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80. Preliminaries (revision).

None of the material in this section is examinable.

Although all attempts to split mathematics up iptrts are fuzzy round the edges —
again and again it turns out that some combinatcorreeps into analysis, or algebra into
topology or vice versa, or geometry into statistios whatever — nevertheless there is a
crude characterization of analysis as that partmathematics which deals with “limiting
processes”. In algebra, you may add or multiply tlbfects; in geometry, you may carry out a
construction finitely many times; but only in angi/ can you do something infinitely often
and ask whether anything sensible results. Andrder to talk about limits in practice rather
than in the abstract, you have first of all to decivhat you mean by a real number.

| shall take the natural numbeis2, 3, ... (forming thelsefor granted. They are so
familiar, and the properties we shall use so earythat deeper discussion is unnecessary.

The rational numbers(forming the sef) ) are conveniently constrdicie equivalence
classes of triplegm,n, p)  of natural numbers under tlatioa ~ :

“ (m, n,p) ~ (ml, nl,pl)n means “mp/ + n/p — m/p + np/ u. (1)
The idea behind this definition is that the trighe, n, p) is to be a particular representative
of the rational number which we should normallytevas the fractior{% ; the other triples

in the equivalence class represent the same nurBlgeusing triples, we obtain negative,
zero, and positive rationals at one go. We defolditeon and multiplication in the way this
suggests: for instance, writing square bracketedoivalence classes,

[(m,n, p)] + [(m',n, )] = [(mp" + m/p,np" + n'p, pp')]. (2)

You must check that this addition is “well-defineds it stands, the right-hand side of
(2) denotes the equivalence class of a tripledbpends on the choice of a specific represent-
ative for each class on the left-hand side. Itasassary to show that in fact the right-hand
side (the equivalence class, that is) is the samenaiter what choices of representatives on
the left-hand side are made. One must show, thexefbat, if (m,n,p) ~ (a,b,¢) and

(m/,n',n') ~ (a',b,c"), then

(mp' +m'p,np’ +n'p,pp’) ~ (ac’ +d'c,bc’ +b'c,cc’) .

This once established (by elementary algebra)dé€Bpes a genuine addition of equivalence
classes. Similarly for multiplication. It is nowaightforward but tedious to show tHat is a
field, i.e. satisfies all the usual laws of arithiogincluding the existence of multiplicative



inverses for non-zero elements. The rational zerdten 0, is [(1,1,1)] , and the rational
identity, written confusinglyt , ig(1,0,1)] . Notice th&t+# 1
However,Q is also an ordered field. We can defiparéial order on the set of triples:

“ (m’ n, p) S (m/,n/,p/>n means ump/ + n/p S m/p+ np/ ”.

It is easily checked that this does define a paotider, and (1,1,1) < (1,0,1) . Since it is
clear from (1) that the order carries over to egl@nce classes, we get a partial orde@Qon . It
is even dotal order (because of (1)), and, for any,v € Q :

if a<pg,thena+~y<p+~, and
if «a>0and (>0,thenas >0 .

| have in effect already noted that< 1 ,i@e<1 anegt 1 hede properties are what
we mean when we sa@ is an ordered field. Notiee ttat Q includes a copy af
consisting of the equivalence classes of triples0, 1) and a copy ofZ , consisting of the
equivalence classes of the triples, m, 1)

Whilst the treatment | have just sketched is faslgek and “modern” (equivalence
relations, partial orders, and what-not), thingatthave all the properties of the rational
numbers — or at least of the non-negative ones we bbaen around for a long time in the
familiar guise of “fractions”. The Greeks, who teddto think of things geometrically,
noticed that, because of Pythagoras’s theoremalhtiengths” could be rational multiples of
each other. Although the use of geometry begs akwprestions about the relation of
diagrams to logic, this indicates thational numbers are not enough for manypamses. On
the other hand, we can certainly find rational narslthat approximate the ratio of any two
lengths as closely as we wish, so that, in someievagense, the possible lengths of line
segments form “numbers” that fill out the ratiomalmbers. These are the real numbers
(forming the fieldR ).

As with the rational numbers, and even the natomahbers, there are several methods of
defining things that have all the properties intuntrequires of the real numbers. In the days
when | taught the basic analysis course (MATH 20&%ed to define them simply as infinite
decimal expansions, with the usual rules for thebigoous case, for addition and for
multiplication. This is not really very satisfaggprapart from anything else, whdecimal
expansions? And | had to slide over division, whighmessy, anéssert that Dedekind’'s
axiom (below, 0.5) was a simple consequence (whicks, but the simplicity is not
overwhelming).

There are two standard ways of defining real nusiitkey were originally published by
Dedekind and by Cantér , both in 1872 (though Deutkkiad invented his in 1858), and
both can be seen as elaborations of ideas goirgtbdhe Greeks. Here is Dedekind’s, which
in some rather Pickwickian sense is the simpler.

Definition 0.1. A subsetd of) is called@edekind section orDedekind cutif

i) 0+#A#Q,
(i) given ae A ,anyp e Q forwhich3 > a also belongsAo (3)
(i) forany a € A , there existsy € A such that< «

We say the cul ison-negative if it does not contain theorzdi numbef .

1 Stetigkeit und irrationale ZahlerBrunswick, 1872. It was republished in 1963 ievNYork, apart from
appearing in his Collected Works, vol. 3.
2 Math. Ann. V (1872), pp. 123-130.



Because ofii) , a non-negative cut consists entifepositive rationals. IfA is a cut and
BeQ\A,thenA—p3:={a—(:a€ A} isanon-negative cut. Such a existgi)by
Given a cutd , let

—A={-5:0€Q\A & (IyeQ\A)(y>H)}. (4)
()
Then —A is also a cut (notice that we have to incltide condition (f) in (4) to ensure
0.1(iii) is satisfied. For instance, the set of all pasitationals is a cut, but its complement,
the set of all non-negative rationals, has a langesnber, namel§ ; changing the sign of all

its members gives a set with a least member, mdkihdalse). Theero cut (for temporary
convenience, | call i# ) is defined by

Z={aeQ:a>0},

which is indeed a cut. More generally,4fc Q , let
S ={aeQ:a>¢},

which is also a cut.
If AandB are both Dedekind cuts, we define

A+B={a+p:a€ A & (€ B}.

It is easily seen thatd + B is also a cut, and that“#uglition of cuts” thus defined is
commutative and associative. Furthermarey Z = A ang (—A) =2 arigrcutA .
(The last statement requires some argument.)

If Aand B are non-negative cuts, we define

AB:={af:ac A & (€ B}, (5)

which is also a cut. (This would definitely be f&al§ A or B had a negative member).Af
and B are general cutshoose non-positive rationdlE Q\ A, n€ Q\ B d toen
A — )\ and B — u are non-negative cuts. Hentd,— \)(B — p) is a cutsarsl

(A=A (B =) +5(=A)(=A4) + S(=p)(=B) + 5(\n). (6)

It may be shown that this cut does not depend erclioice of\ ang , and we can take it as
the definition of AB for general cuts. (For non-né@gatuts we could take\ = =0 , and
it is easily seen that (6) reduces to (5). Thig/\avkward definition of multiplication of cuts
is the principal defect of Dedekind’s theory; imstihespect Cantor’s is superior, but pays for
its superiority in other ways.) Finally, we saytitfar cutsA and3 ,

“A<B” means “BCA".

With all these definitions, it may be proved — mothout effort — that the set of cuts forms
an ordered field, which we agree tolbe . The &t§) for £ € Q form a subfield which is
isomorphic toQ ; in effect, thenR includes a copy @ (with the same addition,
multiplication, and order). We denote these “ratiorreals” by the names of the
corresponding rationals, and wrife  for its copyRifandN andZ for their copies in that
copy ofQ).

The details of the theory can be varied in manysyawyt its governing idea is that a real
number should be defined, at least for mathemagiogdoses, as the set of rational numbers

that “ought to be bigger” than that real numberr. ilﬁetance,ﬁ should be thought of as the



set of all positive rational numbers whose squamesgreater tha2 . The reason for the
condition 0.Tiii) , which at first sight may seem supexis, is that without it the rational real
numbers would be represented twide; , for instamemyld correspond not only to the
genuine cutS(3) , butalsotpn € Q: o >3} , which does not safigjy

| have commented that the definition of multiplicat of cuts is messy. The reason for
this is that the whole construction is founded loa drder relation ifR , and the arithmetical
operations have little to do with it. Indeed, if Wad any reason to do so, we could introduce
Dedekind cuts in any totally ordered set.

Apart from the basic idea, Dedekind’s peculiar dbation was in indicating a property
of R which can be used as the foundation of allysmsl This is thédedekind completeness
axiom which fails forQ . Again, it really only uses tbeder structure oR .

Definition 0.2. Let (7', <) be a partially ordered set, where the padider < is such
that (x <y & y<z) = x=y.LetA beasubset@df .Suppose A tgT

(i) aistheleast elementofA if (Vz € A)a <z .

(i) @ is aminimal elementofA if
VreA)(z<a=z=a).

(iii) ¢ is arupper bound forA if (Vx € A)z <'t.

(iv) A isbounded abovéinT) if it has an upper bound.

If < is changed to> , one has the definitions of gheatestelement, amaximal element,
and alower bound. A set is describedomsinded  if it is bednabth above and below.

If A has a greatest element , then is an upperd@mA, and, conversely, if an upper
bound forA also belongs td , then it must be tleagpst element od . But, for instance,
the open interval0,1) has no greatest element. (Whatewe (0,1) you take,;(1 + a)
is greater). It has many upper bound®in , sudhaasl2 .

There can be at most one least element, becausg:if are both least elements, then
a <d anddad <a ,sotheyare equal.

It is obvious that a greatest elementdf , if orists, is also a maximal element. In a
general partially ordered set, a maximal elemeertn®t be greatest; for instance, in the set
{a,b,c}, with the orderinga < b, a < ¢ and nothing else, béth ande raaximal but
neither is greatest.

On the other hand, wheA tietally ordered by , Whichhes case forR , the
distinction between a greatest element and a maxatement of A disappears. & is
maximal andz € A , thent > a is only possibledif= a by theinigbn of maximality;
thus, eitherxr =a orx < a , by the total ordering (by theyywae definex > a to mean
a<z, and r<a to meanz<a#z ); that isg <a . This fact, that “maaiim
elements and “greatest” elements are the sameulmsess ofR , is the reason why we
sometimes speak of the maximum value of a functether than of the greatest value
(supposing that one exists). Notice, though, thatfunction f : (0,1) — (0,1) : z +— x
has no greatest value.

Definition 0.3. The partially ordered séf [Bedekind-complete (orboundedly completg if
every nonnull subset &f that is bounded belowahgeeatest lower bound; that is to say, if
the set of lower bounds fad is non-null, then @ishagreatest element. When such a
“greatest lower bound” exists, it is commonly cdlteeinfimum ofA and writtennf A



In older booksinf A is sometimes denoted gAdb. . Thaicance of the infimum is
that, as remarked above, a non-null set that isdbed below, such a, 1) , need not have a
least element; the infimum iR is, as it were, iilearest approach to a least element that one
can have in such a case. Kor 1) , the infimu is cesthe lower bounds form the whole
interval (—oo, 0] .

