Math 442

Exercise set 3

1. Let $g \in C([0,1] ; \mathbb{K})$. Show that the mapping

$$
C([0,1] ; \mathbb{K}) \longrightarrow \mathbb{K}: f \mapsto \int_{[0,1]} g(t) f(t) d t
$$

is a continuous linear functional on $C([0,1] ; \mathbb{K})$.
Give (with proof) an example of a continuous linear functional on $C([0,1] ; \mathbb{K})$ that cannot be described by an integral of this kind.
2. Show that $d(f, g):=\int_{0}^{1} \frac{|f(x)-g(x)|}{1+|f(x)-g(x)|} d x$ defines a metric on $C([0,1] ; \mathbb{K})$, and that the linear operations are continuous with respect to this metric.
3. Similarly, show that $d^{\prime}(f, g):=\int_{0}^{1} \min (|f(x)-g(x)|, 1) d x$ defines a metric on $C([0,1] ; \mathbb{K})$, and that the linear operations are continuous with respect to this metric.
4^{*}. Show that the metrics of questions 2 and 3 define the same topology. [It will suffice to show that any open d-ball about the origin includes an open d^{\prime}-ball and vice versa.]
5. Is the topology defined by the metric d^{\prime} of question 3 definable by a norm? [This is not trivial. One way of doing it is to find a sequence $\left(x_{n}\right)$ such that $x_{n} \rightarrow 0$ with respect to d, but the arithmetic means $\frac{x_{n+1}+x_{n+2}+\cdots+x_{2 n}}{n}$ do not tend to 0 . If the topology came from a norm, they would have to - why?]
6. Find an algebraic basis for the space c_{00} over the field $\mathbb{K}((i v)$ of the list in 8.6).
7. A topological space Ω is Hausdorff if, for any two points x, y of Ω (with $x \neq y$, there are open sets U, V such that $x \in U, y \in V$, and $U \cap V=\emptyset$.

Let E be a topological vector space. Show that, if the set $\{0\}$ is a closed subset of E, then E is Hausdorff. [Use 9.3(b).]
8. Let E be a topological vector space. Show that the intersection of all the open sets in E that contain the origin is a closed vector subspace K of E, and that E is Hausdorff if and only if $K=\{0\}$. [Again, 9.3 is helpful.]
9. Show that the only possible topologies under which \mathbb{K} is a topological vector space over itself are the "indiscrete" topology (in which the only open sets are \emptyset and \mathbb{K} itself) and the usual topology of \mathbb{K}. [HINT: consider balanced open sets containing the origin; show they must be "balls" in the usual sense in \mathbb{K}. This is not as difficult as it may look at first.]

