Math 442

Exercise set 1, 2008 - sketch solutions

\{Well, they are actually far fuller solutions than I'd ever expect anyone to present.\}

1. Suppose, firstly, that f is metrically continuous at $x \in \Omega_{1}$. The definition (1) of 1.5 may be rephrased as

$$
\begin{equation*}
(\forall \epsilon>0)(\exists \delta>0) \quad y \in B_{\Omega_{1}}(x ; \delta) \Longrightarrow f(y) \in B_{\Omega_{2}}(f(x) ; \epsilon), \tag{1}
\end{equation*}
$$

and this in turn is equivalent to

$$
\begin{equation*}
(\forall \epsilon>0)(\exists \delta>0) \quad f\left(B_{\Omega_{1}}(x ; \delta)\right) \subseteq B_{\Omega_{2}}(f(x) ; \epsilon) \tag{2}
\end{equation*}
$$

We must prove that, for any metrically open set U in Ω_{2} containing $f(x)$, there is a metrically open set V containing x and such that $f(V) \subseteq U$.

So, let U be a metrically open set in Ω_{2} with $f(x) \in U$. By the definition of "metrically open set", there is some $\epsilon>0$ such that $B_{\Omega_{2}}(f(x) ; \epsilon) \subseteq U$. Applying (2), there exists some $\delta>0$ such that $f\left(B_{\Omega_{1}}(x ; \delta)\right) \subseteq B_{\Omega_{2}}(f(x) ; \epsilon)$. Take $V:=B_{\Omega_{1}}(x ; \delta)$; this is a metrically open set in Ω_{1} (there is a remark after 3.6 about this - but see below for a proof), obviously contains x, and

$$
f(V)=f\left(B_{\Omega_{1}}(x ; \delta)\right) \subseteq B_{\Omega_{2}}(f(x) ; \epsilon) \subseteq U
$$

So we have constructed a metrically open set V containing x and satisfying $f(V) \subseteq U$.
On the other hand, suppose that, for any metrically open set U containing $f(x)$, there is a metrically open set V containing x and such that $f(V) \subseteq U$. Let $\epsilon>0$. Then $B_{\Omega_{2}}(f(x) ; \epsilon)$ is a metrically open subset of Ω_{2} that contains $f(x)$ (again, see below), and so, by our assumption, there is a metrically open set V such that $x \in V$ and $f(V) \subseteq B_{\Omega_{2}}(f(x) ; \epsilon)$. However, as V is metrically open and contains x, there is (by the definition of a metrically open set) some $\delta>0$ such that $B_{\Omega_{1}}(x ; \delta) \subseteq V$. And then

$$
f\left(B_{\Omega_{1}}(x ; \delta)\right) \subseteq B_{\Omega_{2}}(f(x) ; \epsilon)
$$

We have, therefore, shown that (1), or equivalently (2), is satisfied.
[To fill in the gap, let me now show that, in any metric space (Ω, d), an open metric ball $B_{\Omega}(x ; r)$ is a metrically open set. Let y be any point of $B_{\Omega}(x ; r)$. That means that $d(x, y)<r$. Take $\delta:=r-d(x, y)>0$. If $z \in B_{\Omega}(y ; \delta)$, then

$$
d(x, z) \leq d(x, y)+d(y, z)<d(x, y)+\delta=d(x, y)+r-d(x, y)=r
$$

and so $z \in B_{\Omega}(x ; r)$. Consequently, $B_{\Omega}(y ; \delta) \subseteq B_{\Omega}(x ; r)$. So any point y of $B_{\Omega}(x ; r)$ is the centre of a metric ball of positive radius included in $B_{\Omega}(x ; r)$, and this is what we means by saying $B_{\Omega}(x ; r)$ is metrically open.]

Now, suppose that f is metrically continuous at each point of Ω_{1}, and let W be a metrically open subset of Ω_{2}. I wish to show that $f^{-1}(W)$ is metrically open in Ω_{1}. For
this, I must show that, for any $x \in f^{-1}(W)$, there is a metric ball of positive radius about x which is included in $f^{-1}(W)$.

