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§0. Introduction.
As it says in the Prospectus, there are several possible topics that might be treated in this
course, and I cannot pretend to have made an “authoritative” selection. But I hope that all the
matters I shall mention are interesting in themselves; and they certainly have deep and striking
applications, mostly beyond the scope of our course.

The course is an introduction to functional analysis, and it may be appropriate to say
briefly what that phrase connotes. (As with many other mathematical topics, it is less precise
now than it once was.)

In “classical” analysis, one studies individual functions; an example of a typical theorem
might be, let us say, Lagrange’s form of Taylor’s theorem, which states a property that a
suitable function of a real variable has. But, about a century ago, it became clear that there
were some problems — I think they were mostly related to partial differential equations, for
instance to solutions of the Cauchy-Riemann equations — in which it was helpful to consider
functions of particular types in the mass: that is, to consider a class of functions as a “space” in
its own right, perhaps a metric space or a vector space or both. The idea had really been
around for quite a long time without being very precisely formulated; at the beginning of last
century the abstract concepts that were needed were at last introduced. Thus, my primary aim
is to convince you that this is a valuable procedure, and to present some of the basic results.

Before beginning, one general apology is appropriate. I shall, for the most part, focus on
metric and on Banach spaces, and I shall often give the most “basic” versions of results rather
than the “optimal” formulations. There are important reasons why more general spaces or
more general results are used, but it is difficult to grasp the ideas behind the generalizations
until you are comfortable with simpler cases in which the proofs are more natural. But it is not
clear to me precisely what we may assume; so you may consider I am very casual in some
respects and absurdly pernickety in others, and there will be some duplication of things I have
taught elsewhere. Do not hesitate to complain when it seems appropriate.

There are many textbooks which could be mentioned. The subject still has a certain veneer
of modernity that makes it attractive to authors. I shall not follow any book in particular, and
not all the topics I shall mention may appear in any given book. An excellent reference is
Kolmogorov and Fomin (which also gives a very readable account of some topics I shall more
or less take for granted). Others are Simmonds, Taylor, Yosida (long, but also very
compressed because it discusses many important applications), Naimark (Normed Rings;
especially chapter 1), Dunford and Schwartz (very, very long; but especially parts of vol. 1).
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To motivate our work in a general way — for I shall never deal with the problems that
follow in any detail — let me briefly describe a couple of problems of historical interest.

Suppose we have two points  and  in space. To avoid trivializing the question,  is to  
be higher than  and not in the same vertical line; we assume the gravitational field is entirely
uniform for mathematical simplicity. We want to join  and  by a smooth rail, so that we can 
slide or roll down the rail from  to , starting from rest at , under the influence of gravity  
alone and with negligible friction. It is clear that the curve of the rail from  to  does affect 
the time it takes to reach : if the rail slopes upwards at the start, our journey never begins
(and if the rail ever returns to the height of , the motion stops); or if, at the beginning, the
rail follows a very shallow downwards spiral, a rather long distance might have to be traversed
at a very low speed; or the rail might go steeply downwards at the start, so that the journey
may be taken at a rather high speed. Which curve from  to  would give the shortest 
possible time for the journey? (This is the , which was current in thebrachistochrone problem
17th century and was solved by several of its greatest names at the very end of the century.
Brachistos is “shortest” and chronos is “time”.)

This is, obviously, a question of the “find a maximum or minimum” type. But in this case
the number we want to minimize, the travel time, depends, not on one or several real variables,
but on a whole curve in three-dimensional space. If we describe the possible curves
parametrically, say as functions , where  and , then the         

time  that the journey takes is a function for which the independent variable is the function  
determining the curve, and not any finite -tuple of real numbers. These functions , or the 
curves they describe, clearly cannot be specified by any fixed finite number of numerical
parameters, and in this vague sense the domain of the function  is an “infinite-dimensional
space” whose “points” are the  .functions 

Another even more familiar problem is this. Suppose that we have a certain area of
material which we can use to form a surface in space (for instance a certain volume of plastic,
which must be spread to a definite very small thickness to construct the surface; what I have in
mind is that the shape of the surface may be freely varied, but its total area cannot). What is
the largest volume that can be enclosed within the surface? Of course we all know the answer
— the material must form a sphere if the enclosed volume is to be the largest possible. But it is
not easy to explain why this is the answer. Once again, the volume  enclosed is a function
whose argument is the “surface”; the domain of  is the set of possible surfaces, which is an
“infinite-dimensional space”.

In both these examples, there is a question that arises before the main problem. Have we
any reason to suppose that there  a best possible curve in the brachistochrone problem,exists
or a best possible surface in the volume problem? It is at least conceivable that there is no
“briefest possible time” for rolling from  to ; there might be a whole sequence of curves, 
giving us successively shorter and shorter travel times approaching a limit, but no curve that
would exactly realize that limit. One might imagine the sequence of curves that give shorter
and shorter travel times wiggling about in space and not approaching any sort of limiting
curve. This is a serious matter; the assumption that the theoretical optimum must be
“attained”, that is, be a genuine value given by some curve or surface or whatever, is not
always justified.

The general moral is that there is good reason to consider “infinite-dimensional” objects.
They are not artificial constructs; despite the strange images the phrase “infinite-dimensional”
may suggest, it really denotes no more than the impossibility of describing the things we are
considering by a finite number of parameters. Our aim, in fact, is to develop theories that will
make it possible to argue with such objects very much as we argue with  or . To do  

this, we must first decide what properties of  or  we regard as really significant, and we  
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must necessarily do this in rather abstract terms, precisely because the objects that interest us
are difficult to describe directly in the elementary terms we are used to.

§1. Metric spaces and mappings

Definition 1.1.  Let  be any set. A  (or ) on  is a function metric distance function
          such that, for any ,

(a)
(b)

  if and only if , and
 .
      
       

(a) (b)and  imply the further properties of the metric

(c)
(d)

        

        



 ,

which are often taken as part of the definition; and  may then be written as(b)

(e)         .  

The pair  is called a . If  has been unambiguously fixed, one may speak of    metric space
“the metric space ” and suppress mention of . , or , is the  for .  (b) (e) triangle inequality

The concept of a metric space arose from the examples of  or , with their  

“Euclidean” or “Hermitian” or “standard” metrics

                        

   

(for , the s and s are real numbers; for , they are complex numbers).   

Definition 1.2.   Let  be a metric on , and suppose that  is a subset of . Define   

           

(which makes sense, as  and  are points of  as well). Then  is a metric, the subspace   

metric, in , and the metric space  is called a of .         metric subspace 

For obvious reasons, one usually writes  instead of , and says “  is a (metric)  
subspace of the metric space ”.

Definition 1.3.  A sequence  in the metric space  is said to  to  (as        converge
   ) if

               

One may say “  (or ) tends to ”, and “  is the limit of ” (or of ), and one          

writes  (as ).     

Thus  if and only if the numerical sequence  tends to . Notice that the       

“ ” whose existence is demanded by the definition will probably have to be increased if  is 
diminished, and that it will also depend on the specific sequence under consideration.
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Lemma 1.4.  A sequence in  can have at most one limit.  

It may of course not converge to anything, but if it has a limit, that limit is unique.

Definition 1.5.  Let  and  be metric spaces, let  be a mapping,            

and suppose .  is  at  if     continuous

                    & (1) 

We also say that  is a  of . If  and every point of  is a point of    point of continuity 
continuity of , we say  is continuous on ; if  is continuous on , we say  is ,     continuous
without qualification.

Again, the definition requires that for each positive real number  there should exist a
corresponding positive real number ; if  is decreased, then  will probably have to be  
reduced too; and the choice of  will also depend on the function  and the point .  

Lemma 1.6.     is continuous at  if and only if, for any sequence  in  that converges to 
   , the sequence  in  converges to .   

This lemma need not hold in general topological spaces.

Example 1.7.  A simple example: take  as a metric subspace of , and , in      
both cases with the standard metric, and let  for each . Given      
        and , we want to see if there can be a  such that 

whenever  and , then (2)          
 

 
    

that is, . Clearly, then, we require: ,  (since otherwise  could              
be arbitrarily small and  arbitrarily large), and , as we may arrange for  to       
be as close as we like to . The last condition means that  





 



  



and it is easily checked that  does indeed satisfy (2). This is, therefore, the      

“best possible”, i.e. the largest, choice of  in this specific problem; it is clearly both positive
and less than . [In more complicated examples, it is usually impossible to calculate the largest
value of  explicitly.] But it is obvious that it depends, not only on  and on the function 
considered, but also on .

Definition 1.8.  Let  be a family of mappings from  to . The family  is     equicontinuous
at  if

                       & (3) 

Thus, equicontinuity of  at  means that, for any positive , there is a  that “works” for  
that  and the given point  . Such a  will  and for all of the functions in  simultaneously
quite probably not be “optimal” for any of the functions considered. Evidently equicontinuity
at  of a family that consists of a single function , , is just the same as continuity of   
          at ; and any family of functions, , each one of which isfinite    
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continuous at , is equicontinuous at . (For a given , take  to satisfy (1) for , and then    

let . Then  satisfies (3).)         min   

Example 1.9.  It is easy to construct families of mappings that are  equicontinuous at anot
point; for instance, the family of functions , where    

          (4)

for each , is not equicontinuous at any point of .  

Definition 1.10.  Let  be a subset of , and .  is (a) uniformly continuous    
on   if

                      &  

If , we may say that  is uniformly continuous without qualification.  
(b) uniformly Let  be a family of functions from  to . We say that  is    

equicontinuous equiuniformly continuous[or ] on the subset  of  if 

                         &  

Uniform continuity of  means that, for the given , we can choose a  that “works” for   
at all the points of . In Example 1.7,  is not uniformly continuous on , because the  
formula we found for the largest possible  that works at  tends to  as . Whatever      
we tried would be too large if  were so small that . Equiuniform       

continuity means that  can be chosen to work for all the functions of  and all the points of 
  simultaneously. This certainly entails that  is equicontinuous at every point of .

If  is a finite family, uniform equicontinuity is the same as uniform continuity of each
function belonging to .

The family  mentioned in Example 1.9 is non-equicontinuous at every      
point of ; but  is equicontinuous at every point of , although          
none of the functions  is uniformly continuous on .  

On the other hand, if the formula (4) is used to define a family of functions
          for , this family is uniformly equicontinuous on . But

even the individual functions are not uniformly continuous on . 
The word “uniformly” also occurs in other contexts.

Definition 1.11. Suppose given a sequence  of functions . We say that     
         to the function ,  uniformly, ifconverges uniformly 

                    

Then, for each fixed , the sequence  in  tends to the limit ; and there     

is a “rate of convergence” which applies independently of the choice of point . [Stokes, when
he introduced this idea in 1848, spoke of non-uniform convergence as “infinitely slow
convergence”, having in mind that there is no “rate of convergence” that governs the conver-
gence at all points simultaneously. It is worth remarking that before the 20th century there was
no significant division between pure and applied mathematics; Stokes is most famous for his
work in fluid mechanics, although he made many other important contributions.]
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Remark 1.12. In the definitions above we have consistently used “strong inequalities” .
The substance of each definition, for instance the  of a positive  for a given positiveexistence 
 , is unchanged if some or all of the s are changed to , though the  in question for 
given  may have to be altered; similarly, “ ” could be changed to “ ” without      
changing the sense of the definitions, because  is equivalent to .       
(However, we cannot change “ ” or “ ”, since it is essential that they should be    
positive numbers.)

As far as we are concerned, the most important reason for considering uniform
convergence is the following

Theorem 1.13. Suppose that  is a sequence of functions  that converges  
uniformly to , and that each function  is continuous at . Then  is      

also continuous at .  

Proof. Let . There exists  such that, for every ,             



whenever . But  is continuous at ; thus there is  such that       

              



and it follows that, if ,    

                  

    

      
  
     

so that we have found a  for the function  and the given  at the point .   

The reason for demanding  convergence is that we need uniform      

 

for all points  within distance  of . Uniform convergence is a rather stronger condition than 
this, but it is certainly sufficient.

Corollary 1.14. Suppose in that each function  is uniformly continuous on . Then1.15  
so is .   

Indeed,  may be chosen (for ) independently of , and the proof is unchanged. We  

must assume uniform continuity of  , because the proof exploits a particular  andeach   

we do not  know which; that depends on .a priori 
These results are examples of the “double limit problem”, which arises in many contexts.

Crudely put, one may be able to take two limits in succession, but if one tries to take the limits
in the other order, it may not be possible or one may get a different answer. In 1 15, we want
to show that, for any , ; that is continuity at . The information is        

that, for each fixed ,  as . Thus, by  1.6, we wish to prove that           

lim lim lim lim lim
    

             

(since each  is continuous at ). The uniform convergence of the sequence of functions 

enables us to prove this, esentially by freeing one limit from dependence on the other. But we
could also do it the other way round and get the less useful, but still interesting

Theorem 1.15. Suppose that  is a sequence of functions  that is equi-  
continuous at  that is, the family  is equicontinuous at  and such        [  ]

that, for each ,  as . Then  is also continuous at .              
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§2. Complete metric spaces

Definition 2.1. Let  be a metric space, and  a sequence therein. The sequence      

is  ifCauchy

                 .

Statements of this kind are often summarized as “ as ”, where in this     

case .       

For quite a while now the absurdity of using Cauchy’s surname (or Banach’s or Hilbert’s)
as an adjective has ceased to be felt, but previously “Cauchy sequences” were often called
“fundamental”, and this usage may still be found in old books.

Lemma 2.2.   A convergent sequence in a metric space  is automatically Cauchy.

Proof.  Suppose that , and take any . Then     

           



(taking “ ” instead of “ ” in the definition of convergence). But now, if both  and
     

   ,

                  
 
    

Definition 2.3.  The metric space  is (metrically) if every Cauchy sequence in   complete 
 converges.

Thus, in a complete metric space, “Cauchy” and “convergent” are equivalent. The word
“complete” is overused in mathematics, but we shall need only this sense.

It is one of the most important properties of  (“Cauchy’s General Principle of
Convergence”, never actually  by Cauchy) that, if you give it the standard (“Euclidean”)proved
metric , it forms a complete metric space: every Cauchy sequence of real      
numbers has a limit. This basic result entails — often not at all trivially — the completeness of
many other metric spaces that are used in analysis.

The significance of completeness in the larger scheme of things is that it is what you often
need to construct something by successive approximations. The approximations will form a
Cauchy sequence, and the completeness is needed to ensure that there is a limit. This idea was
systematized for many applications by Banach with the concept of a “contraction mapping”.

Definition 2.4.  Let  be a metric space, and let  be a function.  is a    
contraction mapping contraction (or just ) if there exists a number  such that     
[notice  is  ] and, for all , .  may be called the   less than         
contraction constant. Another way of putting it is that  is a “Lipschitz mapping” with
Lipschitz constant  strictly less than . 

Theorem 2.5. (The contraction mapping principle.) Let  be a complete metric space, and
      a contraction mapping of . Then  has a unique fixed point in ; that is,

there is one and only one point  such that .      
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Proof.  Take any , and define a sequence  in  by applying  repeatedly:        

                         

(It would be natural to write .) Let , and let            
             

be the contraction constant. Then, by induction,

                                    
 

for any . Hence, if ,       

              

         
 

   

       

  
 

 

       

   
 

.
(5)

As  as , it follows that  as , i.e. the sequence  
             

          is Cauchy. But  is complete, and so there exists  such that .
We now show that  is a fixed point of . For any ,    

                 

            

           

       

     

      

   

   

    ,

where each term tends to  as . So, necessarily, , and .               
Finally, suppose that  is another fixed point of . Then 

                             ,

which, as  and , is only possible if  and .                     

The hypothesis that  is a contraction mapping ensures both the existence and the
uniqueness of a fixed point, and the proof shows that, for any choice of , the result of

applying  repeatedly,  is a sequence that converges to that               
 

one and only fixed point . For existence alone, it would suffice to know that  is continuous 
and that, for  , the sequence of iterates  converges. ****some    

   
Many “existence proofs” can be formulated as “fixed point theorems”. As a striking

example, I shall give the standard theorem on the existence of solutions of ordinary differential
equations. The result can be proved for equations in which the functions take values in higher-
dimensional spaces, but to keep the discussion short I shall consider only the simplest
reasonable hypotheses and result.

Definition 2.6. Let  be an open subset of . A function  satisfies a       Lipschitz
condition in the second variable Lipschitz constanton , with  , if, for any two points   
                        and  in , . [The Lipschitz constant here     
may be any nonnegative number.]

Theorem 2.7.   Let  be an open subset of , let , and let  be           
 

continuous and satisfy a Lipschitz condition in the second variable on . There exists   
such that the equation
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 , with initial condition ,



        (6)

has a unique solution for .        

By a  of the differential equation for , we mean a functionsolution         
                      which is differentiable on  and which, for each
                 

  , satisfies the conditions  and . That
this solution is  means that there is only one function satisfying these conditions.unique

Proof. As  is continuous on , there must be a neighbourhood  of  and a        

constant  such that  and  for all . Choose               
       to be so small that, simultaneously,  and

                   . (7)

Let  be the set of all the  functions continuous

                 .

If , then  is certainly bounded for  (it takes                  

values in ). Define 

                    sup     , (8)

and then  is a metric on . Furthermore,  is complete. [I shall prove this as a separate    
lemma below.] ****

Suppose . Define a function  by                   

       







. (9)

In the first place, the integral makes sense, since  is continuous in  and, therefore, 
      is also continuous in . Secondly, our choice of  at (7), granted that  is in ,
ensures that the integrand has absolute value not exceeding ; so, for ,         

                    






whilst  is of course continuous, and even differentiable, in , from (9). Thus .   
Hence, for each , we have defined a corresponding  by (9). We define    

         by setting , as given by (9).  is thus a mapping from the “space of
functions”  into itself.