Lemma 0.4.If the partially ordered sef’ is boundedly compléten any non-null subsét
of T' that is bounded above has a least upper bound.

Proof. Let U be the set of upper bounds4f . By hypothesis# (), andU is bounded
below (by any element ol ). Théis has a greates¢ddoundu . However, ang € A is
a lower bound fotJ ; thus: > a . This shows that islitaeupper bound fod wu € U
Aswu isinU and is a lower bound for , it is thedealement otV . O

The asymmetry of Definition 0.3, in which | mentexh only sets bounded below and
lower bounds, was, therefore, only apparent; tltopgnty would be the same if | used sets
bounded above and upper bounds.KIn , one cansichpihge the signs of all the numbers
to see this, but it is true in a general partialigered set).

The word “complete” is over-used in mathematicsd @s principal meaning in this
course is quite different; its use in DefinitiorBds therefore qualified by “Dedekind” or
“boundedly”. It is necessary for our purposes tanded thatA should be bounded below,
sinceR itself has no infimum iR . Less trivial®,has no infimum iR . However, in some
partially ordered setall non-null subsets have atlapper bound and a greatest lower
bound; an example i®,1] , with the usual partial ardeless banal example is this. L@t
be any set, and také to be the class of all ssildé€t (that is, the “power classP(€2)  of
Q). There is a natural partial orderih A< B " mednd C B”. Then any subsef of
T" has both a supremum and an infimum. Inde=)Q = J,o @ i@ = Npeo @

We can now prove “Dedekind’s axiom” for the reahmhers.

Theorem 0.5. R is Dedekind-complete.

Proof. Let A be a non-empty subsetdf that is boundeoviyelith a lower bound . Now
b is a Dedekind cut o) , as is any element A ,and b et k:=J,.,a; thus
ECb#Q,andk#(0 aseaclw#0 by@) .Henge, satisfie6)0.1 o & k there
issomeac A withaea ,and,if8>a IR ,theWeca too; sbek . Thieans
that £ satisfies O(li) . Similarly, there exists some a with v < «, and, asy ek k
satisfies 0.(@iii) k£ is a Dedekind section(df ; anddéfnition, &k is the smallest set which
includes alla € A . Itis, therefore, the greatest loleund ofA . O

For anyfinite subsefa;,as,...,a;} @& ,or@ , orof awyally ordered set, oy m
find the greatest element by comparing elemenpairs, and this greatest element is denoted
max{ai, as,...,a} . It is of course the supremum of the subset. Ratlyoordered sets, it is
only infinite subsets that may not have suprema.

The common, and not altogether false, impressianghople have of analysis is that it is
full of es andé s. They are related to the precedamgarks by



Lemma 0.6. Let A be a non-null subset®&f ,andletc R . Thenthessupremum ol if
and only if

(i) foreveryace A ,a<z , and
(i) foreverye > 0 , there exists somec A such that € < a

Proof. (i) clearly says that is an upper bound for . Supploester: is the least upper bound.
Then, for anye >0 ,z —¢ (beingess than ) cannot be an uppend forA — which

means that there is somee A wWithZ z —e¢ ,0Fe<a . On the dthad, if(ii) is
satisfied butz is not the least upper bound, tiesome upper boungd for with < x
Take € :=x —y > 0 ; then(ii) says there is somez A wiih< a , and thiradicts

the assumption that is an upper bound. Consequemntiust be the least upper bound.[]

Lemma 0.7. Let A be a non-null subset Bf , and lete R . Then thésinfimum ofd  if
and only if

(i) foreveryace A ,a>z , and
(i) for everye > 0 , there exists somee A such that x + ¢ . O

The proof of this Lemma may be by the obvious modifon of the previous proof, or by
means of the following

Lemma 0.8. Let A be a non-null subset®f ,andletd :={—-a:a€ A} .TheaR is
the supremum ol if and only#x  is the infimum-od. . O

Lemmas 0.6 and 0.7 constitute a link betweerotder structure oR and its “metric
structure”. | shall have more to say about thik liater, because it has an influence on
integration theory.

Definition 0.9. Let Q be a set. Ametric (ordistance function) of2 is a function
d:Q x Q— R such that, for anye,y,z € Q

@ d(z,y)=0 ifandonlyifx=y, and
(b) d(z,2) <d(z,y) +d(z,y).

The pair (€2,d) is called anetric space . Very often, when the meiricas been unambigu-
ously fixed, one speaks of “the metric sp&ce .

The definition is often stated in slightly diffetetess concise, and perhaps more natural
forms. Takingz =y in(b) and applyin@®) d(y,z) <d(z,y) forany,ze€Q ; since
and z may be swapped, we dedud¢y, z) = d(z,y) always. Taking z firwde
similarly that 0 < 2d(x,y) , so thad only takes non-negatiatues.

(Note for those who have had some contact withetineatters: theoretical physicists, and
some differential geometers, use the word “metiactienote not the actual distance function
on a manifold but its “infinitesimal” version, wiiags a structure in the tangent bundle.)

In R and inQ , there is a standard metric given thezase by

d(z,y) = |z —y| =maxz —y,y — z) .



(It is not really essential for the definition terdand that metrics take valueskin . In the case
of Q, the metric just defined takes only rationdues.)

Definition 0.10. Let (x,) be a sequence in the metric sp&Qed) , ana let? We say
that z,, tends tor as tends to infinity, or that,) \ages tox , or (briefly) that
x, — x, if, for any positive real number , there existeng natural numbeN such that
d(z,,x) < e whenevern > N . If there is some € Q such that — « , we say th
(z,,) is convergent or that the limit of, s nl;_r)rc!C T, =X

It is clear that one could allow fer only positiketional values, or even numbers of the
form 1/k for k € N, without affecting the meaning of thefidgion. | am assuming here
that a “sequence” is indexed by some subsa¥aof {0} e.cbmventional warning is worth
repeating: the sense of the word “convergent” ddpam the context; convergence of series
is a different concept from convergence of sequencérom convergence of integrals.

Unfortunately, Definition 0.10 is not helpful in masituations of real practical import-
ance, because very often you do not know in advaricd the limit is. For instance, very
often you try to find a solution of some equatignabprocedure of successive approximation,
without knowing in advance that there is a solutiblfow can you say the sequence of
approximations converges to a solution?

Definition 0.11. A sequence(z,) in the metric spa¢@,d) Cauchy (that iés i
Cauchy sequentd, for any positive real number , there existen® natural numbe¥  such
that d(z,,,x,) < ¢ wheneverm > N anea > N

Again, it would be enough to consider values: , foE N, fore. | leave it to you to
make the necessary changes in the arguments.

Lemma 0.12. A convergent sequence in any metric space is Gauch O

Theorem 0.13. A Cauchy sequencelt is convergeriRin

Several proofs are possible. (It is a consequehd&edekind-completeness; indeed, the
two properties are in a sense equivalent.) By Lentiii2 and Theorem 0.11, Cauchy
sequences and convergent sequences of real numbRrare the same; this is called the
General Principle of Convergende some old textbooks. However, a Cauchy sequehce
rational numbers need not have a limit@ . A familiar exdanis the sequence defined

inductively by
1 2
ap = 1; Qp4+1 = 5 (an + _> )

ap
which converges iR tQ/§ , SO is Cauchy, but iscqueace i) whose limit is not i@

Definition 0.14. The metric space(2,d) isomplete if every Cauchy sequencél in
converges i) .

This is the commonest meaning of the word “complatefar as we are concerned; in
situations where it is ambiguous, one might saytficaly complete”.



81. Introductory remarks.

Again, this material is not examinable.

A. The general problem.

In any elementary treatment of integration (fortamee in MATH 113), one meets two
notions of the integral of a functiory : [a,b] — R (where < b . The first,
customarily called anindefinite integral , is afunction ¢: [a,0] — R such that
g (t) = f(t) at every pointt € [a,b] , it being understood thefa) medres right
derivative ata andy(b) means the left derivativé dthis concept goes back to Newton; |
shall sometimes call it the Newton integral. It mwsly arises naturally from the notion of
the derivative, and has the further advantage tloatmany functions that are useful in
applications, we can find explicit indefinite intas; indeed, much of 113 was about
methods of doing so.

The second notion, usually called tibefinite integral , and essndue to Leibniz, is
merely anumber; speaking intuitively, it is the area enthe graph off over the interval
[a,b] . (More exactly, that is the definite integral whetakes only non-negative values — if
f were to change in sign, its definite integral oyerb] would be the difference of the area
above the interval and below the graph and thelzetav the interval and above the graph). |
shall sometimes call it the Leibniz integral. Leibmnd Newton, of course, thought of a
function as something defined by a rather simpimtda.

Unfortunately, as | used to stress when | taugbsetthings, there is a difficulty with the
Leibniz integral: it takes for granted that we knexuat is meant by “area”. There are two
aspects of this question, the philosophical/psyadiiobl (what is the basic concept of area,
where does it come from, and why do we believeettstrould be such a thing?) and the
computational (how can we calculate the area glkaific figure, supposing such a number to
exist?). As very often in mathematics, we can, foathematical purposes, fudge the
philosophy and psychology by defining the area fifjare to be the resuliyhen it exists , of a
suitable procedure of calculation. For simple fegutike rectangles or polygons, there are
more or less mechanical rules for calculating the@ras directly (split them up into triangles
and add the areas of the triangles). It is lesarahdat to do for figures like circles, or more
generally anything with a curved boundary, althoogin intuition — whatever its origin —
certainly does not balk at the idea that such &gwhould have areas.

This was already a problem for the Greek mathermaatic and one of their great achieve-
ments was the calculation of areas and volumesroescurved regions. Their results are now
easy exercises in integration, but, of course, théyot have a satisfactory algebraic notation
to help. It is a historical commonplace that modeathematics really started with the devel-
opment of good notation. Anyway, the Greek idea thias the area of a curvilinear region in
two dimensions should be calculated by, and thezafy the result of approximating the
region by polygons; and that is essentially the ibich everybody has followed since.

There are, however, figures iR> , even ‘regions’amithe graphs of functions (I shall
temporarily say ‘region’ to mean ‘set iiR> ), for wh the very notion of area seems
strange. The hackneyed example is the ‘region’ untte graph of the function
f:]0,1] — R, where f(t) =1 whent is rational ang(t) =0 when s irrational
(Some people call this the “Dirichlet function”)h& graph of this function would appear to
the naked eye as a line segment at height 1 abeveaxis, actually consisting of the points
at that height over rational values of , and a sdchne segment on the axis, really
containing only the irrational points; thus neithgra genuine segment at all. Any polygon



which includes the whole ‘region’ has area at legsand any polygon included in the
‘region’ has zero area. Approximation of the ‘regidy polygons is, therefore, not really
possible. There are many other similar construstion

Such examples suggest serious difficulties with ¢becept of area. The practical man
will say, of course, that our example is merelyfiaral, and that, in the real world, such
functions and such ‘regions’ will never arise. Tdher quite a large grain of truth in this, for it
is difficult to see how a description of the reaind might have to call on them directly; but
what if the mathematical techniques you then apgédyl to these “impractical” functions?
Our functionf , for example, is a the limit (poings) of a sequence of continuous functions.
It is, therefore, very difficult to see a good masvhy a function likef should be considered
illegitimate; its definition seems logically unasahle.

