Math 442

Exercise set 1, 2008 — sketch solutions
{Well, they are actually far fuller solutions th#id ever expect anyone to present.}

1. Suppose, firstly, that is metrically continu@isr € 2, . The definition (1) of 1.5
may be rephrased as

(Ve >0)(36 > 0) y € Bo,(x;6) = f(y) € Ba,(f(2);€), (1)
and this in turn is equivalent to
(Ve > 0)(36 > 0)  f(Baq,(x;0)) C B, (f(2);€). (2)

We must prove that, for any metrically open 8et (ln containing f(x) , there is a
metrically open se’ containing and such tifiatv’) C U

So, letU be a metrically open setih wififz) € U . By t&dinition of “metrically
open set”, there is some> 0  such tha,(f(x);e) CU . Applyingt{®re exists some
6 >0 such that f(Bq,(z;0)) C Bq,(f(x);€) . TakeV := Bq,(x;6) ; this is a metrically
open set inf); (there is a remark after 3.6 abost-thibut see below for a proof), obviously
containsr , and

(V) = F(Ba,(x:0)) € Bo,(f(x);€) CU .

So we have constructed a metrically operiset  sontpr and satisfyingf (V) C U

On the other hand, suppose that, for any metricgdgn seU' containing(z) , thereis a
metrically open se¥’ containing and suchtiiaV’) CU  t.de 0. ThenBg,(f(x);e€)
is a metrically open subset &, that contaifisr) ifagsee below), and so, by our
assumption, there is a metrically open Bet suah the V' and f(V) C Bq,(f(z);€) .
However, asl” is metrically open and contains ,eher(by the definition of a metrically
open set) somé& > 0  such thédy, (z;6) CV . Andthen

f(Ba,(2;0)) € Bo,(f(x);€) .

We have, therefore, shown that (1), or equivalef@)yis satisfied.

[To fill in the gap, let me now show that, in angtmic space(2,d) , an open metric ball
Bq(z;r) is a metrically open set. Lef be any point B8f,(z;r) hall means that
d(z,y) <r.Takeé:=r—d(x,y) >0 .If z € Bo(y;0) , then

d(z,z) <d(z,y) +d(y,z) <d(x,y)+6 =d(z,y) +r—d(z,y) =r,

and so z € Bq(z;r) . ConsequentlyBg(y; 6) C Bo(z;r) . So any pajnt  RBf(x;r) is
the centre of a metric ball of positive radius ut#d in B, (x;r) , and this is what we means
by saying Bo(x;r) is metrically open.]

Now, suppose thaf is metrically continuous at epomt of 2; , and letW be a
metrically open subset o, . | wish to show that! (W)  mistrically open inQ; . For



this, | must show that, for any € f~}(W) , there is a metad of positive radius about
which is included inf~1 (W)

Sincex € f~Y(W) , f(z) € W ,and, ad/ is metrically open, there isesem» 0 such
that Bo,(f(x);e) C W . Asf is metrically continuousat , theredis- 0 such that

f(Bq,(2;6)) € Ba,(f(x);¢) €W

as at (2). ThusBq, (z;6) C f~1(W) . But this is precisely what wehetto show.

On the other hand, suppose that! (W) is metrically apef?; for every metrically
open set? ofQ}; . Take any € 3 . K >0 Bo,(f(x);e) is a metrically mEet in
Q,, and so, by our assumptiotf,}(Bg,(f(x);¢€)) is metrically oper2in. It certainly
containsz , and so there exists some- 0 such Bgt(z; ) C f~1(Bq,(f(z);€)) . As
this argument applies for angy> 0, it follows thfat mistrically continuous at

2. (&) Suppose that is not uniformly continuousfonThen

(Fe > 0)(V6 > 0)(3z € K)(Ty € Q))(da(z,y) <6 & du(f(z),f(y)) Z¢€).

(This is the formal negation of the definition afiiorm continuity onk .) In particular, for
thise, there will be for any natural number a paip € K and a pointy,, €  such that

1
dQ(xn,yn) < H & d\Il(f(xn;yn) Z €.