But  was also a metric space with metric  (cf. (8)). With respect to this metric, I assert 
that  is a contraction mapping, with contraction constant . Given ,          

and ,   

       

   

                

      

   

 

) )  
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     .

(The first inequality is the “fundamental estimate” for integrals; the second uses the Lipschitz
condition, and the large modulus signs are inserted in each because of the possibility that
      .) Consequently, granted that  is complete, 2.5 shows that there exists a unique

function  such that . This means, by (9), that, for ,               

       







, (10)

and the fundamental theorem of calculus tells us that in turn this is  toequivalent




           


 for , and .    

Lemma 2.8.    is a complete metric space.  

Proof. Suppose, in fact, that  is a Cauchy sequence in . Then, for any ,        

there is some  (let us call it ) such that, whenever ,       

sup                    

(recall (8)). Certainly, then, for any specific ,        

               (11)

and the sequence  in  is a  Cauchy sequence. Therefore it has a limit in ,    numerical
which we may denote as  (in principle, of course, there will be a different limit for each
choice of ). In this way we get a function .          

Now, however, look at (11). If we “hold  constant, but let ”, we deduce   

              (12)

[*The proof of this: suppose that, for some (specific) , . Then           

there exists  such that , this being a                    

fixed positive number. But then, if ,   max 

                          

which contradicts (11). Hence (12) must hold. Notice, however, that one can only obtain the
weak inequality  in (12), despite the  in (11). Simple examples show that this is 
inevitable.*] This is true for each , so that (compare 1.12)            
uniformly on . By 1.13, then,  is continuous on .              

However, as, for each , , and ,                      
then  too (as in the proof of (12) between the asterisks). As  is      

continuous and takes values in , it belongs to .       
Finally, notice that, as (12) holds for any , we have        

                            sup    
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because  here may just be the  we had before. But this says that , or         

that  in the sense of the metric space .        

These proofs deserve several informal remarks.
The first is a general mathematical observation. In order to prove a result about a

differential integralequation (6), we transformed it into the  equation (10). This is a common
trick in the theory of differential equations, and expresses the vague but important fact that the
derivative of a differentiable function may be very irregular, for instance by oscillating very
rapidly, whilst the function itself appears to behave quite regularly; or, to put it the other way
round, that the indefinite integral of a function is  “smoother” than the function itself. Integral
equations of various kinds are, therefore, easier to handle than differential equations.

Secondly, the proof above is, in fact, not quite the original argument of Picard. He did not
use the “contraction mapping principle” as such — it was invented thirty years or so later. But
he defined  as above, and iterated  as in the proof of 2.5, starting with the function   


  that has constant value . The Lipschitz condition (as long as it holds) can be used to
show that the successive iterates converge, without restricting the size of  as we did (by
requiring ) to ensure  is a contraction mapping. In this respect Picard’s proof is   
somewhat better than ours, but the extra information it gives can easily be obtained from our
weaker version; furthermore, our proof gives uniqueness at the same time, whilst Picard
needed a separate (easy) argument.

Thirdly, the question naturally arises: how essential is the Lipschitz condition? It was
clearly very important in our proof, although there are weaker but messier conditions that
could be employed to much the same effect. The situation is, in fact, a little curious. There are
simple examples in which the function  does not satisfy a Lipschitz condition and there is
more than one solution of (6). But if  is merely  (and takes values in  for a continuous 

finite dimension ) then (6) has  solution. This is a theorem of Peano. The proof is more a
difficult (the version usually given these days ultimately requires Brouwer’s fixed-point
theorem), but it also amounts to establishing that the mapping  has a fixed point.

Fourthly, the proof of Lemma 2.8 exemplifies my earlier remark that the completeness of
 lies behind the completeness of many other useful metric spaces. My standard joke here (I
have made it every year for 30 years) is that the mode of proof is rather like the procedure of
an American political party during a presidential election. We are given a Cauchy sequence;
we wish to show that it converges, and for this we must first of all guess what the limit is to
be. We select our  for the limit by any reasonable procedure you can think of (in ourcandidate
case, we constructed  as the “pointwise limit” of the , i.e. by taking the limit of the 

numerical sequence  for each point  separately). They go for the person they think  

most electable, subject to compatibility with their guiding ideas. In both cases, the candidate
proposed may not even belong to the right space (both Democrats and Republicans wanted
Eisenhower to be their candidate, but his preference was unknown). Here, we had to show
that our putative limit was indeed a continuous function with values in ,      

i.e. was really in . And finally, you have to get the candidate elected; for us, this meant we
had to prove that  was the limit in the sense of the metric , despite its construction as a far 
weaker sort of limit.

Some other applications of the contraction mapping principle are given in Kolmogorov and
Fomin. Standard ones are the inverse mapping theorem and the Newton-Raphson method for
finding numerical solutions of equations.
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§3. Compactness

Definition 3.1. Let  be any set. A  on, or in,  is a class  of subsets of  having   topology
the following properties.

(a)   and .    
(b) If , then .       
(c) If  is any subclass of , i.e. , then  too.      



[Notice that the  of  are  of , not points of . To emphasize this, I havemembers subsets  
described  as a “class” of subsets rather than a “set” of subsets. No logical distinction
between “classes” and “sets” is intended; it is just that  is, as it were, a “set” on a higher floor
than . Notice too that the subclass  in  may have very many members, even uncountably  (c)
many.] The members of  are commonly described as the  sets of  with respect to the open
topology , so that  itself is often not named explicitly — it is simply the class of open sets, 
where  and  must be open, the intersection of two open sets must be open, and any union of 
open sets must be open.

A subset of  is  (with respect to ) if its complement  is open.  closed  
One may wish to consider several topologies on ; however, if one topology in particular

is to be understood, one may speak simply of the  without referringtopological space 
explicitly to the topology itself. Otherwise, I may write “the topological space ”.   

Definition 3.2. Let  be any subset of the topological space . The class  of all open  
sets included in  (sets open in  that are subsets of ) is nonempty, since  is one such. By  
3.1 ,  is also open, and is also, of course, a subset of . It is obviously the(c) 

   

largest open subset of  (granted that the construction shows there is a largest open subset),
and is called the  (with respect to the given topology on ), int .interior of   

Similarly, the class  of all closed sets including  is nonempty, as  is one, and  


    is also closed (by applying 3.1  to complements). It is, therefore, the smallest(c)
closed set including , which is called the  of  in the given topology, cl . [I may  closure
write cl  to emphasize that it is the closure in the topological space , and so on.] Notice 
that  is closed if and only if cl  and that, for any , cl cl cl .        

These definitions say, almost explicitly, that cl int . It is quite possible       
that the interior of  may be  and its closure may be ; for instance, in the topological space  
  , the subset  has null interior and its closure is .

Lemma 3.3. Let  be a topological space, . Then  if and only if every     cl
open set that contains  meets . Thus any open set that meets  also meets .  cl 

Definition 3.4.   Let  be a mapping between topological spaces.  is    continuous
if, for any open set  in the topology on ,   is open in the          

topology on .

Remark 3.5.   is continuous if and only if, for any closed subset  of ,       

             
    is closed in . Indeed, for any , .    

Definition 3.6. Let  be a metric space. A set  is  if, for any      metrically open
       , there is some  such that the  of radius  about ,open metric ball
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The class of all the metrically open subsets of  is a topology on  [this was proved in 312, 
and is not difficult], called the . Thus the metrically open sets are the open setsmetric topology
of the metric topology.

In 312, I showed that open metric balls are themselves open in the metric topology, and
that a mapping between metric spaces is continuous in the sense of 3.4 with respect to the
metric topologies if and only if it is continuous at every point  in the sense of 1.5.  
From a logical point of view, though not practically, 3.4 is obviously a simpler definition.

If  is a metric space and , int  is the set of points  such that      
      for some sufficiently small positive number , and cl  is the set of points of
  that are limits (in ) of sequences in . An alternative characterization of cl  is that 

 cl  if and only if, for all , .           

Lemma 3.7. A set  is closed in the metric topology on  if and only if the limit of a 
convergent sequence  in  whose terms all belong to  also belongs to .      

Lemma 3.8. A subset of a complete metric space  is a complete metric space in the
subspace metric if and if it is closed in .  

In this course I shall mostly be concerned with metric spaces, but a little information on
topological spaces will help occasionally. The properties we deal with are often topological
ones — that is, they can be expressed entirely in terms of the topology.

Definition 3.9.  Let  be a subset of the topological space . Then  is said to be     
compact Heine-Borel property(or, in older books, to have the ) with respect to  if any class
  of open sets such that  [this is customarily expressed by saying that  is an  



open covering of subcovering] includes a subclass  such that  [  is a  of the   


covering  of ] and  has only finitely many members. [“Every open covering of  has a  
finite subcovering”.]

Definition 3.10.  Let  be a subset of the metric space . Then  is      sequentially
compact if every sequence  in  [each term  is a point of ] has a subsequence that     

converges to a point of .

An important theorem, proved at some length in 312, is the following.

Theorem 3.11.  A subset  of the metric space  is sequentially compact if and only if it is 
compact with respect to the metric topology. 

Thus sequential compactness, defined originally in terms of the metric, will remain true if
the metric is changed to another that defines the same metric topology, so that for metric
spaces there is no reason to include the adjective “sequential”. This is a typical instance of the
way compactness is (despite first impressions) a “natural” property. As I said in 312, it is a
sort of “topological analogue of finiteness”. Finite sets are obviously compact; but the
remarkable thing is that many more complicated sets are too.

Lemma 3.12.  A compact metric space is complete. 
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Theorem 3.13.  A subset  of  is compact if and only if it is closed and bounded.   

“Bounded” here means that the set  is bounded above in  (where  is      
of course the Euclidean metric).

Theorem 3.14. Let  be a continuous mapping between topological spaces. If   
is a compact subset of ,  is a compact subset of .     

Corollary 3.15. If  is a compact subset of a topological space , and  is a   
continuous function, where  denotes either  or  with the standard metric, then  is   
a bounded closed subset of , and so

(a)
(b)

if , there is a point  such that 
in either case, there is  such that 
             

           

sup
sup     

[“ ” denotes the  or  of the set ].sup  supremum least upper bound 

Lemma 3.16.   Let  be a compact subset and  be a closed subset of the topological(a)  
space . Then  is compact.  

(b) Let  be a compact subset of , and suppose  is a class of closed sets such that  
            for each , and such that, whenever , either  or    

         . Then . 
C 

Proof.   Let  be an open cover of . Then  is an open cover of ,(a)         
so there is a finite subcover  of . But, as ,                    
       must be covered by , which is an open subcover of .   

(b) Suppose . Then  is an open cover of , so             
  

there is a finite subcover . One of  is smallest                     

(compare  and ; then compare the smaller of them with ; and so on); suppose, for    

example, that it is . Then  includes all the other sets in the cover, ,         
which implies ; and this is a contradiction.    

Definition 3.17.  Let  be a topological space. It is  if, for any  and locally compact  
any open set  in  such that , there are an open set  and a compact set  in  such      
that .      

    is  if, for any  and any open set  in  such that , there are anregular     
open set  and a closed set  in  such that .        

[Thus, in a regular space, each point  has a “base of closed neighbourhoods”, and in a
locally compact space, each point has a “base of compact neighbourhoods”. These are the
standard definitions, but Kelley in his well-known book requires for local compactness only
one compact neighbourhood of each point. He then uses regular spaces with this property,
which, because of the lemma that follows, are also locally compact in our stronger sense.]

Lemma 3.18.  Let  be a regular space, and . Suppose there are an open set  and   
a compact set  such that . For any open set , there are a closed        
compact set  and an open set  such that .        
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Proof.    is an open set containing , so, by regularity, there are a closed set  and an   
open set  such that . But 3.16  then implies that  is            (a)
compact as well as closed. 

Definition 3.19.  Let  be a mapping between topological spaces. It is  if,   open
for any open set  in , its image  under  is open in .   

Notice, firstly, that “openness” of a mapping is different from “openness” of a set. As so
often, the context decides what meaning is intended. Secondly, if  is both one-one and onto,
the inverse mapping  that exists in that case is continuous if and only if  is open; and  is  

continuous if and only if  is open. But, in general, continuity and openness of a mapping

are unrelated.

Definition 3.20. Let  and  be topological spaces. If  is an open set in  and  is an   
open set in , then  may be described as a  in . A subset of    product open set
   is  if it is a union of product open sets. Thus, a setopen in the product topology
         is open in the product topology if and only if, for any , there are

open sets  in  and  in  such that , , and . The              product
topology itself is the class of subsets of  that are “open in the product topology”. 

Now suppose the topology of  is defined by a metric  and the topology of  is 
defined by a metric . The product topology on  is defined by the metric , where    

                            (13)

for  and .           

The product topology may also be defined by many other metrics on , and the 
formula (13) has no claim to define  “product metric”. ****the

§4. Normed spaces

Definition 4.1.   Let  be a vector space over , where  denotes either  or . A  in     norm
        is a function  such that, for any  and ,    

(a)
(b)
(c)

  

   

 

       

    

      

 

Notice that  and  force  to take nonnegative values.  is expressed by saying that the(a) (b) (a)
norm is ,  by saying that it is , and  by saying that it is .subadditive (b) homogeneous (c) definite
If and  hold, we say  is a  (or pseudonorm). The whole package consisting of(a) (b) seminorm
 with its vector space structure and the (semi)norm  is called a (semi) . It is normed space
rather usual to denote a norm by ; that is, we write  instead of .   

A (semi)normed space  is a (pseudo)metric space if we define a metric  by  
        (14)

Only  and  are needed for this. Thus we can apply all the ideas and terminology of metric(a) (c)
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spaces (convergence of sequences, continuity of functions, compactness) to normed spaces;
but, since the metric we have in mind is so closely related to the norm, we do not usually
bother to introduce a separate notation for it.

Definition 4.2. The normed space  is a  if it is complete as a metric space. Banach space

Definition 4.3. Let  be a compact topological space (i.e.  is a compact subset of itself). 
Then , or , or  if no ambiguity is possible, denotes the set of all           
continuous mappings .

It is customary to endow  with the structure of a vector space over the field ,    
by taking the linear operations “pointwise”:

                            .

Furthermore, the real or complex vector space  may be given a norm, the so-called   
supremum norm uniform norm or . If , then, by 3.15,  is a             
bounded subset of . Set

          sup  . (15)

This is very easily seen to be a norm on . *****   
  also has the structure of an (associative)  over . That is: one defines    algebra

the (pointwise)   of  and  byproduct            

      .

(The right-hand side is the product in  of two numbers,  and , in .) It is trivial  
that this multiplication is bilinear and associative. Furthermore,

                . ****

This last property is often expressed by the statement that .the norm is submultiplicative

Lemma 4.4.       is a Banach space with respect to the norm .

Proof. It is only the completeness that needs to be checked, and the argument is really the
same as in 2.8, but, in the absence of a metric, has to look rather different.

Let  be a Cauchy sequence in . Thus      

                   

which, in view of the definition of the norm as the least upper bound, implies that

                       

But this implies that, for any specific ,  

               

so that the numerical sequence  is Cauchy in . Therefore it has a limit in . In   
principle this limit will vary when  changes; denote it by .  is thus a    function
 , the ‘pointwise limit’ of . However, letting , one finds that    

                   for every , and so (recall 1.11 and 1.12) 
uniformly on . It is necessary to show that  is continuous. If  is a metric space, we can 
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appeal to 1.13; but the result that a uniform limit of continuous functions is continuous is true
when  is merely a topological space. Here is a proof.

Let  be open in . We wish to show that  is open. Let . Thus        

         , and there is some  such that  (recall 3.6). Take 

             
 


  . Now  is open, because  is continuous and

          is open in , and it obviously contains . Let . Then

       
 

                  

        

   
 
     ,

the outer terms being dominated by  and the middle onesup          
restricted by the definition of . Hence, , and . So,             

any point  of  lies in an open set  included in , and  is open          

(as the union of all these open sets ). This shows that  is continuous, .        
Finally, . That is,                             sup

in the sense of the norm in .    

I refer you to my American joke.  is the obvious candidate for a limit of , but it is  
not  clear that it is a point of , that is, a continuous function , ora priori     
that it is the limit in the sense of the norm, since it was defined in a different way. Notice, too,
the finicky logical point that we can’t legitimately write  until we have shown that   
          ; for we defined the norm only on .

We shall have many other examples of Banach spaces later. But I hope this example con-
vinces you that the concept is worth having. In fact  is a Banach  over .    algebra

Definition 4.5. Suppose that  is a normed space over , with norm , and an (associative)  
algebra (with multiplication denoted by juxtaposition) over . It is described as a  normed
algebra if the multiplication  is continuous when  is given          
the product topology, and as a  if  is in addition a Banach space.Banach algebra  

From 3.20, with (13) and (14), we see that the product topology on  may be 
defined by a metric

               

Lemma 4.6.   is a normed algebra if and only if there is some   such that   

              (16)

Proof. Suppose the condition is satisfied, and that  in . That means          

                            , or, equivalently, that  and . We
may omit the initial terms of the sequence and assume that  for all . Then      

       
     
      

                   

          

                 

       

  

 

Conversely, suppose the condition is  satisfied so that there is no  satisfying (16).not  
For each , there must be some  such that . This can                
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only be so if , clearly. But now let , : as        
 

   
   

  

    
                 

   
 , we have , but, for all ,

   
       
 

   
   


 

so that , and the multiplication is not continuous.     
  

