Math 442

Exercise set 4 — sketch solutions

1. Take a sequencér™), = ((¢™),), , where each € ¢ and the sequence i
Cauchy in ¢y . This means that, for givea>0 , there @ne N(¢) such that

m,n > N(e) = sup{ gm _ el e N} < ¢. For each specific index

m,n > N(e) = € — ¢

so that(¢&™),, is a numerical Cauchy sequence, with lgnitDefine = == (&) . We show

T EC. First, let m — oo , to deduce that for each particular
éi . ggn)

n> N(e) = <e. 1)

For any e > 0 , takek :== N(1e) . Then, as®) c ¢y , there exisfs  (depgnoiirk: and

2
one, and so oa ) such that> M — {;‘Z(.k)‘ < %e . Hencej it M , (8) yields

& < §¢—§§k)‘<%e+%e:e.

&9+
This shows thatt; — 0 a$— oo ,sothate ¢, . And now (8) shows

n > N(e) = sup{|¢; — ¢

:iEN}Se,

which means that:"” — z im, as — oo

2. Let]||, denotethe normim and, the norniin  (4f) € ¢, then, for each
specific indext , || < [[(&)|l, == supl&.| . Thusy [€.m,|  converges by comparisdh w
> Inn|, so thate((&,)) makes sense. It is clearly a lineartfanal on ¢, . Moreover,

‘annn‘ < Z €| < Z (&) llolml = 11CE ol ()l (2)

for any (&,) € ¢g and(n,) € I* .This shows that is a bounded lifigactional onc, , and
that its norm inc) does not exced¢l,)||, . Letus definel’ — ¢ by the formula (2).
We have just shown tha is defined, and that((n,)|l, < |[(n.)ll,  afor () €1*,
where |||, denotes the dual normdf . It is obvious ¥hés a linear map! — ¢ . What
we have to show is that itisometric  amdrjective

Suppose that) € ¢, . Define, € ¢y  to be the sequence whases tee all zero except
for the n th, which isl , and let), := ¢ (e,) for each . #,#0 , 16 :=7,/|n.|;
otherwise, letd,, :==1 . Defingy = Zé\'zl 0.e, € ¢y , thatis, the sequencessiterms are
0, for 1 <n <N and0 thereafter.Thefjty|[, =1 forevery €N ,and



Zfz ml = Z,L Ontln = Z,L 0,10 (e,) = U(ty),

which is, therefore, real and non-negative; howeasy is dounded linear functional,
D(tn) = [9(tw)| < llllolltnlly = [l

for all n. Thus, 3.V |n.| < ¢]l;  for allV . It follows thaty~ > |n,| convers, so that
(ma) € 11, and [[(ma)ll; < [[¢lly -1 claim thatg == ¥ ((1,)) = 1)
Supposez == (£,) € ¢y .FoN e N ,leky =3V e, . Then

[z = znlly = sup{|ga] s 2 > N} — 0

as N — oo , by the definition of, . Thusy — 2 a¥ — oo .But

¢<xN) - ZnNzl énnn = Z:L\[:l gnw(en) - w(Zi\Ll fnen) = 'l/)(xN)
for eachNV , and bottt (by hypothesis) and (byd#bg)continuous; hence
gb(:l?) = |imNﬂoo gb(l‘]\[) =lim N—o0 ’g/}(QZ‘N) = ’g/}(ZL‘) .

This proves tha¥ is surjective, singe is the iemagderd of(n,) . We saw at the end of
the last paragraph that|(n,)||, < |||, ., and at the end of th& faaragraph that
o < l(ma)ll; - It follows that® is, in fact, an isometry. Thigplies that it is one-to-one,
and, as it is surjective, it is an isometric isoptosm.

