Math 442

Exercise set 6, 2008 — sketch solutions

0
1. Forn=0,we understan%d—O as the “zeroth power ofdifferentiation” i.e. as
T
the identity operatorPy(z) =1 (doing nothing to the canstpolynomiall ). Forn = 1

Fi(z) = 211'dd:c( -b

=XT.
For n=2,

Py(x) = 412' dda:Q( —1)? = ;dd {dz(z* — 1)} = 3(32% - 1).

It is clear that the calculations rapidly becommpbcated.

2. Setm=n+k ,wherek € N . Forthe appropriaie> 0
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a/ P ii(z) Py(x) dox = /1%{@2 _ )7L+k} d {(332 1)} da
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In the first expression (the evaluation bracket)}ttom right, apply Leibniz’s product formula
for higher derivatives of a product. Indeed, foy &such that0 <! <n+k ,
dl k k
w{(x . 1)n+ (.CC 4 1)n+ }
l ey AP ntk
_ZI’ 0( >d93p U sty

|
= Z; 0 ( > (n ZZ k)p) (z—1)"h? (n+ k:(ij;f-:)p —1)! (z+ 1) (1)

so (z —1)(x + 1) still divides the derivative. Hence the evahrabracket vanishes, and

1 qntk-1 L dntl
04/1 Poi(z) Po(z) do = _/ W{( — 1) dzn 1 {(z* = 1)"}da

1 d7L+k—2 dn+2

- LWW — )" @ - 1) da




el 1 dn+k:fn71 ) ek d2n+1 ) .
= (=1)" /1W{(5€ - 1" }W{(Cﬁ - 1)"}dz,

which vanishes. On the other hand,kf= 0 the samanaegt (minus the very last step)
still works, and (again letting be the approprizdestant)

1 1 2n
8 / P = (-1 / (@ - 1" (@ 1)) da

1 d xQn

= (2n)!/1 (1—a*)"dx.

1

It is not difficult to find a reduction formula fdhis integral, but we may exploit a known
formula instead by substituting = sind <37 <6 < 36 . Then we get

1 /2 | /2
(QTL)'/ (1 o x2)n dr = (27’1,)'/ C0§n+10 do = (QTL) 2n/ CO%”fle 20

1 —7/2 2n+1 —m/2
_ (2n)12n.(2n - 2)---2/”/2 cos df — (2"n!)? )
C 2n+1)(2n—1)--3 ) . Can417

As 3= (2"n!)? from the original definition of?, , we deducetstated result that

1 ) 2
P, dxr = .

[Incidentally, if one taked =n and =0 in (1), one firttat

A -y =y A 1)) =ty
from which P,(1) =1 andP,(—1) = (—1)" ] (2)

3. LetE be the vector subspace &f := L*([—1,1];\) spanned by dyerdre
polynomials. It is clear thakl is also the subspsg@nned by all polynomials; indeed, if a
polynomial of degree is a linear combinationff, P,, ..., P, then, asP,,; is of degree
exactlyn +1 , z"*! is a combination oP,.; and a polynomiabefyreen , and therefore
iIs a combination of Py, P;,...,P,y1 . (Indeed, theormalized Legendre patyrabs

n+ % P,(z) result from applying the Gram-Schmidt procedureHnto the sequence

1,z,2%,...). But, by Weierstrass’s theorem, the polynomiaésdense inC'([-1,1]) . Thus
E is dense inC([—1,1]) in the supremum norm. The assumpgtiod7.16 was that
C([-1,1]) is dense inL?*([-1,1]) inL? -norm; hence, linear combinatiofid.egendre
polynomials are also dense #h . However, this ecigely what we need to ensure that the
Legendre polynomials form an orthonormal basis a.eomplete orthonormal set.

4. (@ If 0<m<n-—1,then,bythe remarks in question:3,,(x) , gamoly-

nomial of degreen + 1 , is a linear combinationfef, P, ..., P,,1 .fEatthese is ortho-
1
gonal to P, , by question 2. Sf xP,(z) Py(z)dz =0
—1



If m =n — 1, there are a coefficient and a polynongal defreen — 1 or less with
aPy1(z) = vF(z) + Q(z).
Q is orthogonal toP, , so that

1 1
2
/1 xP,(z) Py—1(x) dx = /1 YP,(z)*dx = an_ 1 (3)
However,y may be determined by looking at the ¢oefiits of z” inP, andimP,
1 (2(n —1))! 1 (2n)! n
= = . 4
11 (n—1)! 2l nl 0 T 2p—1 “)

The desired result follows from (3) and (4).
(b) Similarly, if n <m, P is of degreen — 1 <m , and the integs0i. If n > m ,
then

1

/1 P, (z) P,(x)dx = |:P7L($)P7,L($):| 11 _ /1 P (2) Py(z) dz

1
=1—(=1)"" =0 by (2)and the last remark.