Of course, if (16) is true, we may suppose that . Define a new norm  on  by     

        

Then  is a norm on  that defines the same topology as  (the same open sets, the same   
convergent sequences, and even the same Cauchy sequences), but (16) implies

        (17)

The relation (17) is expressed by saying that the norm  is  (with respect  submultiplicative
to the algebra multiplication). You will find that people often define normed algebras by
insisting that the norm be submultiplicative, and, indeed, most of the normed algebras that
arise in practice have “naturally defined” norms that are submultiplicative to begin with — but
that is not an essential part of the theory. In particular, the norm we defined in  is   
trivially submultiplicative.

§5 Baire category

Metric completeness is what allows constructions by successive approximations. In the 1920s
a number of startling results, soon to be discussed, were proved by this means, and in the early
1930s Saks pointed out that the several complicated constructions that had been used could be
avoided, or at least consolidated into one argument, by appealing to some older ideas of Baire.
Let me first give a few familiar definitions.

Definition 5.1. Let  be subsets of the topological space .  is  if   dense in 
    cl . Equivalently, any closed set that includes  also includes ; or, any open set that

meets  must also meet . If  is a metric space, yet another way of expressing the same  
situation is that every point of  is the limit in  of a sequence of points of . 

A subset  of  is  (in ) if  is the only open set of  in which  is dense;    nowhere dense
that is, the closure of  has empty interior. Equivalently, the interior of the complement of  
(the same as the complement of the closure of ) is dense in . A set is nowhere dense if it is 
included in the complement of an open set that is dense in .

Notice that the closure of a nowhere dense set is nowhere dense by definition, and that any
subset of a nowhere dense set is nowhere dense.

A subset  of  is  in  [or, sometimes, is ] if it may  of the first category of Baire meagre
be expressed as a countable union of nowhere dense sets. Otherwise, it is of the second
category of Baire residual. A subset  of  is  if  is of the first Baire category.   

Notice that, from the definition, a countable union of sets of first category is itself of first
category. At first sight this seems to suggest that the class of such sets must contain some
rather “large” sets; it is not clear that the second category contains any non-empty sets at all.
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Lemma 5.2. Let  be a complete metric space, and suppose that  is a       

decreasing sequence of closed metric balls, where  is a sequence of positive numbers 
tending to . Then . Indeed, it is a singleton.     




 

Proof. If , then , so . Hence  is a                            
Cauchy sequence. Since  is complete, . But, as  for ,                

and  is closed, therefore , and this is true for any choice of :            
    




  .
Suppose . There exists  such that , but            




  

 

this contradicts . So  must be a singleton.                          
  

Proposition 5.3. Let  be a non-empty open set in a complete metric space . For   
        , let  be open in  and dense in . Then  is also dense in . 

 

Proof. Let  be any open set that meets . We wish to show (see 5.1) that  must also meet  





      .  Take any , which is non-empty and open; there is, therefore, some
              such that . By hypothesis,  is dense in , and so
                   

 
  ; thus, there exists , which is open. In turn, there

is  such that  and .           
 
            

Suppose that  (where ) have been chosen, and                   

         
 
          ,

for . Then (as , and  is dense in ) there is some                

 

               
 
    , and in turn there is  such that  and

            

  . The construction may be carried out inductively.

Now, for each , ,                         
  
     

and of course , so that . By 5.2,  con-         
 
 



         

tains a (unique) point . However,  for each , so that , and            

 

 
also ,  so that .              


 

   

Theorem 5.4. (The Baire category theorem.) A non-empty open set in a complete metric
space  is of the second category of Baire in . 

Proof. Suppose, instead, that the non-empty open set  is a countable union  of no- 





where dense sets. Thus cl , and cl . But              
 

  
    cl  is open and dense in  for each  (this being another formulation of “nowhere 

dense”; see 5.1); hence, 5.3 gives a contradiction. 

This is the form in which the Baire category theorem is customarily stated, but 5.3 easily
yields a little more. If we regard the open set  as a metric space in its own right, a subset of
  is of the first category in  if and only if it is of the first category in . **** In this sense,
  is of the second category in , as well as in . That is trivial; but, more substantially, any
set of the first category in  has a relative complement in  that is dense in . The word  
“residual” is sometimes used to mean a set whose complement is of first category; thus in a
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space which is a non-empty open subset of a complete metric space, any residual set is dense.
[Such a space will often not be a complete metric space in its own right.]

There is a second version of 5.4. Instead of 5.3, one may use 3.16  (the fact that the(b)
intersection in 5.3 is a  is not needed to deduce 5.4). The proof is in essence muchsingleton
the same, and the result is the following.

Theorem 5.5. Let  be a regular locally compact topological space. Any non-empty open
subset  of  is of the second category of Baire in . *****   

In this case too,  will be of the second category of Baire in  itself. If I had discussed 
the subspace topology, the statement would be trivial, because  is also regular locally
compact. The similar result for an open subset of a complete metric space was not so
immediate, since the open subset is not itself complete (it is “locally complete”, however,
which is all that is really needed for 5.4).

5.3 constructs a point of  by successive approximation. (This cannot be   





said of 5.5, but it is a far less interesting result.) A rather non-trivial example of the way in
which one may use the idea is the following.

Theorem 5.6. The set of continuous functions  that are non-differentiable at  
every point of  is residual in .    

This is one sense in which the “everywhere non-differentiable” functions are very much
commoner than the others. I shall not give all the details of the proof.

Proof.  Given , let  be the set of functions  such that        

              (18)

for . It is an open subset of . (Check this.)          
Let . This is also open, as a union of open sets. But it is also    

 dense
in . I shall only sketch the proof.  

Take any  and . Suppose .  is uniformly continuous; so           

there exists  such that  

              .

Construct a function  to agree with  at the points , , and to have a        
 

straight-line graph between adjacent points. Then  too, and the slopes of     


the straight-line segments will not exceed  in absolute value.

Add to  another piecewise-linear function  which oscillates, its vertices being at the 

points . The slopes of the segments here are ; thus the        

slopes of the segments of  are at least  in absolute value, and ,           


where . But , and so . This proves                  
 

that  is dense in , as asserted.    
By the Baire category theorem,  is dense (in fact residual) in .




   
However, suppose  is differentiable at . Then, as , the quotients        
(18) for which  tend to , and so are bounded. This evidently            

implies that . So the set of functions that are everywhere non-differentiable  





includes the residual set , and is itself residual.



 

Following the proof of 5.4 step by step, one may construct specific examples of every-
where non-differentiable continuous functions (such as the familiar example of Weierstrass),
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but the argument from Baire category gives a defensible form to the vague general statement
that, amongst continuous functions, the nowhere differentiable continuous ones are in a sense
“usual”, and differentiability even at a single point is “unusual”.

There is a more precise sense in which this is true. The functions that are somewhere
differentiable form a set of Wiener measure zero in ; in effect, there is zero  
probability, in a fairly natural sense, that a continuous function on  will have even one 
point of differentiability. [In general, there is a close analogy between “measure zero” and
“first category”, but they are different concepts. There are sets of first category in  that 
have Lebesgue measure ; their complements will be of second category and of measure . 

§6. The Stone-Weierstraß theorem.
The result of Weierstraß is often stated in two separate forms. The first is that

if  is a compact interval in  and  is continuous, then  is uniformly        
approximable on  by polynomials; for any , there is a polynomial  such that    

          .

Alternatively, for any continuous function  such that , there              
is a “trigonometrical polynomial”  such that . By a            
trigonometrical polynomial, I mean a function of the form

          

        
   

  

cos cos cos
sin sin sin (19)

for some complex constants  and some integer .                    
This theorem, in either form, was originally proved by Weierstraß around 1885, and many

proofs have been given by later mathematicians. There are generalizations to higher
dimensions, and obvious questions, such as “for a given  and , what determines how high 
the degree of  must be, or what the coefficients must look like?”, that have been much
studied. But M. H. Stone, in 1948, pointed out that the pure approximation theorem, as
distinct from questions of closeness of approximation, can be proved rather straightforwardly
in a very general context. For many purposes his version is the most convenient, and it has
become one of the most often cited of all theorems of abstract analysis. There are cleverer
proofs than the one I shall give (which is Stone’s in all essentials), but they assume much
more. We need some preparatory ideas, of which the first is an often useful elementary result.

Theorem 6.1. (Dini’s theorem.) Let  be a compact topological space, and  a sequence  
in . Suppose that  tends pointwise  to . Then            monotonically
    .uniformly

The limit must be known to be continuous and the convergence must be monotonic.

Proof.  By considering  instead of , we may as well assume that . Take any         

                  , and define, for any , . This is open in , as

        is continuous. For any , there is some  such that , so 
    


 . As  is compact, there is a subcover consisting of finitely many of the

sets ; let  be the largest index appearing in this subcover, so .       
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Now, if , and  is any point of , there is some  for which ,           
and so . That is, ,                           
or  uniformly on .    

Lemma 6.2. The function  may be uniformly approximated by even       
polynomials with zero constant term.

Proof.  Define a sequence  of polynomials by induction, as follows. 

                  



  . (20)

It follows that each  is an even polynomial (only even powers of  appear) with zero  

constant term: , , and so on.          
 
 

  

Suppose that  for  (which is certainly true for ). Then (20)               
shows that  for . Furthermore, again for ,               

              

           
   




 

   
      ,

(21)

and so  for  too. By induction, then, for each  and ,                 
            .

Hence, for each individual ,  increases monotonically to a limit .          
Suppose that . Then by (21), for any ,  and               

       

  ,

which is absurd for , as . Hence, , and  for                     
          . As each  is even, the same is true for . The stated result now

follows by 6.1. 

Remark 6.3. There is an alternative proof of the above Lemma if one is willing to assume the
binomial theorem for fractional exponent, specifically for exponent , viz. that



           
       

 
       



    

for . This is not, however, an entirely simple result. (It is even true for ,       
but that is still more difficult.) The series is uniformly convergent for , if .        

Assuming these facts, and given , we may expand  by the


    
 

 



 




binomial series. It converges uniformly for , i.e. for
 

     
 

 

  




 


       . Take , and then
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may be approximated uniformly in  by polynomials in . In particular, there will be a  

polynomial  such that  for . Then .                   
       

Set , an even polynomial with zero constant term. For ,             

        
 

 

                   

         
    

    

  
     

  

  

 

     



.

So  will approximate  uniformly on  within , which is good enough.       

The idea of Stone’s argument is that  is a  as well as having the other    lattice
structures we mentioned above.

Definition 6.4.  Let . The of  and  is , defined by                 join 

         max ,

and the  of  and  is , defined bymeet          

         min .

These are of course the lattice-theoretic names and notations for operations that are
otherwise familiar. They are clearly commutative and associative. To complete the definition
of a lattice, one would need to know that  and  are  :  idempotent

                & ,

and that they satisfy the : . Theseabsorption identities             
properties are obviously satisfied, so that  is indeed a lattice in the algebraic sense.   

Definition 6.5. A subset  of  is a  if, for any , both               sublattice
and .    

We shall not need to go into the algebraic theory of lattices, and indeed we could describe
 ,  simply as the maximum and minimum, or as the  and . [Inupper envelope lower envelope
principle, one might define the upper or lower envelope of any class of functions in :   

    
     

                sup sup  ,

but the results of these operations need not be continuous, i.e. in , unless  is finite,    
in which case they can be expressed by repeated application of  and .] 

Lemma 6.6.  For any ,      

 
 
 
 

           

          

 
  . ******* 

Definition 6.7.  Let .  is a of  if it is a vector subspace           subalgebra 
over  and, for all , their product  also belongs to . [We do not require  to       
contain the constant functions, and therefore it need not have an “identity” element.]

A subset  of  is said to , or to be , if, for any     separate points separating
             such that , there is some  such that .
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Lemma 6.8. Let  be a subalgebra of . Then , its closure with respect to the     cl
norm in  (see ), is also a subalgebra.    4.3

Proof. Suppose that cl  and . There are sequences  and  such           

that, for each ,  and , ; that is, ,                       
      . We may omit some terms at the beginning, and renumber, so as to ensure that
       1  for all , and then, for all ,

                     

However,  for each  (as  is a subalgebra), and               

    
   

     
    

   
 

         

           

         

            

               

 

 

    

  

 

   



0 ,

         

Thus,  are limits of sequences in , namely of .                      

Lemma 6.9.  If  is a subalgebra of  and , then .             cl

[Here  denotes the function in  whose value at  is .]           

Proof. If necessary, multiply  by a non-zero scalar to ensure . Take any ; by       
6.2, there is an even polynomial  with zero constant term such that  for       

  
            , and so, for any , . Thus   



 , (22)sup         


the strict inequality applying because of 3.15  the supremum is  for(a) —          

some suitable .  
     may be interpreted in  in an obvious way. If the polynomial  were given by

          
   

(in fact the coefficients of odd powers are all  in this case), then

            
    .

Thus,  for each . Thus (22) tells us        

        


which shows that  and completes the proof.      

Corollary 6.10.  Let  be a subalgebra of . If , then .                 cl
In particular, if  is a closed subalgebra and , then ; that is, any            
closed subalgebra  is also a sublattice of .    
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Proof.  By 6.6, 6.8, and 6.9. 

Lemma 6.11. Let  be a sublattice of . Suppose that  and that, for           
any two points  of  and for any , there exists some  such that       

             . (23)

Then .  cl

[In other words: if  may be approximated at  by elements of the sublattice, pairs of points
then it may be approximated on the whole of . This is Stone’s crucialuniformly 
observation.]

Proof.  Fix , and, for given , let  be such that                 
and . Let      

             ;

this is an open set in  containing both  and . Hence, holding  fixed,          
is an open cover of , and there is a finite subcover  say. Let       

             
.

For any , there is some  such that , and then         

          . (24)

On the other hand, for any  the choice of  for each  gives    

               min
  

 ,

as each  was chosen so that , and so       


               .

But  is an open covering of , so it has a finite subcovering      
         . Let

            
,

and then  for all . But also  for all , because this            
inequality is true for each  individually, by (24). Hence  for all ,      

   
or , where .       

Since such a  may be constructed for any , it follows that cl .       

Theorem 6.12. (M. H. Stone.) Let  be a compact topological space, and  a separating 
subalgebra of . Either  is dense in , , or else there is a              cl 
point  such that  consists of all the functions in  that vanish at .       cl

Proof. Suppose first that there is no point at which all the functions in  vanish. Then, if
                in , there are functions  such that  (  separates     

points) and .       
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There exists  such that . Indeed,  may be taken for ,           

unless either  or . If  and consequently , let                  

                       be such that , and take .          

It follows that , , and . If                    

    , argue symmetrically.
Suppose . There exists  such that  and . To establish           

this, try setting ; it will suffice if  satisfy            

               .

As a system of equations in  and , these have a unique solution, since the determinant of the 
coefficient matrix is .    

 By 6.10, cl  is a sublattice of . From this and the previous paragraph, the    
hypotheses of 6.11 hold with cl ; indeed, (23) holds with  and     
            . So any member of  is in cl cl cl cl ;  is dense. 

This leaves the case where there is some point  such that every function in   
vanishes at . Let  be the set of functions of the form  for  and , by         

which I mean the function defined by  for each . It is easily          
checked that  is also a subalgebra of ; it obviously includes , and so separates      
points; and there is no point of  at which all its members vanish. From the first case, above,
cl . But it is clear that cl  can contain only functions that vanish at .         

Suppose , , and . There exist  and  such                    
that . But then , and so                                

 

                      
  .

Therefore, any continuous function vanishing at  belongs to the closure of .  

Corollary 6.13. Let  be a compact topological space and let  be a separating subset of 
     . If there is no point at which all the functions in  vanish, then any continuous
function  may be uniformly approximated on  by polynomials with zero constant  
term in the functions of . If all the functions in  vanish at some point , then any   
continuous function vanishing at  may be uniformly approximated by polynomials with zero
constant term in the functions of , and any continuous function may be uniformly
approximated by polynomials in the functions of  that may have non-zero constant term.

Proof. The set of polynomials described is in each case a separating subalgebra. So this is just
a rephrasing of 6.12. 

This Corollary instantly yields Weierstrass’s theorems. For the first theorem, take
              , and let  be the singleton , where  for all .

Now take , the unit circle in the complex plane , and let         
                    exp . A continuous function  such that
      , such as was considered in the second version of Weierstraß’s theorem, may

be “factored through” ; that is, there is a unique continuous function  such that    
       . In this way, we reduce the problem to one concerning . The function 
cos cos          on  corresponds to  on : , and similarly   

sin   corresponds to . In any case, the trigonometrical polynomials (19), regarded in

this way as continuous functions on , form a subalgebra of . It separates points;    
indeed,  and  are sufficient for this. So, by Stone’s theorem, any continuous 
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function  may be uniformly approximated by real linear combinations of the 
functions  and  for , or, equivalently. any continuous function         

               such that  may be uniformly approximated by
trigonometrical polynomials.
Remark 6.14. The remarkable things about Stone’s theorem are its generality and its element-
ary character. They are related, of course, for a result so general is unlikely to involve “hard
analysis”. But, as a consequence, it cannot answer any of the hard questions that arise in
specific instances, which earlier proofs of Weierstrass’s theorems, for instance, may give some
information on. As an example of what I mean, consider the function ; we know there iscos
some polynomial  in  such that  

             cos ,

but it is reasonable to ask, for a given , how small the degree of  may be, or how large its 
coefficients may have to be. Stone’s theorem can give no answer, as is inevitable in a result
which applies to any continuous function whatever. More specialized arguments (for instance
from the cosine series) can be used; but they will involve “hard analysis” at some point.