Since $x \in f^{-1}(W), f(x) \in W$, and, as W is metrically open, there is some $\epsilon>0$ such that $B_{\Omega_{2}}(f(x) ; \epsilon) \subseteq W$. As f is metrically continuous at x, there is $\delta>0$ such that

$$
f\left(B_{\Omega_{1}}(x ; \delta)\right) \subseteq B_{\Omega_{2}}(f(x) ; \epsilon) \subseteq W
$$

as at (2). Thus $B_{\Omega_{1}}(x ; \delta) \subseteq f^{-1}(W)$. But this is precisely what we wished to show.
On the other hand, suppose that $f^{-1}(W)$ is metrically open in Ω_{1} for every metrically open set W of Ω_{2}. Take any $x \in \Omega_{1}$. If $\epsilon>0, B_{\Omega_{2}}(f(x) ; \epsilon)$ is a metrically open set in Ω_{2}, and so, by our assumption, $f^{-1}\left(B_{\Omega_{2}}(f(x) ; \epsilon)\right)$ is metrically open in Ω_{1}. It certainly contains x, and so there exists some $\delta>0$ such that $B_{\Omega_{1}}(x ; \delta) \subseteq f^{-1}\left(B_{\Omega_{2}}(f(x) ; \epsilon)\right)$. As this argument applies for any $\epsilon>0$, it follows that f is metrically continuous at x.
2. (a) Suppose that f is not uniformly continuous on K. Then

$$
(\exists \epsilon>0)(\forall \delta>0)(\exists x \in K)(\exists y \in \Omega))\left(d_{\Omega}(x, y)<\delta \quad \& \quad d_{\Psi}(f(x), f(y)) \geq \epsilon\right)
$$

(This is the formal negation of the definition of uniform continuity on K.) In particular, for this ϵ, there will be for any natural number n a point $x_{n} \in K$ and a point $y_{n} \in \Omega$ such that

$$
d_{\Omega}\left(x_{n}, y_{n}\right)<\frac{1}{n} \& d_{\Psi}\left(f\left(x_{n}, y_{n}\right) \geq \epsilon\right.
$$

But now, as K is sequentially compact, there is a subsequence $\left(x_{n(k)}\right)_{k=1}^{\infty}$ of $\left(x_{n}\right)$ that converges to a point $x \in K$. Then $y_{n(k)} \rightarrow x$ too, since for each k

$$
d_{\Omega}\left(y_{n(k)}, x\right) \leq d_{\Omega}\left(x_{n(k)}, x\right)+d_{\Omega}\left(x_{n(k)}, y_{n(k)}\right) \rightarrow 0 ;
$$

and, also for each k,

$$
d_{\Omega}\left(x_{n(k)}, y_{n(k)}\right)<\frac{1}{n(k)} \leq \frac{1}{k} \quad \text { and } \quad d_{\Psi}\left(f\left(x_{n(k)}\right), f\left(y_{n(k)}\right)\right) \geq \epsilon
$$

By renumbering $n(k)$ as k, we may as well suppose that for each k

$$
\begin{equation*}
d_{\Omega}\left(x_{k}, y_{k}\right)<\frac{1}{k} \quad \text { and } \quad d_{\Psi}\left(f\left(x_{k}\right), f\left(y_{k}\right)\right) \geq \epsilon \tag{3}
\end{equation*}
$$

However, f is continuous at x, and consequently there is some $\delta>0$ such that, if $z \in \Omega$ and $d_{\Omega}(x, z)<\delta$, then $d_{\Psi}(f(x), f(z))<\frac{1}{2} \epsilon$. For sufficiently large k,

$$
d_{\Omega}\left(x, x_{k}\right)<\delta \quad \& \quad d_{\Omega}\left(x, y_{k}\right)<\delta,
$$

and then $d_{\Psi}\left(f(x), f\left(x_{k}\right)\right)<\frac{1}{2} \epsilon$ and $d_{\Psi}\left(f(x), f\left(y_{k}\right)\right)<\frac{1}{2} \epsilon$; hence, for such large k,

$$
d_{\Psi}\left(f\left(x_{k}\right), f\left(y_{k}\right)\right) \leq d_{\Psi}\left(f(x), f\left(x_{k}\right)\right)+d_{\Psi}\left(f(x), f\left(y_{k}\right)\right)<\frac{1}{2} \epsilon+\frac{1}{2} \epsilon=\epsilon .
$$