We are therefore faced with a definite, if impregiguestion: for what sorts of setR?
can we reasonably speak of their “area”? To ma&egtlestion precise, we should first have
to specify what we require of “area”. We could, fiestance, arbitrarily assign “ared” to all
non-null sets inR? ; such a definition would haveuseful properties at all. Presumably we
want our “areas” either to agree with ordinary avagolygons, or at least to have properties
as good as ordinary area on polygons.

Once we agree a method of defining areas for sdass of subsets dR? , we shall auto-
matically acquire a definition of the Leibniz intagfor a corresponding class of functions,
namely those for which the ‘regions’ between thapdrand the axis belong to the class of
subsets in question. That is obvious; and, suitalirpreted, it is also true the other way
round: a reasonable definition of the Leibniz imggvill lead to a definition of area for a cor-
responding class of regions. In short: theorie@eifbniz) integration and theories of area are
more or less equivalent.

The Newton integral ought to reappear here, asssilpe method of defining definite
integrals and therefore areas. But it, too, isettbjo a rather surprising objection: given a
real-valued function on an interval & |, theretigeesent no way of determining whether it
is the derivative of a differentiable function; tleskass of functions which have Newton
integrals has never been intrinsically characterizéne derivative of a differentiable function
is known to have many special properties, but ncesgary and sufficient condition for a
function to be a derivative has yet been discovedea may presume that any such condition
would have to be rather messy. In practice, youmkadunction has a Newton integral if you
know what that Newton integral is.

The important fact is, of course, that amgntinuous  functi® a derivative. This is one
of the assertions of Cauchy’s “fundamental theooércalculus”. To prove it, one makes use
of an integral of the Leibniz type, namely the Reem integral. However, a discontinuous
function as simple asf(z) =0 forx <0 f(z)=1 for >0 , cannot be Newto
integrable, though it is Leibniz-integrable on amerval [a, b] .

It is possible to extend the Newton integral inilape way so as to encompass all the
functions of a single real variable that one neluselementary purposes. The idea is to
require that the indefinite integrgl should be tomrous, and that it should satisfy the
equality ¢'(z) = f(z) except at countably many pointéNon-trivial argument is needed to
show that this definition has some of the propsrtiee expects of an integral). This allofvs
to have plenty of discontinuities and still be “New-integrable” in this extended sense, but
the class of such “integrable” functions remainsauive. In practice, we can make more
progress by studying the Leibniz integral first.
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For the sake of its appeal to intuition, | havekedl about the problem of assigning an
“area” to a figure inR? . By extension, there is kelproblem inR” forn >3 . Once the
difficulty is recognized, however, it is clear thhere is an analogous problem eveiRin . An
interval has a well-defined length, and so hassmtyvhich can be expressed as the union of a
finite class of intervals. When one considers nummplicated sets, is there any reasonable
sense in which one can talk about their “lengthifiition suggests, rather unreliably, that
maybe there ought to be, because some sets (evamansubsets &8 that have the same
cardinality) seem “thinner” or “sparser” than other

The first aim of the course is to construct a gehreory which will enable us to speak
of the “length” of a set ifR , or the “area” of & &e R?, or the “volume” of a set ifR? , with
the confidence that the numbers we are assignitiges®e sets behave in a way appropriate to
our intuition. This is a surprisingly difficult tks For historical reasons, to emphasize the
theoretical framework, and to avoid terms like géhi or “area” that are felt to be specific to
a given dimension, the general word actually engdiols “measure”; the subject is called
“measure theory”, and embraces not only the orglit@mgths, areas, and volumes, which
correspond to “Lebesgue measure”lkf , but alsorgéimations both to other spaces and
to other ways of describing the size of setsRih As &n example: the “area” of a straight
line segment inR? is zero, but it is possible taref measure iiR?>  which assigns to each
straight line segment its length and takes theevatu on ‘two-dimensional regions’). The
theory as we have it, basically Lebesgue’s, wadniced in his thesis in 1902, but our
treatment follows some improvements, though notmibvaenclature, due to Caratheodory in
his 1918 book on the subject. After him the theloegame more abstract and general, and
much of the terminology now commonly used, whickhhkll reproduce, was invented by
Halmos (his book came out in 1950). It remains that the vocabulary of the subject is not
entirely fixed, but | have tried to follow the coromest usages.

With the abstract idea ofrmaeasure in any set whatevershall be able to associate an
integral of the Leibniz type: the so-called “Lebesgue ind#grThis procedure does not
require the measure to be Lebesgue measui®’in theatomain of the integrand to be a
subset ofR"” . Furthermore, the definition, as welgiralsent it, is quite intuitive. Indeed, the
only really serious reason why the Lebesgue integnaot mentioned in earlier courses is the
difficulty of explaining what a measure is and ahnstructing interesting measures. (The
Lebesgue integral does involve other technical lerab, as we shall see, but they are no
worse than those for the Riemann integral.)

The Lebesgue integral is the single most esseotdlof modern analysis, and | am about
to devote some space to praising it. Nevertheiesspnly after seeing what results from it —
it is more satisfactory in almost every way thaa fiemann integral — that you will begin to
grasp why it is so important.

Lebesgue measure iR" assigns a “measurdlitgets in R” that one can meet in
practice and has all the properties expected of a “volufa@td some more). It follows —
almost — that the Lebesgue integral, unlike Riengrenables us to integrate all functions
that we can reasonably hope to. (There are furgtilbat we should not expect to be able to
integrate: for instance, the functioh: R — R, where

Fz) = 1 when z <0,
R N | when x > 0 .)

(7)

As this example suggests, the integrals we cameledre “absolutely convergent”. Other
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integrals have been invented since to permit iat@@n of certain functions whose integrals
are only conditionally convergent, such as(st dlierwhole ofR , but they have to do
so by abandoning some of the desirable properfigseoLebesgue integral and usually by
restricting attention t&® . One relatively recergdty (48 years old or more by now) begins
by a clever modification of the definition of theieRann integral, and there are other
definitions of an integral that have similarly beemented with the aim of simplifying the
construction, of handling special situations, andparticular, of cutting short the discussion
of measure, but their final results have alwaysb®ere or less expressible in terms of the
Lebesgue theory and they have often been lessajragpplicable.

In short, the Lebesgue integral, understood afsatbéodory as the integral with respect
to a measure that may not necessarily be Lebesgasure inR” , seems in a sense tthiee
integral. You can trim it round the edges or pirides on it, but any essential change will
lose you some useful property. This is not mergugdree; once the existence of a measure is
granted the construction of the Lebesgue integral iskistgly “natural”. Indeed, the most
sternly “practical” applied mathematicians, whdl stegard anything beyond the Riemann
integral as an idle theoretical subtlety, tend nidnadess tacitly to assume the Lebesgue
integral exists and has the properties they want.

| have presented the case for the Lebesgue thdomytegration on the basis of the
“geometrical” problem “what is area?”, but therearsother reason. Kolmogorov pointed out
in 1932 that a rigorous mathematical theory of pholity, which had been conspicuously
lacking until then, could be founded on the ideat frobability is in fact a measure defined
on the “events” in “sample space” (which need r®of®y ), that “expected values” are in fact
integrals, and so on. This was a conceptual breakgn, because, despite a great deal of
probabilistic knowledge, no-one had really had testectory notion what the logical basis of
probability should be. (I do not mean here the equifferent problem of finding the
probability of a specific event).

My treatment of the theory is thoroughly old-fasted. | shall begin by constructing a
large class of measures, of which Lebesgue measwureerwhelmingly the most important
example, and then discuss integration with resjpeatmeasure, which need not be Lebesgue
measure. There is a good reason for proceedingsntay: almost all the concepts we shall
meet have applications outside their immediate ednfThe abstract concept of a measure
crops up not only in probability theory but in lognumber theory, theoretical physics, and,
indeed, in almost all of modern mathematics. Furtizge, as | have already hinted, by
sticking to the main road of measure theory | shallusing the methods and nomenclature
that are most commonly met. Indeed, | make a delitbeeffort to conform to the conventions
of the more recent writers on related subjects.

There is a wealth of books on measure and integratind quite a number of them are
recommendable. | hope my notes will be more or msicient, but the three books I
customarily suggest as supplementary sources are

S. SaksTheory of the Integral

| give the title of the second edition, which isadable in the Library in the Dover reprint;
the first “published” edition, in French, is alslete (the first edition of all consisted of
lecture notes in Polish). This is a great clasaicich remains the principal reference for
many of its unfashionable later topics. We are amdgcerned with the first three chapters,
which Saks rushes through with great clarity arfitiehcy. You are warned, though, that his
notation is old-fashioned; he writes unions as suntsrsections as products, and so on. His
terminology has also been in some respects supetsed
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M. E. Munroe Introduction to the theory of measure and integrati

Not a classic, but a very superior American textbawit,infrequently cited as a reference.
Its great merits are that it is readable, assuem@arkably little of the reader, and covers in a
very clear and accessible fashion several toptenhaighted nowadays; furthermore, it takes
the space to discuss some important side-issuea@pitations, which more ambitious and
advanced books, such as Saks or Halmos, often staddably ignore. Its defects are, again,
that it uses rather singular and outdated term@wlthat it takes a very long time to come to
the integral — for example, the very extended fatshpter consists of general mathematical
culture, very interesting in itself, but only ocramlly needed later — and that Munroe is
perhaps not a very good mathematician. There ate phthe book where he loses his way
and makes very heavy weather of easy facts; inr gilaees he seems to miss an essential
point; and the first printing of the first editieven contained a whopping error in the main
text, which cannot possibly be described as a 3lie second corrected printing still has
minor inaccuracies. But, taking it as a wholegihains one of the most informative and most
interesting elementary introductions to the subject

P. R. HalmosMeasure Theory.

Probably still the standard reference, and not onknglish. As | have said above, it was
responsible for fixing quite a lot of the termingjowe shall use; and it was the first really
coherent presentation of the subject in “modern$eult is also both clear and very readable,
as usual with Halmos. As a textbook, however, ile$ective; it tends to relegate concrete
examples, no matter how important, to exercisesd, -ahfor quite defensible reasons —
develops the foundations at infuriating length and generality which is not really desirable
for a first course. The definition of the integeatives irritatingly late and is expressed in a
rather odd way; some important topics are omittkogather; and the last three chapters,
irrelevant for us, expound a rather eccentric wersif the theory they discuss.

Several other books are also acceptable, but lotasay much about them. There is one
by Berberian, which seems very close to the spiribhe course; one by Williamson, restricted
to the integral inR™ , but pleasingly concise; oneZaganen, which includes some valuable
material neglected elsewhere; one by Burkill. Tleekoby Kolmogorov and Fomin, which
has been published in English in several versiang, very readable discussion of a alrge
amount of material in which two chapters are rei¥a our course.

