
Math 442

Exercise set 6, 2008 — sketch solutions
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It is clear that the calculations rapidly become complicated.
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In the first expression (the evaluation bracket) on the right, apply Leibniz’s product formula
for higher derivatives of a product. Indeed, for any  such that ,6 ! Ÿ 6 � 8 � 5
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It is not difficult to find a reduction formula for this integral, but we may exploit a known
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3. Let  be the vector subspace of  spanned by the LegendreI L ³ P ÐÒ
"ß "Óà Ñ# -
polynomials. It is clear that  is also the subspace spanned by all polynomials; indeed, if aI
polynomial of degree  is a linear combination of , then, as  is of degree8 T ß T ßá ß T T! " 8 8�"

exactly ,  is a combination of  and a polynomial of degree , and therefore8 � " B T 88�"
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is a combination of . (Indeed, the  Legendre polynomialsT ß T ßá ß T! " 8�" normalized
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# 8  result from applying the Gram-Schmidt procedure in  to the sequence

"ß Bß B ßá GÐÒ
"ß "ÓÑ# ). But, by Weierstrass’s theorem, the polynomials are dense in . Thus
I GÐÒ
"ß "ÓÑ is dense in  in the supremum norm. The assumption in 17.16 was that
GÐÒ
"ß "ÓÑ P ÐÒ
"ß "ÓÑ P is dense in  in -norm; hence, linear combinations of Legendre# #

polynomials are also dense in . However, this is precisely what we need to ensure that theL
Legendre polynomials form an orthonormal basis, i.e. a complete orthonormal set.
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The desired result follows from (3) and (4).
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The two sides have the same inner product with every member of an orthonormal basis of the
space of polynomials of degree . They must, therefore, be the same.8 � "
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Hence, as in , the two polynomials of degree  on the two sides of the supposed(a) 8
equality must indeed be the same.

(c) This equality may be proved in the same way, but it is easier to argue as follows.
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Thus,  does satisfy the stated differential equation. [This equation, with  as theT ÐBÑ8 cos)
variable , arises from separation of variables for Laplace’s equation in spherical polars ]B Þ

7. For small  (how small, will depend on ; for instance, if ),2 B #B2 � 2 � "k k k k#
Ð" � Ð
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"Î# # may be expanded as a series in powers of  by the
binomial theorem (for non-integer and negative exponent! — it is not a trivial result), and the
powers of  in turn may be expanded by the “elementary” binomial theorem.Ð
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rearranged by collecting together powers of :2
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[When I say the series may be rearranged, I mean that the expression on the right is a
convergent power series in  for, let us say,  and for sufficiently small values of2 
# Ÿ B Ÿ #
2, and the equality is then a a genuine equality. It is also true that it may be differentiated
term-by-term with respect to  or with respect to . All these facts will be taken for grantedB 2
below; they were  covered by one of the MATH 312 handouts.]roughly
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Equating coefficients of  (for ) one finds that2 8 � "8
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which is exactly the relation 5  for the polynomials  instead of . However,(a) U T8 8
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all the omitted terms being of degree at least  in , and therefore from question 1,# 2
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The relations 5  and (8) now prove inductively that  for all .(a) T ÐBÑ œ U ÐBÑ 88 8
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[This at first sight strange fact becomes more transparent in view of the Laplace equation.]

8.   Notice, first of all, that  (being linearly independent) span the(a) ; ß ; ß ; ßá ß ;! " # 8

space of real polynomials of degree not exceeding .8
Being of degree ,  has  zeros in all (including non-real zeros, and counting8 ; 88

multiplicities).
Suppose that a real polynomial  has (real) roots  in , where the;ÐBÑ - ß - ßá ß - Ð+ß ,Ñ" # <

multiplicity of  is , and then the number of zeros of  in , “counted according- 7Ð5Ñ ; Ð+ß ,Ñ5

to multiplicity”, is .QÐ5Ñ ³ 7Ð5Ñ

5œ"
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 # is even. (Thus  only if , and otherwise .)% %
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 - Ñ$
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<
5
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is of degree not exceeding , and strictly less than  unless  for each< QÐ5Ñ 
 " Ð5Ñ œ 7Ð5Ñ%
5 ; Ð+ß ,Ñ ", i.e. each zero of  in  is of multiplicity , or “simple”.

Apply this construction to . If , or, alternatively, if  but; ³ ; QÐ5Ñ � 8 QÐ5Ñ œ 88

one or more of the zeros  is of multiplicity greater than , the degree of  will- ß - ßá- " 2ÐBÑ" # <

be strictly less than .  is therefore a linear combination of , and,8 2ÐBÑ ; ß ; ßá ß ;! " <

consequently,

(
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8; ÐBÑ 2ÐBÑAÐBÑ .B œ ! Þ (10)

On the other hand, at any zero  of ,  either does not have a root (if  is even)- ; 2ÐBÑ 7Ð5Ñ5 8

or has a root of multiplicity  (if  is odd). In either case,  does not change" 7Ð5Ñ ; ÐBÑ 2ÐBÑ8

sign at  (which is a zero of  multiplicity of ). Hence, it has the same sign- ; ÐBÑ 2ÐBÑ5 8even
throughout , andÐ+ß ,Ñ

(
+

,

8; ÐBÑ 2ÐBÑAÐBÑ .B Á ! .

