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1. Suppose that (£2,d) is a complete uncountable metric space, and f:Q — Q a
continuous map. For each =€, define f!(z):= f(z), and set inductively
[ (z) = f(f*(z)) for each n € N. Suppose that (f"(x))>, is convergent in Q2 for
every x € Q).

(@) Show that f must have at least one fixed point.
(b) Give an example to show that f need not be a contraction mapping.
(c) Show that f may have countably infinitely many fixed points. [3,3,4]

2. Let (Q,d) be ametric space, and A a nonnull subset of 2. For x € 2, define
d(z,A) =inf{d(z,a):a € A}.

(This is the usual notation. In principle it is deplorable; in practice, it is rarely ambiguous, since
subsets of €2 are customarily denoted differently from points.) Show that A is closed if and
only if d(x, A) =0 onlywhen z € A. [6]

3. Let ¢ denote the class of all nonnull closed bounded subsets of the metric space 2.
Define, for A, A5 € €,

D(Aq, Ag) = max{sup{d(x, Ay) : x € A1 },sup{d(y, A1) :y € As}}.
Prove that D is a metric in €. (This is the Hausdorff metric in €.) [10]
4. Let Q be the space whose points are closed circular disks in R?, of the form
Cla;r) ={z eR?: ||z —al <r}

for >0 and a € R% If Dy, D, are two such disks, define the distance A(D;, D>)
between them to be the area of their symmetric difference (D; \ Dy) U (D2 \ D).

Show that A is a metric in 2 [you may assume obvious properties of area]. Is (2, A) a
complete metric space? [8,4]

5. Let €2 be as in exercise 4, and let K be the subset of €2 consisting of all the disks of
radius exactly 1 that are included in C'(0;100) . Show that K is a compact subset of 2.  [10]

6. Prove that any continuous function f : [0,00) — C which vanishes at infinity may
be uniformly approximated by linear combinations of the functions exp((—m + in)z?), in
which m is to be a positive integer and n any integer. [10]

7. Let Q,¥ be compact Hausdorff topological spaces. Prove that any continuous
function f:Q x ¥ — R may be uniformly approximated by linear combinations of
functions of the form ¢(x)h(y), where ¢g:Q— R and h: V¥ — R are continuous.
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[You may assume that Q x W is itself compact in the product topology, that continuous
functions separate the points of €2 and of ¥, and (what is almost obvious) that functions such
as g(x)h(y) are continuous on € x W. This result can be used to justify the rules about
double integrals and repeated integrals, at least for continuous functions.] [10]

8. Let I' be the sequence space mentioned in 8.6(ii): its elements are sequences
(&1,&2,&5,...) inC such that Z]::l x| converges, and its norm is given by

160, &0 & =D 16kl

Prove that, for every bounded linear functional ¢ : [' — C, there is a bounded sequence in
C, (n1,m2,m3,...), such that, for every = = (&,&,&;,...) € b,

Slx) =D M- [12]

9. Let Q be a compact Hausdorff topological space, and give C := C(;R) the
supremum norm. If f € C', say that f is non-negative, or f > 0,if Vz € Q) f(z)>0.
A linear functional ¢:C — R is positive [“non-negative” would be better] if
o(f) > 0 for every non-negative f. Prove that
(@) apositive linear functional is necessarily continuous, [6]
(b) a continuous linear functional is the difference of two positive linear functionals.
[HINT: given a continuous linear functional ¢, define, for a nonnegative function f,

¢*(f) =sup{d(g): 0 < g < f}.

Show that ¢* extends to a positive linear functional on C', and that ¢ — ¢ is also a positive
linear functional. Assume there are “plenty” of continuous maps 2 — R.] [14]