At a rather higher level, there is a superb boolDgley, which includes most of the
things | should have put in a book if | had writteme, but is too compressed to be a good
introduction. An enormous number of books on fumwdi analysis, harmonic analysis,
probability theory, etc., begin with abbreviategatments of integration more or less exactly
on our lines (for example, Dunford and Schwartaisear Operators Zaanen'’s earlier book
Linear Analysis Loeve’s Probability Theory Federer's Geometric Measureeory ), and
there are other books such as RudiRsal and Complex Analysis which irelgdod
discussions of measure and integration. Generpplang, any book with ‘real analysis’ in
its title will do so.

Avoid Bourbaki, who is heavy going and takes aedéht and less practical route from
ours. The first part of Riesz and Nagysinctional Analysis , thoughryvreadable and
informative (Riesz wrote it), also takes a ratheusual approach to the subject that scarcely
touches ours at all, and is less general. The ‘fgdned Riemann integral” or “Henstock-
Kurzweil integral” is discussed in books by Heng&todMcLeod, and Bartle. The central
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position of our subject means that many approaetespossible, and if you have some
special application in mind you may prefer someswali derivation of the main results.

8B. Conventions.

To avoid later explanations, here are a few remarkphrases and what-not that will appear
again and again.

Definition 1.1. Let E be a set. We say thAt asuntable if there is a torene corres-
pondence betweeli anduabset of thel$et of naturabarsn

Notice that an infinite subsét Bf is necessanlgne-to-one correspondence with the
whole of N . The correspondence may carry the |dastent of ' tol , the next least element
of F' to 2, and so on. Thus any 98t  which is bothntahle and infinite is in one-to-one
correspondence with  itself.

My use of “countable” means “either finite or derenably infinite”. Rather often, | shall
casually neglect the possibility that a countaldss may be finite, and it is to be understood
that in such a situation any argument, if | wereayitee it, would be unchanged in the finite
case except for minor alterations in notation. iRstance, | might writd J.°, F; , as if there
were infinitely many indices , even though in feere may be only finitely many.

Lemma 1.2. If £ is a countable set andy O I , thén is countallgy iand H are both
countable sets, thenso 8 x H A is a countablessl&vhose members are countable
sets, then the union of the memberglof s alsmuatable set. O

Make sure you understand what is being said hesearAexample, iff;; is a countable
set for each of the indicese N, thel™, E; is also a ahlatset.

There are a number of phrases we shall naturadlywsse literal meaning is debatable,
or even definitely different from their customargaming.

If | speak of a ‘finite union of sets from a clads what is meant is a séf  which can be
expressed in the fornk = | J,.zs K , whefe s a finite subatdsé. In other wordsfy  is
called a ‘finite union’ because it can be writtentlae union of finitely many sets, not because
it is itself a finite set. This is a quite stand&ndh of phrase, and one talks likewise of ‘finite
intersections’, ‘finite Cartesian products’, ‘coahte unions’, and so on. With this
convention, the last assertion of 1.2 is oftenflyrigated in the apparently tautologous form:
a countable union of countable sets is countable.

Similarly, if, again, 4 is a class of sets, we diszit as a ‘disjoint class’ when any two
of its members are either the same or disjointb@h). That is:A is a disjoint class if, for
any A,Bec A ,eitherA=B orAnB=1{0 .Inthe same way, a sequencetsf{&,)°,
will be called a ‘disjoint sequence’ if/,, " E, =(  whenever# m (In such a sequence,
any repeats must be null.) Some people describle seguences as ‘pairwise disjoint’, for
obvious reasons.

The set difference E\ FF of two setsE,F  is{z :x € E & ¢ F} . | shall
customarily write it with a ‘backslash’ or ‘slanto distinguish it from arithmetical
subtraction, since we shall often be using bothnyeuthors use an ordinary minus sign.
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We shall also occasionally use #emmetric difference of the two BetsidF , which is
customarily writenEAF  and is defined to B& \ F)U (F \ E) . Ithe tset of elements
belonging to exactly one &f arid

As these remarks have probably already suggesigeah deal of the course will involve
manipulations (unions, intersections, differences)h sets. They will be made more
confusing by the fact that often whole sequencesetd, rather than one or two, will be in
play. So, firstly, do be on your guard — it is vegsy even for experienced mathematicians
to be deceived by complicated formulae of set unams differences into supposing various
equalities to hold that are in fact wrong. As aaraple: it is quite tempting to suppose on the
basis of the notation that, for any sequendgs), (F,,)  etsfs

UsEAm) = (U e\ (U ).

but, if you think about it more carefully, you wake that equality does not hold in general.
(Take, for instance,F,, = [n,n+1) andj, =[n+1,n+2) .) The equality is triuthée
E, are disjoint andF;,, C F, foreach , by the way.

This may seem to mean that every formula, othen the simplest, needs scrupulous
analysis; but fortunately there is a simple wayde€iding, at least in the easier cases, what
ought to be true: namely, Venn diagrams. The segnede of advice is therefore not to
despise Venn diagrams, which are often the quickegtof grasping set-theoretic formulae.
They cannot, of course, constitute a proof in thedaes, and they have to be drawn carefully,
but very often they suggest how a proof might go.

The algebra of sets uses various operations such as), \ , A. As far as | know,
there is no ‘official’ order of precedence amoni&se operations, such as we are taught in
school for the arithmetical operations , —, x, + of ordinalyebra. ThusAN BUC
is literally meaningless. In Saks's day  was wnitess + andn  as multiplication, , and
the precedence of multiplication was observedB + C megd N B)UC . (This
notation was perhaps dropped later because of@lafooking statements as the distributive
law (A+ C)(B+C)= AB+ C). Today, however, some care is necessaryttmgeut
set-theoretical formulee. | shall try to be cardfulinsert brackets where they are logically
necessary for the sense to be unambiguous, but otary authors (including Munroe and
Halmos) rely only on the typeface and on commosegthus, in an expression like

Auﬂ:;En,

the size of the ‘intersection’ sign, and its afBxare considered to make the interpretation of
the formula certain, despite the absence of thenplaeses that | should consider desirable.

Whatever the formal prerequisites, this course tkink, surprisingly near to being self-
contained in terms of the concepts required, afhogou do need a certain familiarity with
abstract argument. We shall use only the basis faabut the algebra of sets, convergence of
series, and so on. Nevertheless, | shall occasyorefer to some elementary concepts of
topology such as ‘open sets’, ‘closed sets’, ‘cootipass’, and so on, and | shall not discuss
them at any length when this happens.
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8C. Jordan content.

This subsection may be ignored if you are in ayhuand is in any case not central. It outlines
the theory of area which corresponds to the Riemiamegral and was superseded by
Lebesgue’s ideas. This theory (in essence due mailléalordan, some time after Riemann’s
death) makes an immediate appeal to our intuitibis, in fact, more or less the idea the
ancient Greeks worked with; and its constructiomumnes only a remarkably slight
modification to yield Lebesgue’definition of measureRfi Thd deeper properties of
Lebesgue measure cannot, however, be establishessgy). There is no point in developing
Jordan’s theory in detail, since Lebesgue’s resarésbetter in every respect, but my sketch
will perhaps explain where Lebesgue’s work began.
Let a,b,c be points inR? . Thepen triangle with verticesb,c s the set

Ala,bye) ={a+ub+ve : v eR & A>08& pu>08& v>0& A+pu+v=1}

If a,b,c are collinear, the triangle is calletbgenerate . Thelosed triangle lwihe same
vertices is

Ala,bye) ={da+upb+ve : \u,v ER&A>0& p>0& v>0& A+pu+v=1}

The words ‘open’ and ‘closed’ in these definiticar® merely conventional, and you should
not think of them as directly related to the togdal terms ‘open’ and ‘closed'.

The geometrical meaning of the definitions is imiaot. To begin with a simpler instance,
the set{ a+pub : A >0 &u>0 & A+ p=1} is precisely the line segment between
a and b, excluding the points ardd themselves —ssnke=b , when it is just the
singleton {a} . In the same way)(a, b, ¢) is the “interior” gag in a geometrical rather
than topological sense) of the triangle with vesie, b, c , as long as,b,c  are the vertices
of a genuine triangle. Ifa,b,c¢ are all on a single igtta line ¢ but not all the same,
A(a,b,c) is the open segment of the lide between the wwithdést separated points of
a,b,c. If a,b,c all coincide, A(a,b,c) is the singletofa,b,c} . Fal(a,b,c) , chang
the word “open” to “closed”. It is geometrically wibus (I shan’t give a formal proof) that,
when a,b,c are not collinear, they are the only possielices for A(a,b,c) . (To avoid
bias towards dimensio2? A(a,b,c) is often called the oResimplex spanned by
{a, b, c} ; there are corresponding constructions in higlraedsions).

It is never necessary in what follows to talk egplly about closed triangles. The reason is
that A(a, b, c) is a disjoint union of open triangles, nameflgome selection ofA(a, b,c)
A(b,e,b), A(e,a,c), Ala,b,a), Ala,a,a), A(b,b,b) , A(c,c,c) . If a,b,c are not
collinear, all these open triangles are disjoird have unionA(a,b,c) ; but, of course, only
the first is non-degenerate.

Let £ be an open triangle iR?> . K is a subset tihg, seta(E) := 0 ; if not, let its
vertices bea = (ay,a2) b= (b1,02) = (c1,c2) ,and then define

a(E) = §|bics — bacy + cras — caa1 + arby — asby|.

(The expression inside the absolute value signiseighird coordinate of the vector product
((01,02,0) - (al,ag,O)) X ((bl, bQ,O) - (al,ag,O)) , which has0 as both its first and its
second coordinate. Thus its magnitude is just bsolate value of the third coordinate. But
the magnitude of the vector product|js — al|||b — a| &in , wheis the angle between
the vectorsc —a and —a . This is twice the ‘ordinary’ aad the triangle with adjacent
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sides described by the vectars- a,b —a . So our formulaesges the area of the triangle
with verticesa, b, ¢ ).

Let us say thatasét iR?> ipalygon if it is a finitdon of open triangles. It follows
immediately that the union of two polygons is silbolygon.

There are two less obvious facts. Firstly, a polygaay be written as a finitdisjoint
union of open triangles (many of them degenerdteporse). Secondly, the difference of two
polygons is still a polygon — notice that, in pautar, the null set is a polygomd(a, a, a)

You may easily convince yourself of the truth adgk statements by drawing simple pictures;
the formal proofs must involve induction, beginnifgm an argument to show that the
difference of two open triangles is a finite digjounion of open triangles. This, incidentally,
is the reason why it is convenient to @pen  triangles

Let P be a polygon inR? . Express it as a disjointoundf open triangles, and take the
sum a(P) of the areas of these triangles. This sum doésdepend on the wal is
expressed as a disjoint union of open trianglesale, if you so express it in two different
ways, you can split it up in a third way more fineb that every triangle of either of the first
two decompositions is a finite disjoint union ofatrgles of the third, and its area is the
corresponding sum of the areas of the smallerglean (This, whilst obvious, isot easy to
prove, although the proof is not subtle or cleveis just long and not very interesting). Thus
a(P) may naturally be described as the are@of . Thieept has the obvious property,
which we should expect of any notion of area, that

CL(P1 U Pg) = a(Pl) + CL(PQ)

whenever the polygon®, anfd  are disjoint.

