Math 442

Exercise set 4 - sketch solutions

1. Take a sequence $\left(x^{(n)}\right)_{n}:=\left(\left(\xi_{i}^{(n)}\right)_{i}\right)_{n}$, where each $x^{(n)} \in c_{0}$ and the sequence is Cauchy in c_{0}. This means that, for given $\epsilon>0$, there is some $N(\epsilon)$ such that $m, n \geq N(\epsilon) \Longrightarrow \sup \left\{\left|\xi_{i}^{(m)}-\xi_{i}^{(n)}\right|: i \in \mathbb{N}\right\}<\epsilon$. For each specific index i,

$$
m, n \geq N(\epsilon) \Longrightarrow\left|\xi_{i}^{(m)}-\xi_{i}^{(n)}\right|<\epsilon
$$

so that $\left(\xi_{i}^{(m)}\right)_{m}$ is a numerical Cauchy sequence, with limit ξ_{i}. Define $x:=\left(\xi_{i}\right)$. We show $x \in c_{0}$. First, let $m \rightarrow \infty$, to deduce that for each particular i

$$
\begin{equation*}
n \geq N(\epsilon) \Longrightarrow\left|\xi_{i}-\xi_{i}^{(n)}\right| \leq \epsilon \tag{1}
\end{equation*}
$$

For any $\epsilon>0$, take $k:=N\left(\frac{1}{2} \epsilon\right)$. Then, as $x^{(k)} \in c_{0}$, there exists M (depending on k and on ϵ, and so on ϵ) such that $i \geq M \Longrightarrow\left|\xi_{i}^{(k)}\right|<\frac{1}{2} \epsilon$. Hence, if $i \geq M$, (8) yields

$$
\left|\xi_{i}\right| \leq\left|\xi_{i}^{(k)}\right|+\left|\xi_{i}-\xi_{i}^{(k)}\right|<\frac{1}{2} \epsilon+\frac{1}{2} \epsilon=\epsilon
$$

This shows that $\xi_{i} \rightarrow 0$ as $i \rightarrow \infty$, so that $x \in c_{0}$. And now (8) shows

$$
n \geq N(\epsilon) \Longrightarrow \sup \left\{\left|\xi_{i}-\xi_{i}^{(n)}\right|: i \in \mathbb{N}\right\} \leq \epsilon,
$$

which means that $x^{(n)} \rightarrow x$ in c_{0} as $n \rightarrow \infty$.
2. Let $\left\|\left\|\|_{0} \text { denote the norm in } c_{0} \text { and }\right\|\right\|_{1}$ the norm in l^{1}. If $\left(\xi_{n}\right) \in c_{0}$, then, for each specific index $k,\left|\xi_{k}\right| \leq\left\|\left(\xi_{n}\right)\right\|_{0}:=\sup \left|\xi_{n}\right|$. Thus, $\sum\left|\xi_{n} \eta_{n}\right|$ converges by comparison with $\sum\left|\eta_{n}\right|$, so that $\phi\left(\left(\xi_{n}\right)\right)$ makes sense. It is clearly a linear functional on c_{0}. Moreover,

$$
\begin{equation*}
\left|\sum \xi_{n} \eta_{n}\right| \leq \sum\left|\xi_{n} \eta_{n}\right| \leq \sum\left\|\left(\xi_{n}\right)\right\|_{0}\left|\eta_{n}\right|=\left\|\left(\xi_{n}\right)\right\|_{0}\left\|\left(\eta_{n}\right)\right\|_{1} \tag{2}
\end{equation*}
$$

for any $\left(\xi_{n}\right) \in c_{0}$ and $\left(\eta_{n}\right) \in l^{1}$. This shows that ϕ is a bounded linear functional on c_{0}, and that its norm in c_{0}^{\prime} does not exceed $\left\|\left(\eta_{n}\right)\right\|_{1}$. Let us define $\Psi: l^{1} \longrightarrow c_{0}^{\prime}$ by the formula (2). We have just shown that Ψ is defined, and that $\left\|\Psi\left(\left(\eta_{n}\right)\right)\right\|_{0}^{\prime} \leq\left\|\left(\eta_{n}\right)\right\|_{1}$ for any $\left(\eta_{n}\right) \in l^{1}$, where $\left\|\|_{0}^{\prime}\right.$ denotes the dual norm in c_{0}^{\prime}. It is obvious that Ψ is a linear map $l^{1} \longrightarrow c_{0}^{\prime}$. What we have to show is that it is isometric and surjective.

