Math 442

Exercise set 5 — solutions

1. Directly from the definition of the norm, for any $x, y \in E$,

$$\begin{split} \|x+y\|^2 &= \langle x+y, x+y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle, \\ \|x-y\|^2 &= \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle, \quad \text{and so} \\ (*) \quad \|x+y\|^2 - \|x-y\|^2 &= 2(\langle x, y \rangle + \langle y, x \rangle) = 4 \,\Re(\langle x, y \rangle). \quad \text{Hence,} \\ \|x+y\|^2 - \|x-y\|^2 + i(\|x+iy\|^2 - \|x-iy\|^2) \\ &= 2(\langle x, y \rangle + \langle y, x \rangle) + 2i(\langle x, iy \rangle + \langle iy, x \rangle) \\ &= 2(\langle x, y \rangle + \langle y, x \rangle) + 2i(-i\langle x, y \rangle + i\langle y, x \rangle) = 4 \langle x, y \rangle. \end{split}$$

2. Granted that the Apollonian identity holds, define tentatively for $x, y \in E$

$$\langle x, y \rangle \coloneqq \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right)$$
 (1)

(which must be true, by (*), if the norm does come from a real inner product). We must prove that \langle , \rangle , as so defined, is an inner product.

Firstly, $\langle x, y \rangle = \langle y, x \rangle$, which was 8.11(*a*). Secondly, $\langle x, x \rangle = ||x||^2$, so that 8.11(*c*), (*d*) are automatic. Neither of these properties requires the Apollonian identity. The difficulty is with linearity in the first argument, 8.11(*b*).

Let $x, y, z \in E$. Then, using the Apollonian identity,

$$\begin{aligned} \|x+y+z\|^{2} + \|z\|^{2} + \|x-z\|^{2} + \|y-z\|^{2} \\ &= \frac{1}{2} (\|x+y+2z\|^{2} + \|x+y\|^{2}) + \frac{1}{2} (\|x+y-2z\|^{2} + \|x-y\|^{2}) \\ &= \frac{1}{2} (\|x+y+2z\|^{2} + \|x+y-2z\|^{2}) + \frac{1}{2} (\|x+y\|^{2} + \|x-y\|^{2}) \\ &= \|x+y\|^{2} + 4\|z\|^{2} + \|x\|^{2} + \|y\|^{2}. \end{aligned}$$

$$(2)$$

Since the expression (2) is unchanged if z is substituted by -z,

$$||x + y + z||^{2} + ||z||^{2} + ||x - z||^{2} + ||y - z||^{2}$$

= $||x + y - z||^{2} + ||-z||^{2} + ||x + z||^{2} + ||y + z||^{2}$,

from which, after cancellation and rearrangement,

$$||x + y + z||^{2} - ||x + y - z||^{2} = ||x + z||^{2} - ||x - z||^{2} + ||y + z||^{2} - ||y - z||^{2},$$

that is, by (1),

$$\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle.$$
 (3)

To complete the proof of linearity in the first argument, we must show $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$ for any $\lambda \in \mathbb{R}$ and $x, y \in E$. If $\lambda = -1$, this is true:

$$\langle -x,y\rangle = \frac{1}{4} (\|-x+y\|^2 - \|-x-y\|^2) = \frac{1}{4} (-\|x+y\|^2 + \|x-y\|^2) = -\langle x,y\rangle.$$

2

Consequently, we need only consider *nonnegative* λ . By induction from (3),

$$\langle mx, y \rangle = m \langle x, y \rangle$$
 for $m \in \mathbb{N}$, $x, y \in E$.

Substituting x by $\frac{1}{m}x$, we deduce that $\langle x, y \rangle = m \langle \frac{1}{m}x, y \rangle$, $\langle \frac{1}{m}x, y \rangle = \frac{1}{m} \langle x, y \rangle$. Putting these facts together, $\langle \frac{m}{n}x, y \rangle = \frac{m}{n} \langle x, y \rangle$ for any positive rational m/n. However, (1) implies that \langle , \rangle is continuous (as a function of two variables, but we only need continuity in the first variable); thus the equality $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$ which has been established for positive rational λ must also be valid for all nonnegative real λ . This completes the proof.