Thus we have a clasB  of setslkt , namely the @agmlygons, which has the
property that, whenP,, P, € P , both?, U P, angh \ P, also belongPto nd(as a
consequenceP, NP, = P\ (P, \ P») also belongsRo ). Furthermore, rérge fanction
a : P — R is such that

() a() =0,
(i) a(Py) > a(P,) forany P,P, € P suchthat?, C P, ,and (8)
(lll) CL(P1UP2):CL(P1)+G(P2) if Pl,PQGP, lePQZQ,PlLJPQGP.

Condition (iii) on its own is described by saying thas additive onP . (The hypothesis in
(i) that P, U P, € P is automatically satisfied for the class ofygons.)

The additivity ofa derives most of its force frohetset-theoretical propertiesBf . As an
extreme instance, one might have a function onesolassP which satisfiel) (i) , and
(iii), but for which(iii) held only because there were rgjodit pairs of non-null sets iR
whose union is also iR

For the class of polygons, on the other haid, itsagull value, because for any
P, P, € P one has a disjoint pair i?  consisting &f amd\ P, nd @&s union is
P, U P, € P.lIncidentally, P, \ P, andP, N P, form another disjoint pair,v8e get

(Z(P1UP2):G(P1)+CL(P2\P1) and a(PQ):CL(PQ\P1>+a(P1ﬂP2) .

The propertieqi) (i) (ji) are perhaps the natural remeinés for an “area”. So far,
then, we can define the area of gmglygon in a way #dgaees with our intuition and
satisfies (as one would expect) the requiremergsamuld like to impose on any idea of area.
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The elementary notion of area that one learns hodcis based on rectangles, not
triangles. This leads to a smaller class of seatsvfoch areas are defined, as above, by taking
finite unions. Even triangles cannot be expressduhidge unions of disjoint rectangles.

Let £ C R?. Define theouter Jordan contentofs to be
c*(F) :=inf{a(P): EC P € P}.

If £is a bounded set iR? |, itis included in a stiffintly large triangle, so that'(E) s
finite. Conversely, if is unbounded, it cannotibeluded in any polygon (all polygons are
bounded), so that, symbolically (see 82),(F) = oo . It vedent from (8fii) thatc*
agrees withu on polygons, and, unlikke , it is dedifior any sefy . Moreover, it satisfies the
properties corresponding to (§) and(i(B) . Unfortahlatit does not automatically satisfy
(8)(iii) . For instance, if

Er={(z,y) : 0<z<1,0<y<1,2€Q},
Ey={(z,y) : 0<2<1,0<y<1,z¢Q},
then Ey U E, is the unit square, so that(F; U Fy) =1 ,afdi N Ey =0 , but both

c¢*(E,) andc*(FE,) ard . (This corresponds to the ‘Dirichletction’ of (7)).

The question therefore arises whether the analaju@)(iii) for ¢* is true for any
interesting class of sets. The problem with thergla just given is — intuitively speaking
— that the sets,, £»  are geometrically very peculiachehas the whole unit square as its
topological boundary. There is a natural way ahelating such sets from consideration. We
define thenner Jordan contentof a sef to be

c«(E) =sup{a(P): ED P e P},

and say that a séf  J®rdan-measurable if it is bounded andr) = c¢*(F) . (Oea is
that a Jordan-measurable set can be squeezed hdtmepolygons whose areas differ by an
arbitrarily small number. Thus it is desirable &strict attention to bounded sets; otherwise
the outer content would b& , and there are exangflessty unbounded sets whose inner
Jordan content is alse . For instance, take thenuoii the left half-plane with; )

It may be shown rather easily that a bounded sé&bridan-measurable if and only if its
topological frontier has outer Jordan content zero.

When F is Jordan-measurable, the common value ahtiexr and outer Jordan contents
of E is called simply the Jordan contentfof , adérote it byc(E) .

Theorem 1.3. Let J denote the class of Jordan-measurable se®%inThen P C J , so
that 0 € 7, and ¢(@) =0 ; more generally, for any? € P ¢(P) =a(P) ; for any
J1,J2€j,b0th Jl\Jgej and JjUJ, e J ;ifJ1,J2€J andJ;NJy =0 , then
c(J1UJy) =¢(J1)+e(J2);and ¢(J) >0 foranyJ € J . O

In effect, all the properties which we noted foe threa functiorn and the class of
polygons extend to the Jordan content functionhendass of Jordan-measurable sets, and
this class is much more inclusive. It contains‘elémentary geometrical figures”, even with
curved boundaries. (This statement cannotpbmved witlroumore precise notion of
“elementary geometrical figure”). Jordan contentprecisely the notion of “area” which
corresponds to the Riemann integral.



18

The definition of outer Jordan content may be meidated as follows. Given a sét
c¢*(F) is the infimum of the sums of the areas of fiitdlections of triangles that covér
(Indeed, if the triangles are disjoint, their unisna polygon includingz whose area is just
the sum of the areas of the triangles; if theyraredisjoint, the sum of their areas is not less
than the area of their union, which is itself ajalig union). The devastating insight of
Lebesgue was to substituteountable  collections of triangiesthis definition; the
corresponding construct is thebesgue 2-dimensional outer measurebf . Since limiting
processes are essential at every stage of hisrgotigh, for instance in summing countably
many areas, nothing is gained here by using treangt the same outer measure results from
taking coverings by countable collections of cooatié rectangles, which was in fact
Lebesgue’s definition. The change in the definittoom Jordan’s version may well seem
nugatory (the limiting procedure has just beentstlito an earlier stage of the construction),
but it turns out to have remarkable consequences.

The original treatment of Lebesgue followed Jordaamrguments rather closely; in
particular, inner (Lebesgue) measure was also efior bounded sets, and such a set was
defined to beneasurable if its inner and outer measureseajréhe extension to unbounded
sets was achieved by splitting them up as unionsahtably many bounded sets. A rather
similar procedure was followed in defining the gra: first integrate bounded functions on
bounded sets, then extend to unbounded functitves to unbounded sets. In all these
respects, Lebesgue’s original theory, like manyepttiheories in their first versions, was
rather messy. Some 15 years later, Caratheodoppped simplifications which removed the
necessity of introducing inner measure; he coulfindemeasurable sets in an ingenious
fashion requiring no boundedness assumption. Therghbecomes a little less intuitive,
because Carathéodory’s definition of measuralgityather unexpected, and the analogy with
Jordan content is less transparent, but thergisat gain in generality and elegance. Crudely
speaking, one is no longer tied &y . This is thesiea of the theory that we shall study.

Even in R", Lebesgue’s theory is a great improvemamt Jordan’s, becausall
reasonable sets ilR” are measurable everyday language, any set you can actuaty g
hold of has an area (or volume, or whatever youical higher dimensions) which agrees
with the ordinary idea of area of a triangle (obewr whatever) and has the properties (8)
you hope for, and even some better ones. Sincey evegful set has an ‘area’, the
corresponding notion of integration will handle gveaiseful function we might hope to
integrate. (As | pointed out in 8A, there are, rtbekess, simple functions which must be
non-integrable).

There is, however, a thorny point here. In talkafgreasonable’ or ‘useful’ sets, | am
obviously being very vague. Any set which is obgairfrom polygons (or polyhedra) by the
standard procedures of analysis, all of which amuhtable” in character, will be Lebesgue-
measurable, and these are the sets | have in Butdt is not clear whether all sets can be
constructed in this way, and, in fact, if one asssitne Axiom of Choice, which most people
very sensibly prefer to do, one can show that tihewst be some sets R*  which are not
Lebesgue-measurable. Being constructed by meatise ghxiom of Choice, they are ‘all in
the mind’ and cannot be specified in any expliciywHowever, if we are to allow that they
exist, then in all our later work we must be careither to impose the hypothesis that the
sets we deal with are measurable, or, where apptepto prove that they are. In more
general spaces and for measures other than Lebesgasure, there may be certain sets
which are clearly non-measurable. This is the neagay the later part of the theory is framed
by the rather complicated apparatuscof -algebrassanon; we must take account of the
possibility that some sets do not fit the theory.
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82. The extended real numbers.

In first-year tutorials, | have been in the halfitadling students “infinity is not a number”, to
discourage those who want to write things likex co)/oco = 5 ré&lexactly, what | have
in mind is that, since the symbsd  cannot be reléabeany idea of counting or mensuration,
it should not be subjected to the usual laws dgharétic, which ultimately derive from such
ideas. In most undergraduate courses, the onlguserse we make ob is as a symbol in
expressions like i, — oo as — oo ", whose meaning, as usualiynelé, does not have
anything to do with a real object called

In measure theory, on the other hand, there is geasbn to allowo as a ‘formal’ value
of some measures. (The word ‘formal’ in this cohtexmathematical jargon for *having no
natural interpretation’.) An attractive instancethat the area of the whole plane obviously
“must” beoc if we want to speak of it at all. Butwe wish to allow infinite values, we also
need to decide what arithmetical rules, if anyséhmfinite values will obey. It is not difficult
to settle on a suitable list; | shall explain thetives behind it once | have given all the rules
in question, but it is important to grasp that, inlggust a symbol, we are free to make our
own rules for using it, and we choose rules thatagpropriate to our purposes. They are not
absolute rules established for ever. (For instatfue,symboloo is also used in complex
analysis, where the appropriate rules are subathntiifferent).

The use ofcoc and-oc is by no means a universal coiorenin particular, Saks is
reluctant to employ it. It has to be admitted tiaiften forces us to divide proofs into two
cases, a trivial one where infinities occur ane@osis one where they don’t. Nevertheless, |
think most people implicitly or explicitly followhee line | shall take, and, despite the minor
complications it introduces, it does tend to siifiypine statements of theorems.

So we agree to proceed as follows.

Definition 2.1. Let co,50 be two elements different from each other fiach all elements
of R. The setR := RU {00,355} is called the set@ftended real numbers. We orfter by
the relation< , defined by

xX<Ka anda <K oo foranyeaeR ,andc < oo ,
and, whena,b e R ,a<b ifandonlyiti <b

Then < is atotal order dR , such ttst  is the lelshent ando the greatest.
Next, we define algebraic operationsiin . For ang R ,

0] 00 + 00 == 00, B0+ 0 =00, 00.00 =00,
00.00 =30, 00.00 ' =30, 00.00 :i=00.

(i) r+o0o=00+xr:=00, rT+3X0=00+x:=00,
r—00=0—:=00, T—00=00—I:=00.

@iy If z>0, r.00=00.x:=00 and z.50 = 0.z := X0 ;

if <0, z.oo=o0c0.z:=20 and .00 = 0.z := 00 .
(iv) 0.00=00.0:=0, 0.cc=20.0:=0.

Here | have listed the definitions of operationsiahinvolve infinities. For elements @&
itself, which are called the “finite” elements Rf the algebraic operations are to be the usual
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ones. There are various slightly different formwlas of the rules; for instance, | have not
listed the ‘unary’ operation of reversal of sigrhigh we might define as subtraction fram ,
so that, by(ii)) ,—oco =3¢ and—-ac = oo . Others might take— —x as the gym
operation, andefine subtraction from it, as reversaligh followed by addition.