The other obvious defect of Stone’s theorem is that, in using the lattice structure of a
subalgebra, the proof is restricted to the real case. Not just the proof fails, however; the result
itself is untrue for complex algebras of functions.

Let , and consider . It has a subalgebra  consisting of the restrictions to       
  of complex polynomials , with . The                      

 

mapping  is in . However, consider the complex contour integrals:        

  
  

        



 ,

whilst, for any polynomial ,  (because  is defined and holomorphic on     


the whole of ). It is therefore impossible to approximate  uniformly on  by complex poly- 
nomials. If  for all , then, by the “fundamental estimate”,       

                         
  

,

which is absurd if . To obtain an analogue of Stone’s theorem in the complex case, an  
extra hypothesis is necessary.

Definition 6.15. Let  be a complex linear subspace of , where  is a compact     
topological space.  is  if, for any , the function  defined     self-conjugate  
by

     

also belongs to .

Theorem 6.16. (Stone’s theorem, complex version).  Let  be a compact topological space,
and let  be a separating self-conjugate complex subalgebra of . Then either the    
closure of  in the supremum norm is , or there is a point  such that the       
closure of  consists of all the continuous functions  for which .        



28

Proof. If , then , and . The real-                  
 

valued functions in  form a  subalgebra  of , which must separate points: if  real 

           , where , then either  or .
Suppose that, for any , there is some  with ; then either       

       or . By 6.12, the closure of  in the uniform norm is the whole

of . Take any ; then, for any , there exist  such that                 

            
 
   .

Consequently , and .               
Finally, suppose that, for some ,  for all . In this case the closure         

of  consists of all real-valued continuous functions on  that vanish at , and, as before,  
the closure of  must consist of all  such that .            

Corollary 6.17. Let  be a separating subset of . Any  may be           
uniformly approximated by complex polynomials in the members of  and their conjugates.
If, for every , there is some  such that , then the polynomials in       
question may always be chosen to have zero constant term. 

There is a further extension of Stone’s theorem. As it stands it cannot apply to continuous
functions on , which is not compact. There is a trifling modification of the theorem that does
work in such cases, but it requires a brief introduction.

Definition 6.18. Let  be a topological space. Define  to be the set , where    
   , with a topology whose open sets are the open sets of  and the complements (in
   ) of those sets that are both closed and compact in .

It is an easy exercise to show that  is a topological space, and that it is compact. It is

called the  or  of , since it isone-point compactification Alexandrov compactification 
obtained by adding a single point “ ” to  whilst keeping the same subsets of  as open.  
[There is a slight logical difficulty in demanding that . But, for instance, there must be a  
subset of  which is not also an element of , since by Cantor’s theorem  has more    
elements than ; and we could call it . It is unimportant what  is, provided it is “new”.]  

Definition 6.19. A continuous function  is said to  if, for every   vanish at infinity
          , the set  is compact. Such functions form an algebra over . 

Lemma 6.20.  If  is continuous, then it vanishes at infinity if and only if there  
is a continuous function  such that  and . Furthermore,            
   is unique, given . 

It follows that such functions  are bounded, form an algebra  under pointwise      
operations, and can be normed by a supremum norm as usual.

Proposition 6.21. Let  be a subalgebra of  which separates points; in the case      
    , is self-conjugate; and, for any , contains an element that does not vanish at
       . Then any  may be uniformly approximated on  by elements of .   

Proof. Extending each function in  to , we obtain a subalgebra of  which      

separates points — and all its members vanish at . The result follows from 6.12. 
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[The hypotheses can, in fact, only be satisfied if  is locally compact.***]

Example 6.22. Let . The function  vanishes at infinity on .  may     exp 
be the set of polynomials in , which itself is everywhere non-zero and separatesexp

points. Thus,  can be uniformly approximated on  by polynomials in .    

The main limitation of Stone’s theorem is its restriction to  of functions. As analgebras
example of the sort of question it does answer, consider this. Suppose we have a sequencenot 
           of distinct positive numbers. Do the functions  span    

a dense vector subspace of ? Weierstraß’s theorem (for polynomials) says the  
answer is positive if  is an arithmetic progression (or a rearrangement of    
one), but, for instance, is it positive if  for each ? [The answer to this question is   

known; it is a theorem of Szász from about 1918. But the proof is not easy. There is another
proof by Paley and Wiener in their book. Problems of this kind are not entirely without
practical significance.]

§7. Equivalents of the axiom of choice.
As in 441, I do not wish to spend much time on the axiom of choice as such, because it is
presumably fully treated in logic courses. But in 441 I made use only of the “pure” axiom,
which happened to be convenient there, and in other contexts there are other statements that
are more useful and in a sense equivalent. The “pure” Axiom of Choice is the assertion that,
for any set  whose members are non-empty sets, there is a function  such   



that  for each . (In other words, one may “choose” one element, by the     
“choice function” , from each of the sets . Notice that  in  is simply the value    
of the variable; the arguments of  are members of .) 

The prominence of the Axiom of Choice is due, historically speaking, to its asserting the
existence of a “choice function” even in cases where it is inconceivable to construct one in any
“practical” way. At the merely intuitive level, I find this unexceptionable, and perhaps no-one
would have worried very much about it had not Russell constructed his paradox and thereby
demonstrated the pitfalls of naive set theory. We do know, now, that the axiom is consistent
(as is its negation) with the other customarily accepted axioms of set theory. However, there is
a large number of statements which were proved quite early on to be equivalent to the Axiom
of Choice, in the sense that they may all be derived from each other via standard set theory. I
shall not give proofs; you can find a concise discussion in Kelley’s book General Topology
and in many other places, and, in truth, we do not need more than a smattering of information.

A. The  is the assertion that, if  is an indexed classMultiplicative Axiom     
of non-empty sets, the product  (or ) is also non-empty.

    
The point at issue here is the definition of the Cartesian product of a general indexed

family, not just of finitely many sets . The usual convention is that        


 

is  the set of functions  for which  for each .by definition          
 

(Thus,  is the set of functions  for which  and
              

   . It is clear that this is, as it were, “functionally equivalent” to the definition of
     as a set of ordered pairs, although it is  the same.) This being so, thenot
Multiplicative Axiom, as I have stated it, is almost a rephrasing of the Axiom of Choice, as I
have stated it, and they are almost trivially equivalent. [What is the difference between them?]
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B.  is the assertion that, if  is an indexed class ofTikhonov’s theorem     

topological spaces and each  is compact, then the product topological space  is  




also compact. A full statement of this theorem would demand a more detailed discussion of
the product topology than I wish to give here (see 10.24).

The theorem is equivalent to the Axiom of Choice. (It is quite easy, with a little knowledge
of topology, to see that it implies the Multiplicative Axiom; the converse proof is non-trivial.)

C. The  (also known as , or indeed Well-Ordering Principle Zermelo’s Axiom Zermelo’s
Theorem) states that any set may be well-ordered.

A on a set  is a binary relation  on  which is reflexive ( ) andpartial order      
transitive ( & ), such that & . (The last                  
condition excludes trivial examples.) A  on  is a partial order such that everywell-ordering 
subset of  has a least element.

The equivalence of the Axiom of Choice and the Well-Ordering Principle is well-known; in
essence it goes back to Zermelo (1908), and may be found in many places — a sketch is in
Kelley’s book, for instance. The WOP is interesting because it allows one to carry out
arguments by so-called transfinite induction, which extends ordinary induction, and so raises
all the problems of transfinite arithmetic.

D.  is perhaps the most generally useful of these statements.Zorn’s Lemma
Let  be any partially ordered set. A  in  is a subset  that is totally ordered    chain

by  (that is, if , then either  or ). An  for  is an           upper bound
element  such that, for any , . A  of  is an element         maximal element
            such that . (Notice that it need not be an upper bound for .

For instance, let  be , with  as . Then  and  are           
both maximal in , but neither is greater than the other.) The partial order  on  is  
inductive if every chain in  has an upper bound. Zorn’s Lemma then says that

an inductive partial order on a non-empty set has a maximal element.

The statement is superficially plausible. If there were no maximal element, then any   
must allow a greater element, and one could construct a  of elements of  that is asequence 
chain and must have an upper bound. If a large enough chain exists, its upper bound should be
maximal in . This is where the Axiom of Choice is needed. Again, Zorn’s Lemma is
equivalent to the Axiom, and proofs may be found in many places.

It should be emphasized that  has to be a for Zorn’s Lemma to work. (Otherwise one set 
can easily derive paradoxes such as Cantor’s or Burali-Forti’s.)

The usefulness of Zorn’s Lemma, which may at first sight seem decidedly over-elaborate,
is precisely that it can be applied in such diverse situations by suitable choices of the partially
ordered set. There are at least three other common statements equivalent to the Axiom of
Choice (the Hausdorff maximal principle, Kuratowski’s maximal principle, and the minimal
principle) that are very similar to Zorn’s Lemma and in fact are special cases of it.

To convince you that Zorn’s lemma is useful, here are four remarkable applications of
what is sometimes flippantly called Zornification.

Lemma 7.1. Let  be any field. Any vector space  over  has a basis (in the algebraic 
sense, i.e. a linearly independent spanning set). Indeed, any linearly independent subset of 
is included in a basis.
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Proof.  Suppose  is a linearly independent set in  (for instance the null set). Let  be the  
class of linearly independent sets in  that include . Clearly . Define the partial order    
in  by letting “ ”  mean .         

Now suppose that  is a non-empty chain in . Define 

  


.

We shall show that  is itself linearly independent. Suppose, then, that  are        

distinct members of  and , where .                         

For each , , there is some  such that . But, as  is a chain,             
we can arrange the members  in “ascending order”; after rearranging and renumbering,

                      . But this means that , and, as  is linearly
independent,  implies that . This                         
proves that  is linearly independent, , and  is obviously an upper bound for  in    
 (in fact the least upper bound); in particular, .  

By Zorn’s Lemma, there is a maximal element  of , i.e. a maximal linearly independent 
subset of . Suppose . Then  cannot be linearly independent (or  would       
not be maximal); so there must exist distinct elements  and scalars         

                         , not all zero, such that . One of the s
with a non-zero scalar coefficient must be , since otherwise we have a non-trivial linear
relation amongst the elements of . Suppose, for instance, that it is . Then 

             
     .

So  is a linear combination of the elements of . 
Hence,  is both linearly independent and spans .  

It will be observed that the crucial point in showing that the partial order on  is inductive
is that “linear independence of ” is equivalent to “linear independence of all finite subsets of
”. There is yet another statement equivalent to the Axiom of Choice, the Teichmüller-Tukey
Lemma, which refers explicitly to properties “of finite character” like this.

Lemma 7.2. Let  be a ring with an identity , and suppose that  is a proper left ideal in  
 . Then  is included in a maximal proper left ideal.

Proof. Let  be the class of all proper left ideals that include . Partially order  by inclusion: 
           is to mean . If  is a non-empty chain in , then  is also an ideal  



in . Indeed: if , then there are  such that  and ;             
     

but either  or ; if, for example, , then , and so                  

                
 

 ; if  and , there is some  such that
          , and . Of course . The one difficulty is in seeing 

  

that  is a left ideal. However, as each  is a proper left ideal, ,
     proper 

and so .  


Hence, the partial order on  is inductive, and by Zorn’s Lemma it has a maximal element,
which is precisely a maximal proper left ideal of . 

It is usual to say “maximal left ideal” rather than “maximal proper left ideal”, since, if 
were allowed to be called an “ideal”, it would itself be the only “maximal left ideal”. The
above result does have serious applications in analysis; but the next one is more purely
algebraic (at least at the moment).
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Definition 7.3. Suppose that  is a commutative ring with identity . The  of    radical 
is the set of all nilpotent elements of :

             .

An ideal  of  is  if a product  (where ) can belong to  only if at least       prime
one of the factors  belongs to . [I do not claim there are any proper prime ideals.]  

The radical  is trivially an ideal in , because of the commutativity of . And  is a   
prime ideal if and only if the quotient ring  is an integral domain.

Lemma 7.4. The radical of a commutative ring with identity is the intersection of all its
prime ideals.

Proof. If , then  for some . Take any prime ideal . Then ,            
which clearly implies . Hence , and  is  in the intersection       included
    of all the prime ideals, .

Now, suppose that . This means that all powers of  are non-zero.   
Let  be the class of all ideals of  which contain no power of ; partially order  by  

inclusion. As in 7.2, the union of any chain in  also belongs to  and is, therefore, an upper 
bound for the chain in . By Zorn’s Lemma, there is a maximal element  in . This means 
that any ideal that strictly includes  is not in  and must contain a power of . 

Suppose  and . Then the ideal generated by  and ,       

             & ,

must contain  for some , , ; and, similarly, for some             
   

                ,  for some , , . Multiplying,
   

                 
        .

However, , and it must, consequently, be the case that . Hence,     

        & ,

which shows that  is prime.
Thus, if , there is a prime ideal  with , and : .             

The last example is definitely related to analysis.

Definition 7.5.  Let  be a compact topological space, and let  be a non-empty subset of 
      . A  for  is a closed subset  of  with the property that, for everypeak set
             , there exists a point  such that .   sup

In view of 3.16 , this is equivalent to(a)

sup sup                 .

  is a “peak set” in the sense that the moduli of the functions of  attain their suprema on .

Lemma 7.6. There exists a minimal peak set for .
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Proof. Let  be the class of peak sets. Certainly . Define , for ,            

to mean  (the other way round from the previous examples). Let  be a chain in .     
Take any , and set . By 3.5,  is closed in .               

 sup  
Thus, for any ,  by the definition of a peak set. 3.16  implies that       (b)
           

 ; and, as this holds for any ,  is also a peak set for . It 
is therefore an upper bound for  in . The result follows by Zorn’s Lemma.  

§8. Linear spaces.
As before, let  denote the field  or the field . Functional analysis began with Hilbert  
spaces — in fact with the space  — and only later did Banach and his collaborators point

out that many theorems could be proved more generally. The original Hilbert space proofs still
sometimes appear in books that deal only with Hilbert spaces.

I have already assumed you know the axioms for a . Following thevector space over 
modern custom, I shall denote the “zero vector” in a vector space simply by , distinguishing it
neither from the zero vectors in other vector spaces nor from the scalar “zero”. In practice the
context almost always indicates what is meant, and the device some authors have employed of
writing “ ” for a zero  has always seemed to me rather absurd — why  rather than ,  vector
say?

There are four elementary ways of obtaining “new vector spaces from old”. I shall omit the
details, which are rather lengthy, since the definition of a vector space is itself rather long.

1) A  of a vector space  is a subset  of  which contains the zerovector subspace   
vector of  and  has the property that, for any  and ,  too.               
It is then a vector space in its own right, with the same definitions of addition and scalar
multiplication as for .

2) If  are vector spaces, the Cartesian product  can be given the       

structure of a vector space by setting . The                              

resulting vector space is the  of  and , sometimes denoted .direct sum       

There are two ways of generalizing this idea to larger classes of vector spaces.
2a) Suppose that  is an indexed family of vector spaces over . Linear     

operations in the Cartesian product  (see §7) can be defined “componentwise”  
exactly as above, and this gives the “direct product” (or “full direct product”) of the family,
sometimes written .

  

2b) But there is also a special vector subspace  of . It consists of those 
 

elements , where of course  for each , for which , the zero               
vector in , except for  indices : finitely many 

                
   

# .

Notice that the set  will usually be different for different .  is             

called the “restricted direct product” or “direct sum” of the family, and sometimes denoted
  

   . (The word “product” and the sign  in the one case, and “sum” and  in the
other, are due to category-theoretical considerations we need not go into here. Indeed, in
categorical terms,  is a coproduct.)
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3) If  is a vector subspace of , define an equivalence relation  on  by agreeing   
that  means . (It is trivial that this is an equivalence relation.) The set of       
equivalence classes becomes a vector space if we set

           ,

where  denotes the equivalence class of . The resulting vector space is the     quotient
space of  by   , usually denoted . The mapping  is called the      
projection of  on to . 

Definition 8.1. Let  be vector spaces over . A mapping  is called a         
linear map linear transformation or  if

                      .

It is a curiosity of mathematical notation that  is often abbreviated to  in this context. 
[I suspect this is because of the close relation with matrices and their multiplication.]

If ,  is often called a . If ,  is called a          linear operator in  
linear functional on . (This curious name was invented before the theory was clarified. A
“functional” was a scalar-valued mapping whose domain was a set of , in the daysfunctions
when the idea of a “function” was still restricted to things that had as domain a subset of 

or .  The name has survived because it is a convenient way of making the distinction.)

        is the set of all linear maps from  to . In category theory it might be
denoted Hom , “Hom” being the set of morphisms in the category of vector spaces.   

Lemma 8.2.  If  are vector spaces over , then  is also a vector space        
over , with the “pointwise linear operations”

                                   . 

It is worth pointing out that the  of  is essential here.commutativity 

Definition 8.3. In particular, the vector space  is called the  (or   algebraic dual
algebraic conjugate) of . We shall denote it, for the moment, by . 

The dual itself has a dual , which we denote  and call the  or     algebraic bidual
algebraic second dual algebraic second conjugate space or  of .

There is a natural mapping , given by    

            . (25)

It is easy to check that  is indeed a linear functional on , i.e. an element of .   

For some purposes it is helpful to write  as ; then  is a mapping     
     referred to as the . There is a second dual pairingdual pairing
     , , and then the definition (25) is equivalent to   

       . (26)

Lemma 8.4. The bidual map  is linear and one-one. It is onto if and only if    

 is finite-dimensional.
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Proof. The linearity of  follows from the definition of the linear operations in the dual spaces.
To prove it is one-one, we only need to show that .     