3. If *E* is a *complex* normed space in which the Apollonian identity holds, then the previous exercise constructs a *real* inner product (that is to say, it is real-valued, symmetric and positive definite, and linear in the first argument with respect to *real* scalars), which I shall call $\langle , \rangle_{\mathbb{R}}$. Notice that, for any $x, y \in E$,

$$4\langle x, iy \rangle_{\mathbb{R}} = \|x + iy\|^{2} - \|x - iy\|^{2} = \|i(-ix + y)\|^{2} - \|(-i)(y + ix)\|^{2}$$

= $\|y - ix\|^{2} - \|y + ix\|^{2} = -4\langle y, ix \rangle_{\mathbb{R}}.$ (4)

Therefore, for any $x \in E$, $\langle x, ix \rangle_{\mathbb{R}} = -4 \langle x, ix \rangle_{\mathbb{R}}$, so that $\langle x, ix \rangle = 0$. (5)

Using the hint provided by the polarization identity, define for $x, y \in E$

$$\langle x, y \rangle_{\mathbb{C}} \coloneqq \langle x, y \rangle_{\mathbb{R}} + i \langle x, iy \rangle_{\mathbb{R}} .$$
(6)

Because of (5), $\langle x, x \rangle_{\mathbb{C}} = \langle x, x \rangle_{\mathbb{R}}$. So $\langle , \rangle_{\mathbb{C}}$ is positive definite, 8.11(c) and (d), as in the previous exercise. Also

$$\langle y, x \rangle_{\mathbb{C}} = \langle y, x \rangle_{\mathbb{R}} + i \langle y, ix \rangle_{\mathbb{R}} = \langle x, y \rangle_{\mathbb{R}} - i \langle x, iy \rangle_{\mathbb{R}},$$

by symmetry of $\langle , \rangle_{\mathbb{R}}$ and (4). So $\langle , \rangle_{\mathbb{C}}$ is Hermitian, 8.11(*a*). But also

$$\begin{split} \langle x+y,z\rangle_{\mathbb{C}} &= \langle x+y,z\rangle_{\mathbb{R}} + i\langle x+y,iz\rangle_{\mathbb{R}} \\ &= \langle x,z\rangle_{\mathbb{R}} + \langle y,z\rangle_{\mathbb{R}} + i\langle x,iz\rangle_{\mathbb{R}} + i\langle y,iz\rangle_{\mathbb{R}} = \langle x,z\rangle_{\mathbb{C}} + \langle y,z\rangle_{\mathbb{C}} \,, \end{split}$$

so it only remains to prove that, for any *complex* scalar λ and any $x, y \in E$, $\langle \lambda x, y \rangle_{\mathbb{C}} = \lambda \langle x, y \rangle_{\mathbb{C}}$. Now, from (6) and (4) and symmetry,

$$\begin{split} \langle ix,y\rangle_{\mathbb{C}} &= \langle ix,y\rangle_{\mathbb{R}} + i\langle ix,iy\rangle_{\mathbb{R}} = -\langle x,iy\rangle_{\mathbb{R}} - i\langle i^{2}x,y\rangle_{\mathbb{R}} \\ &= i(\langle x,y\rangle_{\mathbb{R}}) + i\langle x,iy\rangle_{\mathbb{R}}) = i\langle x,y\rangle_{\mathbb{C}} \,, \end{split}$$

whilst, for $\lambda \in \mathbb{R}$, $\langle \lambda x, y \rangle_{\mathbb{C}} = \lambda \langle x, y \rangle_{\mathbb{C}}$ directly from (6). Linearity for all complex scalars follows in the obvious way.

4. Consider first the real case. Then, if S is skew-adjoint,

$$\langle Sx, x \rangle = \langle x, Sx \rangle = -\langle x, Sx \rangle$$

and, therefore, must be 0. On the other hand, if $\langle Sx, x \rangle = 0$ for all x, then for all $x, y \in E$

$$0 = \langle S(x+y), x+y \rangle = \langle Sx, x \rangle + \langle Sx, y \rangle + \langle Sy, x \rangle + \langle Sy, y \rangle$$

= $\langle Sx, y \rangle + \langle Sy, x \rangle$, since \langle , \rangle is symmetric;

3

this establishes that S is skew-adjoint.