Notice that the domain of the operatian is notwiele of R x R , since we have not
specified values forro +36  ands +oco . HenBe is not an abeji@up with respect to
+ , or any other kind of familiar algebraic object.

The setR , with the order< and the operations ofitedd subtraction, and
multiplication defined as above, is called thé¢ended real number system. Mgeally write
< instead of <« , and—oco instead ® , and say tkat  stipe or has positive sign,
whilst —oo is negative or has negative sign. (In thestion | shall often retaitc  for the
sake of clarity). We say that and  amgosite infinities

The rules(i) ¢ii) are precisely what you expect on thesbaf well-known theorems
about limits of sequences. For instancegif — x < 0 (wheemd eachr,, areiR )and
y, — oo (where eachy, is iR ), them,y, — —oco , and this indicatedt the want
x.00 = 0. The notable absences from the list corresporases where no such theorem is
true. As an example, ifr, — oo and, — oo , nothing general bansaid about the
behaviour of x,, — v, , so the list does not mentiax — oo ; we gmt co— oo s
“undefined” or “does not make sense”, in commorhwather binary expressions that are not
explicitly given a value in the definition.

On the basis just suggested, the ruies may setrar raurprising — there are no
theorems about sequences to which they corresgbnd; — 0 and y, — oo , no general
conclusion can be drawn about the behaviourzgf, e @ould therefore expect that
0.00 and 0.5c should be undefined. In the context of meaguweory, however, the stated
rules are natural, for a rectangle of length aewyit 0, such as the -axis iR> , is
expected to have zero two-dimensional area. Wd shal that(iv) leads to results that are
consistent with intuition.

It may also seem odd that there is no mention akidn. Of course, ifz,y € R and
y # 0, we know how to interpretr ~y , ando +y may be intergteds co.y~! ; thus
those divisions are already implicit. Furthermorg;/oc and =+ 0 have no reasonable
values. However, | have not listed “foranye R x,+-00=10 and-c = 0" as rules.
There is no deep reason for the omission; the @eghaules would lead to no logical
difficulties; but they are also quite useless for purposes.

Note 2.2. There is an important convention to which we shdhere throughout. A statement

of equality between two expressions involving egh real numbers is understood to
include the assertion that either both expressioaise sense or both are undefined. Thus, if |
write

a=b+c,

this states both thai + ¢ makes sense and that = vab . In detailp and cannot be
opposite infinities; if they are both infinite, thare equal to each other andato . If only one
of them is infinite, it is equal to

Remark 2.3. Since + and— (and ) are binary operations, we dammgrinciple, write
a+b+c or a.b.c; brackets should be written in certain pla@sording to well-known
rules of mathematical grammar, to indicate the iordke carrying out the operations,
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(a+b)+c or a+ (b+c) . However, it is clear after a moment’s thaugtat, for any
finite sequenceuy, as,...,a, of extended real numbers,

() any grammatical method of inserting brackets engloducta,.as.....a,  will give
an expression that makes sense, and its valuaetilepend on the bracketing. If all hhe s
are finite, this is just the usual statement obasdivity of multiplication inR . If any of the
a’sis0, the producti® .If none@s but some afeite, the product isc when the number
of negative factors — includingg ’'s — is even,dr hem the number of negative factors is
odd. Also,

(i) the suma;+as+... +a, either makes sense in any grammaticakétiag
(which occurs when all the terms that are infinitehere are any, have the same sign),
and then the value of the bracketed sum does ruendeon the bracketing; or it does not
make sense in any grammatical bracketing, whiclhurscavhen and only when two of the
terms are opposite infinities.

The general principle, then, is that we may oméckets exactly as for sumskh , the
only added complication being that the sum may meke sense (no matter how it is
bracketed). Multiplication is distributive over atidn in the strongest possible sense:

a.(b+c)=ab+a.c,

where, in accordance with the convention of 2.Zheside makes sense if and only if the
other does. (Check the possible cases).

Lemma 2.4. Every subset & has a least upper bound and atgselower bound.

Proof. Let A be a non-null subset & . Then is boundeti bbove and below iR , for
oo is an upper bound ar®  is a lower boundodf¢ A # {5} , ahd R is bounded
above inR , then Dedekind’s axiom saysN R # () has a sworem R, which is clearly
also the supremum of R (the set of upper bowfds in R consists of the upper bounds
of ANR inR plusco ). If ANR #( butd is not bounded aboveRnits, only upper
bound inR must bex , which is therefore its supremifmoo € A, oo is trivially the
supremum ofA . The only remaining possibilities #ra A = {cc} orthatA =0 , when
any element ofR is an upper bound ax is the supme There are corresponding
arguments for infima. O

In particular, the supremum ¢f #® , whilst itsiméim is oo ; hence, for the null set
(and for no other), the infimum is larger than si@remum.

Lemma 2.5. Let A be a non-empty subset of a totally orderad/seAn elementt € T is
the supremum off i’ if and only if it is an uppeund forA and, for anys <t , there
exists somez € A such that< a

Proof. If ¢ is the supremum and <t¢ , then is not an uppembdpand there is some
elementa € A not less than or equalsto . The ordergottal, a > s . Conversely, if is
an upper bound but not the supremum, then thesense s <t which is also an upper
bound, which contradicts the proposed condition. O

Of course this Lemma really repeats 0.6, excepthi®ruse of subtraction.
If (x,) is a sequence in a partially ordered sét , wescdbe it asincreasing if
xn < x,41 for all n; asstrictly increasing if x,, < x,,1 # z, for alln ; asdecreasingif
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Tn > xny1 for all n; asstrictly decreasingif x,, > x,.1 # x, for alln ; as monotonic[or
strictly monotonig if it is either increasing [or strictly increagjhor decreasing [or strictly
decreasing].

Many authors write “monotonic increasing” etc. teed of just “increasing”.

Definition 2.6. Let (a,) be a sequencel . We define the convergehsech a sequence
to a limit inR as follows.

(1) a, — oo Iif, for any K € R , there existsV € N  such thaf, > K whenever
n > N . [This is exactly the usual definition; but, ofutee, a,, is now allowed to take the
valuesco andx . Ifa,, — oo , there can be only finitely mamgicesn for whicha,, =35
and, if 30 < a,, < oo for infinitely many indices , the subsegoe given by those indices
tends tox ]

(i) a, -0 as n—oo Iif, for any K € R , there existdV € N such that
a, < K whenevern > N . [lt follows that,, — 35 ifand only #a,, — oo .]

@) If a eR,thena, —a asn — oo If, for any positive real numlaethere exists
N € Z suchthat ¢, —a ke whenevet > N . [In particular, this metas a,, must
be finite except for a finite number of valuesdf

The ad hoc definitions of the various kinds of convergegoeen above are exactly the
standard ones, with the one extension that isvalioto take infinite values. In fact, the
definition 2.6 can be derived as convergence vagpect to a suitable metric & . One such
metric isp , where, for any,y € R,

_ N
plas) = plona) = |1~ T
X
p(x,oo)—p(oo,x)—‘1+|x‘— '
(z,0) = (mx)—‘ T4 ‘
p ) - p Y - 1 + ‘IB| '
p(00,0) = p(0, 00) = 2.
(Another possible choice of metric jg(z,y) :==| tam— tag| , with

pl(o0,z) = p'(z,00) = |§7 —tamtz|, p/(50,z) = p/(z,50) = |47+ tan'z| .
However, this definition uses the transcendentattion tarm! instead of the elementary
functions used above.) In effect, this metric resstrom mappin® on to the closed interval
[—1,1] by the mapping which takes into z,€ R intg' (1 + |z|) , &dntoi—1 .
Then, foranya, 3 € R ,p(a, B) = [¢(a) — #(5)]

Throughout the course | shall tend, as above, ta thra phrase “asn — oo 7, at least
when it is obvious that the convergence in questiust be asn — oo . | shall have some
deeper remarks about Definition 2.6 later.

Lemma 2.7. Any convergent sequenceRn is bounded both adnodéelow. An increasing
sequence iR convergeslih if and only if its teamesbounded above, and its limit in that
case is the supremum. Any increasing sequend® ionveoges inR to its supremum. In
either case, if the original increasing sequencevarges, any infinite subsequence also
converges to the same limit; if the original incséay sequence (iR ) does not converge in
R, then neither does any subsequence.
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Proof. Suppose(y,) Iis a sequencelin convergept to . Thkimgt“e” to bel in Defin-
ition 0.10, there existsV € N  suchthat> N —y—- 1<y, <y+1 . Therefore,

(vn € N) mln(y - 17y17y27 7yN71) S Yn S ma)(y + 1,91,92, 7yN71)a

which means that the sequence has both a lowesrangper bound iR
Now, let (z,,) be increasing iR and bounded abov& irwith supremumz . Given
€ > 0, Lemma 0.6 shows there exists sae for whish> x — ¢ eNéhern > N ,

r—e<ay <z, <x

(since z, > xzy because the sequence is increasing and = audmec is an upper
bound). Hencen > N = |z,, — x| < = , as required.

Let (z,) be increasing iR . It has a supremgm Rin r@leee three cases. f =0
then 2z, = for alln , soz, - .Ifadc < g < oo , then, by 2.5, there isn0 M € N
such thatz, >0 forn > M ;sdz,),>y IS an increasing sequencedexiabove iR |,
with supremumg ; thus it converges & ¢o . Recal(i). If ¢ = oo, then, for any
K € R, there existd. such that; > K , by 2.5; henge> K nor L thao2.6i)
is satisfied.

Finally, notice that the set of upper bounds f@& whole sequence is the same as the set
of upper bounds for any infinite subsequence, sy kiave the same supremum. O

If you know about nets, you can formulate and prawersion of the above argument for
nets instead of sequences. This makes the disoussimordered summation a little shorter.
Definition 2.8. Let (z,,)>°, be a sequenceld . Then the sefes”, z,, converges to the
sum X € R, which is expressed by the expressioh= o T , If eadatighasum
o, =P x, is defined inR (forp =1,2,... ), and the sequengs,) convengds
to X. We say that the seri€s ~, =, converges Rn if there is seteenent X € R such
that the series converges to the skim

If (z,), is a sequence iR , the seriés  x, converges to the sunX € R , and
one writes X = ">, z, , if the sequende,)  of partial sums efséries converges i
to X. We say that the serigs °, =, converges Rn if there is sefeenent X € R such

that the series converges to the skim

The most important difference between serieRin d @anR is that inR there is the
possibility that partial sums may not be definelisTonly occurs if bothe aneb  occur as
terms of the series. In fact, if only one infimtglue appears (possibly repeatedly) as a term of
the series, then the series sums to that infiraleer If, on the other hand, all terms of the
series are finite, then it convergesRin  if theuseape of partial sums convergesRin

As | warned you, the word “convergence” has a diifé meaning for series from the
previous one in Definition 0.10. Perhaps for tldason, students tend to have difficulty with
it, although there is another reason: the wholecepnof a “series” is odd, and, | think, is
rarely defined in precise language. One might aaypne of several possible definitions not
usually given, that a seriés just a sequence wtesees are specified indirectly as partial
sums of a related sequence. It would be tedioledp repeating such an explanation, and so
we write something like “the seri€s. ~, z, " as a shortheeminder that the series is the

sequence of partial sums of the sequeficg . Thesseonverges il‘Zf:1 x, (whichis

its kth term) has a limit a& — oo . But we also want &ation for this limit when it exists,
and it is unfortunate that the natural choicgis-, x, which thus comes to denote both the
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series itself and the limit; and the limit is eduahaturally called the sum. It would be
possible to avoid these ambiguities by writig =, foe series andy_ ° x, for its
“sum”, but no-one consistently does so that | kradw

Since we need partial sums, it is only reasonabkalk of series whose terms belong to
some object in which they may be added. Althoughttie moment, we are only interested in
R orR, one can also have serie€in Rih Cbr , @ nore general normed space.

