Math 442

Exercise set 4 — sketch solutions

1. Take a sequence $(x^{(n)})_n := ((\xi_i^{(n)})_i)_n$, where each $x^{(n)} \in c_0$ and the sequence is Cauchy in c_0 . This means that, for given $\epsilon > 0$, there is some $N(\epsilon)$ such that $m, n \ge N(\epsilon) \Longrightarrow \sup \left\{ \left| \xi_i^{(m)} - \xi_i^{(n)} \right| : i \in \mathbb{N} \right\} < \epsilon$. For each specific index i,

$$m, n \ge N(\epsilon) \Longrightarrow \left| \xi_i^{(m)} - \xi_i^{(n)} \right| < \epsilon$$
,

so that $(\xi_i^{(m)})_m$ is a numerical Cauchy sequence, with limit ξ_i . Define $x := (\xi_i)$. We show $x \in c_0$. First, let $m \to \infty$, to deduce that for each particular i

$$n \ge N(\epsilon) \Longrightarrow \left| \xi_i - \xi_i^{(n)} \right| \le \epsilon.$$
 (1)

For any $\epsilon > 0$, take $k \coloneqq N(\frac{1}{2}\epsilon)$. Then, as $x^{(k)} \in c_0$, there exists M (depending on k and on ϵ , and so on ϵ) such that $i \ge M \Longrightarrow \left|\xi_i^{(k)}\right| < \frac{1}{2}\epsilon$. Hence, if $i \ge M$, (8) yields

$$|\xi_i| \le \left|\xi_i^{(k)}\right| + \left|\xi_i - \xi_i^{(k)}\right| < \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon.$$

This shows that $\xi_i \to 0$ as $i \to \infty$, so that $x \in c_0$. And now (8) shows

$$n \ge N(\epsilon) \Longrightarrow \sup \left\{ \left| \xi_i - \xi_i^{(n)} \right| : i \in \mathbb{N} \right\} \le \epsilon$$
,

which means that $x^{(n)} \to x$ in c_0 as $n \to \infty$.

2. Let $\|\|_0$ denote the norm in c_0 and $\|\|_1$ the norm in l^1 . If $(\xi_n) \in c_0$, then, for each specific index k, $|\xi_k| \leq \|(\xi_n)\|_0 := \sup |\xi_n|$. Thus, $\sum |\xi_n \eta_n|$ converges by comparison with $\sum |\eta_n|$, so that $\phi((\xi_n))$ makes sense. It is clearly a linear functional on c_0 . Moreover,

$$\left|\sum \xi_{n} \eta_{n}\right| \leq \sum |\xi_{n} \eta_{n}| \leq \sum \|(\xi_{n})\|_{0} |\eta_{n}| = \|(\xi_{n})\|_{0} \|(\eta_{n})\|_{1},$$
(2)

for any $(\xi_n) \in c_0$ and $(\eta_n) \in l^1$. This shows that ϕ is a bounded linear functional on c_0 , and that its norm in c'_0 does not exceed $||(\eta_n)||_1$. Let us define $\Psi : l^1 \longrightarrow c'_0$ by the formula (2). We have just shown that Ψ is defined, and that $||\Psi((\eta_n))||'_0 \leq ||(\eta_n)||_1$ for any $(\eta_n) \in l^1$, where $|||'_0$ denotes the dual norm in c'_0 . It is obvious that Ψ is a linear map $l^1 \longrightarrow c'_0$. What we have to show is that it is *isometric* and *surjective*.

