Math 442

Exercise set 2, 2008 - sketch solutions

1. (a) $\operatorname{cl}(f(A))$ is closed in Ω_{2}. Thus, by $2.5, f^{-1}(\operatorname{cl}(f(A)))$ is closed in Ω_{1}. But

$$
\begin{equation*}
f^{-1}(\operatorname{cl}(f(A))) \supseteq f^{-1}(f(A)) \supseteq A, \tag{2}
\end{equation*}
$$

and so, by the definition 2.3, $f^{-1}(\operatorname{cl}(f(A))) \supseteq \mathrm{cl} A$, and so $f(\mathrm{cl}(A)) \subseteq \operatorname{cl}(f(A))$.
(b) Let U be open in Ω_{3}. Then $g^{-1}(U)$ is open in Ω_{2} (because g is continuous), and in turn $f^{-1}\left(g^{-1}(U)\right)$ is open in Ω_{1}. But $f^{-1}\left(g^{-1}(U)\right)=(g \circ f)^{-1}(U)$. The result follows. [The facts about inverse images that I have assumed should be checked. Plausible statements about them are not necessarily true. For instance, $f\left(f^{-1}(A)\right)$ is "usually" a proper subset of A, and $f^{-1}(f(B))$ is "usually" a proper superset of B.]
2. Suppose that \mathcal{U} is an open cover of A. For each $U \in \mathcal{U}$, there is a subclass of \mathcal{B}, $\mathcal{B}[U]$, such that $U=\bigcup_{B \in \mathcal{B}[U]} B$. Define $\mathcal{W}:=\bigcup_{U \in \mathcal{U}} \mathcal{B}[U] \subseteq \mathcal{B}$. Then $A \subseteq \bigcup_{C \in \mathcal{W}} B$, and, by our assumption, there is a finite subclass \mathcal{X} of \mathcal{W} such that $A \subseteq \bigcup_{B \in \mathcal{X}} B$.

For each $B \in \mathcal{X} \subseteq \mathcal{W}$, choose some $U \in \mathcal{U}$ such that $B \in \mathcal{B}[U]$ (and, therefore, $C \subseteq U$). These sets form a finite subclass \mathcal{V} of \mathcal{U}. It has no more elements than \mathcal{X}, and possibly fewer, since the same U may possibly be chosen for more than one B. (By the way, since \mathcal{X} is finite, the Axiom of Choice is not needed.) Now $A \subseteq \bigcup_{U \in \mathcal{V}} U . \mathcal{V}$ is a finite subcovering of \mathcal{U}. This shows that A is compact.
3. Clearly the condition must be satisfied if f is continuous. So suppose that $f^{-1}(B)$ is open for every $B \in \mathcal{B}$. Let U be any open subset of Ψ; then there is a subclass of \mathcal{B}, which in the previous exercise I called $\mathcal{B}[U]$, such that $U=\bigcup_{B \in \mathcal{B}[U]} B$. Then

$$
\begin{equation*}
f^{-1}(U)=f^{-1}\left(\bigcup_{B \in \mathcal{B}[U]} B\right)=\bigcup_{B \in \mathcal{B}[U]} f^{-1}(B) \tag{3}
\end{equation*}
$$

But this is (by hypothesis) a union of open sets in Ω, so is itself open, as required.
4. This is a weaker version of question 8 of set 1 , and should not be here.
5. (a) As E_{n} is a finite union of closed subintervals of $[0,1]$, it is closed (and compact). Thus $\bigcap_{n=0}^{\infty} E_{n}$ is compact, being closed (as an intersection of closed sets) and bounded in \mathbb{R}. [But I have not yet shown that $E \neq \emptyset$.]
(b) The length of E_{0} is $1 ; E_{1}$ consists of two disjoint closed intervals, each of length $\frac{1}{3}$, separated by a gap (an open interval) of length $\frac{1}{3}$; and, by induction, E_{n} is the union of 2^{n} closed intervals, each of length 3^{-n}, separated by gaps of length at least 3^{-n} (each of them will have a gap of exactly this length at one end, and of greater length at the other end, unless that end is 0 or 1).

