let c_0 be the vector space of \mathbb{K} -valued sequences (ξ_n) such that $\xi_n \to 0$ as $n \to \infty$, with termwise operations. Show that it is a Banach space under the norm

$$\|(\xi_n)\| \coloneqq \sup\{|\xi_n| : n \in \mathbb{N}\}.$$
 (1)

2. Given $(\eta_n) \in l^1$, define $\phi : c_0 \longrightarrow \mathbb{K}$ by

$$(\forall (\xi_n) \in c_0) \quad \phi((\xi_n)) = \sum_{n=1}^{\infty} \xi_n \eta_n \,. \tag{2}$$

Prove that this definition makes sense, that $\phi \in c'_0$, and that the mapping $(\eta_n) \mapsto \phi$ is an isometric isomorphism between l^1 (with its usual norm) and c'_0 (with the norm dual to (1)). [One customarily says that the dual of c_0 is, or at least is naturally identified with, l^1 .]

3. Use the identification of c'_0 with l^1 to present an example of a continuous linear functional ϕ on c_0 such that $|\phi(x)| < \|\phi\| \|x\|$ for any non-zero $x \in c_0$. (Compare 12.2.)

4. Show that the dual of l^1 may be isometrically identified with l^{∞} by the formula (2). Deduce that c_0 is not reflexive.

5. Let F be a closed vector subspace of the normed space E. Use the Hahn-Banach theorem to show that F' is naturally identified (isometrically) with a quotient space of E'. Similarly, show that (E/F)' is naturally identified (isometrically) with a closed subspace of E'. Deduce that any closed vector subspace of a reflexive Banach space is itself reflexive.

6. A closed vector subspace F of a Banach space E is described as *complemented* if there is a second closed vector subspace F_1 of E such that $F \cap F_1 = \{0\}$ and $F + F_1 = E$. Prove that in this case the mapping $F \oplus F_1 \longrightarrow E : (f, f_1) \mapsto f + f_1$ is a continuous linear isomorphism with continuous inverse.

7. Show that the vector subspace F of the Banach space E is closed and complemented if and only if there is a bounded linear map $T: E \longrightarrow E$ such that $T^2 = T$ (T is then described as *idempotent* or a *projection*) and T(E) = F.

8. Is l^1 reflexive? Is l^{∞} reflexive? (Give reasons.)

9*. Let E be a Banach space, and let $J: E' \longrightarrow E'''$ be the bidual map of E'. Show that J(E') is a complemented subspace of E'''. (HINT: it is sufficient — why? — to construct $T \in L(E''', E')$ such that TJ is the identity of E'. This is a lovely piece of "abstract nonsense" that is far less subtle than it threatens.)

10. Let E be a Banach space. Define $c_0(E)$ to be the normed space of E-valued sequences tending to 0_E , with the norm $||(\xi_n)|| := \sup\{||\xi_n||_E : n \in \mathbb{N}\}$. Show that the dual of $c_0(E)$ may be naturally isometrically identified with a sequence space $l^1(E')$ which is defined in a similar fashion.