Definition 2.9. The seriesy vy, is searrangement of the serigs *, =, if there is a
one-to-one and onto mapping: N — N such that= x5, for each

A one-to-one and onto mapping is often calldajection

There are fairly obvious modifications of Definiti® 0.10, 2.6, 2.8, 2.9 that apply when
the sequence or series is indexedMy {0} or an iefigutbset thereof, and | shall use
them without comment.

Definition 2.10. A series_z,, inR [or irR , or more generally]usconditionally conver-
gent inR [or in R, etc] if all rearrangements of z,, convergeRi [or inR, etc] to the
same sum. A series_z,, & [or in a normed spacabsolutely convergerift > |z,
[or >, |lz,| ] converges iR .

Definition 2.11. Let S be a set andf : S — R  a functiofi. has therdered sum
x € R if, for any € > 0 , there exists a finite subget Sf thwthe property that, whenever
G is afinite subset of including | —> ... f(s)| <€

Lemma 2.12. Let f,g: S — R be functions which have the unordered sumg € R
Then the functiorf + ¢ has the unordered sum y

Proof. Given € > 0 , there are finite subsefs, F;, Sf such thatahy finite subset?  of
S, GOFi=|z—Y,f(s)) <3¢ and GO F = |y—> . 9(s)| < je . Take
F=FRUF;thenGDOF = |(z+y)— > c(f(s)+g(s))| <e. O

Recall that a real sequen¢e,,) is just a functionN — R shall say that a series
>z, inR isunorderedly convergent iR if the sequencér,,) has an unordered suR in

Lemma 2.13. If the series)_x, iR is unorderedly convergent watimz inR , it is
unconditionally convergent with sum

Proof. Given ¢ > 0 , there is a finite subset Bf such thdtemeverG is a finite subset
including F', |z =), s2n <e. Take N:=maxF eN . Ifn>N , the finite set
{1,2,...,n} includesF' , and sdz — >, , x,| < e . Thus the series is converigetite
given ordering. However, unordered convergence #rel unordered sum are clearly
unaffected by rearrangement. O

The converse is also true, but is left aga@arcise

Theorem 2.14. A series inR whose terms are all non-negativers/ergent iR if and only
if its partial sums are bounded above; in that céses unorderedly convergent, and so
unconditionally convergent, IR . The sum is styictecreased if the values of any non-null
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set of non-zero terms are strictly diminished. Aeyies inR whose terms are all non-
negative is unconditionally convergentRn

Proof. For a series(x,) of non-negative termsRn , all pagums are defined. The
sequence of partial sums increases; apply Lemmi 2)&t the assertions about convergence.
SupposeB is an upper boundlin  for the partial stosany finite FF C N

ZkeF Tk < ZZETF Ty < B

since allz;, are non-negative. Thiss  is also an uppand for the finite sum3 .z,
Conversely, any upper bound for the finite sumstalso be an upper bound for the partial
sums, which are a special kind of finite sum. Adie the common least upper bound. For any
e >0, there must be some finit¢" CN  such that, .z, > A—€ , sinceroibe

A — ¢ would be an upper bound; but then(GfC N is alsadiand G O F

AZZkerkZZkeka>A_€'

sothat|A — )", ., xr| < € . This proves unordered convergende to plyAh13.

The effect of changing any non-zero tetrp ih € (0,z)) iseduce all the later
partial sums by at least, —z;, . Thus— (z, — /) will be an uppaurtd for all the
partial sums, and their supremum cannot exceed it.

The case remaining is where the partial sums obtlggnal series have supremura  in
R. For any K € R, there must be a partial sul,” =, > K I 2o1) s a
rearrangement of the series, choo$é:= max{c~1(1),071(2),...,071(m)}; then the
indices1,2,...,m all crop up among(1),0(2),...,0(N) ,and, whenewepr N ,

n N m
Zk:l To(k) = Zk:l LTo(k) = Zk:l rp > K.
This shows that the rearranged series also corséoge . n

The last paragraph of the proof could be substtimg an argument from 2.13, if | had
done 2.13 for series iR . In fact, unordered copeece is really a form of convergence of
nets, as | remarked after 2.7.

The result | really need is a rather more genesasion of the above. For series of non-
negative terms ilR , the sum is unaffected not bglyearrangement, as just shown, but also
by “grouping of terms”. It is also unaffected byetimsertion or removal of any number of
terms whose value & ;| leave it to you to work precisely what that means, and to prove
it. To make the statement true without exceptiore needs to give their customary meaning
to finite sums and to regard the “empty sum” (the ©f no terms) a8

Theorem 2.15.Suppose that, for eache N (z,;)%, is a sequence of nontivegarms
inR. Let ¢ : N— N x N be a one-to-one correspondence, andyset z,;, Then

Z;; Yi = Z;; (Zl:il x’“)

Since all the series have only non-negative tetines, converge unconditionally &
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Proof. Let us suppose first tha} "~ z;; <oco  for eath . Considefirté grouping”
) (ZZQ .:z:k,) . The partial sums of this series form a subsequehtiee partial sums of

the series x11 + a9 + - + Tpn)1 +T12 + T2 + -+ Tp)2 + T3+ 00, which is a
rearrangement op _y;  with certain terms reduce@ to 2By, then,

00 00 n(i)
Zj:l Yj = Zi:l (Zk:l xm) '

Take any K < »°.*, y; . Then there exists soe  such @’aﬁl y; > K . Badb an
xy; for some suitable choice 6f and ;thus

N M n(i) 00 n(i)
K < Zj:l Yi < Zizl (Zk:l x’“) = Zi:1 (Zk:l xk’) '
for some suitableM € N and some suitab\g) for eachwdwertl and\/ . By 2.14
again, 327 (L4 wn) < 0% (X7 ani) - Hence K < 7 (% @) o which

implies that 3~ =, y; < 375, (Z,fil x;m) ; otherwise také = >~ (Z,jil a;;m) to get a
contradiction.
Now consider >>" (322, z1;) . If all the internal series convengeR, it is a familiar

fact that 321 (3202, ori) = 302, (Zle xk,) , and this remains true even if one @ th

internal series sums t& , by 2.14. The partial safrthis last series form a subsequence of
the partial sums of a rearrangemendofy; with se@mmad reduced t0 ; hence, from 2.14,

Z;l (Z;; ﬂﬁkz) < Zyj,

which is, therefore, an upper bound for the pastishs of) " *, (Zk‘il .:z:k,) . So

>4 (Z:il x’“) <Yy

This completes the proof of the required equality. O

The proof could probably be presented more ecoralipidut most authors seem to treat
it as obvious and assume it without comment.

We can now begin the serious development.
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83. Outer measures.

In 80C, | introduced the ideas of ‘outer Jordantenti and of ‘inner Jordan content’ iR?
They are based on the area of polygons, and a ntambkaught will convince you that the
outer Jordan content of a bounded Eet  could b@etkfas the infimum of the numbers
obtained as the sums of the areas of finite systeirtsiangles coveringt . The idea of
Lebesgue was to useuntable systems of triangles instead rather countable systems of
rectangles, which after a good deal of work canseen to give the same answer.
Subsequently, Carathéodory observed that onlgtiter onstruction is really necessary.

Definition 3.1. Let(2 be any set. Theower setP(§2) 6f is the set whose mendrerall
the subsets d?  (includify afd itselfp(Q) :={F: E C Q}

Logicians sometimes call the power <t . Topolsgishd to use2® to denote the
class ofclosed subsets of a topological space, so eprf(2) . Incidentally, thatP(2) is
also a set is an axiom of formal set theory.

Definition 3.2. Given the sef) , weighting function it is a mapping C— R, where
Cis asubset of?(2) containify and

@ 7@ =0, (b) (vCe() 7(C)>0.

For instanceC might be the class of trianglesatfie area. | may calt(C) theeight
of C, but neither this nor my name “weighting fulcti for ~ are in common use.

Definition 3.3. If 7:C — R is a weighting function if2 , andz € P(2) , let

™(E) = inf{Z:; T(Cy) : (Cr)ilyisasequence in  anfl C U;j; Ck} €R

In words, 77(E) is the infimum (iR ) of the sums of theights of sequences ¢h  that
coverE . The set whose infimum is taken will comnydseg an uncountable class (there being
often uncountably many ways of coverihg by seqasrad members af ) of non-negative
extended real numbers. It may well be the case,efiery thatE cannot be covered by
countably many sets frod -&  might, for instancensist entirely of countable sets,
although £ is uncountable. In that cas&(F) = oo ,iaBl) = oo . Tihderstood, 7’
becomes a functio?(2) — R

In general, there is no reason to suppose thatfithetion 77 resembles in any
significant way. It is easy, for instance, to gaseamples where" s always zero when s
not. The really important thing is that (E)  is defifedany E C Q.
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Lemma 3.4. Given a weighting function @ 7'  has the projsert

@ 7'(0)=0,
(b) if M,N e P(Q) and M C N ,thent"(M) < T (N) ,
(c) forany sequencéE,)>, iR(Q2)

! (U:; E”) < Z:; TT(E”) '

Proof. (a) and(b) are trivial. Folc) , there are two casesyIf®, 7'(E,) = co there is
nothing to prove. Suppose th3f >°, 77(E,) < oo , and, consequentlyf,) < oo for
eachn . Lete >0 . For each , there exists by 0.7 a seguéC,;)>, inC such that
En g UZO:ol Cm' and

T(Ey) <> 7 7(Cui) < 7(E,) + 27", and so
S (Er ) <Y By 2 = (X7 B e @)
Rearrange the double sequeri¢g,;) as a single sequBnceThen

:il B, C U:Cl( - Cm’) = U:OL 1 Chi U D and

( ) 7(D;) by definition.
By 2.15, 2;1 (D)) = 32,2 (305 7(Cwi))
AU B < (30 7E)) +e (10)

But > 71(E,) < oo, ande is arbitrary; hence, in fact,

7' (U:il E”) < Z:il TT(E”) '

(If this were untrue, we could take:= L (7"(U, 2, E.) — (3,2, 71(E,))) > 0 and get a
contradiction to (10)). O

Hence, by (9),

It appears at first sight that from , whose prdpsrivere feeble in the extreme, we have
constructed a function™  which is not only defined &ll subsets of) but also has far
stronger properties. However, we are not reallyimgeisomething for nothing; the problem is
that 77 may be quite mysterious or quite unintergstBut let us continue.