Suppose that $\psi \in c_{0}^{\prime}$. Define $e_{n} \in c_{0}$ to be the sequence whose terms are all zero except for the $n \mathrm{th}$, which is 1 , and let $\eta_{n}:=\psi\left(e_{n}\right)$ for each n. If $\eta_{n} \neq 0$, let $\theta_{n}:=\bar{\eta}_{n} /\left|\eta_{n}\right|$; otherwise, let $\theta_{n}:=1$. Define $t_{N}:=\sum_{n=1}^{N} \theta_{n} e_{n} \in c_{0}$, that is, the sequence whose terms are θ_{n} for $1 \leq n \leq N$ and 0 thereafter.Then $\left\|t_{N}\right\|_{0}=1$ for every $N \in \mathbb{N}$, and

$$
\sum_{n=1}^{N}\left|\eta_{n}\right|=\sum_{n=1}^{N} \theta_{n} \eta_{n}=\sum_{n=1}^{N} \theta_{n} \psi\left(e_{n}\right)=\psi\left(t_{N}\right)
$$

which is, therefore, real and non-negative; however, as ψ is a bounded linear functional,

$$
\psi\left(t_{N}\right)=\left|\psi\left(t_{N}\right)\right| \leq\|\psi\|_{0}^{\prime}\left\|t_{N}\right\|_{0}=\|\psi\|_{0}^{\prime}
$$

for all n. Thus, $\sum_{n=1}^{N}\left|\eta_{n}\right| \leq\|\psi\|_{0}^{\prime}$ for all N. It follows that $\sum_{n=1}^{\infty}\left|\eta_{n}\right|$ converges, so that $\left(\eta_{n}\right) \in l^{1}$, and $\left\|\left(\eta_{n}\right)\right\|_{1} \leq\|\psi\|_{0}$. I claim that $\phi:=\Psi\left(\left(\eta_{n}\right)\right)=\psi$.

Suppose $x:=\left(\xi_{n}\right) \in c_{0}$. For $N \in \mathbb{N}$, let $x_{N}:=\sum_{n=1}^{N} \xi_{n} e_{n}$. Then

$$
\left\|x-x_{N}\right\|_{0}=\sup \left\{\left|\xi_{n}\right|: n>N\right\} \rightarrow 0
$$

as $N \rightarrow \infty$, by the definition of c_{0}. Thus $x_{N} \rightarrow x$ as $N \rightarrow \infty$. But

$$
\phi\left(x_{N}\right)=\sum_{n=1}^{N} \xi_{n} \eta_{n}=\sum_{n=1}^{N} \xi_{n} \psi\left(e_{n}\right)=\psi\left(\sum_{n=1}^{N} \xi_{n} e_{n}\right)=\psi\left(x_{N}\right)
$$

for each N, and both ψ (by hypothesis) and ϕ (by (b)) are continuous; hence

$$
\phi(x)=\lim _{N \rightarrow \infty} \phi\left(x_{N}\right)=\lim _{N \rightarrow \infty} \psi\left(x_{N}\right)=\psi(x) .
$$

