Math 442

Exercise set 5 - solutions

1. Directly from the definition of the norm, for any $x, y \in E$,

$$
\begin{aligned}
& \|x+y\|^{2}=\langle x+y, x+y\rangle=\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& \|x-y\|^{2}=\langle x, x\rangle-\langle x, y\rangle-\langle y, x\rangle+\langle y, y\rangle, \quad \text { and so } \\
& \quad\|x+y\|^{2}-\|x-y\|^{2}=2(\langle x, y\rangle+\langle y, x\rangle)=4 \Re(\langle x, y\rangle) . \quad \text { Hence, } \\
& \begin{aligned}
\|x+y\|^{2} & -\|x-y\|^{2}+i\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right) \\
& =2(\langle x, y\rangle+\langle y, x\rangle)+2 i(\langle x, i y\rangle+\langle i y, x\rangle) \\
& =2(\langle x, y\rangle+\langle y, x\rangle)+2 i(-i\langle x, y\rangle+i\langle y, x\rangle)=4\langle x, y\rangle .
\end{aligned}
\end{aligned}
$$

2. Granted that the Apollonian identity holds, define tentatively for $x, y \in E$

$$
\begin{equation*}
\langle x, y\rangle:=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right) \tag{1}
\end{equation*}
$$

(which must be true, by $(*)$, if the norm does come from a real inner product). We must prove that \langle,$\rangle , as so defined, is an inner product.$

Firstly, $\langle x, y\rangle=\langle y, x\rangle$, which was $8.11(a)$. Secondly, $\langle x, x\rangle=\|x\|^{2}$, so that $8.11(c),(d)$ are automatic. Neither of these properties requires the Apollonian identity. The difficulty is with linearity in the first argument, $8.11(b)$.

Let $x, y, z \in E$. Then, using the Apollonian identity,

$$
\begin{align*}
\| x+ & y+z\left\|^{2}+\right\| z\left\|^{2}+\right\| x-z\left\|^{2}+\right\| y-z \|^{2} \\
& =\frac{1}{2}\left(\|x+y+2 z\|^{2}+\|x+y\|^{2}\right)+\frac{1}{2}\left(\|x+y-2 z\|^{2}+\|x-y\|^{2}\right) \\
& =\frac{1}{2}\left(\|x+y+2 z\|^{2}+\|x+y-2 z\|^{2}\right)+\frac{1}{2}\left(\|x+y\|^{2}+\|x-y\|^{2}\right) \\
& =\|x+y\|^{2}+4\|z\|^{2}+\|x\|^{2}+\|y\|^{2} . \tag{2}
\end{align*}
$$

Since the expression (2) is unchanged if z is substituted by $-z$,

$$
\begin{aligned}
& \|x+y+z\|^{2}+\|z\|^{2}+\|x-z\|^{2}+\|y-z\|^{2} \\
& \quad=\|x+y-z\|^{2}+\|-z\|^{2}+\|x+z\|^{2}+\|y+z\|^{2}
\end{aligned}
$$

from which, after cancellation and rearrangement,

$$
\|x+y+z\|^{2}-\|x+y-z\|^{2}=\|x+z\|^{2}-\|x-z\|^{2}+\|y+z\|^{2}-\|y-z\|^{2}
$$

that is, by (1),

$$
\begin{equation*}
\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle . \tag{3}
\end{equation*}
$$

To complete the proof of linearity in the first argument, we must show $\langle\lambda x, y\rangle=\lambda\langle x, y\rangle$ for any $\lambda \in \mathbb{R}$ and $x, y \in E$. If $\lambda=-1$, this is true:

$$
\langle-x, y\rangle=\frac{1}{4}\left(\|-x+y\|^{2}-\|-x-y\|^{2}\right)=\frac{1}{4}\left(-\|x+y\|^{2}+\|x-y\|^{2}\right)=-\langle x, y\rangle .
$$

Consequently, we need only consider nonnegative λ. By induction from (3),

$$
\langle m x, y\rangle=m\langle x, y\rangle \quad \text { for } m \in \mathbb{N}, x, y \in E .
$$

Substituting x by $\frac{1}{m} x$, we deduce that $\langle x, y\rangle=m\left\langle\frac{1}{m} x, y\right\rangle,\left\langle\frac{1}{m} x, y\right\rangle=\frac{1}{m}\langle x, y\rangle$. Putting these facts together, $\left\langle\frac{m}{n} x, y\right\rangle=\frac{m}{n}\langle x, y\rangle$ for any positive rational m / n. However, (1) implies that \langle,$\rangle is continuous (as a function of two variables, but we only need continuity in$ the first variable); thus the equality $\langle\lambda x, y\rangle=\lambda\langle x, y\rangle$ which has been established for positive rational λ must also be valid for all nonnegative real λ. This completes the proof.
3. If E is a complex normed space in which the Apollonian identity holds, then the previous exercise constructs a real inner product (that is to say, it is real-valued, symmetric and positive definite, and linear in the first argument with respect to real scalars), which I shall call $\langle,\rangle_{\mathbb{R}}$. Notice that, for any $x, y \in E$,

$$
\begin{align*}
4\langle x, i y\rangle_{\mathbb{R}} & =\|x+i y\|^{2}-\|x-i y\|^{2}=\|i(-i x+y)\|^{2}-\|(-i)(y+i x)\|^{2} \\
& =\|y-i x\|^{2}-\|y+i x\|^{2}=-4\langle y, i x\rangle_{\mathbb{R}} . \tag{4}
\end{align*}
$$

Therefore, for any $x \in E,\langle x, i x\rangle_{\mathbb{R}}=-4\langle x, i x\rangle_{\mathbb{R}}$, so that $\langle x, i x\rangle=0$.
Using the hint provided by the polarization identity, define for $x, y \in E$

$$
\begin{equation*}
\langle x, y\rangle_{\mathbb{C}}:=\langle x, y\rangle_{\mathbb{R}}+i\langle x, i y\rangle_{\mathbb{R}} . \tag{6}
\end{equation*}
$$

Because of (5), $\langle x, x\rangle_{\mathbb{C}}=\langle x, x\rangle_{\mathbb{R}}$. So $\langle,\rangle_{\mathbb{C}}$ is positive definite, $8.11(c)$ and (d), as in the previous exercise. Also

$$
\langle y, x\rangle_{\mathbb{C}}=\langle y, x\rangle_{\mathbb{R}}+i\langle y, i x\rangle_{\mathbb{R}}=\langle x, y\rangle_{\mathbb{R}}-i\langle x, i y\rangle_{\mathbb{R}},
$$

by symmetry of $\langle,\rangle_{\mathbb{R}}$ and (4). So $\langle,\rangle_{\mathbb{C}}$ is Hermitian, $8.11(a)$. But also

$$
\begin{aligned}
\langle x+y, z\rangle_{\mathbb{C}} & =\langle x+y, z\rangle_{\mathbb{R}}+i\langle x+y, i z\rangle_{\mathbb{R}} \\
& =\langle x, z\rangle_{\mathbb{R}}+\langle y, z\rangle_{\mathbb{R}}+i\langle x, i z\rangle_{\mathbb{R}}+i\langle y, i z\rangle_{\mathbb{R}}=\langle x, z\rangle_{\mathbb{C}}+\langle y, z\rangle_{\mathbb{C}},
\end{aligned}
$$

so it only remains to prove that, for any complex scalar λ and any $x, y \in E$, $\langle\lambda x, y\rangle_{\mathbb{C}}=\lambda\langle x, y\rangle_{\mathbb{C}}$. Now, from (6) and (4) and symmetry,