In the complex case, $\langle Sx, x \rangle = -\langle x, Sx \rangle = -\overline{\langle Sx, x \rangle}$, so that $\langle Sx, x \rangle$ is purely imaginary. Conversely, if $\langle Sx, x \rangle$ is purely imaginary for every $x \in E$, then as before

$$\langle S(x+y), x+y \rangle = \langle Sx, x \rangle + \langle Sx, y \rangle + \langle Sy, x \rangle + \langle Sy, y \rangle$$

is purely imaginary, but as $\langle Sx, x \rangle$ and $\langle Sy, y \rangle$ are too, it follows that $\langle Sx, y \rangle + \langle Sy, x \rangle$ must be purely imaginary for all x, y. So

$$0 = \Re \langle Sx, y \rangle + \Re \langle Sy, x \rangle = \Re \langle Sx, y \rangle + \Re \overline{\langle Sy, x \rangle} = \Re \langle Sx, y \rangle + \Re \langle x, Sy \rangle.$$

That is, $\Re \langle Sx, y \rangle = -\Re \langle x, Sy \rangle$ for all x, y. However,

$$\begin{split} \Im\langle Sx,y\rangle &= -\Re(i\langle Sx,y\rangle) = -\Re\langle S(ix),y\rangle = \Re\langle ix,Sy\rangle \quad \text{by above} \\ &= \Re(i\langle x,Sy\rangle) = -\Im\langle x,Sy\rangle \,. \end{split}$$

Thus, the equality $\langle Sx, y \rangle = -\langle x, Sy \rangle$ holds (as it holds for real and imaginary parts separately).

5. For $f, g \in E$,

$$\langle Df,g\rangle = \int_0^{2\pi} f'(t)\overline{g(t)} \, dt = \left[f(t)\overline{g(t)}\right]_0^{2\pi} - \int_0^{2\pi} f(t)\overline{g}'(t) \, dt$$

Since f and g are periodic with period 2π , the first expression vanishes, and, of course, the derivative of the conjugate is the conjugate of the derivative, so that

$$\langle Df,g
angle = -\int_{0}^{2\pi} f(t)\overline{g'(t)} \, dt = -\langle f,Dg
angle \, .$$

For f to belong to the kernel of D, f' = 0, which means that f is constant. So ker D is one-dimensional, and consists only of the constant functions.

For g to be in the image of D, it must be the derivative of a C^{∞} function with period 2π : g = f'. Thus $\int_{0}^{2\pi} g(t) dt = \int_{0}^{2\pi} f'(t) dt = f(2\pi) - f(0) = 0$. It is clear that this condition is sufficient as well as necessary, since it ensures that any indefinite integral of g is C^{∞} and periodic with period 2π . Thus, D(E) consists exactly of the C^{∞} functions that are periodic with period 2π and have zero integral over a period. (Notice that it is in fact of codimension 1 - indeed, ker D and D(E) are complementary subspaces of E.)

[This very elementary example has remarkable generalizations.]

6. I claim that the graph of D is closed in $E \times E$. Suppose, in fact, that $((f_n, Df_n))$ is a sequence in G(D) which converges in $E \times E$ to (f, g). Then

$$f_n \to f$$
 in E , $Df_n \to g$ in E

Take any $h \in E$, and then from ex. 5

$$\langle Df_n,h
angle
ightarrow \langle g,h
angle\,,\quad \langle Df_n,h
angle=-\langle f_n,Dh
angle
ightarrow -\langle f,Dh
angle=\langle Df,h
angle\,,$$

so that $\langle g,h\rangle = \langle Df,h\rangle$, or $\langle g-Df,h\rangle = 0$. As this is true for any $h \in E$, it follows that g = Df (we could take h := g - Df, for instance). But this tells us that $(f,g) \in G(D)$. Therefore, the limit in $E \times E$ of a sequence in G(D) that converges in $E \times E$ itself belongs to G(D), or G(D) is closed in $E \times E$.

If E is a Hilbert space, the closed graph theorem will apply, and we may conclude that D is continuous as a linear mapping from E to E. However, it manifestly is *not* continuous. For instance, consider the function $s_n := \sin(nt)$, with $n \in \mathbb{N}$. We know

$$||s_n||^2 = \int_0^{2\pi} \sin^2(nt) dt = \pi, \quad ||Ds_n||^2 = \int_0^{2\pi} n^2 \cos^2(nt) dt = n^2 \pi.$$

So D is not a bounded linear map. (Equivalently, $s_n/n \to 0$, but $D(s_n/n) \not\to 0$.) This shows that E cannot be a Hilbert space.