This proves that Ψ is surjective, since ψ is the image under Ψ of $\left(\eta_{n}\right)$. We saw at the end of the last paragraph that $\left\|\left(\eta_{n}\right)\right\|_{1} \leq\|\psi\|_{0}$, and at the end of the first paragraph that $\|\phi\|_{0}^{\prime} \leq\left\|\left(\eta_{n}\right)\right\|_{1}$. It follows that Ψ is, in fact, an isometry. This implies that it is one-to-one, and, as it is surjective, it is an isometric isomorphism.
3. Take $\eta_{n}:=2^{-n}$. Then $\left(\eta_{n}\right) \in l^{1}$ and $\left\|\left(\eta_{n}\right)\right\|_{1}=1$. But then, for any non-zero $x:=\left(\xi_{n}\right) \in c_{0}, \quad\left|\sum_{n=1}^{\infty} \xi_{n} \eta_{n}\right| \leq \sum 2^{-n}\left|\xi_{n}\right|$, and this must be less than $\|x\|_{0}=\sup \left|\xi_{n}\right| ;$ indeed, the only way it could equal $\|x\|_{0}$ would be if $\left|\xi_{n}\right|=\|x\|_{0}$ for all n, which is impossible because $\left|\xi_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. [All that is required is that infinitely many terms of $\left(\eta_{n}\right)$ should be non-zero. The question is, in effect, whether the dual norm in c_{0}^{\prime} is "attained" on the unit sphere in c_{0}, and our conclusion is that the linear functionals which attain their norm on the sphere are those which vanish on all but finitely many $e_{n} .13 .2$ says, by contrast, that any vector in a normed space E attains its norm on the unit sphere in E^{\prime}.]
4. If $x:=\left(\xi_{n}\right) \in l^{1}$ and $\phi:=\left(\eta_{n}\right) \in l^{\infty}$, the sum $\sum_{n=1}^{\infty} \xi_{n} \eta_{n}$ converges absolutely by comparison with $\sum\left|\xi_{n}\right| \sup \left|\eta_{n}\right|$, and $\left|\sum \xi_{n} \eta_{n}\right| \leq \sum\left|\xi_{n}\right| \sup \left|\eta_{n}\right|=\|\phi\|_{\infty}\|x\|_{1}$, where $\left\|\|_{\infty}\right.$ denotes the norm in l^{∞}. So (2) defines a bounded linear mapping $\Phi: l^{\infty} \longrightarrow\left(l^{1}\right)^{\prime}$, and its operator-norm $\|\Phi\|$ (with respect to $\left\|\|_{\infty}\right.$ and the dual norm $\| \|_{1}^{\prime}$ in $\left.\left(l^{1}\right)^{\prime}\right)$ does not exceed 1 . This is much as in question 2. Let e_{n} be defined as before, and note that $e_{n} \in l^{1}$.

Suppose that $\psi \in\left(l^{1}\right)^{\prime}$, and as before define $\eta_{n}:=\psi\left(e_{n}\right)$ for each $n, \phi:=\left(\eta_{n}\right)$. For given $x=\left(\xi_{n}\right) \in l^{1}$, and any $N \in \mathbb{N}$, define $x_{N}:=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N}, 0,0,0, \ldots\right)$:

$$
x_{N}=\sum_{n=1}^{N} \xi_{n} e_{n}
$$

Hence, $\left\|x_{N}-x\right\|=\sum_{n=N+1}^{\infty}\left|\xi_{n}\right| \rightarrow 0$ as $N \rightarrow \infty . \psi$ being continuous, $\psi\left(x_{N}\right) \rightarrow \psi(x)$ as $N \rightarrow \infty$. But $\psi\left(x_{N}\right)=\sum_{n=1}^{N} \xi_{n} \eta_{n}$; so, for any $x=\left(\xi_{n}\right) \in l^{1}$,

$$
\begin{equation*}
\sum \xi_{n} \eta_{n} \text { converges } \quad \text { and } \quad \psi(x)=\sum \xi_{n} \eta_{n} \tag{3}
\end{equation*}
$$

Since $\left\|e_{n}\right\|_{1}=1$ in ℓ^{1} for each n, and ψ is a bounded linear functional, $\left|\eta_{n}\right|=\left|\psi\left(e_{n}\right)\right| \leq\|\psi\|_{1}^{\prime}$ for each n. Hence, $\left(\eta_{n}\right) \in l^{\infty}$, and (3) shows that $\Phi\left(\left(\eta_{n}\right)\right)=\psi$, so that Φ is onto $\left(l^{1}\right)^{\prime}$. We have already seen that Φ does not increase norms. It remains to show that, for every $\left(\eta_{n}\right) \in l^{\infty},\left\|\Phi\left(\left(\eta_{n}\right)\right)\right\|_{1}^{\prime} \geq\left\|\left(\eta_{n}\right)\right\|_{\infty}$, which will ensure that Φ is both isometric and one-to-one.