In view of (10), this is absurd. So  must have  (real) zeros in , and they must all be; 8 Ð+ß ,Ñ8

of multiplicity , so that there are   real zeros in . This proves ." 8 Ð+ß ,Ñdistinct (a)

    For any polynomial of degree less than , as at (10)(b) 2ÐBÑ 8

(
+

,

8�" 8Ð; ÐBÑ 
 ; ÐBÑÑ 2ÐBÑAÐBÑ .B œ ! Þα (11)

As in , if  has fewer than  (real) zeros (counting multiplicities) in(a) ; ÐBÑ 
 ; ÐBÑ 88�" 8α
Ð+ß ,Ñ 8 " 2ÐBÑ, or has exactly  zeros there not all of multiplicity , there is a real polynomial 
of degree less than  such that  preserves the same sign throughout8 Ð; ÐBÑ 
 ; ÐBÑÑ2ÐBÑ8�" 8α
Ð+ß ,Ñ 8 Ð+ß ,Ñ; and this contradicts (11). So there are   zeros in  (countingat least
multiplicities), and if there are than , they are all of multiplicity . In this case thereno more 8 "
must be one more (complex) zero of ; it must be real (as non-real roots of; ÐBÑ 
 ; ÐBÑ8�" 8α
a real polynomial must occur in conjugate complex pairs) and outside , so that there areÐ+ß ,Ñ
in all  distinct real roots.8 � "
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What still remains to be shown is that, if  has  real zeros; ÐBÑ 
 ; ÐBÑ 8 � "8�" 8α
(counting multiplicity) in , they must all be distinct, i.e. of multiplicity . Suppose not.Ð+ß ,Ñ "
Apply the construction (9) to the polynomial .  is of degree at least ; ³ ; 
 ; 2ÐBÑ #8�" 8α
less than , and so of degree less than ; but, as before, the integrand in (11) preserves8 � " 8
the same sign throughout , which is impossible. So the proof of  is complete.Ð+ß ,Ñ (b)

   Suppose that  and  have a common root , where(c) " α " 0; 
 ; ; 
 + ;8�" 8 8�" 8
w w

α" α " 0w w
8�" 8Á ; ;; then  is a common root of  and . Since it is a simple root of (both, but

particularly of) , , and  is a repeated root of  This; ; Ð Ñ Á ! ; 
 Ð; Ð ÑÎ; Ð ÑÑ; Þ8 8�" 88 8�" 8
w w w0 0 0 0

contradicts . Therefore, the sets of roots of  for linearly independent vectors(b) " α; 
 ;8�" 8

Ð ß Ñα "  are always disjoint from each other.
Hence, if , for any , then , and; Ð Ñ 
 ; Ð Ñ œ ! ; Ð Ñ Á !8�" 8 80 α 0 α 0

º`

`
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 ; ÐBÑÑ Á ! Þ

α
α8�" 8

Ð ß Ñα 0

By the Implicit Function Theorem, there is a small neighbourhood  of  and there is a C[ α ∞

function  on  such that, for ,  is the only root of  in a0 7 7 0 7 7Ð Ñ [ − [ Ð Ñ ; ÐBÑ 
 ; ÐBÑ8�" 8

sufficiently small neighbourhood of . ****0
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since the differentiation does not involve . Notice now that  is of degree .> L 88
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These integrals are Cauchy-Riemann integrals. Strictly speaking, they are limits of integrals
over bounded intervals. As each integrand is the product of a polynomial and , allexpÐ
B Ñ#

the integrals are absolutely convergent. Similarly, each of the evaluation brackets is really a
limit; but the evaluand, being again a polynomial times , tends to zero both as theexpÐ
B Ñ#



8

upper limit of the evaluation tends to +  and as the lower limit tends to . The∞ 
∞
integration by parts may be repeated in the same way, until we reach
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If , we can go one step further, and, as  is of degree , at this stage the integrand7 � 8 L 88

will be zero. This proves the orthogonality relation: if ,7 � 8
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where  is the constant value of  and (as is well-known) the integral is . Now - L -8 88
Ð8Ñ È1

will be  times the highest coefficient in . Let ;8x L ÐBÑ Ð Ð
B ÑÑ œ : ÐBÑ Ð
B Ñ
.
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8 5
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then  is a polynomial, and it is clear that the highest power of  in  will arise: ÐBÑ B : ÐBÑ5 5�"

from multiplying the highest power in  by , the other term in the product rule: ÐBÑ 
#B5

yielding lower powers. Hence , and the desired result follows.- œ Ð
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Cancel  (which could have been omitted anyway) and equate coefficients of :expÐ
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This is the first relation demanded. (If , the last term does not appear. Indeed,8 œ !
L ÐBÑ œ " L ÐBÑ œ #B! ", .)
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from which the second stated relation follows trivially.
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10. The normalization that is needed is manifestly to take instead of L8

L ÐBÑ œ ßs L ÐBÑ

# 8x
8

8

8É È1

and then  is an orthonormal set in the Hilbert space.ÖL À 8 − ×s
8 �


