Math 442

Exercise set 2, 2008 — sketch solutions

1. (@ cl(f(A4)) isclosedin, .Thus, by2.531( (£(A))) isclosedin But
FHE(f(A) 2 FH(f(A) 2 A,
and so, by the definition 2.3f ' ( (¢i(4))) 2> d ,andgé (Al C (f¢K1)) . 2]

(b) LetU be open in); . Theg }(U) is open i, (becagse corginuous),
and in turn f~'(g7*(U)) is open i)y . Butf (g7 (U)) = (go f)"'(U) . The result
follows. [The facts about inverse images that lenagsumed should be checked. Plausible
statements about them are not necessarily true.irfstance, f(f1(A)) is “usually” a
proper subset ol , and~'(f(B)) is “usually” a proper ssgeofB .] [1]

2. Suppose that# is an open coverdof . For edick &/ heretis a subclass &
B[U], such thatU = Upcpp B - DefineW = Uy, BUI CB . TheM C Uy B,
and, by our assumption, there is a finite subclass )V such thatA C (J;., B .

For each Be€ X CW ,choose somelU €Y  such thd@ € B[U] (and, therefore,
C C U). These sets form a finite subclags of . It hasmore elements thaw’ , and
possibly fewer, since the sarbe  may possibly bsamdor more than onB . (By the way,
since X’ is finite, the Axiom of Choice is not neededow A C |J,.,U .V is a finite
subcovering ot/ . This shows that is compact. [3]

3. Clearly the condition must be satisfie¢fif @tinuous. So suppose that!(B) is
open for everyB € B . LeU' be any open subsebof ; there is a subclass & , which
in the previous exercise | calle8{U] , such that= Jp g B nrhe

fﬁl(U) - f71 (UBEB[U] B> - UBEB[U] fﬁl(B) )

But this is (by hypothesis) a union of open sefQ,iiso is itself open, as required. [3]
4. This is a weaker version of question 8 of setnt] should not be here.

5. (@ As E, is a finite union of closed subintervals [0, 1], it is closed (and
compact). Thus(, 2, E, is compact, being closed (as a@rsiettion of closed sets) and
bounded iR . [But | have not yet shown th&t# () ] [1]

(b) The length of £y is 1;E; consists of two disjoinbs#d intervals, each of
length 1 , separated by a gap (an open intervalpodgth  ; and, by inductionf, s the
union of 2" closed intervals, each of length” , seeardy gaps of length at least
37" (each of them will have a gap of exactly this léngt one end, and of greater length at
the other end, unless that endis 1or ).

As F is closed, it is nowhere dense if (and onhjtif)fas empty interior. Suppose, then,
that « € in(E) ; then there is an open bait — 6,z + ) includedtinfor,some 6 > 0 .
However, the length of each of the closed interttzds make upF,, 8™ . Henceyf isso



large that 37" < 26 , the intervalz — 6,2+ ¢) must contain points ot E, , and,
therefore, not i . The interior & must be empty. [2]
(c) The easiest way to do this is to couple it With though there are other proofs.

Any point of [0, 1] has a ternary expansion, in which ‘ttligits” are 0, 1,2 . Most points
have only one ternary expansion; however, thosebeusinthat have a terminating expansion
(all “digits” are 0 after some point) also have anfierminating expansion (in which all
“digits” after some point ar@ ). The removal of ttreiddle third” from E;, means the
removal of all points whose ternary expansiouost aon 1 in the first place (thus
0-1000... isnot removed, since it is the same®s0222... ). Indugtjvél, consists of
those points that have some ternary expansionmwath in the firstn places, and, therefore,
E'is the set of points with ternary expansions esgilde by) s and s only.

Given such a number i ,let, have the same eigaiisy0s and s) a8 except
for then th place, which is changed2o if iDis r foand vice versa. Then, clearly,, € £
and z,, — z (indeed,|z, — x| =2.3"" ). The sequencte,) clearly has no tep€hais
proves(c) .