Suppose that $\psi \in c'_0$. Define $e_n \in c_0$ to be the sequence whose terms are all zero except for the *n*th, which is 1, and let $\eta_n \coloneqq \psi(e_n)$ for each *n*. If $\eta_n \neq 0$, let $\theta_n \coloneqq \overline{\eta}_n / |\eta_n|$; otherwise, let $\theta_n \coloneqq 1$. Define $t_N \coloneqq \sum_{n=1}^N \theta_n e_n \in c_0$, that is, the sequence whose terms are θ_n for $1 \le n \le N$ and 0 thereafter. Then $||t_N||_0 = 1$ for every $N \in \mathbb{N}$, and

$$\sum_{n=1}^{N} |\eta_n| = \sum_{n=1}^{N} \theta_n \eta_n = \sum_{n=1}^{N} \theta_n \psi(e_n) = \psi(t_N) \,,$$

2

which is, therefore, real and non-negative; however, as ψ is a *bounded* linear functional,

$$\psi(t_N) = |\psi(t_N)| \le ||\psi||_0' ||t_N||_0 = ||\psi||_0'$$

for all *n*. Thus, $\sum_{n=1}^{N} |\eta_n| \leq \|\psi\|'_0$ for all *N*. It follows that $\sum_{n=1}^{\infty} |\eta_n|$ converges, so that $(\eta_n) \in l^1$, and $\|(\eta_n)\|_1 \leq \|\psi\|_0$. I claim that $\phi := \Psi((\eta_n)) = \psi$.

Suppose $x \coloneqq (\xi_n) \in c_0$. For $N \in \mathbb{N}$, let $x_N \coloneqq \sum_{n=1}^N \xi_n e_n$. Then

$$|x - x_N||_0 = \sup\{|\xi_n| : n > N\} \to 0$$

as $N \to \infty$, by the definition of c_0 . Thus $x_N \to x$ as $N \to \infty$. But

$$\phi(x_N) = \sum_{n=1}^{N} \xi_n \eta_n = \sum_{n=1}^{N} \xi_n \psi(e_n) = \psi\left(\sum_{n=1}^{N} \xi_n e_n\right) = \psi(x_N)$$

for each N, and both ψ (by hypothesis) and ϕ (by (b)) are continuous; hence

 $\phi(x) = \lim_{N \to \infty} \phi(x_N) = \lim_{N \to \infty} \psi(x_N) = \psi(x)$.

This proves that Ψ is surjective, since ψ is the image under Ψ of (η_n) . We saw at the end of the last paragraph that $\|(\eta_n)\|_1 \leq \|\psi\|_0$, and at the end of the first paragraph that $\|\phi\|'_0 \leq \|(\eta_n)\|_1$. It follows that Ψ is, in fact, an isometry. This implies that it is one-to-one, and, as it is surjective, it is an isometric isomorphism.

3. Take $\eta_n := 2^{-n}$. Then $(\eta_n) \in l^1$ and $||(\eta_n)||_1 = 1$. But then, for any non-zero $x := (\xi_n) \in c_0$, $|\sum_{n=1}^{\infty} \xi_n \eta_n| \leq \sum 2^{-n} |\xi_n|$, and this must be less than $||x||_0 = \sup |\xi_n|$; indeed, the only way it could equal $||x||_0$ would be if $|\xi_n| = ||x||_0$ for all n, which is impossible because $|\xi_n| \to 0$ as $n \to \infty$. [All that is required is that infinitely many terms of (η_n) should be non-zero. The question is, in effect, whether the dual norm in c'_0 is "attained" on the unit sphere in c_0 , and our conclusion is that the linear functionals which attain their norm on the sphere are those which vanish on all but finitely many $e_n \cdot 13.2$ says, by contrast, that any vector in a normed space E attains its norm on the unit sphere in E'.]

4. If $x := (\xi_n) \in l^1$ and $\phi := (\eta_n) \in l^\infty$, the sum $\sum_{n=1}^{\infty} \xi_n \eta_n$ converges absolutely by comparison with $\sum |\xi_n| \sup |\eta_n|$, and $|\sum \xi_n \eta_n| \leq \sum |\xi_n| \sup |\eta_n| = \|\phi\|_{\infty} \|x\|_1$, where $\|\|_{\infty}$ denotes the norm in l^∞ . So (2) defines a bounded linear mapping $\Phi : l^\infty \longrightarrow (l^1)'$, and its operator-norm $\|\Phi\|$ (with respect to $\|\|_{\infty}$ and the dual norm $\|\|_1'$ in $(l^1)'$) does not exceed 1. This is much as in question 2. Let e_n be defined as before, and note that $e_n \in l^1$.