So, suppose  and . This means that, for any , ,              

or, by (26), . Thus, we can conclude that  if we can show that      

if , there exists  such that . (27)          

(This is argument by the contrapositive.)
A. Suppose, by 7.1, that  is a basis in . If , then  is a linear combination       

of elements of ; suppose, in this linear combination,  has non-zero coefficient .    
Define  by specifying its values on the elements of : , and  if          
      . The linear map  is constructed by linear extension from its values  

on , and . This establishes (27), and so  is one-one. [This could be proved      

slightly more simply by constructing  to include . But see below.] 
Let  be a basis in , if it is finite-dimensional. There is a so-called           dual

basis             
    in , where the functional  is specified by

          


      (the Kronecker :  when , ). (28)

If , then , because they agree on every                 
    

element of the basis in ; so the  span , and are easily seen to linearly independent too.  
 

Thus they form a basis in , whose dimension is therefore also . But then  must also   

have dimension . Hence, as  is one-one and ,  must be onto.     dim dim 

B. Now suppose that  is  finite-dimensional. Recall the basis  for  used above,  not
and consider the set  of those linear functionals  on  with the property that 
           is finite.  is a vector subspace of , but it is not all of , since there 

is a linear functional on  that takes the value  on all elements of . Now  has a basis ,    


by 7.1, which is included in a basis  for the whole of , again by by 7.1; and we may  

define  by setting it to be  on  and to be  on , and then              


extending it linearly to all of .

Suppose  for some . Then, by (26),  for all .                 

In particular, for any ,  by construction. However, construct            

   as at A above. , since it was constructed to be non-zero on exactly one element 
“ ” of , and . The contradiction shows that  cannot be in the image of .        

In fact, if the dimension of  is an  cardinal , the dimension of  is . This is   infinite  

not very difficult to prove, but requires some knowledge of the theory of cardinal numbers.
Linear functionals are of central importance, though it is difficult at first sight to see why.

Functional analysis began as an attempt to generalize well-known facts about linear
transformations of finite-dimensional vector spaces to infinite dimensions; and this entailed the
formulation of linear algebra in a basis-free fashion. The dual space is the “abstract” way of
describing the space of “row vectors” if the original space consists of “column vectors”. When
  is a  row vector and  is an  column vector, the matrix product  is ,          
and may be regarded as a scalar; thus we get the dual pairing that I denoted . The basis 
in the space of row vectors that is dual to the standard basis in the space of column vectors
(see (28)) is just the standard basis in the space of row vectors. But this easy correspondence
does not work if you start from a non-standard basis for the column vectors.

However, if  is infinite-dimensional, we have just seen that the algebraic dual of  is 
usually absurdly large; for this and other reasons, infinite-dimensional vector spaces are often
specified with a topology, and one considers the (or )  instead.continuous topological dual
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Definition 8.5. A  (over ), also called a , istopological vector space linear topological space
a vector space  over , together with a topology on  such that both the linear operations 

                       

are continuous (the products are given the product topology).
A  is a topological linear space whose topology is defined by a specificmetric linear space

metric. A topological vector space is  if its topology be defined by a metric. Itmetrizable may 
is  if its topology may be defined by a metric derived from a norm; and it is a normable normed
space if it has a specified norm that defines its topology. It is easily seen that a normed space
is a topological vector space with respect to the topology defined by the norm.

In practice, the distinction between a “metrizable” (or “normable”) space and a “metric”
(or “normed”) one is often treated rather casually.

Examples 8.6.  The examples that follow are not intended to be treated very rigorously.

(i) , where  is a compact topological space, is a normed space. See 4.3. The    
linear operations are defined “pointwise”, and the norm is the “supremum norm”, whose
characteristic property is that  in norm means “  uniformly on ”.       

(ii) , the space of -valued sequences  such that . Here      
   

      
the index . The linear operations are “coordinatewise”.  

If ,  is normed by .          
   

         
This expression is obviously “definite” and “homogeneous”. That it is “subadditive” is not

obvious (it is a version of Minkowski’s inequality). The case we shall be strongly interested in
is , for which subadditivity is easy and well-known.  

If , give  a metric: if  and , both                 
          

in , set

       
 ,

which must also converge and is indeed a metric making  a topological vector space.****

(iii) bounded , which consists of the  -valued sequences with supremum norm. 

(iv) finitely non-zero Let  consist of  -valued sequences,              
(the index  after which all terms are zero is allowed to vary with the sequence under
consideration), with coordinatewise operations. It is possible to define a topology on  with
the characteristic property that  converges to                 

  
     

if and only if there is some  such that  and  for all  and for all         


         , and  as  for each . 




(v) all Let  be the vector space of  -valued sequences, with the termwise operations. It 
may be topologized (as a topological vector space) by the product topology on ; I


 

have so far avoided discussing this topology, but in this case it may be defined by a metric:

        
 

   
     

 

 
      





 

 

  
   .

(The same topology may also be defined by very many other metrics; for instance, instead of
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the numerical coefficients , one might have any sequence  of positive numbers such  


that . The function  may also be substituted by other functions. One     
metric often given is .)              

       
         min

The characteristic property of the topology defined by this metric is that a sequence  
in , where , converges to  if and only if                 

  
     

 


     as  for each separate . ****

(vi) of compact support If , we say that  is  if there is a compact set  in    
     such that  when . Let  be the space of C  functions         

which are of compact support, with pointwise linear operations. There is a topology on   
with the characteristic property that  in  if and only if there are a compact set      
             in  and a natural number  such that  and  for any  when , 

and  as  uniformly on  for every . (Here  is the th           
  

derivative.)
This is reminiscent of . In both cases the topology is in fact the  of(iv) inductive limit

topologies on subspaces. Its formal definition is rather complicated, and I shan’t give it; but, in
particular, it is  metrizable. However, this is an important example, because it is thenot
beginning of Laurent Schwartz’s theory of “distributions” [not to be confused with probability
distributions!], which were invented to make sense of things like the Dirac -function and have
had very serious applications to partial differential equations.

(vii) Let  be an open set in . Let  be the vector space of functions     
that are holomorphic on , with pointwise linear operations. A set  is open if, for   
any , there are some compact subset  of  and  such that      

                .

This topology is metrizable, and its characteristic property is that  if and only if, for  

any compact ,  uniformly. We may meet it later.      

Whilst the above examples are all interesting in some way, the sequence spaces (ii)–(v)
may seem a little artificial. But, just as  has an analogous function space , and is(iv) (vi) (iii) 
vaguely related to , there are other function spaces that are of great practical importance. I(i)
shall not try to give a completely rigorous treatment of them, but I think it is worthwhile to
describe them in approximate terms, as they are the reason for much of the theory.

Example 8.7. Let  be a geometrically simple region in , let , and let  be      


the class of functions  which are “integrable in th power” (in modulus, that is):   

  


    , where the integral is an -dimensional volume integral. Again, this is a

complex vector space under pointwise operations; a norm on it may be defined by

        





(29)

Then  is a Banach space, often called the . 
 Lebesgue space with exponent 

Unfortunately, what I have just written is not entirely true. If we restrict attention to
bounded uniformly continuous functions and to a bounded region , the integrals definitely
exist, but the space is  complete. It is possible to give it a “completion” by a rather simplenot
abstract construction (one adds points corresponding to Cauchy sequences that do not
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converge), but, although one obtains a Banach space by this means, it is, obviously, no longer
a space of functions on , but a space of equivalence classes of sequences of functions.

The problem arises because the “limit”, in any appropriate sense, of a Cauchy sequence
   (with respect to the norm (29)) may not itself be integrable in the Riemann sense. This
was, in retrospect, one of the reasons why the Riemann integral had to be generalized. The
Lebesgue integral, on the other hand, enables one to integrate any function that is at all likely
to have an integral; and if one employs the Lebesgue integral, any sequence of functions that
are Lebesgue-integrable in th power and form a -Cauchy sequence -converges to a   

function in . 


However, the enlargement of the class of functions that may be integrated introduces
another lesser difficulty — some non-zero nonnegative functions have zero integrals, so that
the formula (29) does not define a  (it is no longer definite) but only a seminorm. Tonorm
overcome this objection, one considers the elements of  as  of  equivalence classes
functions, where the equivalence relation is “equality almost everywhere”, or, in effect,

         means   




After all this, one does obtain a genuine Banach space. Its elements are not, strictly speaking,
functions, but equivalence classes of functions. The theorem that , understood in this 



sense, is complete is often called the Riesz-Fischer theorem. (Riesz and Fischer proved it
independently of each other around 1907. I read somewhere that they met for the first time
more than twenty-five years later.)

The elements of  are commonly denoted as, and thought of as, functions, albeit 


with occasional acknowledgement that two of them are “equal” when the functions by which
they are represented are equal almost everywhere.

In several of the spaces I have listed, the real version also has an order structure, such as
we exploited in proving the Stone-Weierstrass theorem. In particular, it is sometimes a vector
lattice (crudely speaking, the “maximum” of two elements of the space is also in the space).
But notice that there are topological vector spaces that are not metrizable (that is, their
topologies cannot be defined by a metric), and a metrizable t.v.s. need not be normable. A
simple example is the space  of  above. It is easily proved that any open set which contains (v)
the origin in  includes a whole infinite-dimensional linear subspace. In a normed space, the
“open unit ball”  is an open set containing the origin, but it cannot include       
even a one-dimensional linear subspace.

Definition 8.8.  Let  be a vector space over . A metric  on  is  (or   translation-invariant
just ) if  for all .invariant              

A metric derived from a norm is necessarily invariant, and the other metrics described
above also are. An example of a non-invariant metric on  is, for instance,

   
 

     
     ;

it defines the same topology as the usual metric.

Theorem 8.9.  A topological vector space  is metrizable if and only there is a  sequence
    of open sets in  such that

  , and(a)   
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  for any open set  such that , there is some  for which .(b)        

If the topology of  is metrizable, then it may be defined by an invariant metric. 

The second half of this theorem (or rather a generalization of it to topological groups) is
sometimes called  the . I omit the proof. But, as a consequence, weBirkhoff-Kakutani theorem
shall always assume any metric that we use on a metrizable linear space is invariant.

Lemma 8.10. If two invariant metrics on a vector space  define the same topology, and  
is complete with respect to one of them, it is complete with respect to the other. 

 (In fact, both metrics will define the same Cauchy sequences. This is certainly not true for
non-invariant metrics.)

Definition 8.11.  Let  be a vector space over . An  on  is a function  inner product

       

such that the following conditions are satisfied for all  and :        

(a) (b)
(c) (d)

                 

           

   

 .

(If , the conjugation in  is to be ignored. When ,  ensures that  is      (a) (a)
real, so that  makes sense; and  and imply that .(c) (a) (b)             
Thus  is linear in the first argument and conjugate-linear in the second, or .)  sesquilinear

The pair  is called an .   inner product space

If  in 8.7,   is an inner product space, with    


    




as the inner product (I write  for the element of  which is the equivalence class of  


the function , but the distinction is, as I said, mostly not observed). The other standard
examples such as  and  are, in effect if not in strict logic, special cases of this. 

Lemma 8.12. Let  be an inner product space. Then the formula  defines a      
norm on . Furthermore, one has the Cauchy-Schwarz inequality: .          

An inner product space is always understood to be furnished with this norm, and in this
sense . But not every norm arises from an inneran inner product space is a normed space
product. Less obviously, there are normable spaces for which  norm describing the givenno
topology can be derived from an inner product.

Hence, there are topological vector spaces, of which are metrizable (have topologiessome 
that may be defined by a metric); amongst metrizable topological vector spaces,  aresome
normable; and amongst normable topological vector spaces, can be given an innersome 
product whose associated norm defines the correct topology.

§9. Completeness properties.
The notion of completeness may be extended to topological vector spaces in general, but I
shall only discuss it for metric linear spaces with invariant metrics. Indeed, the results I shall
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give do not generalize very easily to larger classes of space, and I think the versions I shall
give are the “natural” ones, however much they may have been extended since.

Definition 9.1. A complete normed space, as already mentioned, is called a  space.Banach
An inner product space that is complete with respect to the norm defined by the inner

product is a .Hilbert space
A complete metric linear space (with invariant metric) is a  space. Fréchet
[A Fréchet space is often defined as a complete metric space. We shall havelocally convex 

little to say about local convexity, which is not needed in the theorems below.]

Definition 9.2. Let  be a vector space. A set  is  if  whenever      balanced 
           and , where .  is  (in ) if, for any , there exists    absorbent

some  such that  whenever .         

“Balanced” is the same as other authors would call “star-shaped and circled”.
It is often convenient to use some abbreviated notations. If  and  are subsets of a 

vector space , we write  for ,  for &                   
and, similarly,  for & ; and, if , we write  for               
       . It is important to realize that, as these are operations on  of , thesubsets
“rules of algebra” do not necessarily apply. For instance,  and  are in principle not  
the same (although ) and  is  only if  is a singleton. But it is true       
that . Notice too that, if , both  and  are .            

If  is balanced, then, in particular, . If  is a topological vector space,  is     
open, and , then  is open. ****   

Lemma 9.3. Let  be a topological vector space.
(a) Any open subset of  that contains the origin is absorbent.
(b) If  is an open subset of  that contains the origin, there is a balanced open subset 

      that also contains the origin, and is such that .

Proof.  Let  be open, . Take any ; , the “zero” on the  being            right
the zero . Scalar multiplication is continuous at , so there exist vector        
and an open set  such that  

          & ,

and, in particular, . So  is absorbent.        
As addition is continuous at , there is an open set  such that        

          ;

as scalar multiplication is continuous at , there exist an open set  and       
a number  such that, for  and ,       

          & .

Define . Then  is open and balanced, and , and      
        

         . 
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Proposition 9.4. Let  be a linear mapping of topological vector spaces.   
Suppose that  is of the second Baire category in . Then, for any open set  of  with   
      , .int cl  

Proof. By 9.3, there is a balanced open set  in  such that  (and so        

        ), and  is absorbent. Take any  in . As  is absorbent, there exists, 
for any , some  such that , or . That is, .                  




Therefore,  being linear,

        
 

    .

But  is not of the first category, so at least  of the balanced sets  must have  one 

a closure with non-empty interior in . The same must hold for , so there are a point  
             cl  and an open set  such that cl , and then

               



      

   

 

cl cl cl
(by continuity of subtraction in )****

cl cl .

But  is an open set.     
 

In fact, the topology of  is not really essential here; we just need a balanced absorbent set
       such that . The substance of the argument is in .

Theorem 9.5. (The open mapping theorem.)  Suppose that  is a Fréchet space in the
sense of , and  is a linear metric space. If  is a continuous linear map9.1     
such that  is of the second category in , then  is open.  

Proof. For each , there is by 9.4 some  such that    


cl .  
 

        

Let , and if  have been defined, let . Then             
  

       min
         

                  as , and cl  for each .
Take any . Write . Thus cl . By 3.3,                  



             
 ,

and there exists  such that . Hence                
 

             .

If we have already chosen cl , take in the             


same way  such that , and let                
 

               . In this way we define sequences  and
                  

 by induction, so that, for each ,  and
             .

For each , let . Then, whenever ,                

              

            

     


  
   

   

   (30)
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Thus  is a Cauchy sequence in , and must converge in , let us say to ; and     

                         
     lim , so that — recall  —

                           
    . (31)

On the other hand,

                             ,

and so  as . As  is continuous and ,  too. [This                  

is the first time we have appealed to the continuity of .] So .   
Recall that  was any point of , and that  by (31). So we          

 
have shown that . Hence, for any ,            



                         
   , (32)

for any . This is the main task completed; now we finish off.  
Let  be any open set in , and suppose that . There exists  (depending       

on ) such that , by 3.6; and, by (32),      


           
  . (33)

Hence , which is an open set in .     
   

Corollary 9.6. With the above hypotheses, necessarily .  

Proof.  Indeed,  is an open set containing , so is absorbent in  by 9.3. So, for any  
              , there is some  such that , and  for some .   

Thus .      

Thus, if  is Fréchet and  is of the second category in the linear metric space , a  
continuous linear mapping  must in fact be open and onto . This forces the topology of   
to be the  defined by  (I shan’t go into the details here), and therefore:quotient topology 

Corollary 9.7.  With the same hypotheses,  must be complete.

Proof.  Suppose that  is a Cauchy sequence in . By passing to a subsequence (if  

necessary), we may assume that  for each , .                    
As  is surjective by 9.6, there exists  such that . If  has been          

chosen so that , choose  so that , using                  


(32). Thus, inductively, one forms a sequence  such that  and           


            for each . As at (30),  is Cauchy, so it converges to . As  is
continuous, . This suffices (if a subsequence of a Cauchy sequence con-     

verges, the whole sequence converges to the same limit).     

For convenience, I have referred to (32), but the result could be formulated in the form: if
     is a continuous and open map between linear metric spaces, and  is

complete, then so is  . It is only necessary to choose each  so that (32) is satisfied.
Although this result is not without interest, one wishes commonly to prove that  is open

by means of 9.5; and, to show  is of the second category, one would normally use 5.4
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and prior knowledge that  is complete. [There are metric linear spaces that are of the second
category without being complete.] In fact, the most often quoted version of 9.5 is
Note 9.8.  A continuous linear surjection of Fréchet spaces is open.

Corollary 9.9. Suppose that  is a continuous linear mapping between linear   
metric spaces, where  is complete and  of second category in ; and suppose  is   
one-one. Then , and the inverse mapping  which is, therefore,       
defined, is also continuous. 