Suppose, then, that $\left(\eta_{n}\right) \neq 0$ in l^{∞}. For any $\epsilon \in(0,1)$, there exists some N such that

$$
(1-\epsilon)\left\|\left(\eta_{n}\right)\right\|_{\infty}<\left|\eta_{N}\right|=\left|\Phi\left(\left(\eta_{n}\right)\right)\left(e_{N}\right)\right|,
$$

and, as $\left\|e_{N}\right\|_{1}=1$, it follows that $\left\|\Phi\left(\left(\eta_{n}\right)\right)\right\|_{1}^{\prime}>(1-\epsilon)\left\|\left(\eta_{n}\right)\right\|_{\infty}$. But, ϵ being arbitrary, one deduces that $\left\|\Phi\left(\left(\eta_{n}\right)\right)\right\|_{1}^{\prime} \geq\left\|\left(\eta_{n}\right)\right\|_{\infty}$, as required.

If c_{0} were reflexive, this would mean that, to every continuous linear functional A on l^{1}, there would be $\left(\alpha_{n}\right) \in c_{0}$ such that, for every $\left(\eta_{n}\right) \in l^{1}, A\left(\left(\eta_{n}\right)\right)=\sum \alpha_{n} \eta_{n}$. But this is false, because, for instance, the linear functional $A\left(\left(\eta_{n}\right)\right):=\sum \eta_{n}$ (corresponding to the sequence $\left.(1,1,1, \ldots) \in l^{\infty} \backslash c_{0}\right)$ is not of this form.
5. If $\phi \in E^{\prime}$, define $R \phi \in F^{\prime} \quad$ by restriction: $(\forall x \in F)(R \phi)(x)=\phi(x)$. (Equivalently, R is the mapping dual to the inclusion $F \longrightarrow E$). Then the kernel K of R consists of all those bounded linear functionals on E that vanish on F (this is called the annihilator of F and may be written as F^{0}), and we have an induced mapping $\widehat{R}: E^{\prime} / F^{0} \longrightarrow F^{\prime}$ defined in the usual way: if $\widehat{\phi} \in E^{\prime} / F^{0}$ is the equivalence class of $\phi \in E^{\prime}$, then $\widehat{R} \widehat{\phi}:=R \phi$, which is the same for all choices of ϕ giving the same equivalence class. The claim is that \widehat{R} is bijective and isometric.

Let $\tau \in E^{\prime} / F^{0}$. Then recall the definition of the quotient norm $\left\|\|^{\wedge}\right.$:

$$
\|\tau\|^{\wedge}:=\inf \left\{\|\phi\|: \phi \in E^{\prime} \& \widehat{\phi}=\tau\right\}
$$

It is obvious that $\|R \phi\| \leq\|\phi\|$ for any $\phi \in E^{\prime}$:

$$
\begin{aligned}
\|R \phi\| & :=\sup \{|\phi(x)|: x \in F \quad \&\|x\| \leq 1\} \\
& \leq \sup \{|\phi(x)|: x \in E \&\|x\| \leq 1\}=\|\phi\| .
\end{aligned}
$$

Consequently, $\|\widehat{R} \hat{\phi}\|=\|R \phi\| \leq\|\phi\|$ for any $\phi \in E^{\prime}$, and taking the infimum over a whole equivalence class yields $\|\widehat{R} \widehat{\phi}\| \leq\|\widehat{\phi}\|^{\wedge}$.