As for (d), the customary proof of uncountability ff, 1] can obviously be modified to
work in this case. [In fact, one can maponto [0, 1] dy , whe(z) is the number
obtained by changing ever¥ in the ternary expangwithout 1s) ofx into al and
interpreting the result as a binary expansion. @kistence of this surjection forcés  to be
uncountable. More startlingly;  is continuous. &t ipossible for a continuous mapping to
transform a nowhere dense set into an interval.] [2,2]

6. LetA denote the diagonal mapping.

By definition, the product open sets constituteaaebfor the product topology. By qu. 3,
then, it will suffice to show that, il is a produmpen set inQ2 x Q , thelh~!(A) is open
inQ.SoletA=U xV ,wheré¢/ and areoperfin . But

AN A)={zeQ:(z,2) eUxV}={2€cQ:2cU & z€V}=UNV,
which, as the intersection of open sets, is al@mophis is what is required. [3]

7. Our examples will be forQ:=1[0,1] , with the usual tomplo Firstly, let, for
neNand0<t<1,

0 when0<t<1-1,
fa@®) =< 2n(t—1+3) whenl-1l<t<1-5,
1
2n(1 —1t) whenl— - <t<1.
Then f,(t) -0 for every te[0,1] , but the convergence is not uniforas
fa(1—4) =1 for everyn . However, the convergence is not mamicto [1]

Equally, if g,(t) =0 whent=0 andwhef <t<1 g,(t)=1 wheh<t<< |
then ¢, (t) decreases monotonicallyto for each , baitcimvergence is not uniform, as
gn(3:) =1 for alln. In this case the functions,  are discomtius. [1]

Finally, let h,(t)=t" . If0<t<1,t" |0 asn—oo .Fort=1 ,1"=1 for all
n. Thus the sequence does tend monotonically toid, Ibut the limit is discontinuous; and
the convergence is non-uniform, because, no matter largen may be, there is some
t <1 such thatt" > 5 . [1]

8. As suggested, define(u) == J(a +u?) , where is a fixed nunied, 1] . If
0<wu<1,then ¢(u) <1 too. If, in addition]l —a < (1 —u)? ,them >2u—u> and



¢(u) > 5(2u — u® + u?) = u. But this means; (a + u2) >u >0 |, so that, squaring,

Ha+u?)?> and
l—-a—u'+3i(a+u?)?>1—a, or
(1-3(a+u?))?>1—a; thatis,
)

(1-9¢w)*>1-a.

Consider the sequenceqi(a) =0 , @(a):=9¢(q(a)) ,g(a)=9(gla)) ...
Gn+1(a) == ¢(qn(a)),.... These are all polynomials in , and the argumabtsve show that
q(a) < qpla) << qula) <+ and (1 —q(a))?>->(1-q(a)?>->1—a.
As 0 < q,(a) <1 foralln, the bounded increasing sequefgga)) ahamit ¢(a), and
0<gq(a) < 1. Then g,(a) — q(a) andp(g.(a)) — ¢(q(a)) , so that(q(a)) = q(a)
s(a+4q(a)’) = q(a), or

1—-2q(a)+q(a)*=1—a, 1-q(a)=+v1—a.

Now, for each xz € [0,1] , letp,(x):=1—¢,(1 —z) . This is a polynomial in ; it
decreases monotonicallyas increases, and itsiﬁrrqj/E (takea :=1—x to see this).[3]

9. The function(z — ¢)® separates points[6f1] . Thus thiecegljugate algebra of
polynomials in (x —¢)® (of the formag + a;(z — ¢)® + aa(x — )0 + -+ + ag(x — ¢)?F,
for k€ N and coefficientsag,a1,...,a; ) also separates points, aodtains all the
constant functions. By the Stone-Weierstrass tlmepreany continuous function
f:[0,1] — C may be uniformly approximated by such polynomittiss clear that their

first and second derivatives vanishcat . [3]