$$
\begin{aligned}
\langle i x, y\rangle_{\mathbb{C}} & =\langle i x, y\rangle_{\mathbb{R}}+i\langle i x, i y\rangle_{\mathbb{R}}=-\langle x, i y\rangle_{\mathbb{R}}-i\left\langle i^{2} x, y\right\rangle_{\mathbb{R}} \\
& \left.=i\left(\langle x, y\rangle_{\mathbb{R}}\right)+i\langle x, i y\rangle_{\mathbb{R}}\right)=i\langle x, y\rangle_{\mathbb{C}}
\end{aligned}
$$

whilst, for $\lambda \in \mathbb{R},\langle\lambda x, y\rangle_{\mathbb{C}}=\lambda\langle x, y\rangle_{\mathbb{C}}$ directly from (6). Linearity for all complex scalars follows in the obvious way.
4. Consider first the real case. Then, if S is skew-adjoint,

$$
\langle S x, x\rangle=\langle x, S x\rangle=-\langle x, S x\rangle
$$

and, therefore, must be 0 . On the other hand, if $\langle S x, x\rangle=0$ for all x, then for all $x, y \in E$

$$
\begin{aligned}
0 & =\langle S(x+y), x+y\rangle=\langle S x, x\rangle+\langle S x, y\rangle+\langle S y, x\rangle+\langle S y, y\rangle \\
& =\langle S x, y\rangle+\langle S y, x\rangle, \quad \text { since }\langle,\rangle \text { is symmetric; }
\end{aligned}
$$

this establishes that S is skew-adjoint.
In the complex case, $\langle S x, x\rangle=-\langle x, S x\rangle=-\overline{\langle S x, x\rangle}$, so that $\langle S x, x\rangle$ is purely imaginary. Conversely, if $\langle S x, x\rangle$ is purely imaginary for every $x \in E$, then as before

$$
\langle S(x+y), x+y\rangle=\langle S x, x\rangle+\langle S x, y\rangle+\langle S y, x\rangle+\langle S y, y\rangle
$$

is purely imaginary, but as $\langle S x, x\rangle$ and $\langle S y, y\rangle$ are too, it follows that $\langle S x, y\rangle+\langle S y, x\rangle$ must be purely imaginary for all x, y. So

$$
0=\Re\langle S x, y\rangle+\Re\langle S y, x\rangle=\Re\langle S x, y\rangle+\Re \overline{\langle S y, x\rangle}=\Re\langle S x, y\rangle+\Re\langle x, S y\rangle
$$

That is, $\Re\langle S x, y\rangle=-\Re\langle x, S y\rangle$ for all x, y. However,

$$
\begin{aligned}
\Im\langle S x, y\rangle & =-\Re(i\langle S x, y\rangle)=-\Re\langle S(i x), y\rangle=\Re\langle i x, S y\rangle \quad \text { by above } \\
& =\Re(i\langle x, S y\rangle)=-\Im\langle x, S y\rangle .
\end{aligned}
$$

Thus, the equality $\langle S x, y\rangle=-\langle x, S y\rangle$ holds (as it holds for real and imaginary parts separately).
5. For $f, g \in E$,

$$
\langle D f, g\rangle=\int_{0}^{2 \pi} f^{\prime}(t) \overline{g(t)} d t=[f(t) \overline{g(t)}]_{0}^{2 \pi}-\int_{0}^{2 \pi} f(t) \bar{g}^{\prime}(t) d t
$$

Since f and g are periodic with period 2π, the first expression vanishes, and, of course, the derivative of the conjugate is the conjugate of the derivative, so that

$$
\langle D f, g\rangle=-\int_{0}^{2 \pi} f(t) \overline{g^{\prime}(t)} d t=-\langle f, D g\rangle
$$

For f to belong to the kernel of $D, f^{\prime}=0$, which means that f is constant. So ker D is one-dimensional, and consists only of the constant functions.