Suppose that $\psi \in (l^1)'$, and as before define $\eta_n := \psi(e_n)$ for each $n, \phi := (\eta_n)$. For given $x = (\xi_n) \in l^1$, and any $N \in \mathbb{N}$, define $x_N := (\xi_1, \xi_2, \dots, \xi_N, 0, 0, 0, \dots)$:

$$x_N = \sum_{n=1}^N \xi_n e_n \,.$$

Hence, $||x_N - x|| = \sum_{n=N+1}^{\infty} |\xi_n| \to 0$ as $N \to \infty$. ψ being continuous, $\psi(x_N) \to \psi(x)$ as $N \to \infty$. But $\psi(x_N) = \sum_{n=1}^{N} \xi_n \eta_n$; so, for any $x = (\xi_n) \in l^1$,

$$\sum \xi_n \eta_n \text{ converges} \quad \text{and} \quad \psi(x) = \sum \xi_n \eta_n \,.$$
 (3)

Since $||e_n||_1 = 1$ in ℓ^1 for each n, and ψ is a bounded linear functional, $|\eta_n| = |\psi(e_n)| \le ||\psi||'_1$ for each n. Hence, $(\eta_n) \in l^\infty$, and (3) shows that $\Phi((\eta_n)) = \psi$, so that Φ is onto $(l^1)'$. We have already seen that Φ does not increase norms. It remains to show that, for every $(\eta_n) \in l^\infty$, $||\Phi((\eta_n))||'_1 \ge ||(\eta_n)||_\infty$, which will ensure that Φ is both isometric and one-to-one.

Suppose, then, that $(\eta_n) \neq 0$ in l^{∞} . For any $\epsilon \in (0, 1)$, there exists some N such that

$$(1-\epsilon) \|(\eta_n)\|_{\infty} < |\eta_N| = |\Phi((\eta_n))(e_N)|,$$

and, as $||e_N||_1 = 1$, it follows that $||\Phi((\eta_n))||_1' > (1 - \epsilon)||(\eta_n)||_{\infty}$. But, ϵ being arbitrary, one deduces that $||\Phi((\eta_n))||_1' \ge ||(\eta_n)||_{\infty}$, as required.

If c_0 were reflexive, this would mean that, to every continuous linear functional A on l^1 , there would be $(\alpha_n) \in c_0$ such that, for every $(\eta_n) \in l^1$, $A((\eta_n)) = \sum \alpha_n \eta_n$. But this is false, because, for instance, the linear functional $A((\eta_n)) := \sum \eta_n$ (corresponding to the sequence $(1, 1, 1, ...) \in l^{\infty} \setminus c_0$) is not of this form.

5. If $\phi \in E'$, define $R\phi \in F'$ by restriction: $(\forall x \in F) (R\phi)(x) = \phi(x)$. (Equivalently, R is the mapping dual to the inclusion $F \longrightarrow E$). Then the kernel K of R consists of all those bounded linear functionals on E that vanish on F (this is called the *annihilator* of F and may be written as F^0), and we have an induced mapping $\widehat{R} : E'/F^0 \longrightarrow F'$ defined in the usual way: if $\widehat{\phi} \in E'/F^0$ is the equivalence class of $\phi \in E'$, then $\widehat{R}\widehat{\phi} := R\phi$, which is the same for all choices of ϕ giving the same equivalence class. The claim is that \widehat{R} is bijective and isometric.