[It is possible, and not very hard, to give explicit examples of Cauchy sequences in E that have no limit in E, but they are not so easy to justify.]

7. (a) If
$$a, b \in H$$
, and $b \neq 0$, then

$$\begin{split} 0 &\leq \left\| a - \frac{\langle a, b \rangle b}{\|b\|^2} \right\|^2 = \left\langle a - \frac{\langle a, b \rangle}{\langle b, b \rangle} b, a - \frac{\langle a, b \rangle}{\langle b, b \rangle} b \right\rangle \\ &= \langle a, a \rangle - \frac{\langle a, b \rangle \langle b, a \rangle}{\langle b, b \rangle} - \frac{\overline{\langle a, b \rangle} \langle a, b \rangle}{\overline{\langle b, b \rangle}} + \frac{\langle a, b \rangle \overline{\langle a, b \rangle}}{\langle b, b \rangle \overline{\langle b, b \rangle}} \langle b, b \rangle \\ &= \langle a, a \rangle - \frac{|\langle a, b \rangle|^2}{\langle b, b \rangle} & \text{as } \langle b, b \rangle \text{ is real and} \\ &\quad \langle a, b \rangle \langle b, a \rangle = |\langle a, b \rangle|^2 \,. \end{split}$$

It follows that $|\langle a, b \rangle|^2 \le \langle a, a \rangle \langle b, b \rangle = ||a||^2 ||b||^2$, which is in effect the Cauchy-Schwartz inequality. But the proof shows that this inequality will be an equality if and only if

$$\left\|a - \frac{\langle a, b \rangle b}{\left\|b\right\|^2}\right\| = 0$$
, i.e. $a = \frac{\langle a, b \rangle}{\left\|b\right\|^2}b$,

which says that a is *some* scalar multiple of b — and, conversely, if $a = \mu b$ for some scalar μ , then $\langle a, b \rangle / \langle b, b \rangle = \mu$, so that the inequality will be an equality if a is *any* scalar multiple of b. It is also an equality if b = 0. These two cases may be condensed into the condition that a and b are linearly independent.

(b) The inequality $\Re\langle a, b \rangle \le ||a|| ||b||$ results from the chain of inequalities

$$\Re \langle a, b \rangle \le |\langle a, b \rangle| \le ||a|| ||b||.$$

For it to become an equality, both these inequalities must be equalities. This is true if b = 0, when b is indeed a real nonnegative multiple of a; so we may as well assume $b \neq 0$. The second inequality, as we have seen, is an equality if and only if a is a scalar multiple of b, $a = \lambda b$. Then

$$\Re \langle a,b
angle = (\Re \lambda) \langle b,b
angle \,, \quad |\langle a,b
angle | = |\lambda| \langle b,b
angle \,,$$

and (since $\langle b, b \rangle > 0$) they are equal only if $\Re \lambda = |\lambda|$; which, in turn, will be so if and only if λ is real nonnegative.

8. Suppose that $x, y \in K$ and $0 \le t \le 1$. Then

$$\begin{aligned} \|tx + (1-t)y\| &\leq \|tx\| + \|(1-t)y\| = t\|x\| + (1-t)\|y\| \\ &\leq t.1 + (1-t).1 = 1 \,, \end{aligned}$$

so that $tx + (1-t)y \in K$ too. This proves that K is convex.

Certainly $0 \in K$ and 0 is not an extreme point (take any $a \in K$ with $a \neq 0$, and then $-a \in K$ and $0 = \frac{1}{2}a + \frac{1}{2}(-a)$, so that 0 is an interior point of the segment from -a to a.

Next, suppose $b \in K$ and 0 < ||b|| < 1; then $\left\|\frac{b}{\|b\|}\right\| = 1$, so that $\frac{b}{\|b\|} \in K$. But $b = \|b\|\frac{b}{\|b\|} + (1 - \|b\|)0$; b is an interior point of the segment from 0 to $b/\|b\|$.