For g to be in the image of D, it must be the derivative of a C^{∞} function with period 2π : $g=f^{\prime}$. Thus $\int_{0}^{2 \pi} g(t) d t=\int_{0}^{2 \pi} f^{\prime}(t) d t=f(2 \pi)-f(0)=0$. It is clear that this condition is sufficient as well as necessary, since it ensures that any indefinite integral of g is C^{∞} and periodic with period 2π. Thus, $D(E)$ consists exactly of the C^{∞} functions that are periodic with period 2π and have zero integral over a period. (Notice that it is in fact of codimension 1 - indeed, ker D and $D(E)$ are complementary subspaces of E.)
[This very elementary example has remarkable generalizations.]
6. I claim that the graph of D is closed in $E \times E$. Suppose, in fact, that $\left(\left(f_{n}, D f_{n}\right)\right)$ is a sequence in $G(D)$ which converges in $E \times E$ to (f, g). Then

$$
f_{n} \rightarrow f \quad \text { in } E, \quad D f_{n} \rightarrow g \quad \text { in } E .
$$

Take any $h \in E$, and then from ex. 5

$$
\left\langle D f_{n}, h\right\rangle \rightarrow\langle g, h\rangle, \quad\left\langle D f_{n}, h\right\rangle=-\left\langle f_{n}, D h\right\rangle \rightarrow-\langle f, D h\rangle=\langle D f, h\rangle,
$$

so that $\langle g, h\rangle=\langle D f, h\rangle$, or $\langle g-D f, h\rangle=0$. As this is true for any $h \in E$, it follows that $g=D f$ (we could take $h:=g-D f$, for instance). But this tells us that $(f, g) \in G(D)$. Therefore, the limit in $E \times E$ of a sequence in $G(D)$ that converges in $E \times E$ itself belongs to $G(D)$, or $G(D)$ is closed in $E \times E$.

If E is a Hilbert space, the closed graph theorem will apply, and we may conclude that D is continuous as a linear mapping from E to E. However, it manifestly is not continuous. For instance, consider the function $s_{n}:=\sin (n t)$, with $n \in \mathbb{N}$. We know

$$
\left\|s_{n}\right\|^{2}=\int_{0}^{2 \pi} \sin ^{2}(n t) d t=\pi, \quad\left\|D s_{n}\right\|^{2}=\int_{0}^{2 \pi} n^{2} \cos ^{2}(n t) d t=n^{2} \pi
$$

So D is not a bounded linear map. (Equivalently, $s_{n} / n \rightarrow 0$, but $D\left(s_{n} / n\right) \nrightarrow 0$.) This shows that E cannot be a Hilbert space.
[It is possible, and not very hard, to give explicit examples of Cauchy sequences in E that have no limit in E, but they are not so easy to justify.]
7. (a) If $a, b \in H$, and $b \neq 0$, then

$$
\begin{aligned}
& 0 \leq\left\|a-\frac{\langle a, b\rangle b \|^{2}}{\|b\|^{2}}\right\|^{2}=\left\langle a-\frac{\langle a, b\rangle}{\langle b, b\rangle} b, a-\frac{\langle a, b\rangle}{\langle b, b\rangle} b\right\rangle \\
&=\langle a, a\rangle-\frac{\langle a, b\rangle\langle b, a\rangle}{\langle b, b\rangle}-\frac{\overline{\langle a, b\rangle}\langle a, b\rangle}{\langle b, b\rangle}+\frac{\langle a, b\rangle \overline{\langle a, b\rangle}}{\langle b, b\rangle \overline{\langle b, b\rangle}}\langle b, b\rangle \\
&=\langle a, a\rangle-\frac{|\langle a, b\rangle|^{2}}{\langle b, b\rangle} \quad \text { as }\langle b, b\rangle \text { is real and } \\
&\langle a, b\rangle\langle b, a\rangle=|\langle a, b\rangle|^{2} .
\end{aligned}
$$