As E is closed, it is nowhere dense if (and only if) it has empty interior. Suppose, then, that $x \in \operatorname{int}(E)$; then there is an open ball $(x-\delta, x+\delta)$ included in E, for some $\delta>0$. However, the length of each of the closed intervals that make up E_{n} is 3^{-n}. Hence, if n is so
large that $3^{-n}<2 \delta$, the interval $(x-\delta, x+\delta)$ must contain points not in E_{n}, and, therefore, not in E. The interior of E must be empty.
(c) The easiest way to do this is to couple it with (d), though there are other proofs.

Any point of $[0,1]$ has a ternary expansion, in which the "digits" are $0,1,2$. Most points have only one ternary expansion; however, those numbers that have a terminating expansion (all "digits" are 0 after some point) also have a non-terminating expansion (in which all "digits" after some point are 2). The removal of the "middle third" from E_{0} means the removal of all points whose ternary expansion must contain a 1 in the first place (thus $0 \cdot 1000 \ldots$ is not removed, since it is the same as $0 \cdot 0222 \ldots$). Inductively, E_{n} consists of those points that have some ternary expansion with no 1 in the first n places, and, therefore, E is the set of points with ternary expansions expressible by 0 s and 2 s only.

Given such a number x in E, let x_{n} have the same expansion (by 0 s and 2 s) as x except for the nth place, which is changed to 2 if it is 0 for x and vice versa. Then, clearly, $x_{n} \in E$, and $x_{n} \rightarrow x$ (indeed, $\left|x_{n}-x\right|=2.3^{-n}$). The sequence $\left(x_{n}\right)$ clearly has no repeats. This proves (c).

As for (d), the customary proof of uncountability of $[0,1]$ can obviously be modified to work in this case. [In fact, one can map E onto [0,1] by ϕ, where $\phi(x)$ is the number obtained by changing every 2 in the ternary expansion (without 1 s) of x into a 1 and interpreting the result as a binary expansion. The existence of this surjection forces E to be uncountable. More startlingly, ϕ is continuous. So it is possible for a continuous mapping to transform a nowhere dense set into an interval.]
6. Let Δ denote the diagonal mapping.

By definition, the product open sets constitute a base for the product topology. By qu. 3, then, it will suffice to show that, if A is a product open set in $\Omega \times \Omega$, then $\Delta^{-1}(A)$ is open in Ω. So let $A=U \times V$, where U and V are open in Ω. But

$$
\begin{equation*}
\Delta^{-1}(A)=\{x \in \Omega:(x, x) \in U \times V\}=\{x \in \Omega: x \in U \& x \in V\}=U \cap V, \tag{3}
\end{equation*}
$$

which, as the intersection of open sets, is also open. This is what is required.
7. Our examples will be for $\Omega:=[0,1]$, with the usual topology. Firstly, let, for $n \in \mathbb{N}$ and $0 \leq t \leq 1$,

$$
f_{n}(t):= \begin{cases}0 & \text { when } 0 \leq t \leq 1-\frac{1}{n} \\ 2 n\left(t-1+\frac{1}{n}\right) & \text { when } 1-\frac{1}{n}<t \leq 1-\frac{1}{2 n} \\ 2 n(1-t) & \text { when } 1-\frac{1}{2 n}<t \leq 1\end{cases}
$$

Then $f_{n}(t) \rightarrow 0$ for every $t \in[0,1]$, but the convergence is not uniform, as $f_{n}\left(1-\frac{1}{2 n}\right)=1$ for every n. However, the convergence is not monotonic.

Equally, if $g_{n}(t)=0$ when $t=0$ and when $\frac{1}{n} \leq t \leq 1, g_{n}(t)=1$ when $0<t<\frac{1}{n}$, then $g_{n}(t)$ decreases monotonically to 0 for each t, but the convergence is not uniform, as $g_{n}\left(\frac{1}{2 n}\right)=1$ for all n. In this case the functions g_{n} are discontinuous.