Conversely, suppose that $\psi \in F^{\prime}$. The Hahn-Banach theorem (in the form 13.1) tells us that there exists $\phi \in E^{\prime}$ such that $R \phi=\psi$ and $\|\phi\|=\|\psi\|$. Certainly $\widehat{R} \widehat{\phi}=\psi$; this proves that \widehat{R} is surjective; but also, from above,

$$
\|\phi\|=\|\psi\|=\|R \phi\|=\|\widehat{R} \widehat{\phi}\| \leq\|\widehat{\phi}\|^{\wedge} \leq\|\phi\|
$$

so that all these inequalities are equalities. This shows that \widehat{R} is isometric, and so one-to-one.
Let $\pi: E \longrightarrow E / F: x \mapsto[x]$ be the quotient map, which does not increase norms. Then, for any $\alpha \in(E / F)^{\prime}, \quad \Phi(\alpha):=\alpha \circ \pi \in E^{\prime}$, and $\|\Phi(\alpha)\| \leq\|\alpha\| . \Phi$ is obviously linear (it is the dual map to π).

Given $\epsilon>0$, there exists $\xi \in E / F$ such that $\|\xi\|=1$ and $|\alpha(\xi)|>\|\alpha\|-\epsilon$. But also, there exists $x \in E$ such that $[x]=\xi$ and $\|x\|<1+\epsilon$. Hence,

$$
|\Phi(\alpha)(x)|=|\alpha(\xi)|>\|\alpha\|-\epsilon
$$

and $\|\Phi(\alpha)\| \geq \frac{\|\alpha\|-\epsilon}{1+\epsilon}$. As ϵ is arbitrary, this shows that $\|\Phi(\alpha)\| \geq\|\alpha\|$. This completes the proof that Φ is isometric; so it is an isometric isomorphism of $(E / F)^{\prime}$ with a closed subspace of E^{\prime}. (The subspace in question is easily seen to be F^{0}.)

Finally, suppose that E is reflexive. Then F^{\prime} is identified with E^{\prime} / F^{0}, and $\left(E^{\prime} / F^{0}\right)^{\prime}$ is identified with a subspace of $E^{\prime \prime}$, which is identified with the subspace F^{00} consisting of all elements of E that are carried into 0 by all elements of E^{\prime} that vanish on F. However, the Hahn-Banach theorem tells us (why?) that $F^{00}=F$. So in fact $F^{\prime \prime}$ is identified with F itself, and F is reflexive. [This is a rather abbreviated argument. I should really chase the identifications to show that they make the bidual map correspond to the identity of F; but this is pretty obvious in principle, even if writing it down precisely is tedious.]
6. Let $\|\|$ be the norm in E. Define a norm $\| \|_{\oplus}$ on $F \oplus F_{1}$ by

$$
\|(x, y)\|_{\oplus}:=\|x\|+\|y\| .
$$

This makes $F \oplus F_{1}$ into a Banach space (an easy exercise, which I omit). But the mapping $S: F \oplus F_{1} \longrightarrow E:(x, y) \mapsto x+y$ is a linear isomorphism (a familiar fact from algebra), and $\|S(x, y)\| \leq\|(x, y)\|_{\oplus}=\|x\|+\|y\|$. Thus S is a continuous surjection between Banach spaces, and, by the open mapping theorem, it is open; so it has a continuous inverse. [There are many possible choices for the norm on $F \oplus F_{1}$. The one I used, which might be called the l^{1} norm, makes the argument very simple.]
7. Suppose that F is closed and complemented, with the closed "complement" F_{1}, so that $F \oplus F_{1} \longrightarrow E:\left(f, f_{1}\right) \mapsto f+f_{1}$ is a continuous isomorphism Q with continuous inverse Q^{-1} (see the last question). Evidently $\left(f, f_{1}\right) \mapsto f$ is a continuous linear mapping π of $F \oplus F_{1}$ onto F. Let $T:=i \circ \pi \circ Q^{-1}$, where $i: F \longrightarrow E$ is the inclusion mapping.
T is certainly a bounded linear map, and $T(E)=F$. And, given $f \in F$,

$$
T f=i \circ \pi \circ Q^{-1} f=i \circ \pi(f, 0)=i(f)=f
$$

so that, for any $x \in E, T^{2} x=T(T x)=T x$. Thus $T^{2}=T$.
Conversely, suppose that T is a bounded linear idempotent mapping $E \longrightarrow E$, such that $T(E)=F$. Define $F_{1}:=\operatorname{ker} T=T^{-1}\{0\}$. Certainly F_{1} is a closed linear subspace of E. Suppose $x \in F \cap F_{1}$; then, as $x \in F=T(E)$, there is some $y \in E$ such that $x=T y$, and $T x=T^{2} y=T y=x$. But, as $x \in F_{1}=\operatorname{ker} T, T x=0$. So $x=0$. Hence, $F \cap F_{1}=\{0\}$. Now, take any $u \in E$. Then $u=u-T u+T u$, and here