Let $\tau \in E'/F^0$. Then recall the definition of the quotient norm $\|\|^{\sim}$:

$$\|\tau\|^{\sim} \coloneqq \inf\{\|\phi\| : \phi \in E' \& \widehat{\phi} = \tau\}.$$

It is obvious that $||R\phi|| \le ||\phi||$ for any $\phi \in E'$:

$$\begin{split} \|R\phi\| &\coloneqq \sup\{|\phi(x)| : x \in F \& \|x\| \le 1\} \\ &\le \sup\{|\phi(x)| : x \in E \& \|x\| \le 1\} = \|\phi\| \,. \end{split}$$

Consequently, $\|\widehat{R}\widehat{\phi}\| = \|R\phi\| \le \|\phi\|$ for any $\phi \in E'$, and taking the infimum over a whole equivalence class yields $\|\widehat{R}\widehat{\phi}\| \le \|\widehat{\phi}\|^{\widehat{}}$.

Conversely, suppose that $\psi \in F'$. The Hahn-Banach theorem (in the form 13.1) tells us that there exists $\phi \in E'$ such that $R\phi = \psi$ and $\|\phi\| = \|\psi\|$. Certainly $\widehat{R}\widehat{\phi} = \psi$; this proves that \widehat{R} is surjective; but also, from above,

$$\|\phi\| = \|\psi\| = \|R\phi\| = \left\|\widehat{R}\widehat{\phi}\right\| \le \left\|\widehat{\phi}\right\|^{\widehat{}} \le \|\phi\|,$$

so that all these inequalities are equalities. This shows that \widehat{R} is isometric, and so one-to-one.

Let $\pi: E \longrightarrow E/F: x \mapsto [x]$ be the quotient map, which does not increase norms. Then, for any $\alpha \in (E/F)'$, $\Phi(\alpha) := \alpha \circ \pi \in E'$, and $\|\Phi(\alpha)\| \le \|\alpha\|$. Φ is obviously linear (it is the dual map to π).

Given $\epsilon > 0$, there exists $\xi \in E/F$ such that $\|\xi\| = 1$ and $|\alpha(\xi)| > \|\alpha\| - \epsilon$. But also, there exists $x \in E$ such that $[x] = \xi$ and $\|x\| < 1 + \epsilon$. Hence,

$$|\Phi(\alpha)(x)| = |\alpha(\xi)| > ||\alpha|| - \epsilon$$

4

and $\|\Phi(\alpha)\| \ge \frac{\|\alpha\| - \epsilon}{1 + \epsilon}$. As ϵ is arbitrary, this shows that $\|\Phi(\alpha)\| \ge \|\alpha\|$. This completes the proof that Φ is isometric; so it is an isometric isomorphism of (E/F)' with a closed subspace of E'. (The subspace in question is easily seen to be F^0 .)

Finally, suppose that E is reflexive. Then F' is identified with E'/F^0 , and $(E'/F^0)'$ is identified with a subspace of E'', which is identified with the subspace F^{00} consisting of all elements of E that are carried into 0 by all elements of E' that vanish on F. However, the Hahn-Banach theorem tells us (why?) that $F^{00} = F$. So in fact F'' is identified with F itself, and F is reflexive. [This is a rather abbreviated argument. I should really chase the identifications to show that they make the bidual map correspond to the identity of F; but this is pretty obvious in principle, even if writing it down precisely is tedious.]

6. Let |||| be the norm in *E*. Define a norm $||||_{\oplus}$ on $F \oplus F_1$ by

$$\left\| (x,y) \right\|_{\oplus} \coloneqq \left\| x \right\| + \left\| y \right\|.$$

This makes $F \oplus F_1$ into a Banach space (an easy exercise, which I omit). But the mapping $S: F \oplus F_1 \longrightarrow E: (x, y) \mapsto x + y$ is a linear isomorphism (a familiar fact from algebra), and $||S(x, y)|| \le ||(x, y)||_{\oplus} = ||x|| + ||y||$. Thus S is a continuous surjection between Banach spaces, and, by the open mapping theorem, it is open; so it has a continuous inverse. [There are many possible choices for the norm on $F \oplus F_1$. The one I used, which might be called the l^1 norm, makes the argument very simple.]