But now, asK is sequentially compact, there is bssquence(x,,;)):2; ofz,) that
converges to a point € K . Them,;) — =  too, since for dach

dQ (yn(k’)7 SE‘) < dQ (xn(k)a CL’) + dQ (xn(k)a yn(k)) — 0 ;

and, also for each
do(Tn (k) Yn(r)) <
By renumberingn(k) ak , we may as well suppose thageohk

do(zp,yr) < % and  dy(f(zr), f(yr)) > €. 3)

However, f is continuous at , and consequently tiesame 6 > 0 such that, it € Q
and do(z,2) < & , thendy(f(z), f(2)) < 3¢ . For sufficiently large

and thendy (f(z), f(z1)) < 3¢ andly(f(z), f(yr)) < 5¢ ; hence, for such lakge ,

dy(f(zr), f(yr)) < dw(f(x), f(zr)) + du(f(x), f(ur)) < %e + %e =€.

This contradicts (3), and so establishes the timeof€here is a more elegant proof than this,
using the definition of compactness, but it is p@dhless easy to invent. As so often, a proof
by contradiction allows you to play around aimlgssitil a contradiction appears.]



(b) Suppose thaF is not uniformly equicontinuousonThen
(Je > 0)(V6 > 0)(Fz € K)(3y € Q)(da(z,y) <6 & (3f € A)(du(f(z), [(y)) = €)).

(This is the formal negation of the definition afiform equicontinuity onk" .) In particular,
for this ¢, there will be, for any natural number pqints =z, ¢ K andy, € 2 and a
function f,, € F such that

dofen ) <+ & da(fulen), fulwn) 2 e @

As in (a) above, we may pass to a subsequence anth@sau(4) thatx, — zr € K and
yn — x . BUut F is equicontinuous at , so the same conttiadiavith (4) arises. [As iifa) |,
there is also a more elegant proof.]

3. Let e > 0. Then (by equicontinuity) there is sorie> 0 hstiat
do(z,y) < 6= (Vn € N) du(fn(z), fn(y)) <e.
Letting n — oo, so thatf,(z) — f(x) andf,(y) — f(y) , we find that
do(z,y) <6 = du(f(2), f(y)) <e,

which shows thaf is continuousaat

4. Let e > 0 . By hypothesis, there are sorfie> 0 and saneeN uch that
do(a,y) <8 & n> N = du(fu(y), f(y)) < €.

But also, f is continuous at ; so there exists> 0 shah
do(a,y) < 8" = du(fn(a), fn(y)) < ze.

Hence, if do(z,y) < 6 :=min(8',6") >0 ,

du(f(x), f(y)) < du(f(2), fn(2) + de(fy(2), N () + de (I (W), f(y))

<detletle=c.

This shows thaf is continuousaat

5. Supposey(xz) # 0 ;then the equation may be rewritten

d

Thus, on any interval on whigh does not vanisa,gblution must be of the form

3y =t—C or y=(Lt—0))’.



Suppose that-co < C; <0< (3 <o . Then we can define fof (—oo, c0)

(%(t—C’l))‘g when ¢ < (O
o(t)=4¢ 0 when C; <t < Cy
(3t - 02))3 when C, < t .

It is easily checked thap is a solution of thefedd#ntial equation, satisfying the initial
condition ¢(0) =0 . (The derivatives’(C;) angf(C2)  both exist arelta) Thus there
are infinitely many solutions, given by the vasathoices ofC;, and’,

There is no contradiction of Theorem 2.7, becahedtnctiony?? does not satisfy any
Lipschitz condition in the neighbourhood of thegami indeed,

y2/3 — /3 B

y—20

tendstoo agy |0 (andteoco asf oo ).

[It is worth pointing out that the method of sobrti| used amounts to substituting
y =%, so that the equation becom@s? dr/dz = r*  ,dr1/dz = % , Wheg 0 . But
the whole difficulty is in what happens when=0 ]

6. Foreachae A {zeQ: f(r) < f(a)+1} is a neighbourhoodaeof (In . Let
U(a) be an open set if2 such thate U(a) C {x € Q: f(z) < f(a)+1}. Then
{U(a):a € A} is an open covering ol . A4 is compact, thera fiite subcovering,
which we may list as{U(a;) : 1 <i<n} . Takeél =1+ max f(a;) . Then,ife A

thereissomeé | <i<n ,suchthgte U(a;) C {zxcQ: f( )<f(ai)+1},andso
fly) < fla) +1< K.

