Math 442

Exercise set 2

1. (a) Provelemma2.12:if : 2y — €2y IS a continuous map betwepological
spaces, then, forang C Q; f( 4) C (€(A))
(b) Prove that, iff: Qy — €y andg: Qs — Q3 are continuous maps between
topological spaces, thego f : 3y — Q3  is also continuous.

2. Let(Q2,7) be atopological space. A cldss of subsklfsis called éase for the
topology of € if, firstly, B C 7, and, secondly, every memberDfis a union of [possibly
very infinitely many] members oB . Prove that,Afis a base for the topology 6f and
A CQ,andanycover ofi by membersi®f has a finitesuér, thend is compact {n

3. Show that, ifB is a base for the topology @f fuaction f: V¥ — Q s
continuous (wheré) is a second topological spdca)d only if f~1(B) is open int for
every Be B .

4. If (©2,d) is a metric space, prove that the mappidg Q2 x Q@ — R s itgelf
continuous wherf2 x 2 is given the product topology.

5. TheCantor set is the subsét d¢6,1] defined@s-, E, , Where ubeedsE,
of [0,1] are defined inductivelyE, istob@,1] .H, hasbealefined, and is a union

of finitely many disjoint nondegenerate closedivéds, F,, := Z(:“l) [@kn, brn]  (Where
A < bkn for 1 S k S p(”) ’ bkn < ak-i—l,n fOf 1 S k < p(n) )u
then E, ., = Z,(:”l) ([akn, 2arn + 5bin] U [3akn + 3bn, bin]) . That is, we remove the

(open) “middle third” of each constituent subintref £, to obtainE, ., .J is sometimes
called the Cantor “middle third” set, because oogd, in principle, also change the fraction
removed from the subintervals at each stage.]

(@ Show thatr is compact iR

(b) Show thatF' is nowhere denselin .

(c) Show thatt iglenseinitself , by which | mean that every poinE is the limit
of a sequence ik without repeats, i.e. is an aatation point ofE .

(d) Show thatF is uncountable. [Thus nowhere dentsecsam easily be “large” in a
purely set-theoretic sense.]

6. Show that theliagonal mapping 2 — Q x Q : z — (z,x) is continuous if) is a
topological space anf x €2 is given the product topglog

7. Give counterexamples to show that Dini's theoffaits if the assumption that the
sequence be pointwise monotonic is omitted, ifftimetions of the sequence are not required
to be continuous, or if the limit function is nefquired to be continuous.

8. Prove, along the same general lines as the amgfuoh 3.2, that there is a sequence of
polynomials p,(z) which converges monotonically (and¢fee uniformly) on the interval
[0,1] to the function\/E . (HINT: there are certainly mgmssible proofs, but the one that



is usually quoted proceeds by studying the functigil — = instead. For0 <u <1 , let
¢(u) = 3(z+u?), and show that, ifl —z < (1 —u)* , thenl —z < (1 —¢(u))> and
P(u) > u.)

9. Prove that, for any continuous functigh: [0,1] — C , anjnpa: € [0, 1], and
any € > 0 , there is a polynomial functioR(z)  such titc) = P"(¢c) =0 dan

sup{|f(z) — P(x)| : z € [0,1]} < €.

10. Prove that, for any continuous functigh: [1,2] — C ang an> 0, there is a
polynomial functionP consisting entirely of termisawen degree greater than such that

sup{|f(xz) — P(x)|: x € [1,2]} <.

11. LetC be the class ohiformly continuous bounded fanstiR — R . Show that
C is a Banach space with respect to pointwise lineperations and the norm
Il f|l = sup{|f(t)| : t € R}, and an algebra with respect to pointwise muttgilon.

12. LetC be as in the previous question. Suppoat Ahis a subalgebra @' that
contains the constant functions and separatesdimespof R . Does the analogue of Stone’s
theorem hold in this case — that is, can any fanctn C' be uniformly approximated by
elements ofA ? Justify your answer.