This result is interesting from the viewpoint of category theory. A linear mapping between
vector spaces which is one-one and onto has an inverse  (of sets), which is also linear.mapping
A homomorphism of groups which is one-one and onto has an inverse mapping (of sets) which
is also a homomorphism of groups. But a continuous mapping between topological spaces
which is one-one and onto need not have a continuous inverse. 9.9 shows that this peculiarity
cannot occur for continuous linear mappings between Fréchet spaces.

Definition 9.10. Suppose that  is any mapping of sets. The  of  is the     graph
subset  of .          

According to the nowadays generally accepted definition of a mapping, the graph of  is,
therefore, just  itself. It is, nevertheless, fairly standard to speak in this context of the graph
of  to emphasize that one is thinking of a subset of .   

If  and  are metric linear spaces, then  is a vector space (see the reamrks at the    
beginning of §5) and has a metric given by (13). It is easy to see that  becomes a  
metric linear space, and that it is complete if  and  are both complete. 

Theorem 9.11. (The closed graph theorem.)  Let  and  be Fréchet spaces in the sense of 
9.1, and let  be a linear map. Then  is continuous if and only if its graph is a    
closed subset of the metric linear space .  

Proof.  Assume  continuous. If , then . Let .              
 

By continuity of , there exists  such that . Let            

                      min , and suppose that ; then ,  

so that  and , and, consequently, . However,               

                            ,

from which , or . Hence, any point not in  belongs to an open       
set (here ) which does not meet . This proves that  is closed.      
[This result holds for any continuous map from a topological space to a Hausdorff topological
space; it does not require linearity or a metric. Indeed, the general proof is easier.****]

Now suppose that  is closed in . It is clear that  is a vector subspace    
of , and, as  is complete, so is  as a metric linear space in its own right.      
The projection on the first coordinate, , is trivially          
continuous, one-one, and onto . By 9.9, its inverse  is also         
continuous. The projection  is also continuous. Thus the          
composition  is continuous, as required.           

The closed graph theorem is important because it suggests that some results might be
obtained on the hypothesis that the graph is closed, even though the mapping is not
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continuous or defined on the whole of . Although we shall not discuss problems of this kind,
they are very important, for instance in quantum mechanics, where it is essential to allow
differentiation operators.

The definition 1.8 of equicontinuity may be given a slightly different form; it is not
necessary that  or  be a metric space. 

Definition 9.12. Let  be a topological space,  a topological vector space, and suppose that 
         is a family of mappings . The family is described as  equicon-
tinuous at        if, for any open set  of  containing , there is an open set  of 
containing  such that, for every ,  (or, equivalently,            

       
 ).

This agrees with 1.8  if  is metric and  is a metric linear space with invariant metric. 

Proposition 9.13. Let  be topological vector spaces, and suppose that  is of second 
category in itself. For , let  be a continuous linear map. Suppose that,      

for each , the sequence  in  converges as  to , where           

           is linear. Then, for every , the family  is equicontinuous at .

As a consequence,  is also continuous.

Proof.  Firstly, it will suffice to prove that, for any open set  of  containing , there is an  
open set  of  containing  such that  (or ) for each . For then             



                      for each  and each .

So take such a . By 9.3, there is an open set  of  such that  and      

               , and a balanced open set  such that .
Suppose that . If ,  for some , and                     

               (as  is balanced). As this is not true, necessarily
                                , and so cl . Thus cl , or cl .

Take . Then , and, again by 9.3, there exists  such that       

          when . 

For such a , , and, as  is open and contains , there is some              

such that .           

On the other hand,  is an open set in  (and contains ) for each , so that      


 








     is also an open set in  containing  and must be absorbent: there exists
           such that  if .  







Putting the arguments of the preceding two paragraphs together,

                      min
 

 

 
 

  cl .

Thus,  is absorbent in , and . It is also closed (as each cl  is).        






 

Now,  is of second category; so there must exist some  such that cl  has    

nonempty interior. But cl cl , and so cl  itself has non-empty        
interior . I assert that  is an open set containing the origin in . Indeed, for any   
              ,  is open and contains , and  is itself open.



However, for any , the definitions give  
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     cl cl .

This therefore concludes the proof that  is equicontinuous. 
It remains to show that  must be continuous. Suppose again that  is any open set in   

containing , and let  be a balanced open set such that . By equicontinuity,        

there is an open set  in , containing , such that  for all . Suppose          
            for some ; then , and so there exists  such that 
                         and . Consequently,
   . This proves that  is continuous (at the origin, and so everywhere). 

The above result is one of several similar theorems — similar, that is, in their proofs, but
differing in their hypotheses. The general idea is perhaps due to Steinhaus, although it was
Saks who noticed the applicability of Baire’s theorem.

§10. Normed spaces.
There are many results which assume a really satisfactory form only for normed spaces.

Definition 10.1. Let  and  be normed spaces, and   a linear map.  is said      
to be  if there exists  such that  for all . Such abounded              

constant  is called a  for . bound

It is usually not necessary to distinguish in the notation between the norms in different
spaces, as I just did; for the context ought to remove all ambiguity.

Lemma 10.2. If  and  are normed, the  linear transformations  form a   bounded 
vector subspace of .  

Proof. Suppose  and  are both bounded with respect to the norms in  and , with bounds   
  and . Then

          

   

    

   
     
     

   

 

   

by definition

. (34)

So  is a bound for .            

Definition 10.3. Given normed spaces  and , the vector space of all bounded linear 
transformations from  to  will be denoted .   

Lemma 10.4. A linear transformation  is bounded if and only if it is   
continuous. 

It is customary to denote by  not only the scalar  and the vector , but also the ‘trivial’  
vector space with only one element (namely the zero vector), and the zero linear mapping
which carries every vector of its domain into the zero vector of the codomain. The linear
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mapping vector   is the  in  or in . Whilst these conventions are obviously    
undesirable in strict logic, the context always removes any ambiguity.

I have  shown either that there are circumstances in which , i.e. that therenot    
may exist a nonzero bounded linear map from  to , or that there may be an unbounded 
linear map, . We shall see that, provided  and  are not trivial, neither      
is , and perhaps also that  if and only if   is trivial           either or
is finite-dimensional.

Definition 10.5. If  is a bounded linear map between normed spaces  and ,     
the infimum of the bounds for  is called the  of  (with respect to the uniform operator-norm
given norms in  and ), or just the norm of , and may be denoted  or         

or simply . 

Lemma 10.6. If  and , then  is bounded if and only if       
             is bounded; the operator-norm of  is itself a bound for ; and
indeed, if ,  

        
 
 

       

                 




             

  




   

inf sup

sup sup . 

If , the only possible linear operator out of  is the zero operator; its norm is .    
The second and third formulæ above are wrong in that case.

Lemma 10.7.  In the above circumstances,  is a norm in .  

Proof. In the calculation (34) above, one may take  and , . It            
follows that  is a bound for , and, therefore, that .                     
It is trivial that  and that  if and only if  is the zero map.              

An important consequence of 10 6 is that  for all  and              

    .

Definition 10.8. Suppose that  are vector spaces. A mapping   is       
called  if, for every , the mapping  is linear, and, forbilinear          
every , the mapping  is linear.         

There are similar definitions of trilinear, quadrilinear,  , -linear mappings (or maps, or 
transformations; they are not usually called “operators”).

Definition 10.9. Suppose that  are normed spaces. A non-negative number  is a  
bound for the bilinear mapping  when  for all                  

      and .

There is a similar definition for multilinear mappings of higher “degrees”. It is easily
checked that the set  of bilinear maps  (more generally, the set       
                ;  of -linear maps ) is a vector space over
 with respect to pointwise operations, and that the bounded bilinear (or -linear) mappings
form a vector subspace  (or ). If any of the spaces or            
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is trivial, then  is also trivial, but otherwise the formula      

   
 

                    
      

   
sup    

    
   

  

defines a norm in  that may be called the multilinear operator norm.      

Lemma 10.10.             is continuous (as a mapping of the product
space , with product topology, into ) if and only if it is bounded.       

Spaces of multilinear operators are, vaguely speaking, superfluous. Let me explain why.

Definition 10.11. Let  be metric spaces. A mapping  is  or an     isometric
isometry if, for any , . Similarly, if  and  are normed             

spaces, a mapping  is isometric if, for all ,       

           

There is a simple theorem of Mazur that any isometric mapping between normed spaces over
 must be linear, but it is too long to be given here***. At any rate, an isometric isomorphism
between normed spaces over  is a linear isomorphism which is also an isometry. Clearly its
inverse will also be a linear isometry.

In the following Lemma, “natural” means, informally, “independent of all internal choices
that might be used in its construction but are not indicated in the statement”. Although this is
the basic meaning, it is rather vague. The category theorists, wishing to avoid all mention of
the internal structure of the objects they deal with — which is where choices might commonly
arise —, have introduced a  definition of . They would saynatural transformations of functors
that  is a  of two arguments, contravariant in the first argument and covariant     functor
in the second [note that differential geometers use “contravariant” and “covariant” the wrong
way round!], and that the “natural isomorphisms” below are also natural transformations of
functors in this sense. (The category-theoretical definition does not capture the intuitive idea
very well, because there may even be natural transformations of functors in the category-
theoretical sense that  involve choices, but it is mathematically precise.) For simplicity, Ido
shall treat only the case , from which the general case can be obtained by a  
straightforward induction.

Lemma 10.12.  For any vector spaces , there is a natural isomorphism 

           .

If  are normed, then  and        

     ,

and  is a natural isomorphism that is also       
an isometry with respect to the operator-norms.

Proof.  Define  by setting, given ,                 

           . (35)

(Explanation:  by definition, so may act on .) It is easily checked that    
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            is bilinear, so that  does map  into . Moreover, (35) may
be reversed: for any  and any , define  by        

        , (36)

and then  for each  and  is in . Hence,  and  are              
mutually inverse one-to-one correspondences, and they are trivially linear, so they are
isomorphisms. They are obviously natural.

 If either  or  is trivial, all four spaces under consideration are trivial. Otherwise, if  is  
bounded with respect to norms in , , and , (35) gives  

                                , (37)

so that , and . In a similar way, (36) gives            
                ,

which tells us firstly that  is bounded for each , with ,          

and then that . Writing , we deduce that , and,                 
with (37) shown previously, we derive the result. 

Definition 10.13. If  are vector spaces over  and , where  is       
repeated  times, then  is described as (a symmetric -linear mapping) if, for  symmetric 
every permutation  of , and for every choice of ,             

                      .

In the same way,  is  if, for every choice of  and of ,        skew-symmetric    

                          ,

where  denotes the sign of the permutation , as usual.   

For simple examples, suppose , , and . Then the mapping       

           
                

is symmetric bilinear, and the mapping

                     

is skew-symmetric bilinear. (Notice that I have  written  as , to avoid any sus- not     
picion that we are treating it as the vector space ). It is clear that what we are talking  
about in this very elementary case are symmetric polynomials and skew-symmetric
polynomials of degree  in each variable (that is the meaning of bilinearity) in two variables
(because the dimension of  is ). 

Lemma 10.14.  Let  be normed spaces. Then the mapping 

     

given by composition, , is bounded bilinear, and its bilinear operator norm      
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(with respect to the operator-norms in  and ) does not exceed . That is,    

             . 

In fact, if  are non-trivial, the bilinear operator norm of the composition is exactly 
, but we cannot yet prove it.

Lemma 10.15.  Let  be a normed space and  a Banach space. Then  is a   
Banach space with respect to the operator-norm.

Proof.  Let  be a Cauchy sequence in operator-norm. Given , there exists        
such that .           

Take some fixed vector . If , then     

         as .

If ,  

                                     , (38)

so that  is a Cauchy sequence in . As such, it again converges in . Let us define     

to be the limit in  of the sequence , for  choice of  in .  is our  for      any candidate
the limit of the sequence . 

Firstly,  is a linear transformation. Indeed,   

     

   

               

          

lim lim lim
lim

   

 .

Secondly,  is bounded. For this, use 10.6. If  and , then by (38)       
              .

In particular, . Now fix . There is a                 

constant  such that  for ; hence,                

             lim lim 

and, as this is true for any  such that ,  and  by               
10.6. Our “candidate”  indeed is an object of the right kind (belongs to the right party).

It remains to check that  in the desired sense. Given  and  such        
that , (38) shows  when . Hence, if ,                       

                lim  ,

and 10.6 shows that . This shows that  in operator-norm.         

Notice that the proofs that  and that  are very similar.      

Lemma 10.16.  Let  be a normed space, and let  be a closed vector subspace of . Then  
the quotient space  (see  of ) is also a normed space, with the “quotient norm” 3) §8

                          inf inf& (39)

for any . Furthermore, if  is complete with respect to , then so is  with      
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respect to ; and, if , the projection  is a bounded             

linear map of norm .

Proof.  That  is a seminorm is easily checked, and of course from (39)  

            (40)

for any . If , then there exist elements  such that                 

and  (say). Hence, , and, as  is closed, , or .                 

So  is a norm in .  

Now, suppose that , and let . As just shown, . Let          
               . From (39), there exists  such that  and .  

    
So . This shows , and (40)                         

  

shows that ; hence,  exactly.       
Let  be a Cauchy sequence in . To show that it converges, it will be sufficient  

to show it has a convergent subsequence. By passing to a subsequence if necessary, and then
renumbering, we may assume that

                   
 for each . (41)

Define . If  has been defined so that , then definition (39), with (41),          
  

 

shows that there exists  such that  

            
 

 and . 

Then define , and it follows that  and           
  

 

       
   for each .

The sequence  is Cauchy in , for, if ,     


                          
        

   .

Hence there exists some  such that  as , and           




              
 .

This proves convergence of  in .    

The completeness proof is essentially the same as at 9.7.
Remark 10.17. It is immediately apparent that any vector subspace  of a normed space  is 
also a normed space (one defines  for any ). If  is a Banach space,          

then  is a Banach space if and only if it is closed in . Similarly, if  are normed    

spaces with norms , the direct sum  (see 2) of §5) may be normed by           

             .

Then  is a Banach space with respect to  if and only if both  and  are      
Banach with respect to their norms. Compare (13) of 3.12.
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Definition 10.18. Let  be a topological vector space. Its , or  topological dual continuous
dual dual conjugate space, or  or , is the set of continuous linear functionals . I shall 
denote it by . Thus, if  is a normed space,  consists of all the  linear    bounded
functionals on . [Recall from 10.4 that a linear functional is bounded if and only if it is
continuous.]

Recall that  denoted the set of linear functionals , 8.1; and so .      all 
Granted the existence of an algebraic basis in , we showed . However, there are   

topological vector spaces whose topological duals are trivial. Here is an example.

Example 10.19. Suppose , and let  denote the space of functions      

   such that the improper Riemann integral

    
 

 
     lim




is defined (i.e. is finite). Then  is a pseudometric linear space if we set ****** 

         





[Notice we do not take the “ th root” here; this pseudometric does not come from a norm.]
Suppose, if possible, that  is a continuous nonzero linear functional on . Then  

there is some  such that . Multiplying by a suitable constant, we may       

suppose that .  
For , define  to be the function  defined by        

  
   
   

 
if ,
if .




Thus  is the zero-function and , and  is a continuous mapping        

         . So  is a continuous real-valued function, whose value at  is  and

at  is . Now 

          


    
 


 

is a continuous function of  that increases steadily from  to , so there must be some   
value of  for which . However,                  



              

so that either  or  (or both). Take  if , and                    
  

otherwise let . In this way, given  such that , we obtain  such           
 

that  and . Let  and so on inductively; we get                  


                 
 such that  and . Hence,  according to the

metric , and yet . This is impossible if  is to be continuous, and the only flaw in     

the argument is the initial assumption that .  
The conclusion must be that the only continuous linear functional on the pseudometric

linear space  is zero. 
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We shall see in due course that this behaviour is impossible in normed spaces; in fact, it is
impossible in  spaces, which is why local convexity is an important condition.locally convex

Definition 10.20. Let  be a topological vector space, and . A     basic weakly open
neighbourhood of  in  is a set of the form 

                                      for

for some , , and . A set  is                          
 weakly open

if, for every , there is a basic weakly open neighbourhood of  that is included in .    
The  on , often denoted , is the class of weakly open sets in .weak topology     

Remark 10.21. That the weak topology on  is a topology with respect to which  is a topo- 
logical vector space is an . We have not developed the theory of t.v.s. sufficiently toexercise
make it as trivial as it should be.

The notation  is appropriate, because we could define a similar weak topology 

    on  for any vector subspace  of . However, the “weak topology” on a given

t.v.s  is always understood to be  unless there is some indication otherwise. By   

definition, the linear functionals in  are continuous with respect to the given topology on 

    ;  is the weakest (that is, the smallest) topology on  that still makes  a 

topological vector space and these linear functionals continuous.
A sequence  in  converges weakly to , i.e. converges with respect to the     

weak topology, if and only if  for every . (The notation  is           


sometimes found to express weak convergence.) Part of the importance of dual spaces lies in
the possibility of using weak convergence to construct solutions of various problems.

Definition 10.22. Given  as above, the  on  (also denoted ) is   weak* topology  
the topology in which a set  is open (and said to be ) if, for any , there is  weak* open 
a set of the form

                             
                for

for some , , and , that is included in .                       

This fits the remark in 10.21, since  can be regarded as a subspace of .   

There are several theorems that, broadly speaking, state ways in which weak topologies
resemble finite-dimensional topologies. A very notable example is the following.

Theorem 10.23. (Alaoglu-Bourbaki.) Let  be a normed space. Then the closed unit ball in
the dual, , is -compact (or, as it is often put, weak -compact).            