This contradicts (3), and so establishes the theorem. [There is a more elegant proof than this, using the definition of compactness, but it is perhaps less easy to invent. As so often, a proof by contradiction allows you to play around aimlessly until a contradiction appears.]
(b) Suppose that \mathcal{F} is not uniformly equicontinuous on K. Then

$$
(\exists \epsilon>0)(\forall \delta>0)(\exists x \in K)(\exists y \in \Omega)\left(d_{\Omega}(x, y)<\delta \quad \&(\exists f \in \mathcal{F})\left(d_{\Psi}(f(x), f(y)) \geq \epsilon\right)\right)
$$

(This is the formal negation of the definition of uniform equicontinuity on K.) In particular, for this ϵ, there will be, for any natural number n, points $x_{n} \in K$ and $y_{n} \in \Omega$ and a function $f_{n} \in \mathcal{F}$ such that

$$
\begin{equation*}
d_{\Omega}\left(x_{n}, y_{n}\right)<\frac{1}{n} \& d_{\Psi}\left(f_{n}\left(x_{n}\right), f_{n}\left(y_{n}\right)\right) \geq \epsilon \tag{4}
\end{equation*}
$$

As in (a) above, we may pass to a subsequence and assume in (4) that $x_{n} \rightarrow x \in K$ and $y_{n} \rightarrow x$. But \mathcal{F} is equicontinuous at x, so the same contradiction with (4) arises. [As in (a), there is also a more elegant proof.]
3. Let $\epsilon>0$. Then (by equicontinuity) there is some $\delta>0$ such that

$$
d_{\Omega}(x, y)<\delta \Longrightarrow(\forall n \in \mathbb{N}) d_{\Psi}\left(f_{n}(x), f_{n}(y)\right)<\epsilon
$$

Letting $n \rightarrow \infty$, so that $f_{n}(x) \rightarrow f(x)$ and $f_{n}(y) \rightarrow f(y)$, we find that

$$
d_{\Omega}(x, y)<\delta \Longrightarrow d_{\Psi}(f(x), f(y)) \leq \epsilon
$$

which shows that f is continuous at x.
4. Let $\epsilon>0$. By hypothesis, there are some $\delta^{\prime}>0$ and some $n \in \mathbb{N}$ such that

$$
d_{\Omega}(a, y)<\delta^{\prime} \& n \geq N \Longrightarrow d_{\Psi}\left(f_{n}(y), f(y)\right)<\frac{1}{3} \epsilon
$$

But also, f_{N} is continuous at a; so there exists $\delta^{\prime \prime}>0$ such that

$$
d_{\Omega}(a, y)<\delta^{\prime \prime} \Longrightarrow d_{\Psi}\left(f_{N}(a), f_{N}(y)\right)<\frac{1}{3} \epsilon
$$

Hence, if $d_{\Omega}(x, y)<\delta:=\min \left(\delta^{\prime}, \delta^{\prime \prime}\right)>0$,

$$
\begin{aligned}
d_{\Psi}(f(x), f(y)) & \leq d_{\Psi}\left(f(x), f_{N}(x)\right)+d_{\Psi}\left(f_{N}(x), f_{N}(y)\right)+d_{\Psi}\left(f_{N}(y), f(y)\right) \\
& <\frac{1}{3} \epsilon+\frac{1}{3} \epsilon+\frac{1}{3} \epsilon=\epsilon
\end{aligned}
$$

This shows that f is continuous at a.
5. Suppose $y(x) \neq 0$; then the equation may be rewritten

$$
\frac{d}{d x}\left(3 y^{1 / 3}\right)=1
$$

Thus, on any interval on which y does not vanish, the solution must be of the form

$$
3 y^{1 / 3}=t-C \quad \text { or } \quad y=\left(\frac{1}{3}(t-C)\right)^{3} .
$$