7. Suppose that F is closed and complemented, with the closed "complement" F_1 , so that $F \oplus F_1 \longrightarrow E : (f, f_1) \mapsto f + f_1$ is a continuous isomorphism Q with continuous inverse Q^{-1} (see the last question). Evidently $(f, f_1) \mapsto f$ is a continuous linear mapping π of $F \oplus F_1$ onto F. Let $T := i \circ \pi \circ Q^{-1}$, where $i : F \longrightarrow E$ is the inclusion mapping.

T is certainly a bounded linear map, and T(E) = F. And, given $f \in F$,

$$Tf = i \circ \pi \circ Q^{-1}f = i \circ \pi(f, 0) = i(f) = f$$
,

so that, for any $x \in E$, $T^2x = T(Tx) = Tx$. Thus $T^2 = T$.

Conversely, suppose that T is a bounded linear idempotent mapping $E \longrightarrow E$, such that T(E) = F. Define $F_1 := \ker T = T^{-1}\{0\}$. Certainly F_1 is a closed linear subspace of E. Suppose $x \in F \cap F_1$; then, as $x \in F = T(E)$, there is some $y \in E$ such that x = Ty, and $Tx = T^2y = Ty = x$. But, as $x \in F_1 = \ker T$, Tx = 0. So x = 0. Hence, $F \cap F_1 = \{0\}$. Now, take any $u \in E$. Then u = u - Tu + Tu, and here

$$T(u - Tu) = Tu - T^2u = 0,$$

as $T^2 = T$; thus, $u - Tu \in F_1$; whilst $Tu \in F$. Therefore, $F + F_1 = E$. Finally, suppose $y_n = Tx_n \in F$ and $y_n \to y$. Then $Ty_n \to Ty$, as T is continuous; however, $Ty_n = T^2x_n = Tx_n = y_n$ for each n, and so $y_n \to Ty$ too. Hence $y = Ty \in F$. This proves that F must be closed in E. (Notice that $F = T(E) = \ker(I - T)$, whilst $F_1 = \ker T = (I - T)(E)$.)

8. If E is a reflexive normed space, then so is E'. Indeed, let \langle,\rangle denote the dual pairing of E with E', \langle,\rangle' the pairing of E' with E'', and \langle,\rangle'' the pairing of E'' with

E'''; and let $J_1: E' \longrightarrow E'''$ be the bidual mapping. For $x \in E$, $\phi \in E'$,

$$\langle x, \phi \rangle = \langle \phi, Jx \rangle' = \langle Jx, J_1 \phi \rangle'' \,. \tag{4}$$

If J is onto (and so an isometric isomorphism), then, for any $X \in E''$,

$$\langle J^{-1}X,\phi\rangle = \langle \phi,X\rangle' = \langle X,J_1\phi\rangle'',$$

5

from which $J_1 = (J^{-1})'$ (the so-called contragredient of J). But this shows J_1 is also an isomorphism, with inverse $J' : E''' \longrightarrow E'$.

If, then, l^1 is reflexive, so is l^{∞} (as the dual of l^1 ; see question 4). But then c_0 (as a closed subspace of l^{∞}) is also reflexive (see question 5), and it is not (question 4). So neither l^1 nor l^{∞} can be reflexive.

9. From (4), $\langle x, \phi \rangle = \langle x, J'J_1\phi \rangle$ for any $x \in E$ and $\phi \in E'$. Consequently $J'J_1$ is the identity on E'. This ensures that J'(E''') = E', and that $J_1J' : E''' \longrightarrow E'''$ is an (isometric) idempotent:

$$(J_1J')(J_1J') = J_1(J'J_1)J' = J_1I_{E'}J' = J_1J',$$

where $J_1J'(E''') = J_1(E')$. By question 7, $J_1(E')$ is complemented in E'''. [The complement is the kernel of J_1J' , which, as J_1 is injective, is the kernel of J'.]

10. This is almost a copy of question 2, with some small additional complications.