Finally, let $h_{n}(t)=t^{n}$. If $0 \leq t<1, t^{n} \downarrow 0$ as $n \rightarrow \infty$. For $t=1,1^{n}=1$ for all n. Thus the sequence does tend monotonically to a limit, but the limit is discontinuous; and the convergence is non-uniform, because, no matter how large n may be, there is some $t<1$ such that $t^{n}>\frac{1}{2}$.
8. As suggested, define $\phi(u):=\frac{1}{2}\left(a+u^{2}\right)$, where a is a fixed number in $[0,1]$. If $0 \leq u<1$, then $\phi(u)<1$ too. If, in addition, $1-a<(1-u)^{2}$, then $a>2 u-u^{2}$ and
$\phi(u)>\frac{1}{2}\left(2 u-u^{2}+u^{2}\right)=u$. But this means $\frac{1}{2}\left(a+u^{2}\right)>u \geq 0$, so that, squaring,

$$
\begin{array}{rlrl}
\frac{1}{4}\left(a+u^{2}\right)^{2} & >u^{2} & \text { and } \\
1-a-u^{2}+\frac{1}{4}\left(a+u^{2}\right)^{2}>1-a, & \text { or } \\
\left(1-\frac{1}{2}\left(a+u^{2}\right)\right)^{2}>1-a ; & \text { that is, } \\
(1-\phi(u))^{2}>1-a . &
\end{array}
$$

Consider the sequence $q_{1}(a):=0, \quad q_{2}(a):=\phi\left(q_{1}(a)\right), \quad q_{3}(a):=\phi\left(q_{2}(a)\right), \ldots$, $q_{n+1}(a):=\phi\left(q_{n}(a)\right), \ldots$. These are all polynomials in a, and the arguments above show that $q_{1}(a)<q_{2}(a)<\cdots<q_{n}(a)<\cdots$ and $\left(1-q_{1}(a)\right)^{2}>\cdots>\left(1-q_{n}(a)\right)^{2}>\cdots>1-a$. As $0 \leq q_{n}(a)<1$ for all n, the bounded increasing sequence $\left(q_{n}(a)\right)$ has a limit $q(a)$, and $0 \leq q(a) \leq 1$. Then $q_{n}(a) \rightarrow q(a)$ and $\phi\left(q_{n}(a)\right) \rightarrow \phi(q(a))$, so that $\phi(q(a))=q(a)$, $\frac{1}{2}\left(a+q(a)^{2}\right)=q(a)$, or

$$
1-2 q(a)+q(a)^{2}=1-a, \quad 1-q(a)=\sqrt{1-a}
$$

Now, for each $x \in[0,1]$, let $p_{n}(x):=1-q_{n}(1-x)$. This is a polynomial in x; it decreases monotonically as n increases, and its limit is \sqrt{x} (take $a:=1-x$ to see this). [3]
9. The function $(x-c)^{3}$ separates points of $[0,1]$. Thus the self-conjugate algebra of polynomials in $(x-c)^{3}$ (of the form $a_{0}+a_{1}(x-c)^{3}+a_{2}(x-c)^{6}+\cdots+a_{k}(x-c)^{3 k}$, for $k \in \mathbb{N}$ and coefficients $a_{0}, a_{1}, \ldots, a_{k}$) also separates points, and contains all the constant functions. By the Stone-Weierstrass theorem, any continuous function $f:[0,1] \longrightarrow \mathbb{C}$ may be uniformly approximated by such polynomials. It is clear that their first and second derivatives vanish at c.
10. The class A of all polynomials whose terms are of even degree greater than 5 is a subalgebra of $C([0,1] ; \mathbb{C})$. It separates the points of $[0,1]$, as x^{6} does. So the StoneWeierstrass theorem applies.
11. Let $\lambda, \mu \in \mathbb{R}$ and $f, g \in C$. By hypothesis, there exist numbers K and L such that $|f(t)| \leq K$ and $|g(t)| \leq L$ for all $t \in \mathbb{R}$. Therefore, $|\lambda f(t)+\mu g(t)| \leq|\lambda| K+|\mu| L$ for all t. Similarly, for any $\epsilon>0$, there exist $\delta_{1}, \delta_{2}>0$ such that

$$
\begin{aligned}
& |s-t|<\delta_{1} \Longrightarrow|f(s)-f(t)|<\frac{\epsilon}{1+|\lambda|+|\mu|+K+L}, \\
& |s-t|<\delta_{2} \Longrightarrow|g(s)-g(t)|<\frac{\epsilon}{1+|\lambda|+|\mu|+K+L} .
\end{aligned}
$$

Take $\delta:=\min \left(\delta_{1}, \delta_{2}\right)$, and then

$$
\begin{aligned}
|s-t|<\delta \Longrightarrow \mid(\lambda f & +\mu g)(s)-(\lambda f+\mu g)(t) \mid \\
& =|\lambda(f(s)-f(t))+\mu(g(s)-g(t))| \\
& \leq|\lambda||f(s)-f(t)|+|\mu||g(s)-g(t)| \\
& \leq \frac{|\lambda| \epsilon}{1+|\lambda|+|\mu|+K+L}+\frac{|\mu| \epsilon}{1+|\lambda|+|\mu|+K+L}<\epsilon .
\end{aligned}
$$

So $\lambda f+\mu g$ is also bounded and uniformly continuous.