Suppose that $-\infty \leq C_{1} \leq 0 \leq C_{2} \leq \infty$. Then we can define for $t \in(-\infty, \infty)$

$$
\phi(t)= \begin{cases}\left(\frac{1}{3}\left(t-C_{1}\right)\right)^{3} & \text { when } t \leq C_{1}, \\ 0 & \text { when } C_{1}<t<C_{2} \\ \left(\frac{1}{3}\left(t-C_{2}\right)\right)^{3} & \text { when } C_{2} \leq t\end{cases}
$$

It is easily checked that ϕ is a solution of the differential equation, satisfying the initial condition $\phi(0)=0$. (The derivatives $\phi^{\prime}\left(C_{1}\right)$ and $\phi^{\prime}\left(C_{2}\right)$ both exist and are 0 .) Thus there are infinitely many solutions, given by the various choices of C_{1} and C_{2}.

There is no contradiction of Theorem 2.7, because the function $y^{2 / 3}$ does not satisfy any Lipschitz condition in the neighbourhood of the origin; indeed,

$$
\frac{y^{2 / 3}-0^{2 / 3}}{y-0}=y^{-1 / 3}
$$

tends to ∞ as $y \downarrow 0$ (and to $-\infty$ as $y \uparrow \infty$).
[It is worth pointing out that the method of solution I used amounts to substituting $y=r^{3}$, so that the equation becomes $3 r^{2} d r / d x=r^{2}$, or $d r / d x=\frac{1}{3}$, when $r \neq 0$. But the whole difficulty is in what happens when $r=0$.]
6. For each $a \in A,\{x \in \Omega: f(x)<f(a)+1\}$ is a neighbourhood of a in Ω. Let $U(a)$ be an open set in Ω such that $a \in U(a) \subseteq\{x \in \Omega: f(x)<f(a)+1\}$. Then $\{U(a): a \in A\}$ is an open covering of A. As A is compact, there is a finite subcovering, which we may list as $\left\{U\left(a_{i}\right): 1 \leq i \leq n\right\}$. Take $K:=1+\max _{1 \leq i \leq n} f\left(a_{i}\right)$. Then, if $y \in A$, there is some $i, 1 \leq i \leq n$, such that $y \in U\left(a_{i}\right) \subseteq\left\{x \in \Omega: f(x)<f\left(a_{i}\right)+1\right\}$, and so

$$
f(y)<f\left(a_{i}\right)+1 \leq K .
$$

This proves that $f(A)$ is bounded above.
Suppose, however, that its supremum on $A, \Lambda:=\sup \{f(x): x \in A\}$, is not attained; that is, $f(a)<\Lambda$ for each $a \in A$. Then, for each $b \in A, f(b)<\Lambda$, and

$$
\left\{x \in \Omega: f(x)<f(b)+\frac{1}{2}(\Lambda-f(b))\right\}
$$

is a neighbourhood of b in Ω, and includes an open neighbourhood $V(b)$ of b in Ω. Thus $\{V(b): b \in A\}$ is an open covering of A, which must have a finite subcovering $\left\{V\left(b_{j}\right): 1 \leq j \leq m\right\}$. Let $\lambda:=\max _{1 \leq j \leq m} f\left(b_{j}\right)$. Then $\lambda<\Lambda$, and, for any $y \in A$, there is some j such that $y \in V\left(b_{j}\right)$, so that $f(y)<f\left(b_{j}\right)+\frac{1}{2}\left(\Lambda-f\left(b_{j}\right)\right) \leq \frac{1}{2}(\lambda+\Lambda)$. This, however, is absurd, since it implies that $\frac{1}{2}(\lambda+\Lambda)$ is an upper bound for $f(A)$, whereas Λ was defined to be the least upper bound (and $\frac{1}{2}(\lambda+\Lambda)<\Lambda$). The conclusion must be that Λ is an attained supremum: there is some $a \in A$ such that $f(a)=\sup \{f(x): x \in A\}$.
7. Take any $a \in \Omega$ and any $\epsilon>0$. By the definition of the infimum, there is $f \in \mathcal{F}$ such that $f(a)<g(a)+\frac{1}{2} \epsilon$. As f is continuous, $V:=\left\{x \in \Omega: f(x)<f(a)+\frac{1}{2} \epsilon\right\}$ is an open neighbourhood of a. But, if $x \in V$,