Proof.  For any , let . This is a compact subset of . Now            
consider the class  of  functions (not necessarily linear or even continuous)   all  
such that, for each , . This class is  (see the discussion of              

the Multiplicative Axiom in §7A). However, Tychonov’s theorem (again, see §7B) says that
        is compact in the product topology. (See the following remark for the

long-delayed discussion of this product topology.)
Let  and . The maps  given by , ,                

and  are continuous. So must be       
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                   .

Hence  is a closed subset of , as must be the intersection of all such subsets,   
 

      
  

     .

By 3.16 ,  is also compact as a subset of  with the product topology.(a)  

On the other hand,  is, by definition, precisely the set of elements of  that are linear 

maps . And, by the definition also,  only if  for all ;             
thus  is, in fact, the closed unit ball in .


Finally, the weak* topology on the closed unit ball in  is the restriction to  of the 


product topology in  (see below). 

Remark 10.24. The proof above is the one given by Bourbaki. Alaoglu’s theorem was
restricted to Hilbert space and its proof was superficially quite different; and there are other
proofs which are in a sense generalizations of Alaoglu’s.

I have avoided discussing the product topology on product spaces with infinitely many
factors, but something must be said here. Suppose that, for each  in an index set ,  is a  

topological space. A  for the topology  of  is a subclass  of  such that anybase       

member of  is a union of members of .  

Let  be an element of  (in effect,  is a function defined on         
     whose value at  is , the “ th coordinate” of ; see §7A). Given a finite subset    

of  and, for each ,  such that , the corresponding             basic product
neighbourhood of  in  is  the set of all elements  of  such that  for each         

    . This basic product neighbourhood of  may be thought of as the product ,
 

where  for  and  when . A set  is defined to be open in              
the product topology for  if, for every , there is some basic product neighbourhood   
     for  in  such that . The class of open sets defined by this prescription does not
depend on the choice of the bases  for the topologies , and is indeed a topology in .   

The definition of the product topology ensures that the  are allprojections    
continuous, where the th projection  carries each point  of  into its th       
coordinate . Indeed, if  is open in , its inverse image is itself a basic product neigh-  
bourhood of each of its points (take  and ). The product topology is the       

smallest topology that makes all the projections continuous.

Now suppose that  is a subset of a topological space . The  on    subspace topology
consists of all the subsets of  that are of the form , where  is open in . An     
alternative formulation is that the open sets of  are the inverse images  of open sets

 
       of  under the . It is trivial that this does define a   inclusion map 

topology in , which is the weakest topology such that  is continuous. 

The assertion in the proof of 10.23 that the weak* topology on the closed unit ball in  

is exactly the subspace topology on  induced from the product topology on  results from 

chasing the definitions above.

Since  is weak -compact and the mappings  (for               
    ) are continuous  when  has the weak  topology, we have a mapping of  
      into  for a certain compact topological space , namely . This     
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mapping is linear, but ,so far we do not even know whether  has more than one point

namely the zero linear functional.

 §11. The Hahn-Banach theorem
Definition 11.1.  Let  be a vector space over . A  on  is a mapping  sublinear functional
     such that

(a)
(b)

          

          

and
.     

Condition states that  is , and condition  that it is (a) subadditive (b) positive
homogeneous (b) (a). (In fact, will follow from  and the weaker condition that
         .***) A norm on  is a sublinear functional, but a sublinear

functional need not be a norm.

Definition 11.2. Let  be a vector space over . The  in  of a subspace  of   codimension
   is the algebraic dimension of .  is  [or ] iffinite-codimensional of finite codimension
its codimension is finite, and is a  if its codimension is . [It should be admitted thathyperplane 
this use of the word “hyperplane” is not universal.]

A hyperplane need not be closed in .

Proposition 11.3. Let  be a real linear space, let  be a sublinear functional on , and let  
     be a hyperplane in . Suppose that  is a linear functional on  such that  

       . (42)

Then there is a linear functional  such that  and       

      .

“If a linear functional on  is dominated by the sublinear functional  on , then it may be  
extended to a linear functional on  that is also dominated by .” 

Proof. Choose any ; then, as  is a hyperplane in , any  may be         

expressed in the form  for some uniquely determined  and .          

Let . Then, by hypothesis (42),     

                          

         
         

    ,

and consequently

                       .

This is so for any . Now hold  fixed, and then       

sup                            ,
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and in turn, since this holds for any ,  

sup inf                                 . (43)

Choose any  between the left-hand and right-hand sides of (43), and then define, 
for any  and ,    

          .

     is a well-defined linear functional , and . It remains to show that it is  
dominated by . If , then  by (42). Suppose that ,                

where  and . Then, by the choice of , and referring to (43),     

                            
  .

If , the right-hand inequality gives on multiplication by   

      

     

                 

             

 
 

 

and
.

If , multiply the left-hand inequality by :   

    

     

         

               

 



 

and
.

Therefore  in all cases.   

An easy induction allows a similar extension of  when  is of finite codimension in .  

Theorem 11.4. (The Hahn-Banach theorem.) Let  be a sublinear functional on the real
vector space , in which  is a vector subspace. If  is a linear functional on       
such that  for all , then there exists a linear functional           
such that  and  for all .         

Proof.  Let  denote the set of pairs  in which  is a vector subspace of  including    
         , and  is a linear functional dominated by : .   
Introduce a partial order in  by

“ ” means “  and ”. (44)                      

That this is a partial order on  is trivial.
It is also inductive (recall §4); for suppose that  is a chain in . Take        

              

  . If  and , there are indices ,  such that     

and , but, as  is a -chain, either  or . Suppose,                  

for instance, that . Then , and so . This proves that                 

         is a vector subspace of . Define  in the obvious way: if ,   

         . This is a satisfactory definition of , since, if  as well, then, as
before, one of  includes the other and (by (44)) . And it is clear that,        
for each , .             

From Zorn’s Lemma,  has a maximal element . If , then apply 11.3,       

taking “ ” to be , “ ” to be , “ ” to be , and “ ” to be . This would             

yield an element of  larger than , which is absurd. Hence , and  may to be      
taken to be  in the statement of the theorem. 



56

In this argument the essential inductive stage, raising the dimension of the domain by , is
11.3. The problem is to show that  may be defined step by step by such one-dimensional
extensions, and Zorn’s Lemma is a convenient method of doing so. (One could also use
“transfinite induction”, i.e. the well-ordering principle). But, as usual, the consequence is that
 is not described explicitly. When the Axiom of Choice was still regarded with suspicion, a
version of the Hahn-Banach theorem was current that only required countably many steps (it
was developed by Bohnenblust and Sobczyk), but the normed spaces had to be restricted to
have “countable character” (formally, to be ); and it is easy to invent normed orseparable
Banach spaces that are too large for that. The general Hahn-Banach theorem, for “arbitrarily
large” normed spaces, might naturally be expected to appeal to the Axiom of Choice. Oddly
enough, however, the existence of an  linear functional also has to established viaunbounded
the Axiom, for instance by using an algebraic basis. It should be added that, on the ‘classical’
Banach spaces, all the bounded linear functionals are known — the force of the theorem is in
its generality.

The Hahn-Banach theorem was originally proved in essentially the form I have given. In
some sources, such as Bourbaki and the little book by the Robertsons, there is a more abstract
and geometrical formulation (due, I think, to Bourbaki, who was possibly Schwartz). It
removes explicit mention of , whose significance is obscure, but it adds no extra generality
and indeed is just a translation of the above reasoning into purely geometrical argument.

The theorem as given so far concerns the real case. For the complex case, a seminorm has
to be used instead of a sublinear functional. The crucial point of the real proof is (43), which
enables us to choose a suitable  for the value ; an analogous argument in the complex  
case would require  to be a common point of all the closed balls  as        

varies over , and (generally speaking) there is none, although any two of the balls do have a
common point. In fact the complex case was only proved after some years’ delay.

Lemma 11.5. Let  be a complex vector space, and let . Define, for each    
             ,  and ; thus . Then  is        

complex-linear if and only if both  and  are real-linear (when  is regarded as a real  
vector space) and  for every .       

Proof.  If  is complex-linear,  and  are trivially real-linear, and, for any ,     

                            ,

from which, taking real parts,  as stated. Conversely, if  are real-linear       
and  for every , and if ,          

        

   

     

     

  

              

        

          

         

     



            . 

Theorem 11.6. (The Hahn-Banach theorem, complex case.)  Let  be a seminorm on the
complex vector space ; let  be a complex vector subspace of , and let  be      
a linear functional such that  for all . Then there is a linear functional      
               such that  and  for all . 
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Proof.  Let  and  for all . Then  is a real-linear              
real-valued functional on  that is dominated by : 

           .

By the real Hahn-Banach theorem 11.4, there is a real-linear functional  such   
that  and  for all . Define         

           .

By 11.5,  is a complex-linear functional ; furthermore, if ,     

                  .

It remains to show that  is still dominated by . Given , choose  such that      
   is real and positive. Then

                               . 

§12. Some consequences of the Hahn-Banach theorem
Recall that the dual of a normed space  has a norm induced from the norm on ; it is the 
operator-norm in , but in this context may be called the .  dual norm

Theorem 12.1. Let  be a subspace of a normed space , and let  be a bounded linear  
functional on . Then there is a bounded linear functional  on  such that  and     
       .

Proof. By 10.6,  for all . Define the seminorm                        

in 11.6 by  for all . Thus there is a linear functional               

such that  and , so that . However, it is                        

trivially obvious that .       

Corollary 12.2. Let  be a normed space, and suppose . Then there exists     

         
   such that  and .   

Proof. Take  and  for all . Then                          
 

and . Apply the Theorem.      

One might ask whether there is a “reverse” to this result, saying that, for any ,   

there is some  such that  and . This need not be true. (See             

exercise set 4, no. 3).
Remark 12.3. To the more general question whether, given a vector subspace  of  and 
another normed space  (of dimension higher than ), any bounded linear map      
has a bounded linear extension , there is no satisfactory general answer. If  is    
finite-dimensional, with a basis ,  then there are  such that               

  

                  .
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(That the  are all continuous is not obvious; just assume it for the moment.) Then, each   

has a bounded extension , and  may be extended to , where 
      

                 .

However,  may well be larger than .     

Of course, whether  is finite-dimensional or not, there is a  extension of  to a linear
linear mapping ; one needs only to extend an algebraic basis of  to a basis of    
(see 7.1). But this extension may well be unbounded.

Corollary 12.4. Let  be normed spaces and , . Then there exists         

           such that  and .         

Proof.  Let , where  is as in 12.2.    

This resolves the question whether  has non-trivial members.

Definition 12.5. Let  be a normed space. The  of  is the (continuous) dual  of  bidual 

the (continuous) dual  of , with the operator-norm. The   is      bidual map 
defined by setting, for any ,  for each . Compare 8.3; as there,          

we may write .      
           is linear, and, for any , , so .              

Theorem 12.6. If  is a normed space, the bidual map  is an isometry (and,     

consequently, injective).

Proof. Given , there is  such that  and , by 12.2.                 
But then , and we have already seen .                           

Recall from 8.4 that the “algebraic bidual map”  is injective too. But it may be  

surjective when  is infinite-dimensional, unlike its algebraic analogue.

Definition 12.7. The normed space  is  if the bidual map  is surjective; that is, if reflexive
every continuous linear functional on  is of the form  for some .       

In this case, 12.6 ensures that  is an isometric isomorphism between  and . This can   

only occur if  is complete, for  is automatically complete by 10.15. But amongst Banach  

spaces, many are non-reflexive and a significant number are reflexive. For instance, any Hilbert
space is reflexive (as we shall soon see), as are all the spaces  for ; but the     

space  of -valued sequences convergent to , with supremum norm, is not reflexive. Its  
dual may be identified with , whose dual in turn may be identified with .  

Definition 12.8. Let  be a normed space and .  is  (or simply     norm-bounded
bounded weakly) if there is a number  such that  for all .  is           
bounded bounded(or - ) if, for any , there is  such that        



        for all .
The  of  is the set  defined bypolar set     

               .
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It is easy to see that  is convex, balanced, and closed (in the norm-topology) in .  

Theorem 12.9. Let  be a weakly bounded subset of the normed space . Then  is also  
norm-bounded.

Proof. For each , there is an  such that  for all ; thus             
         


. Hence, . But  is a Banach space by 10.15, and so of the

second Baire category; for some , the closed set  must have non-empty interior. Thus 

         
  also has non-empty interior, and includes  for some  and . As it   

is balanced,  too. As it is convex, . (Indeed, if           
  

                           , , where  and 
    

          .)
Thus, whenever  and ,  for all . (*)           

   

Suppose, if possible, that  and . By 12.2, there is  such that       
  

               


            and . Take , and then  and .
This contradicts (*), and we must conclude that .    

This result is sometimes called the . Its proof may bePrinciple of Uniform Boundedness
compared with the rather similar 9.13 (which, in Banach spaces, is sometimes called by the
same name). There is an alternative argument, which I shall now sketch.

Consider the space  of  bounded functions , with supremum norm.  is a  all 
Banach space, and the weak boundedness of  implies that there is a mapping      
defined by restricting  to . The graph  of  is closed (as is easily checked).     

By the closed graph theorem 9.11,  is continuous, ; and                
for all  and all . From 12.2, this suffices to show that  for all            
   .

Remark 12.10. If  are normed spaces and , there is an induced mapping    
        (the  or ) defined bydual mapping conjugate mapping

              

(the first dual pairing is between  and , the second between  and ). Equivalently,    

                  is , which shows at once that . In fact, .   
The correspondence from  to  is a  from the category of   contravariant functor

normed spaces and bounded linear maps to itself. In particular,  whenever     

possible. And  (which, in effect, means that  extends  from  to the larger       

space ).  is a  between the identity functor and the “bidual”  natural transformation
functor.

Perhaps the most surprising application of the Hahn-Banach theorem is the construction of
“generalized limits”. Consider the space  of bounded -valued sequences, with norm 

             sup .

There is a (closed) vector subspace (usually called ) consisting of all the  convergent
sequences, and the limit is a linear functional on  dominated by the norm:

              lim .

Hence, by the Hahn-Banach theorem, there is a linear functional  such that   
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lim , and .   

In this sense, one may assign to each bounded sequence a “limit”. But, apart from agreeing
with the ordinary limit when that exists,  need not have any limit-like properties. Banach and
Mazur pointed out that, by an ingenious choice of sublinear functional “ ”, one can force any
linear functional “ ” dominated by  (not necessarily constructed by extending the ordinary 
limit on ) to behave in some respects quite like a limit. Of course, since the construction
involves Zorn’s lemma,  cannot be described explicitly (and is not, in fact, unique). The trick
has some other striking applications, which, for brevity, I omit; you will find them in Banach’s
book , ch. II, §3.Théorie des opérations linéaires

§13 Hilbert spaces: the dual space.
In this section,  denotes a Hilbert space over  with inner product  and induced norm  
 . If , it is often convenient to write  to mean ; the relation  is           
symmetric. If ,  (or ) means that  for all . Similarly, if              
                 ,  (or ) means  for all  and .

Lemma 13.1.  If , then .                

Proof.   .                        

This is of course the “Theorem of Pythagoras”.

Lemma 13.2.  Let . Then .                          

This is of course the classical “Theorem of Apollonius”.

Proof.    

   

                    

                       

           

 

  . 

Lemma 13.3. Let  be a non-null closed convex set in . For any , there is a unique    
                 such that .   inf

Proof.  For each , there is  such that .            
   

Apply 13.2 with  and ; then  too,                     
       

as  is convex, and so :        
  

 

                   

        

   

            
   





    

  .

This shows that  is Cauchy, and so has a limit  in , which must belong to . And    
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for all , which, since  as , implies that .                

If  also satisfies this equality, then  

                     

       

          


 

   ,

and it follows that .   

The proof uses only the completeness of , not of . From an applied mathematician’s 
viewpoint, the result says that  must contain a “closest approximation” to . 

Lemma 13.4.  Let  be a proper closed vector subspace of , and . If , then       
            if and only if .

Proof.  Suppose , and let . Then, for any ,           

                      

                   

   

    .

Take , where  is real and positive; then, cancelling ,           

                     .

If , this is false when . Hence .              

Conversely, let . Given any ,  too, , and                   

(by 13.1) ; hence, indeed, .                         

Corollary 13.5.  If  is a proper closed subspace of , there exists some  such that    

        . (Notice that this implies .)

Proof.  As  is proper, one may take , and then construct  as above.         

Lemma 13.6.  If  is a closed non-trivial subspace of , define  by      

       ,

where  is the unique element of  such that . (See and .) Then  is        13.3 13.4 

a bounded linear mapping, and .   

Proof.  If  and , then  and , and so                    
 

                              
 ,

which (by uniqueness in 13.3) implies that . Furthermore, as               

                  and ,
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13.1 shows that . Hence, . However,                          
   

           is non-trivial, so there is some non-zero , and . Thus .   

    is usually called “orthogonal projection on ”. If  is the zero subspace, then, of
course,  is the zero mapping. At 17.9 we shall have an “explicit” description of .  

Theorem 13.7.  There is a mapping  defined by    

        .

It is a bijective correspondence, isometric, and conjugate-linear.

Proof.    is a linear functional because  is linear in the first variable. It is a bounded
linear functional by the Cauchy-Schwarz inequality: . More-            
over, this shows that . On the other hand,     

       ,

which implies, if , that . Hence,  when ; and                  

this is also true when .  is, therefore, isometric (and so injective). It is conjugate-   
linear because  is conjugate-linear in the second variable. 

It remains to prove  . Let , and .  is a proper        surjective   

closed vector subspace of . By 13.5, there is some  such that ; thus,       

            
, and I take .

Given , , and so . But, as ,                    

                                   
 .

Consequently, if , then  for all , and .                 
  