This proves thatf(A) is bounded above.

Suppose, however, that its supremumAdn A ;= sup{f(z) : x € A} , is tiainad;
thatis, f(a) < A foreachu € A .Then,foreadhe A f(b) <A ,and
)

{zeQ: fz) < f(b) +3(A— (b))}

is a neighbourhood df i , and includes an opeghbeurhoodV(b) ofb 2 . Thus

{V(b):be A} is an open covering ofA , which must have a finitlebcovering

{V(b;):1<j<m}. Let \:= max f(b;) . Then X <A , and, for any € A , there is
sSjsm

some j such thaty € V(b;) , so thaf(y) < f(b;) + 3(A — f(b;)) < 3(A+A). This,
however, is absurd, since it implies thiath + A) is aparppound forf(A) , whereas
was defined to be the least upper bound (364 + A) < A )c®helusion must be that
is an attained supremum: there is some A such @t = sup{f(z) : x € A}

7. Take anya € 2 and any > 0 . By the definition of thenmim, there isf € F
such that f(a) < g(a) + 3¢ . Asf is continuous/ := {z € Q: f(z) < f(a) + 3¢}  is an
open neighbourhood af . But,if € V'



g(z) < f(z) < f(a) + 3¢ < gla) +e.

SoV C{xeQ:g(x)<gla)+ e} ; this proves thafz € Q : g(x) < g(a) +€} is aneigh-
bourhood otz M2 . As ane are arbitragy, is upgEmicontinuous of

8. For clarity, letD denote the “product metric”:
D((a,b), (x,y)) = d(a,z) + d(b,y) .
Then, for any(a, b), (z,y) € 2 x Q ,
d(a,b) < d(a,z) +d(z,y) + d(b,y) = d(z,y) + D((a,b), (z,y))

so that d(a,b) —d(z,y) < D((a,b),(z,y)) . The same must be truezif apd are
interchanged, and so

|d(a,b) = d(z,y)| < D((a,b), (z,y)).

This proves not only thaf is uniformly continuowgh respect toD , but even that it is
“Lipschitz with Lipschitz constant " — but of cowshe specific choice of metrid  on the
product is involved in that.

9. Many examples are possible botlfah  ang)n
@ LetQ:=T={z¢€C:]|z| =1}, with the topology given by the usual metric
C, d(z,22) == |21 — 22| . Let the mapping be defined by, for instance,
(VzeT) f(z) =az,
whereq is itself a complex number of modulus othanl itself, such as . Then

d(f(z1), f(22)) = d(z1, 22)

for any z1,2o € T , butf has no fixed point. [Other compae&tmzable topological groups
could be used instead ©f , which is just the sistpdgample that is not in some vague sense
silly. A perfectly correct, but rather “silly”, exaple would be to take? := {a,b} , just a
two-point space, and to I¢t  be the “flip” thaterdthanges and .]

(b) A simple example is
Q:=1[0,1, f:Q—Q:t—1t— 3.

Here |[f(s)— f(t)]=|s—t— (s> =) =|s—t|[l-f(s+t)| <|s—t] for s#t
(since 0 < 1—1(s+¢) <1), butonthe other hand, fertt

|f(s) = f(®)]

=1-1 t
|s — ¢ i(s+t)

may be arbitrarily close t@ & and are closeugioto0. Sof isot a contraction
mapping.
() The mappingQ? — R : z +— d(f(x),z) is continuous, because it is
N—Ox0— OxOQ — R:



where each step is continuous. (I omit the prodfshese facts.) Thus it attains its (non-
negative) infimumg : 3 =d(f(y),y) for someyec .IB>0 |, therf(y)#y , and
d(f(f(y), f(y) <d(f(y),y) =B, which is absurd. Hences =0 ; but this means
precisely thatf(y) =y . So there is a fixed pointfof

If f(y)=vy and f(z) =2 andy # z , then
d(f(y), f(2)) < d(y,z) =d(f(y), f(2)),
which is also absurd.
Again, there are other proofs; but this one is gpsithe most transparent.