Similarly, $|f(t) g(t)| \leq K L$ for all t, and

$$
\begin{aligned}
&|s-t|<\delta \Longrightarrow|f(s) g(s)-f(t) g(t)| \leq|f(s)||g(s)-g(t)|+|g(t)||f(s)-f(t)| \\
& \leq K|g(s)-g(t)|+L|f(s)-f(t)| \\
& \leq \frac{K \epsilon}{1+|\lambda|+|\mu|+K+L}+\frac{L \epsilon}{1+|\lambda|+|\mu|+K+L}<\epsilon
\end{aligned}
$$

so $f g$ is also bounded and uniformly continuous. Hence C is an algebra of functions on \mathbb{R}.[3]
Finally, we must show that it is a Banach space with respect to the supremum norm. Let $\left(f_{n}\right)$ be a Cauchy sequence in C. Then, for each $t \in \mathbb{R}$, the sequence $\left(f_{n}(t)\right)$ is Cauchy in \mathbb{R}, and must converge to a limit $f(t)$. Firstly, there exists $M \in \mathbb{N}$ such that

$$
m, n \geq M \Longrightarrow \sup \left\{\left|f_{m}(t)-f_{n}(t)\right|: t \in \mathbb{R}\right\}<1,
$$

so that, for any $t,\left|f_{m}(t)-f_{n}(t)\right|<1$ when $m, n \geq M$. Thus, taking $m=M$ and letting $n \rightarrow \infty,\left|f_{M}(t)-f(t)\right| \leq 1$, and $|f(t)| \leq 1+\sup \left\{\left|f_{M}(s)\right|: s \in \mathbb{R}\right\}$. It follows that f is necessarily bounded.

Take $\epsilon>0$. Then there exists $N \in \mathbb{N}$ such that

$$
m, n \geq N \Longrightarrow \sup \left\{\left|f_{m}(t)-f_{n}(t)\right|: t \in \mathbb{R}\right\}<\frac{1}{3} \epsilon
$$

and, as before, $\left|f_{N}(t)-f(t)\right| \leq \frac{1}{3} \epsilon$ for all t. As f_{N} is uniformly continuous, there exists $\delta>0$ such that $\left|f_{N}(s)-f_{N}(t)\right|<\frac{1}{3} \epsilon$ whenever $|s-t|<\delta$. Hence, if $|s-t|<\delta$,

$$
|f(s)-f(t)| \leq\left|f_{N}(s)-f(s)\right|+\left|f_{N}(s)-f_{N}(t)\right|+\left|f_{N}(t)-f(t)\right|<\frac{1}{3} \epsilon+\frac{1}{3} \epsilon+\frac{1}{3} \epsilon=\epsilon .
$$

Thus, the limit f is both bounded and uniformly continuous, so $f \in C$. Finally, $f_{n} \rightarrow f$ in the norm on C; I omit this argument, which is almost a repetition of that above.
12. The analogue of Stone's theorem does not hold. Let A be, for instance, the class of continuous functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ which satisfy the following curious condition:
there exists a constant $\beta[f]$ such that $\{t \in \mathbb{R}: f(t) \neq \beta[f]\}$ is compact.
What this means is that, for very large positive or negative t, f takes the single value $\beta[f]$; it is "asymptotically constant".

If $f \in A$, then $f-\beta[f]$ is zero except on a compact set; thus it is uniformly continuous and bounded, and so is f. Hence, $A \subseteq C$. Furthermore, A is a subalgebra of C and separates points. That A contains the constant functions is obvious. However, the function $q \in C$ defined by: $q(t)=t$ for $-1 \leq t \leq 1, q(t)=-1$ if $t \leq-1, q(t)=1$ if $t \geq 1$, cannot be uniformly approximated more closely than at distance 1 by any $f \in A$. (The difficulty is that there must be large negative and positive values of t for which $f(t)=\beta$, and β cannot be closer than 1 to -1 and to 1 simultaneously.)