If , it is clear that .       
 

Thus we may identify a Hilbert space with its own dual, except for the inconvenient fact
that  is a -isometry. In the real case, it is literally true that  is an isomorphism of conjugate
   with . In general, we turn  into a Hilbert space by defining, in an obvious notation, 

         ,

and then , which means .                     

Corollary 13.8.  Any Hilbert space is reflexive. 

Indeed, the bidual map  is the composite of the bijections  and .   

It should be noted here that I have used the notation  both for the inner product in   
and for the dual pairing between  and  (see 8.3). There is a difference, since the inner 

product is not linear but conjugate-linear in the second argument. In the real case, we can
regard  as its own dual, paired with itself by the inner product; but in the complex case, ,  

given a Hilbert space structure as above, is in a sense the “complex conjugate” of .
Theorem 13.7 is known in some quarters as the , since itRiesz representation theorem

gives an exact description of the continuous linear functionals on . I am not sure of the
history, but the phrase “Riesz representation theorem” is associated in most pure
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mathematicians’ minds with a far more substantial theorem about bounded linear functionals
on the Banach spaces  of continuous functions.   

§14.  The Radon-Nikodym theorem. (2008: omit.)

§15. Duality in  spaces. (2008: omit.)

§16.  Conditional expectation. (2008: omit.)

§17. Hilbert spaces: classification.
Throughout this section  is a Hilbert space. (Some of the definitions and results require only
that it should be an inner product space.)

Definition 17.1.  If , let .              

Lemma 17.2.  For any ,  is a closed vector subspace of .     

The proof that  is closed appeals to the Cauchy-Schwarz inequality. It will be

convenient to use the notation  to denote cl Span .  

Definition 17.3.  A subset  of  is  if, whenever ,     orthonormal

  
   
   

if ,
if .

An orthonormal set  in  is described as  or  if .    complete fundamental 

In the next few results  denotes an orthonormal set in . 

Lemma 17.4. (Bessel’s inequality.) Let  be finite. For any ,   

       


, (45)

with equality if and only if .  Span
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Proof.                

          

    

     

     

    

  



  



 

 


     

    

           

     




       
  





  

  





(46)

(47)

.
Notice that the passage from (46) to (47) uses the fact that  unless . This      

proves (45). If it is an equality, then , and so      

     


Span .

Finally, suppose that Span . Then, for each ,       
 

     
    ,

so that, in fact, , and the calculation above shows (45) is an equality.   
 

Remark 17.5. I recall from 441 (where, indeed, I did not really expound the ideas in any
detail) that, in any topological vector space , an indexed subset  is said to have     
an   if, for any open set  containing , there is a finite subset  of unordered sum      
with the property that, for any finite subset  of  such that , .       

 

If  is a Banach space,  has an unordered sum if and only if it satisfies the     
following Cauchy condition: for any , there exists a finite subset  of  such that, for    
any finite subset  of  disjoint from , .     

  

Corollary 17.6. Let  be  orthonormal set. Then, for any , the -indexed set of    any
non-negative real numbers   has an unordered sum , and            



       


.

Proof.  The sums over finite subsets of the index set  are all bounded above by . The  

unordered sum is (all terms being non-negative) the supremum of the finite sums. 

Corollary 17.7.  For any orthonormal set  in  and any , the subset    

         

is countable.

Proof.  For , let . Suppose  is a finite subset of               
     . Then 17.4 shows , and as each term of the sum is at least    



         , it follows that # . Since this is true for any finite subset of , 
necessarily  itself is finite with at most  elements. Consequently,     
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must be countable. 

This fact enables textbooks to avoid the explicit notion of an unordered sum (and not only
in this context).

Lemma 17.8.  Let  be finite and . Then .            
 

  

Corollary 17.9.  For any orthonormal  and any , the unordered sum      


exists and is in the closure of .Span

Proof.  Given , there is a finite subset  of  such that    

    
 

         ,

and, for any finite subset  of  disjoint from , it must, therefore, be the case that  

    
 


        . (48)

This means that the Cauchy condition of 17.5 is satisfied, so the unordered sum
      

  exists. But then, again given any , there is some finite subset  of
  [indeed, for the same  as before one may take the same  as before, but it is not necessary
to prove this here] such that , and Span ; so, as           

asserted, cl Span .   

Lemma 17.10.  Let  be any indexed subset of  such that the unordered sum     


          exists in  and is equal to . Then, for any , the unordered sum


       exists in  and is equal to .

Proof.  Given , there exists a finite subset  of  such that, for any finite subset  of       
that includes , . By the Cauchy-Schwarz inequality,           

 


       

      

           

           

  

 

 



  .

This establishes the Lemma. 

Lemma 17.11.  Given any orthonormal set  in , let , and let      cl Span  

be the orthogonal projection on  (see ). Then, for any ,   13.6


      ,

where the sum exists by 17.9.
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Proof.  Indeed, the sum is in  by 17.9, and, for any , by 17.10   

                     
 

,

so that , and  by 17.2.                
 

  

Remark 17.12. The familiar “Gram-Schmidt process” is an application of this argument. If
                    , then , and  is an ortho-  



normal set which includes ; indeed, it has the same closed span as . It follows that   

Lemma 17.13.  An orthonormal set  in  is complete if and only if it is maximal in the 
class of orthonormal sets ordered by inclusion.

Proof.  If  is not complete, , and the Remark provides an orthonormal set strictly   
including . On the other hand, if  is not maximal, there is a vector  such that    
            is orthonormal, and then  and  by 17.2. Thus ,  
and  is not complete. 

Proposition 17.14. Let  be any orthonormal set in . There exists a complete 

orthonormal set  that includes . 

Proof.  Consider the class  of all orthonormal sets that include , and order it by inclusion. 

It is clear that the union of any chain in  is also an orthonormal set. By Zorn’s Lemma there
is a maximal element in  (and, therefore, in the class of  orthonormal sets ordered by inclu- all
sion). But 17.13 shows that this maximal orthonormal set is complete.

Remark 17.15.  A complete orthonormal set  in  is often called an  (or,  orthonormal basis
sometimes, a ) in . The name “basis” is not entirely inappropriate, since itHilbert basis 
follows from the results above that any vector  may be expressed as an unordered sum  


   , and that this sum may in turn be expressed as the unconditionally convergent
(i.e. unchanged under arbitrary rearrangement) sum of a series  for some




   
sequence  of elements of  (the sequence depends on ). Furthermore, the coefficients   

have what is sometimes called “finality”: if we take any finite subset  of , then 


       is the best approximation to  in Span ; the coefficient of  in this best
approximation is the same for any  that contains . 

Any vector of the space is a (finite) linear combination of elements of an  basis.algebraic
The existence of an algebraic basis was established at 7.1 by Zorn’s Lemma. An “orthonormal
basis” is not an algebraic basis (unless it is itself finite); but it too exists, in general, only
because of the Axiom of Choice. There are, however, well-known explicit examples of
orthonormal bases in interesting spaces.

Proposition 17.16. In the space  of square-integrable complex-valued      

Lebesgue-measurable functions on the interval , the set  is an     



 


 

exp

orthonormal basis. 
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“Proof”.  It is easy to check that the set is orthonormal, so the only problem is to show that it
is complete. Since the product of two functions in the set is another, its linear span is a
subalgebra  of the algebra  of -periodic continuous functions on , which is identified   
with  (compare the argument after 6.13). In this sense  separates the points of ,     
and contains the constant functions; so, by the Stone-Weierstrass theorem, it is dense in the
space of all continuous functions  in the supremum norm, which is in effect .  

Given  and , there is some function  such that              
    


  . (This is true; but I have not proved it, here or in 441.) By the preceding

remarks, there exists  such that , where  denotes the           
  

supremum norm, and then  and .          

   

There are other proofs of this result, depending on integration by parts, which I have also
not discussed. But many of the results I have expounded, such as Bessel’s inequality, were
originally proved for the basis above, or the Fourier basis which may be deduced from it, and
for continuous functions. In fact, Lebesgue’s theory of integration was perhaps motivated by
the need to make more sense of results on Fourier series. It may be added that the coefficients
      (for ) are sometimes called the  of  with respect to theFourier coefficients
orthonormal set .

Theorem 17.17.  Any two orthonormal bases of  have the same cardinal number.

Proof. If  is finite-dimensional (in the algebraic sense), an orthonormal basis is an algebraic
basis (why?) and the result is standard. If  is infinite-dimensional, any orthonormal basis
must be infinite. Let  and  be two orthonormal bases, with infinite cardinalities ,     
   . Let  be the set of rational-complex (or rational-real in the real case) finite linear
combinations of elements of . Then  is dense in  (see 17.15; the partial sums of the   

series approximate  and may themselves be approximated by rational linear combinations).
However, , essentially because .                 

For each , choose an element  such that . If           

   

               


  , then , and     

                                          
  ,

so that . Thus  is injective, and . The con-              
         

verse inequality follows by symmetry. 

The axiom of choice appears here both in the construction of  and in the cardinal
arithmetic. It is natural to describe the cardinal of an orthonormal basis of  as the  Hilbert
dimension of the Hilbert space .

Definition 17.18.  Let  and  be Hilbert spaces over . They are  if    unitarily equivalent
there is a surjective -linear map  such that  for all         

     . (This condition ensures that  is also injective.)

This is the notion of “isomorphism” that is appropriate for Hilbert spaces.

Theorem 17.19.  Two Hilbert spaces  are unitarily equivalent if and only if they have  

the same Hilbert dimension. 
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§18.  Linear operators in Hilbert space: generalities.
Let  be a bounded linear operator in the Hilbert space . Fix . Then,       
for any , . Hence,  is a bounded                       
linear functional on , and so, by 13.7, there is a unique  such that         
for each . Of course  depends on the given  (and on ). We write . Thus,       

            , and, conjugating, ,

for any ; either of these identities determines .     

In terms of 13.7,  for each . Referring to 12.10, one may        

express this as  or . The conjugations cancel out,               

so that  is linear.    
  is the  of the bounded operator .adjoint

Definition 18.1.       is  or  if . It is  orself-adjoint Hermitian skew-adjoint

skew-Hermitian if .   

There is a theory of adjoints for unbounded operators, in which the ideas of “self-adjoint”
and “Hermitian” are distinguished from each other. But for bounded operators they coincide.

Lemma 18.2. If ,  is self-adjoint if and only if  is real for all      
       , and is skew-adjoint if and only if  is pure imaginary for all . 

Lemma 18.3.  Let , and . Then            

(a)
(b) (c)
(d)

the identity operator and the zero operator are self-adjoint,
 , , ,
  is boun
                 



      
      

   
 ded (so that  is defined) and ,  

 ,  .
    

       

  

   

   
   (e) (f)

Proof.    are trivial exercises. For , suppose that . Then(a)–(c) (d)   

                                 .

If , cancel it: , which is also true if . This holds for                      

any  with , so . Thus  is bounded, and                          sup
(e) is a trivial consequence. Hence,  too. This completes the proof            

of , and it follows from 10.14 that . But, for ,(d)                  

                          ,

so that, taking suprema over , . This proves .             (f) 
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Of course one usually writes  instead of , and there is another equality:    

                   .

too

Definition 18.4.  The operator  is  if .      normal  

Lemma 18.5. When ,  is normal if and only if it may be expressed in the form  
                  , where  are self-adjoint bounded operators and . 

Lemma 18.6.  When ,  is normal if and only if  for           

all .   

Proposition 18.7.  Suppose that . There exists a closed subspace  of  such    
that  if and only if  is self-adjoint and idempotent: , .         

 

Proof.  Recall from 13.6 that  is completely determined by

              &

Hence, for any ,  and  and            vice versa

                   

              
      

     .

This shows that . As , it follows that  for every            


    

     , and .




(1) Suppose that . Define , which is certainly a linear subspace of     

                  . If , then , and, conversely, if ,

then certainly . Hence ker . This shows that                 
is a closed subspace of . (As , the same                    

argument shows that ker  is a closed subspace of .)       
(2) For any , , and, for any ,            

                         .

As  by definition, this shows that .      

Notice that idempotence shows  is a “projection on  along ”; this idea is good in any  
normed space. That  and  should be orthogonal to each other is a concept only applicable 
in an inner product space, and is equivalent here to the self-adjointness of .

§19.  Linear operators in Banach spaces.
In a finite-dimensional vector space , a linear operator is an isomorphism of  with itself, i.e. 
is invertible, either if it is surjective or if it is injective — the two conditions are equivalent.
For infinite-dimensional vector spaces, this is definitely false. Elegant examples are furnished
by the  in sequence spaces. Let us take , although  or  or many othershift operators    



sequence spaces are equally possible. Define the to be the mappingright shift 
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          ,

that is, , where  and  for .  is then injective, but                   

is obviously not surjective. There is also the :left shift

              
            ,

which is surjective but not injective. In fact  and  are mutually adjoint.*** 

Lemma 19.1. Let  and  be Banach spaces and  a bounded linear map.     
Suppose  is injective. Then  is a closed subspace of  if and only if there is a positive  
number  such that  for all .         

Proof.  Suppose that such a  exists. If  is a sequence in  and  in ,         

then  is Cauchy in ; but, for any , , so               
    

that  is Cauchy in . Thus , and  in , and .                  

This proves that  is closed in . 
On the other hand, if  is closed in , it is a Banach space and  is a     

bijective and continuous. By the open mapping theorem (or, specifically, its corollary 9.9), the
inverse mapping  is bounded. If , there is nothing to prove, but    
otherwise, let  be the norm of this inverse mapping; then  satisfies the     

requirements of the Lemma. 

For a further complication, consider the  weighted shift

                   
         ,

where  is a bounded sequence in . If all the s are non-zero,  is             

injective. But, for instance,  would ensure that . Hence,   
          

from 19.1, the image of  is not closed. The same applies to the “multiplication operator”

                            .

 
 is bounded and self-adjoint, and its image is dense in , since it contains all the

standard basis vectors , but the image is  closed, because of 19.1. not

Definition 19.2. If  is any vector space (over any field whatever),  in the algebraic 
context denotes the set of all bijective linear mappings ; that is, of all linear 
automorphisms of . When  is a topological vector space (over  or ),  denotes   
the set of all continuous linear mappings  which have continuous linear inverses. 
Such mappings are usually called “invertible”.

If  is a complete linear metric space,  is the set of all continuous linear bijections 
  , since, by 9.9, such a mapping has a continuous inverse.

Taking multiplication as composition of mappings, we make  into a group (both in
the algebraic case and in that where  has a topology).

Theorem 19.3.  Suppose that  is a Banach space.

(a) If  and , then  and .                  
  

(b)  is an open set in . 
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(c) The mapping  is continuous.      

Proof. (a) Consider the series  in . Its sequence of partial         

sums is Cauchy, because of 10.14: if ,  

           

       
 

  

       

  


          

        


  

as . Thus, by 10.15, the series has a sum to infinity , and      lim 
 

      
      


  
lim lim  

   . (49)

However, also by 10.14,

             lim lim 

   ,

and similarly . So  is invertible with inverse .        
(b) If , there is nothing to prove: . Otherwise, let       

      
. Then , and so is a non-zero bounded linear operator. Suppose

             and . Define . From 10.14,     
 

                     
   .

By , . Hence, .(a)              
 



(c) (a) (b) In , , and as at (49) . In ,       


  
lim 

     
 

      

       
    

             

  
      

          

     
   


  

 

 
 





,

and this formula clearly shows that  as .      
  

Definition 19.4.  Let  be a complex Banach space and . Define the     resolvent
set             of  to be the set of those scalars  for which . Because of
0.0,  is an open subset of . If ,  is defined, and the function           

                 

is called the  of . The complement of  in  is called the  of resolvent spectrum       
— that is,  is the set of scalars  such that  is not invertible.      

Lemma 19.5.  If ,  is open in , and .                     
Furthermore,  as , and  is continuous in .                 

Proof.  If , then  and . By 19.3 , , and                    (a)
so . But also           
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as .   
If , by 19.3  there is some  such that              (b)

whenever . This proves that  is open, and continuity of the resolvent as a      
function of  follows from 19.3 . (c) 

Corollary 19.6.  The spectrum of a bounded linear operator in a complex Banach space is a
compact subset of .

Proof.  By the Lemma,  and  is open. So  is                      
both closed and bounded in . 

Lemma 19.7.  If , then  and                        

                         . (50)

Proof.   , and so the result follows from multiplying on               
the left by  and on the right by .         

  The relation (50) is called the . It leads to the conclusion that resolvent equation    
is holomorphic as a function . To avoid discussing the deeper theory of   
operator-valued holomorphic functions, let us make the following

Definition 19.8.  Let  be an open set in  and .  is        weakly
holomorphic on  if, for every  and , the function      

          is holomorphic.

Corollary 19.9.  The mapping  is weakly holomorphic.           

Proof.  From the resolvent equation, for  and sufficiently small ,     

         
        

  


   ,

and, by 19.5, the right-hand side tends to  as . Thus, for any  and         

    , as 

    


 

         
      

This means that  is holomorphic on .         

[In fact the proof shows that the resolvent is holomorphic as an operator-valued function
of a complex variable, which at first sight is a much stronger property.]

Theorem 19.10.  The spectrum  is non-empty (unless ).    
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Proof. Suppose that . Then, for any  and ,  is holo-               

morphic , and 19.5 shows that it tends to  as . Liouville’s theorem shows     
that it must be constantly . But the Hahn-Banach theorem, more specifically 12.2, shows in
turn that  for all . This is absurd, as  must be invertible.            

There are other proofs of the result which apply in special circumstances, for instance for
self-adjoint operators or normal operators in Hilbert space.