It follows that $|\langle a, b\rangle|^{2} \leq\langle a, a\rangle\langle b, b\rangle=\|a\|^{2}\|b\|^{2}$, which is in effect the Cauchy-Schwartz inequality. But the proof shows that this inequality will be an equality if and only if

$$
\left\|a-\frac{\langle a, b\rangle b}{\|b\|^{2}}\right\|=0, \quad \text { i.e. } a=\frac{\langle a, b\rangle}{\|b\|^{2}} b,
$$

which says that a is some scalar multiple of b - and, conversely, if $a=\mu b$ for some scalar μ, then $\langle a, b\rangle /\langle b, b\rangle=\mu$, so that the inequality will be an equality if a is any scalar multiple of b. It is also an equality if $b=0$. These two cases may be condensed into the condition that a and b are linearly independent.
(b) The inequality $\Re\langle a, b\rangle \leq\|a\|\|b\|$ results from the chain of inequalities

$$
\Re\langle a, b\rangle \leq|\langle a, b\rangle| \leq\|a\|\|b\| .
$$

For it to become an equality, both these inequalities must be equalities. This is true if $b=0$, when b is indeed a real nonnegative multiple of a; so we may as well assume $b \neq 0$. The second inequality, as we have seen, is an equality if and only if a is a scalar multiple of b, $a=\lambda b$. Then

$$
\Re\langle a, b\rangle=(\Re \lambda)\langle b, b\rangle, \quad|\langle a, b\rangle|=|\lambda|\langle b, b\rangle,
$$

and (since $\langle b, b\rangle>0$) they are equal only if $\Re \lambda=|\lambda|$; which, in turn, will be so if and only if λ is real nonnegative.
8. Suppose that $x, y \in K$ and $0 \leq t \leq 1$. Then

$$
\begin{aligned}
\|t x+(1-t) y\| & \leq\|t x\|+\|(1-t) y\|=t\|x\|+(1-t)\|y\| \\
& \leq t \cdot 1+(1-t) .1=1,
\end{aligned}
$$

so that $t x+(1-t) y \in K$ too. This proves that K is convex.
Certainly $0 \in K$ and 0 is not an extreme point (take any $a \in K$ with $a \neq 0$, and then $-a \in K$ and $0=\frac{1}{2} a+\frac{1}{2}(-a)$, so that 0 is an interior point of the segment from $-a$ to a.

Next, suppose $b \in K$ and $0<\|b\|<1$; then $\left\|\frac{b}{\|b\|}\right\|=1$, so that $\frac{b}{\|b\|} \in K$. But $b=\|b\| \frac{b}{\|b\|}+(1-\|b\|) 0 ; b$ is an interior point of the segment from 0 to $b /\|b\|$.

We have now shown that an extreme point of K, if any exist, must have norm exactly 1 . Let $a, b \in K, a \neq b$, and $t \in(0,1)$. In that case $\|a\| \leq 1,\|b\| \leq 1$, and

$$
1=\|t a+(1-t) b\| \leq t\|a\|+(1-t)\|b\| \leq 1
$$

is only possible (granted that $t>0$ and $1-t>0$) if $\|a\|=\|b\|=1$. However, then

$$
\begin{aligned}
\|t a+(1-t) b\|^{2} & =\langle t a+(1-t) b, t a+(1-t) b\rangle \\
& =t^{2}\langle a, a\rangle+t(1-t)(\langle a, b\rangle+\langle b, a\rangle)+(1-t)^{2}\langle b, b\rangle \\
& =t^{2}\langle a, a\rangle+2 t(1-t) \Re\langle a, b\rangle+(1-t)^{2}\langle b, b\rangle \\
& \leq t^{2}\|a\|^{2}+2 t(1-t)\|a\|\|b\|+(1-t)^{2}\|b\|^{2} \\
& =(t\|a\|+(1-t)\|b\|)^{2}=1,
\end{aligned}
$$

where the intermediate inequality derives from the Cauchy-Schwartz inequality; but it must, therefore, be an equality, $\Re\langle a, b\rangle=\|a\|\|b\|$ (recall again that $t(1-t)>0$). This, in turn, is only possible if a and b are positive scalar multiples of each other (question 7 above). But, if $\lambda>0$ and $\lambda a=b$ and $\|a\|=\|b\|=1$, necessarily $\lambda=1$ and $a=b$.