$$
g(x) \leq f(x)<f(a)+\frac{1}{2} \epsilon<g(a)+\epsilon .
$$

So $V \subseteq\{x \in \Omega: g(x)<g(a)+\epsilon\}$; this proves that $\{x \in \Omega: g(x)<g(a)+\epsilon\}$ is a neighbourhood of a in Ω. As a and ϵ are arbitrary, g is upper semicontinuous on Ω.
8. For clarity, let D denote the "product metric":

$$
D((a, b),(x, y)):=d(a, x)+d(b, y) .
$$

Then, for any $(a, b),(x, y) \in \Omega \times \Omega$,

$$
d(a, b) \leq d(a, x)+d(x, y)+d(b, y)=d(x, y)+D((a, b),(x, y)),
$$

so that $d(a, b)-d(x, y) \leq D((a, b),(x, y))$. The same must be true if x and y are interchanged, and so

$$
|d(a, b)-d(x, y)| \leq D((a, b),(x, y)) .
$$

This proves not only that d is uniformly continuous with respect to D, but even that it is "Lipschitz with Lipschitz constant 1 " - but of course the specific choice of metric D on the product is involved in that.
9. Many examples are possible both in (a) and in (b).
(a) Let $\Omega:=\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$, with the topology given by the usual metric in $\mathbb{C}, d\left(z_{1}, z_{2}\right):=\left|z_{1}-z_{2}\right|$. Let the mapping f be defined by, for instance,

$$
(\forall z \in \mathbb{T}) \quad f(z):=a z,
$$

where a is itself a complex number of modulus 1 other than 1 itself, such as i. Then

$$
d\left(f\left(z_{1}\right), f\left(z_{2}\right)\right)=d\left(z_{1}, z_{2}\right)
$$

for any $z_{1}, z_{2} \in \mathbb{T}$, but f has no fixed point. [Other compact metrizable topological groups could be used instead of \mathbb{T}, which is just the simplest example that is not in some vague sense silly. A perfectly correct, but rather "silly", example would be to take $\Omega:=\{a, b\}$, just a two-point space, and to let f be the "flip" that interchanges a and b.]
(b) A simple example is

$$
\Omega:=[0,1], \quad f: \Omega \longrightarrow \Omega: t \mapsto t-\frac{1}{4} t^{2} .
$$

Here

$$
|f(s)-f(t)|=\left|s-t-\frac{1}{4}\left(s^{2}-t^{2}\right)\right|=|s-t|\left|1-\frac{1}{4}(s+t)\right|<|s-t| \quad \text { for } \quad s \neq t
$$ (since $0<1-\frac{1}{4}(s+t)<1$), but on the other hand, for $s \neq t$,

$$
\frac{|f(s)-f(t)|}{|s-t|}=1-\frac{1}{4}(s+t)
$$

may be arbitrarily close to 1 if s and t are close enough to 0 . So f is not a contraction mapping.
(c) The mapping $\Omega \longrightarrow \mathbb{R}: x \mapsto d(f(x), x)$ is continuous, because it is

$$
\begin{aligned}
& \Omega \longrightarrow \Omega \times \Omega \longrightarrow \Omega \times \Omega \longrightarrow \mathbb{R}: \\
& x \longrightarrow(x, x) \longrightarrow(f(x), x) \longrightarrow d(f(x), x),
\end{aligned}
$$

where each step is continuous. (I omit the proofs of these facts.) Thus it attains its (nonnegative) infimum $\beta: \beta=d(f(y), y)$ for some $y \in \Omega$. If $\beta>0$, then $f(y) \neq y$, and $d(f(f(y)), f(y))<d(f(y), y)=\beta$, which is absurd. Hence $\beta=0$; but this means precisely that $f(y)=y$. So there is a fixed point of f.

If $f(y)=y$ and $f(z)=z$ and $y \neq z$, then

$$
d(f(y), f(z))<d(y, z)=d(f(y), f(z)),
$$

which is also absurd.
Again, there are other proofs; but this one is perhaps the most transparent.