We have now shown that an extreme point of K, if any exist, must have norm exactly 1. Let $a, b \in K$, $a \neq b$, and $t \in (0, 1)$. In that case $||a|| \leq 1$, $||b|| \leq 1$, and

$$1 = ||ta + (1 - t)b|| \le t||a|| + (1 - t)||b|| \le 1$$

is only possible (granted that t > 0 and 1 - t > 0) if ||a|| = ||b|| = 1. However, then

$$\begin{aligned} \|ta + (1-t)b\|^2 &= \langle ta + (1-t)b, ta + (1-t)b \rangle \\ &= t^2 \langle a, a \rangle + t(1-t)(\langle a, b \rangle + \langle b, a \rangle) + (1-t)^2 \langle b, b \rangle \\ &= t^2 \langle a, a \rangle + 2t(1-t) \Re \langle a, b \rangle + (1-t)^2 \langle b, b \rangle \\ &\leq t^2 \|a\|^2 + 2t(1-t) \|a\| \|b\| + (1-t)^2 \|b\|^2 \\ &= (t\|a\| + (1-t)\|b\|)^2 = 1 \,, \end{aligned}$$

where the intermediate inequality derives from the Cauchy-Schwartz inequality; but it must, therefore, be an equality, $\Re \langle a, b \rangle = ||a|| ||b||$ (recall again that t(1-t) > 0). This, in turn, is only possible if a and b are positive scalar multiples of each other (question 7 above). But, if $\lambda > 0$ and $\lambda a = b$ and ||a|| = ||b|| = 1, necessarily $\lambda = 1$ and a = b.

This proves that, if ||x|| = 1, x cannot be an interior point of any line segment in K; any point of the "sphere" $\{x \in H : ||x|| = 1\}$ is an extreme point of K.

9. There are several ways of doing this. One is to imitate, with obvious alterations, the *proof* of the standard result 13.3. But it is more economical to use 13.3 itself, as follows. Let E be the direct sum Hilbert space $H \oplus H$ or $H \times H$, with the inner product

$$\langle (x,y), (a,b) \rangle_{\oplus} \coloneqq \langle x,a \rangle + \langle y,b \rangle$$

(which is trivially an inner product, and induces the norm $||(x,y)||_{\oplus} \coloneqq \sqrt{||x||^2 + ||y||^2}$). Then $C_1 \times C_2$ is closed and convex in $H \times H$, and $(x,x) \notin C_1 \times C_2$. By 13.3, there is some $(y_1, y_2) \in C_1 \times C_2$ such that the distance from (x, x) to (y_1, y_2) is least possible (for elements of $C_1 \times C_2$). This is precisely what is wanted.

10. (a) Suppose $x \notin \Lambda(A)$. By 13.4 and 13.3, there is a unique $z \in \Lambda(A)$ such that $0 \neq y := x - z \perp \Lambda(A)$. Then $y \in \Lambda(A)^{\perp} \subseteq A^{\perp}$ and $\langle x, y \rangle = \langle x - z, y \rangle = \langle y, y \rangle > 0$, as $\langle z, y \rangle = 0$. So $x \notin (A^{\perp})^{\perp}$. This proves $(A^{\perp})^{\perp} \subseteq \Lambda(A)$. (7)

If $p \in A^{\perp}$, then $A \subseteq \{p\}^{\perp}$, which is a closed linear subspace of H. So $\Lambda(A) \subseteq \{p\}^{\perp}$. This implies that $p \in \Lambda(A)^{\perp}$, and $(p \text{ being arbitrary in } A^{\perp})$ that $A^{\perp} \subseteq \Lambda(A)^{\perp}$. And now

$$\Lambda(A) \subseteq (\Lambda(A)^{\perp})^{\perp} \subseteq (A^{\perp})^{\perp}.$$

This gives the opposite inclusion to (7). [That $Q \subseteq Q^{\perp \perp}$ is always trivially true — why?]

(b) Suppose that the finite-dimensional subspace E of H has an orthonormal basis $\{p_1, p_2, \ldots, p_n\}$, such as may be constructed by the Gram-Schmidt process. For any $y \in H$,

$$y - \sum_{k=1}^n \langle y, p_k \rangle p_k \in E^\perp,$$

since it is trivially orthogonal to each of the p_k . Suppose that $x \in E^{\perp \perp}$; then, for any y,

$$\left\langle x - \sum_{k=1}^{n} \langle x, p_k \rangle p_k, y \right\rangle = \left\langle x, y - \sum_{k=1}^{n} \langle y, p_k \rangle p_k \right\rangle = 0$$

by simple algebraic manipulation. However, as y may be arbitrary, it follows that

$$x = \sum_{k=1}^{n} \langle x, p_k \rangle p_k \in E.$$

This shows that $E^{\perp\perp} \subseteq E$, and, from (a), that E must be closed.