This proves that, if $\|x\|=1, x$ cannot be an interior point of any line segment in K; any point of the "sphere" $\{x \in H:\|x\|=1\}$ is an extreme point of K.
9. There are several ways of doing this. One is to imitate, with obvious alterations, the proof of the standard result 13.3. But it is more economical to use 13.3 itself, as follows. Let E be the direct sum Hilbert space $H \oplus H$ or $H \times H$, with the inner product

$$
\langle(x, y),(a, b)\rangle_{\oplus}:=\langle x, a\rangle+\langle y, b\rangle
$$

(which is trivially an inner product, and induces the norm $\|(x, y)\|_{\oplus}:=\sqrt{\|x\|^{2}+\|y\|^{2}}$). Then $C_{1} \times C_{2}$ is closed and convex in $H \times H$, and $(x, x) \notin C_{1} \times C_{2}$. By 13.3, there is some $\left(y_{1}, y_{2}\right) \in C_{1} \times C_{2}$ such that the distance from (x, x) to (y_{1}, y_{2}) is least possible (for elements of $C_{1} \times C_{2}$). This is precisely what is wanted.
10. (a) Suppose $x \notin \Lambda(A)$. By 13.4 and 13.3, there is a unique $z \in \Lambda(A)$ such that $0 \neq y:=x-z \perp \Lambda(A)$. Then $y \in \Lambda(A)^{\perp} \subseteq A^{\perp}$ and $\langle x, y\rangle=\langle x-z, y\rangle=\langle y, y\rangle>0$, as $\langle z, y\rangle=0$. So $x \notin\left(A^{\perp}\right)^{\perp}$. This proves $\left(\bar{A}^{\perp}\right)^{\perp} \subseteq \Lambda(A)$.

If $p \in A^{\perp}$, then $A \subseteq\{p\}^{\perp}$, which is a closed linear subspace of H. So $\Lambda(A) \subseteq\{p\}^{\perp}$. This implies that $p \in \Lambda(A)^{\perp}$, and (p being arbitrary in A^{\perp}) that $A^{\perp} \subseteq \Lambda(A)^{\perp}$. And now

$$
\Lambda(A) \subseteq\left(\Lambda(A)^{\perp}\right)^{\perp} \subseteq\left(A^{\perp}\right)^{\perp}
$$

This gives the opposite inclusion to (7). [That $Q \subseteq Q^{\perp \perp}$ is always trivially true - why?]
(b) Suppose that the finite-dimensional subspace E of H has an orthonormal basis $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$, such as may be constructed by the Gram-Schmidt process. For any $y \in H$,

$$
y-\sum_{k=1}^{n}\left\langle y, p_{k}\right\rangle p_{k} \in E^{\perp}
$$

since it is trivially orthogonal to each of the p_{k}. Suppose that $x \in E^{\perp \perp}$; then, for any y,

$$
\left\langle x-\sum_{k=1}^{n}\left\langle x, p_{k}\right\rangle p_{k}, y\right\rangle=\left\langle x, y-\sum_{k=1}^{n}\left\langle y, p_{k}\right\rangle p_{k}\right\rangle=0
$$

by simple algebraic manipulation. However, as y may be arbitrary, it follows that

$$
x=\sum_{k=1}^{n}\left\langle x, p_{k}\right\rangle p_{k} \in E .
$$

This shows that $E^{\perp \perp} \subseteq E$, and, from (a), that E must be closed.