3. Take n,:=2"" . Then(n,) €' and|(n,)|,=1 . But then, for any non-zero
z:= (&) €co, D poinmn] <D 27"¢,|, and this must be less thafe||, = sup|,|
indeed, the only way it could equdk|,  would be|§,| = |z||, or @ll », which is
impossible becaus¢,,| — 0 as— oo . [All that is requirech& infinitely many terms
of (n,) should be non-zero. The question is, in effedtether the dual norm im| is
“attained” on the unit sphere iy, , and our conduosis that the linear functionals which
attain their norm on the sphere are those whiclistiaon all but finitely many,, . 13.2 says,
by contrast, that any vector in a normed spéce ainatits norm on the unit sphere i ]

4. If z:==(&)€l' and ¢ == (n,) €1 , the sumd_ < &,m, converges absolutely

by comparison with} [£,[ sun.| , and} &l < 3216 sum.| = [l llzll, , where
|||, denotes the norm itr® . So (2) defines a boundedtimapping® : [~ — (I') , and

its operator-norm||®||  (with respect tgf| and the dusm |||} in (I')’ ) does not
exceedl . This is much as in question 2. et bimeédfas before, and note that € [

Suppose thaty € (I')" , and as before defipe:= v (e,) for eackp .= (n,) or.F
given z = (¢,) € I' ,andanyN € N , definey = (£1,&,...,£5,0,0,0,...)

N
IN = _ gnen .
n=1

Hence, [y —z|| = >, v, 1&] — 0 asN — oo 4 being continuoug(zy) — (x)
as N — oo . Buty(zy) = N &, ;5 50, forany = (¢,) € I'

Z &wmn converges  and Q/)(:L‘) = Z Enlin - (3)



Since |le,);, =1 in ¢& for eachn , and) is a bounded linear tfanal,

Ina| = [¥(en)| < |||} for eachn . Hence(n,) € I1* , and (3) shows tlat(n,)) = ¥ , SO
that® is onto(/')’ . We have already seen that doeBomase norms. It remains to show
that, for every (1,) €1, [|®((n.))l} > [[(m)ll, » which will ensure tha s both
isometric and one-to-one.

Suppose, then, thaiy,) #0 R° . Foramy (0,1) , there existesé such that
(L= Ol ()l < Innl = [@((1ma))(en)],

and, as |ley|l, =1 , it follows that|®((n,))||; > (1 — €)||(n,)
one deduces that®((n,))l; > |(n.)]l,, . as required.

If ¢, were reflexive, this would mean that, to eveontinuous linear functionad o
there would be(a,,) € ¢g  such that, for evety,) € I'  A((n.)) = > auny . But tlsis i
false, because, for instance, the linear functiodd(n,)) := > 7, (corresponding to the
sequence(l,1,1,...) € [*\ ¢y ) is not of this form.

. But, being arbitrary,

[

5. If ¢€FE, define Rpe F' by restriction: (Vx € F) (R¢o)(z) = ¢(x)
(Equivalently, R is the mapping dual to the inclusi@’ — FE'). Then the kernek’ aR
consists of all those bounded linear functionalskorthat vanish onF”  (this is called the
annihilator of I and may be written asF® ), and we have an indluocepping

R:E'/F' — F' defined in the usual way: ifp € E'/F° s the equivalentess of
¢ € E', then R¢$ == R¢ , which is the same for all choicespof mvihe same equivalence
class. The claim is thdt is bijective and isonuetri

Let 7 € E'/F°. Then recall the definition of the quotientmo]|||":

Irl™ = inf{||¢|| : ¢ € E' & & =7}.
It is obvious that||R¢|| < ||¢|| forany € E’

[Ro|| = supf|o(z)| -z € I & |lz]| <1}
<sup{lo(z)] :z € E & [lof| <1} = [lol.

Consequently,Hfi@H — ||[R¢|| < ||¢|| forany € E’ , and taking the infimumravevhole

equivalence class yield#ﬁ@“ < H$
Conversely, suppose that € F” . The Hahn-Banach the@irethe form 13.1) tells us

that there existsp € E/  such thak¢ =¢  an@| = ||¢| . Certaidty =« s thi
proves thaf? is surjective; but also, from above,

loll = vl = 1Rsll = | R| < 8] <lel,

so that all these inequalities are equalities. Shisws thaf? is isometric, and so one-to-one.
Let 7: F — E/F :x~ [z] be the quotient map, which does not increasens.
Then, for any a € (E/F) ,®(a) =aom e E' , and|®(a)|| < |laf] & is obviously
linear (it is the dual map to ).
Given ¢ > 0, there exists € E/F  such thdt| =1 and(&)| > [|af| — e . But
also, there existez € E  such that] = ¢ afd|| <1+€¢ .Hence,



|[@()(@)| = [a&)] > llaf| —e

vl =€

and ||®(a)]| > . Ase is arbitrary, this shows tha®(«)|| > ||a|| . This ctetgs

the proof thatd is isometric; so it is an isomeisomorphism of(E/F)" with a closed
subspace of2’ . (The subspace in question is easily® beF? .)