(€ If n<m,thenzP!(x) isofdegree and the integradis nlf> m, then

1 1

/_1 2P, (x) Pl () dx = [xpm(x)pn(x)] - /_ (P! () + Po(x)) Po(x) di

1 1

1
=1 + (_1)7)’L+TL _/ xR/n(x) Pn(.i?) de =1 + (_1)m+n.
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But, if m = n, then

/_1 zP,(z) P, () dz = |:%$(Pn($))2:| 1_1 _ /_1 L(P,(2)) de

1

— = from question 2.
m+1  2n+tl 9

5. (@) Both sides are of degree+1 .A<n—1 , questions 24istiow that
both the left-hand and the right-hand sides afgoganal toP, . Ifk =n —1 , then

1
/_1 {2n+ 1)2P,(x) —nP,_1(2)} Py (x) dx

C2n—1 Q(n— 1)+1 Y . n+1 n—1 .

If k& = n, notice that, directly from Rodrigues’ formul&),(xz) is an even function whem

1
is even and an odd function when is odd. Tk)[ls P, (z)*dr =0 allor, and
—1



/1 {(2n + 1).TP7L(£C) - n 1( )}Pn( ) =0.

. ! 2(n+ 1 : : :
Finally, / {(n+1)Ps1(2)} Pra(z)de = 2(213) by question 2, whilst by question 4
-1

/1“2“ D)aP, () = nP,1(2)} Poya (z) da

B 2(n+1) . ~2(n+1)
= ) sy 0T s

The two sides have the same inner product withyewember of an orthonormal basis of the
space of polynomials of degree+ 1 . They must, theeefme the same.

(b) Again, the two sides are both of degree wilf<n —1  edfion 2 shows that

/_ nPy() Pae) =0,

1

whilst, by 4c) and ) ,ifm <n—1 ,

1 1
/ B (@) Pu(x) do = 14 (=1)""", / Py_y(x) Pu(a)de = 1 — (=)™,
—1 _

1
which implies that/ (xP!(z) — P,_{(z)) Pp(xz)dz =0 .ffm=n—1 , then

-1

1
/P,’L () P,1(x)dz=0 asP, , isofdegree —2

/1xPn1(x) Pl(z)dzr =14 (=1)>""' =0 by4c).

1

1
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Lastly, if m = n, question 2 tells us tha/ nP,(z) P,(x)dx = 5 j_ T But bigy
-1 n

1
2n
P (2) Py (2) dz = ,
/_133 n(@) Pulz)de = 5777

15— 2

n—1

1
Whi|St/ P! _,(z) P,(z)dx =0 as the degree a?’

Hence, as ina) , the two polynomials of degree @ ttho sides of the supposed
equality must indeed be the same.

(c) This equality may be proved in the same way, big easier to argue as follows.
Take n =1 ; then, as asserted,

nbyi(z) = Py(z) =1 =1-zF(x) = P(x) — P, ,(z).
For n > 1, we knownP,(x) = zP)(x) — P,_,(z) , and we may differentity
(n+ )P (z) = 2n+ 1D Pu(x) + (20 + DaP(z) —nP, (z); (5)

from these facts, we deduce



(n+1)(P,,, —xP)) =naP,+ (2n+1)P, —nP,_,
=n(nP,+P )+ ©2n+1)P, —nP _,
=n?*+2n+1)P, = (n+1)*P,,

and so P}, ,(z) —xP)(z) = (n+1)P, . This proves th@) holds for the index 1
[Incidentally, the algebra reverses, so tha},1 " &a€io),,” imply “ (a)!".] (6)
(d) Eliminate P/_,(x) betweefb) and)

n—1

6. Differentiate &) , and then usép to elimin&le ,

(2* = 1)P/(z) + 22P,(z) = nxP,(z) + nP(z) — nP,_y(z)
= nxP (z) + nP,(z) + n*P,(z) — nzP(z)
=n(n+1)P,(x).

Thus, P,(x) does satisfy the stated differential equatjdhis equation, withcos# as the
variablex , arises from separation of variabled_fgglace’s equation in spherical polars ]

7. For smallh (how small, will depend an ; for imste, if |2zh|+ |h|° < 1),
(14 (=2zh + h?))"'/2 may be expanded as a series in powers-etzh + h?) by the
binomial theorem (for non-integer and negative exgmd! — it is not a trivial result), and the
powers of (—2xh + h?) in turn may be expanded by the “elemghtainomial theorem.
The result will be a series of polynomials in thtvariablest and . H is small, it may be
rearranged by collecting together powers of

(1—2xh+h)72=>"" Qu(x)h". @)
[When | say the series may be rearranged, | meanttie expression on the right is a
convergent power seriesin  for, letus say < z < 2 anddfficiently small values of

h, and the equality is then a a genuine equalitis Hlso true that it may be differentiated
term-by-term with respect to  or with respectitdAll.these facts will be taken for granted
below; they wereoughly covered by one of the MATH 31Adauts.]

Differentiate (7) with respect to
—1(2h — 22)(1 — 2zh + h?)™%/? = Z:io nQ,(z)h"t, and from (7)
(@=h)> " Qu@)h” = (1—2zh+h*)Y " nQux)h" .

Equating coefficients of,” (forn > 1 ) one finds that

2Qn(z) — Qn1(z) = (n 4+ 1)@ni1(x) — 2n2Qn(2) + (0 — 1)@n-1(z) (8)
which is exactly the relation(& for the polynomid)s instead ofP, . However,

(1—2zh+h*) V2 =1— (=22 +h)h+-,
all the omitted terms being of degree at |IQasth, iand therefore from question 1,
Qo(z) =1=FR(z), @Qi(z)=z=P(z).

The relations &) and (8) now prove inductively tHat(z) = @, (x) for alln.



[This at first sight strange fact becomes moregpanent in view of the Laplace equation.]

8. (a) Notice, first of all, thaty, 1,42, -.-,¢, (being linearlydapendent) span the
space of real polynomials of degree not exceeding

Being of degreen ,q, has  zeros in all (including nea zeros, and counting
multiplicities).

Suppose that a real polynomig(z) has (real) ragts,,...,c, n (aib), where the
multiplicity of ¢, is m(k) , and then the number of zewfs; in (a,b) , “counted according
to multiplicity”, is M (k) == >, _, m(k) .

Let e(k) be theparity ofm(k) ; thatise(k)=1 iin(k) is odd, andk) =0 if
m(k) is even. (Thuse(k) = m(k) only ifm(k) =1 , and otherwisék) < m(k)—2 .)
The real polynomial

h(z) =], (= —e)® 9)

is of degree not exceedimg , and strictly less thafk) — 1 unlesse(k) = m(k) for each
k,i.e. each zero af iffa,b) is of multiplicity , orifsple”.

Apply this construction tog := ¢, . IfM (k) <n , or, alternatively M (k) =n but
one or more of the zeras, co,...c,  is of multiplicity greateanl , the degree df(z)  will
be strictly less tham h(z) is therefore a linear cwation of ¢, q,...,q, , and,
consequently,

b
/ gn(z) h(z) w(z)dx = 0. (10)

On the other hand, at any zetp  @f h(z) either doedave a root (ifim(k) is even)
or has a root of multiplicity  (ifm(k) is odd). In Biéer caseg,(z) h(z) does not change
sign atc, (which is a zero @en  multiplicity of,(z) h(z) ). Hee, it has the same sign
throughout(a,b) , and

b
[ au(e) o) wia) da £ 0.
In view of (10), this is absurd. S§,  must have aljreeros in(a,b) , and they must all be
of multiplicity 1, so that there amedistinct real zeros(inb) . This provega) .

(b) For any polynomiah(xz) of degree less than , ad@) (
b
/ (Gn+1(z) — agy(z)) h(x) w(xz)dx = 0. (11)

As in (@), if g,11(z) — ag,(z) has fewer than (real) zeros (countingltiplicities) in
(a,b), or has exactly, zeros there not all of multiplid, there is a real polynomial(z)
of degree less tham such that,1(z) — ag,(z))h(zx) preserves the sigméhroughout
(a,b); and this contradicts (11). So there akleast n zeros(d,b) (counting
multiplicities), and if there areo more than , they alleodmultiplicity 1. In this case there
must be one more (complex) zero ®f;;(x) — agq,(z) ; it must bé (@anon-real roots of
a real polynomial must occur in conjugate complaxg) and outsidéa,b) , so that there are
inall n+ 1 distinct real roots.



What still remains to be shown is that, 4f,1(x) — aqg,(z) hast 1 alreeros
(counting multiplicity) in (a,b) , they must all be distt, i.e. of multiplicityl . Suppose not.
Apply the construction (9) to the polynomial:= ¢,.1 — ag, h(z) aBdegree at leag
less thann + 1 , and so of degree less than ; but,fasebéhe integrand in (11) preserves
the same sign througho(t, b) , which is impossibleth@groof of(b) is complete.

(© Suppose that ¢,+1 — ag, and'q,+1 —d'q, have a common toot , where
af # o' F; then¢ is acommonroot af,,; ang . Since it isnapé root of (both, but
particularly of) ¢, , ¢,(€) #0 , and is a repeated root@f1 — (¢, ,,(€)/d,(€))g.. isTh
contradicts(b) . Therefore, the sets of rootsdgf, .1 — aq, lifeearly independent vectors
(a, B) are always disjoint from each other.

Hence, if ¢,+1(§) — aq,(§) =0 , for anyv , thew,, () #0 , and

0
a_a(anrl (l‘) - qun(fli‘)) () 7é 0.

By the Implicit Function Theorem, there is a snmaighbourhood? ofe and there is &C
function £{(7) onW such that, for € W §(7) is the only root@f.,(z) — 7g,(x) ina
sufficiently small neighbourhood gf . ****

9. Notice that

exp(—(t —2)?) =Y~ exXp—2”) () 1 (12)

n=0 n!

Using general theorems on convergent power savieéind that

n

exp(—:rQ)Hn(:):) = exg—(t — :v)2)
ot" =0
However, if we writew := t — = , then by the chain ru J _ 2 = _Q Thin fact
! = ! y TR !
exp(—z*)Hy(z) = (—1)"s—exg—(t — z)*)| = (-1)" exp—x ), (13)
ox™ £0 dx"

since the differentiation does not involve . Notmv that H,, is of degree

We can now proceed very much as in question 2. &gfhatm > n . Then

/ H,,(z) H,(x) exp(—xz?) :c:(—l)m/ dd (exg—z?)) H,(x) dz
_so @T™
m—1 00 dm—l

- (- [ (e @) = [ et (o) do
o0 m—1
— (—1)”“’1/ ddxml (exp(—=z?)) H! (z) dz .

These integrals are Cauchy-Riemann integrals.tiytspeaking, they are limits of integrals
over bounded intervals. As each integrand is toelyst of a polynomial anéxp(—z?2) , all
the integrals are absolutely convergent. SimilagBch of the evaluation brackets is really a
limit; but the evaluand, being again a polynomialets exp(—x2) , tends to zero both as the



upper limit of the evaluation tends to>c+ and as khwer limit tends to —oc . The
integration by parts may be repeated in the sanye wvdil we reach

(-aym [ (exB—a?)) B (w) (14
If m > n, we can go one step further, and, s is ofekeg , at this stage the integrand

will be zero. This proves the orthogonality relatid m > n,

/ H,,(z (z) exp(—2?) dz = 0.

If, on the other handm =n , (14) tells us that

/OO( ()2 exp(— a2 d:)s—/ H™ (z) exg— :L')dx:cn/x exp—z?) dz ,

—00 —00
where ¢,, is the constant value H,(L”) and (as is wedikm) the integral |s\/_ Nowe,,

will be n! times the highest coefficient i, () L%Cti—k(exp(—:z: )) = pp(x) exg—a?)
then pi(z) is a polynomial, and it is clear that thehleist power ofc  inp,.1(z) will arise
from multiplying the highest power im,(z) by2z , the ethterm in the product rule

yielding lower powers. Hence, = (—1)"(—2)"n! = 2"n! , and the desiredltésilows.
Differentiate (12) with respect to :

g exp(—z*) Hy () i

n=1 n!

= 2t — z) exp(—(t — 1))
_ o 17)200 exp(—z? )Hn(l‘)tn

n=0 n!

Cancelexp(—z?) (which could have been omitted anyway)emehte coefficients of*

Hn+ x H,(z H, (x
nl'( ):233 n(' )_Q(n—l(l)?

for n>1.

This is the first relation demanded. (lh =0 , the lastm does not appear. Indeed,
Hy(z)=1, Hi(x) =2x.)

Differentiate (12) with respect to
ZOO exp(—xQ)(H,’l(x) — Qan(x))t” _ Q(t _ ZL‘) exq_(t _ ZL‘)Q)

n=0 n!
~ exp(—z®)H,(z) ,
- Q(t o x)Zn:O nl ¢ ’

and, again equating coefficients, far> 1

H)(z) —2zH,(x)  2H,-1(z)  2zH,(z)
n!  (n—1)! n!

Y

from which the second stated relation follows tiMi.



10. The normalization that is needed is manifédstiyake instead of{,,
~ H,(z)

Hy(z) = W )

and then{H, : n € N} is an orthonormal set in the Hilbert spac