$$
T(u-T u)=T u-T^{2} u=0
$$

as $T^{2}=T$; thus, $u-T u \in F_{1}$; whilst $T u \in F$. Therefore, $F+F_{1}=E$. Finally, suppose $y_{n}=T x_{n} \in F$ and $y_{n} \rightarrow y$. Then $T y_{n} \rightarrow T y$, as T is continuous; however, $T y_{n}=T^{2} x_{n}=T x_{n}=y_{n}$ for each n, and so $y_{n} \rightarrow T y$ too. Hence $y=T y \in F$. This proves that F must be closed in E. (Notice that $F=T(E)=\operatorname{ker}(I-T)$, whilst $\left.F_{1}=\operatorname{ker} T=(I-T)(E).\right)$
8. If E is a reflexive normed space, then so is E^{\prime}. Indeed, let \langle,$\rangle denote the dual$ pairing of E with $E^{\prime},\langle,\rangle^{\prime}$ the pairing of E^{\prime} with $E^{\prime \prime}$, and $\langle,\rangle^{\prime \prime}$ the pairing of $E^{\prime \prime}$ with
$E^{\prime \prime \prime}$; and let $J_{1}: E^{\prime} \longrightarrow E^{\prime \prime \prime}$ be the bidual mapping. For $x \in E, \phi \in E^{\prime}$,

$$
\begin{equation*}
\langle x, \phi\rangle=\langle\phi, J x\rangle^{\prime}=\left\langle J x, J_{1} \phi\right\rangle^{\prime \prime} . \tag{4}
\end{equation*}
$$

If J is onto (and so an isometric isomorphism), then, for any $X \in E^{\prime \prime}$,

$$
\left\langle J^{-1} X, \phi\right\rangle=\langle\phi, X\rangle^{\prime}=\left\langle X, J_{1} \phi\right\rangle^{\prime \prime}
$$

from which $J_{1}=\left(J^{-1}\right)^{\prime}$ (the so-called contragredient of J). But this shows J_{1} is also an isomorphism, with inverse $J^{\prime}: E^{\prime \prime \prime} \longrightarrow E^{\prime}$.

If, then, l^{1} is reflexive, so is l^{∞} (as the dual of l^{1}; see question 4). But then c_{0} (as a closed subspace of l^{∞}) is also reflexive (see question 5), and it is not (question 4). So neither l^{1} nor l^{∞} can be reflexive.
9. From (4), $\langle x, \phi\rangle=\left\langle x, J^{\prime} J_{1} \phi\right\rangle$ for any $x \in E$ and $\phi \in E^{\prime}$. Consequently $J^{\prime} J_{1}$ is the identity on E^{\prime}. This ensures that $J^{\prime}\left(E^{\prime \prime \prime}\right)=E^{\prime}$, and that $J_{1} J^{\prime}: E^{\prime \prime \prime} \longrightarrow E^{\prime \prime \prime}$ is an (isometric) idempotent:

$$
\left(J_{1} J^{\prime}\right)\left(J_{1} J^{\prime}\right)=J_{1}\left(J^{\prime} J_{1}\right) J^{\prime}=J_{1} I_{E^{\prime}} J^{\prime}=J_{1} J^{\prime}
$$

where $J_{1} J^{\prime}\left(E^{\prime \prime \prime}\right)=J_{1}\left(E^{\prime}\right)$. By question $7, J_{1}\left(E^{\prime}\right)$ is complemented in $E^{\prime \prime \prime}$. [The complement is the kernel of $J_{1} J^{\prime}$, which, as J_{1} is injective, is the kernel of J^{\prime}.]
10. This is almost a copy of question 2 , with some small additional complications.