Finally, suppose that' s reflexive. Théri s idiged with £'/F°, and (E'/F°)" is
identified with a subspace df” , which is identifieith the subspacé™  consisting of all
elements offf that are carried irio by all elemerfitd’ that vanish or” . However, the
Hahn-Banach theorem tells us (why?) that’ = FF . So @ & is identified withF
itself, and F' is reflexive. [This is a rather abbated argument. | should really chase the
identifications to show that they make the biduapnesorrespond to the identity 6f ; but this
is pretty obvious in principle, even if writingdbwn precisely is tedious.]

6. Let|||| bethenormif’ .Defineanori,  6hd Fy by
1@, )l = llzll + [yl -

This makesF @ F; into a Banach space (an easy exevdmseh | omit). But the mapping
S:F@oF — E:(x,y) — x+y is a linear isomorphism (a familiar fact from dige),
and [|S(z,y)|| < |[(@,y)|le = |zl + |lyll -ThusS is a continuous surjection between
Banach spaces, and, by the open mapping theorésnppien; so it has a continuous inverse.
[There are many possible choices for the normfom F; The one | used, which might be
called thel'! norm, makes the argument very simple.]

7. Suppose that' is closed and complemented,thétitlosed “complementF; , so
that F& Fy — E: (f,fi)— f+ fi is a continuous isomorphis@ with continuous
inverse Q! (see the last question). Evidentfy f1) — f israiouous linear mapping
of F@ Fy ontoF . LetT :=iomo Q! ,where: F — E is the inclusion mapping.

T is certainly a bounded linear map, &hdr) = F . And, giyec F',
Tf=iomoQ 'f=ioxn(f,0)=i(f)=f,

sothat, foranyr € E T?x =T(Tz) =Tz .Thug§? =T

Conversely, suppose that is a bounded linear ide&gnpmappingl — E , such that
T(E) = F. Define Fy .= kefl' = T-'{0} . Certainly; is a closed linear subspaE .
Supposex € FNFy ; then,as € F=T(FE) , thereis some FE such thatTy :
and Te=T?y=Ty=2. But, asxc F;= k& ,Tx=0 . Sor=0 . Hence,
FnF ={0}.Now,take anyu € £ .Them =u—Tu+Tu ,and here

Tu—Tu)=Tu—Tu=0,

as T? =T ; thus, u —Tu € Fy, ; whilstTu € F . ThereforeF + F, =E . Finally,
supposey, =1z, € FF andy, —y . Thefly, — Ty , & is continuous; however,
Ty, = T?*z, =Tz, =vy, for eachn , and soy, — Ty too. Hencg= Ty € F . This
proves thatF must be closed i . (Notice that=T(F)= (kerT) whilst
Fi=kerT'=(I-T)(FE).)

8. If E is a reflexive normed space, then soHS debd, let(,) denote the dual
pairing of E with E/ , (,) the pairing o2’ withE” , and)” tipairing of E” with



E";andletJ; : E' — E" be the bidual mapping. Fere E ¢, E'
(,0) = (¢, Jx)' = (Jz, J19)". (4)
If Jis onto (and so an isometric isomorphism), tHenany X € E” ,
(J7'X,9) = (6, X) = (X, J16)",

from which J; = (J7!) (the so-called contragredient.bf ). Buis shows.J; is also an
isomorphism, with inversg’ : £ — FE’

If, then, I! is reflexive, so i$* (as the dual bf epsjuestion 4). But thes, (as a
closed subspace @¥ ) is also reflexive (see quesiipand it is not (question 4). So neither
I! nor[>* can be reflexive.

9. From (4),(z,¢) = (z,J'J1¢) foranyr € E and € E’ . Consequenily/; is
the identity on £’ . This ensures that'(E"”)=E’ , and thQy’: £ — E""  ans
(isometric) idempotent:

(NI = J(J' I = I g = J.J

where J,J'(E") = J,(E') . By question 7,J;(E’) is complemented " . [The
complement is the kernel of,J’ , which, ds is injegtis the kernel of/’ ]

10. Thisis almost a copy of question 2, with s@mall additional complications.