10. The classA of all polynomials whose terms dreven degree greater thadn is a
subalgebra ofC'([0,1];C) . It separates the points|@f1] ,78s es.d8o the Stone-
Weierstrass theorem applies. [3]

11. LetA\,peR andf,g € C . By hypothesis, there exist numBémsnd L such that
|f(t)] < K and |g(t)| < L forallteR . Therefore|\f(t) + pg(t)| < |ANK + |u|L  for
all t. Similarly, for anye > 0 , there exist;,d, > 0  such that

s — | < 6 = |f(s) — F(B)] < ‘

L+ M+ p|+K+L°
€

L+ M+ p|+K+L°

s —t] < & = |g(s) — g(t)| <

Take 6 := min(61,62) , and then

s —t] <& = [(Af 4+ ng)(s) — (\f + pg)(t)|
= |A(f(s) = f(t)) + nlg(s) — g(t))]
< AIf(s) = FOI + |ullg(s) — g(t)]
Ale . e
1+ M+ |p+K+L 1+ N+ |p+K+L

IN

< €.

So Af + pg is also bounded and uniformly continuous.



Similarly,

f)g(t)| < KL forallt, and

s —t] <6 = [f(s)g(s) = FO)g(t)] < [f(s)llg(s) — g(t)| + 1) f(s) — f(t)]
< Klg(s) —g@)| + L|f(s) — f(2)]
< Ke . Le e
T 1+ N+ +K+L 1+ |N+|pul+K+L ’

so fg is also bounded and uniformly continuous. Herée an algebra of functions é&  .[3]

Finally, we must show that it is a Banach spacé wespect to the supremum norm. Let
(fn) be a Cauchy sequenceGh . Then, for eachR , theeseq(f,,(t)) is Cauchy in
R, and must converge to a limjt(¢t) . Firstly, theresexiM/ € N such that

m,n > M = sup{|fm(t) — fu(t)| : t € R} < 1,

so that, for any ||f..(t) — fu.(t)] <1 whemn,n > M . Thus, taking = M and lgttin
n—oo, |[fult)—f()]<1,and|f(t)| <1+sup{|fu(s):seR} .Itfollows thaf is
necessarily bounded.

Take € > 0 . Then there existd € N such that

m,n > N = sup{|fn(t) — fu(t)| : t € R} < e,

and, as before|fy(t) — f(t)] < 3¢ for all . Ay is uniformly conthus, there exists
§ >0 such that|fx(s) — fx(t)| < 3¢  Wwhenevels —¢| <& .Hencelif—¢/ <6

[£(s) = fO] < |fx(s) = f(s) + [ fn(s) = fn ()] + [fn(t) = F(B)] < ge+ ge+ ge =e.

Thus, the limitf is both bounded and uniformly aoubus, sof € C . Finally,f,, — f in
the norm o' ; | omit this argument, which is almasepetition of that above. [3]

12. The analogue of Stone’s theorem does not hetdA be, for instance, the class of
continuous functionsf : R — R which satisfy the followingrious condition:

there exist a constart[f] such tHate R : f(¢) # B[f]} is compact.

What this means is that, for very large positiveegativet ,f takes the single valgef] it
is “asymptotically constant”.

If fe A, then f — 3[f] is zero except on a compact set; thisuhiformly continuous
and bounded, and sofs . HencéC C . Furthermbre a sibalgebra af' and separates
points. ThatA contains the constant functions igiamks. However, the functiony € C
defined by: q(t) =t for—1<t<1 ,q(t)=-1 ift< -1 ,q(t)=1 ift>1 ,cannot
be uniformly approximated more closely than atatisel by anyf € A . (The difficulty is
that there must be large negative and positiveegadit for which f(¢) = 3 , and cannot
be closerthan te-1 andio simultaneously.) [3]



