Math 442

Exercise set 3

1. Let $g \in C([0,1]; \mathbb{K})$. Show that the mapping

$$C([0,1];\mathbb{K})\longrightarrow \mathbb{K}: f\mapsto \int_{[0,1]}g(t)f(t)\,dt$$

is a continuous linear functional on $C([0,1];\mathbb{K})$.

Give (with proof) an example of a continuous linear functional on $C([0,1];\mathbb{K})$ that cannot be described by an integral of this kind.

2. Show that $d(f,g) \coloneqq \int_0^1 \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} dx$ defines a metric on $C([0,1];\mathbb{K})$,

and that the linear operations are continuous with respect to this metric.

3. Similarly, show that $d'(f,g) := \int_0^1 \min(|f(x) - g(x)|, 1) dx$ defines a metric on $C([0,1];\mathbb{K})$, and that the linear operations are continuous with respect to this metric.

 4^* . Show that the metrics of questions 2 and 3 define the same topology. [It will suffice to show that any open *d*-ball about the origin includes an open *d*'-ball and vice versa.]

5. Is the *topology* defined by the metric d' of question 3 definable by a norm? [This is not trivial. One way of doing it is to find a sequence (x_n) such that $x_n \to 0$ with respect to d, but the arithmetic means $\frac{x_{n+1} + x_{n+2} + \cdots + x_{2n}}{n}$ do not tend to 0. If the topology came from a norm, they would have to — why?]

6. Find an *algebraic* basis for the space c_{00} over the field \mathbb{K} ((*iv*) of the list in 8.6).

7. A topological space Ω is *Hausdorff* if, for any two points x, y of Ω (with $x \neq y$, there are open sets U, V such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$.

Let E be a topological vector space. Show that, if the set $\{0\}$ is a closed subset of E, then E is Hausdorff. [Use 9.3(b).]

8. Let *E* be a topological vector space. Show that the intersection of all the open sets in *E* that contain the origin is a closed vector subspace *K* of *E*, and that *E* is Hausdorff if and only if $K = \{0\}$. [Again, 9.3 is helpful.]

9. Show that the only possible topologies under which \mathbb{K} is a topological vector space over itself are the "indiscrete" topology (in which the only open sets are \emptyset and \mathbb{K} itself) and the usual topology of \mathbb{K} . [HINT: consider *balanced* open sets containing the origin; show they must be "balls" in the usual sense in \mathbb{K} . This is not as difficult as it may look at first.]