Definition 3.5. An outer measuren a sef2 is a functiop* : P(Q2) — R such that

@ p(0)=0,
(b) if M,N eP(Q) and M C N , theny*(M) < u*(N) ,
(c) if (M,) is any sequence i?(f2) ,then

e (US M) <307 ().
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Notice that(a) andb) ensurg*(M) >0 foralVl C Q , so that the surft) must
make sense(b) is sometimes expressed by the stdtémaen:” isnondecreasing(as a
function onP(2) )(c) saysthat* untably subadditive .

3.4 proves that! is an outer measure.

3.3 is the standard elementary construction of ateromeasure. The question arises
whether every outer measure can arise in this wayyhether outer measures constructed
from weighting functions are somehow special. Tiger is uninteresting:

Lemma 3.6. If 1 is an outer measure @ ¢ :=P(Q) ,and:=p* ,theh= p*

Proof. If £ C Q,and (FE,) isasequence iRA(2) such tatC |J 2, E, , then
pHE) <D " i (Ey) =) ()

n=1

by 3.5c). Sop*(E) is a lower bound for the sums thatndefi’(£) (see 3.3), and
1 (E) < 77(E). On the other hand, the sequeri¢g), ), ... cokers , asd thu

T(E) < () + 1 (0) + 1 (0) + +++ = ' (B) + 0+ 0+ - = " (E).

Putting the two inequalities together! (E) = u*(E) , as reqlire (|

Lemma 3.7. (a) Suppose thaty)).ca is any family of outer measurés iDefine
(VE C Q) u"(E)=sup{u,(F): ac A}.

Thenp* is an outer measurefin
(b) If ui, s are outer measures 0, sojig + p5  , defined by

(YVECQ) (i +i3)(E) = i (E) + 3(E).
() If (1), is asequence of outer measureflin , define
(VECQ) p(E)=> " u(E).
Then, again,u* is an outer measurein . O

These statements are not really remarkable, focdhditions 3.5 are not very demanding,
and there are many uninteresting outer measuresnsi@ance, the zero function is an outer
measure, as is the function whiclbis on the retlesid>c on every other set.

84. Sets measurable with respect to an outer measur

The substance of this section was invented by B&odbry; as | remarked in 81A, he pointed
out that a satisfactory theory does not need “irmeasure”. The essential step is Definition
4.1, which is both unexpected and states an exlyaheenanding condition.

Definition 4.1. Let p* be an outer measure in the Qet . A &tc P(Q)) ai ® be
measurable with respect {@*, oru*- measurahfefor every A € P(Q2)

p(A) = (A\M) + p (AN M). (11)
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w*-measurability ofA/ is thus not an “internal” profyeof M, but rather describes how
M behaves in society: it splitsrery  set C Q “additiveli’'may occasionally refer td
in (11) as a “test set”. In the interesting casBg2) has very many members, so 4.1 is, in
principle, very unlikely to be true. The surprisehat there are interesting outer measures for
which there are many measurable sets.

On the whole | shall writ€2 \ £ for the complementfin 2. Other notations that are
inuse are“ andE . Both of them assume thélsetixed.f

There is also a point of vocabulary. For the réshis section, only one outer measuyre
will be considered. In such a situation, one migledl write “measurable” instead of* -
measurable; and in many books, especially oldes dayeauthors who were brought up on
Lebesgue’s original theory iR" , the word “measwgaldlways means “measurable with
respect to Lebesgue outer measure” (which we sloaibtruct later) and “outer measure”
always means Lebesgue outer measure. Unfortunételg is a more modern usage we shall
soon meet, and to avoid confusion | shall, theesfoatain theu*

Lemma 4.2. Given the outer measurg® Gh

(@) 0ispu*-measurable,
(b) if E € P(2) isp*-measurable, soiQ\ £

Proof. (a) holds asp*(¢#) =0 , an(b) since (11) is symmetrical betweemdQ \ £ . O
Remark 4.3. In fact, if E € P(Q2) andu*(E) =0 , therE ig* -measurable. Giverst t
set A, p"(ANE) <p(E)=0. But p*(A) <p(A\E)+p (ANE) by 3@) (c) ,
whilst p*(A\ E) < u*(A) by 3.8b) . So 4.1 is satisfied.

Lemma 4.4. Given the outer measurg* n |, ,FE,,....F, pe¢ -measurable
subsets of) . Theb),_, E; isalgd -measurable.

Proof. It will suffice to show that, iff and’ ane* -measbie, so iskE U F ; the result
will follow by induction. Let A C Q2 be a test set. &S s i* -measurable,

p(A) =pw((ANE)+p (A\E)  and (12)
pr(AN(EUF))=p*(AN(EUF)NE)+u* (AN(EUF))\ E)
= (AN E) +p* (AN (F\ B)), (13)

the latter equalities arising from the test sétn (EUF)  owever, F' is alsou* -
measurable, and so, taking\ £  as a test set,

WA\ E) = 1*(A\ E)NF) + 1 (A\ E) \ F)
— W(AN(F\ E)) + ' (A\ (EUF)). (14)

Adding p*(AN (F'\ E)) to both sides of (12), and applying (13) é4) in succession,

p(A) +p (AN(F\E)) = " (AN E) + p*(A\ E) + p" (AN (F\ E))
= (AN(EUF)) +p (A\ E)
= (AN(EUE) +p (AN (F\ E)) +p(A\ (EUF)). (15

We wish to “cancelu* (AN (F\ E)) ". However, there may be innitalues, so a little care
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is needed. Ifu* (AN (F\ E)) =00 , then 31B) implies that' (AN (EUF)) = oo and
p*(A) = oco. On the other hand, ifu*(AN (F\ E)) < oo , either both sides of (&
infinite, in which case omitting:*(AN (£ \ £)) on either sidellvgtill leave oo, or both
sides are finite, when we may apply subtractioR.ifn all cases, then,

p(A) = p (AN(EUF)) +p (AN (EUF)). o

Lemma 4.5. If EandF' arep* -measurable subset$bf , so Are F AndF.

Proof. By 4.2b),Q2\ E andQ\ F' arg* -measurable; by 4.4, so is timton. By 4.Zb)
again, ENF=Q\ (Q\E)U(Q\ F)) isu* -measurable. Anfl \ F = EN (Q\ F) is
w*-measurable in the same way. O

Notice that 3.fa) was used in 4a2 , and(B)S in 4He Text Lemma, however,
depends on 3(B) . It is a curious result, statingopgrty of.* -measurable sets that we shall
never need in its full strength.

Lemma 4.6. Let (E,) be a disjoint sequence@f -measurable sety iand let A C Q) .
SetE =2, E, . Then

WANE) =3 " W(ANE,).

Proof. Let Fj := Ule E, ,for k=1,2,3,... . Suppose that, for a given
WANF) =Y p(ANE,). (16)

(This is certainly true wherk =1 ). By 4.4}  is meadlgaand so

p (AN Fr) = p' (AN Fep N Fy) + 17 (AN Frp) \ Fi)
=p(ANF;) + p (AN Epy)

= ZkH (ANE,)  because of (16).
Thus, (16) holdsforalk e N .Ag}, C E foreaéh ,(hp ahf)(give
W(ANE) > (ANE) = (Y W(ANE)):
this holds for alk , so
HANE) >sugz PANE,) =Y " W (ANE,).

However, the opposite inequality is assured b{c3.5 . O

Remark 4.7.If (FE,) is a sequence of subsets @f , there is a stdndeocedure for
obtaining a related disjoint sequence. For lacla dfetter name | have sometimes called it

disjunctification Define E| := E; andEj,, := Ej.1 \ (Ule En) . ThenE, C E;,  for

eachk and the sequen¢&)) is disjoint (by constnuctlgj, is disjoint fromE,, for all
m < n). But also
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U::1 E, = ::1 By (17)

forany k € NU {oo} . The inclusionC is obvious; but any elemenf the right-hand side
must belong to arf’,,  of smallest possible index,thed = € E/ too.

As a consequence of this procedure, the requirel®é&t) of the definition of outer
measure could be (and sometimes is) stated inpierently weaker form

if (M,,) is anydisjoint sequence i®(Q2) , them" (U:il Mn) < Z:il (M)

Lemma 4.8. Let (E,) be a sequence pf -measurable subse®s of n. Ehe=J,°, E,
is alsop* -measurable.

Proof. Since each finite uniorfy, := Ule E, 18" -measurable by 4.4 4Bdensures the
difference isy* -measurabley; ., | = Eiq1 \ (Ule En) A8 -measurable for gach1,

and Ej := E; istoo. In view of (17), it will suffice to neider the disjoint sequendé’,)
Take any test sefl € P(2) . Then, forarye N |

p(A) = W (AN Fy) + p' (A\ Fy)
= (Z:Zl (AN E,Q)) + 1 (A\ F,) by 4.6 (or (16))
= (Z:;l (AN Eé)) +u (A\E) by3.5b).
This inequality holds for ak , and therefore
WA > (X7 W (ANEY) + ' (A\ B)
> p(ANE)+u (A\E)  by3.c).

However, the opposite inequality also follows fr@®a) and 3.%c) . (Apply 3.&) to the
sequenceA N E, A\ E,0,0,0,... ). O

It is a curiosity of this lemma that it employs ptte “finite version” (16) of 4.6. And the
culminating Theorem below only uses the cate- 2

Theorem 4.9.(Carathéodory) .Let * be an outer measure in the §et , andlet hbke t
class ofu* -measurable setsfin . Theén has the folpywroperties.

@ 0eX andQeX.

(b) If E,FeX, thenE\FeX .

(c) If (E,)2, isany sequence of element&of ,thg¢iY, E, € X too.

Furthermore, if(F,)°°, is a disjoint sequence of memloéds, then

n=1
w (U;il F”) - Z:il p(Fn).-

Proof. (a) is 4.2;(b) is part of 4.5(c) is 4.8. The last assaris the cased =2  of 4.601
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The classX ofy* -measurable sets(in has, theretpride remarkable properties.
Unfortunately, it is quite possible — indeed itusually” the case — thafl  has only the two
elements) and) , so that the properties in questédnce to trivialities. We need further
information abou.* to ensure thdat is large enciagtthe Theorem to be interesting, but
we shall first digress to look at the propertiesiore detail.

The last assertion of 4.9 is often expressed bygdlat;.* iscountably additiveory: .

The class of.* -measurable sets satisfies even straogditions than those given in 4.9.
Suslin, in 1917, invented a method of combining sehich is more general than taking
countable unions or intersections. (He was hopwgngly, that he could construct all
Lebesgue-measurable sets in this way). If you atpydy'Suslin operation” to a system of -
measurable sets, the result is giso -measurabie.isThroved on pp. 47-50 of Saks; much
more information on Suslin’'s construction can benfd in Kuratowski’'s or Hausdorff's
books. However, the Suslin operation appears @ther rarely in mainstream analysis.

85. Rings, fields, measures.

Although outer measures are, both historically entditively, perhaps the most natural way
of constructing measures (there are other ways){utther theory scarcely notices them. The
properties ob: listed in 4.9 turn out to be mor@ariant than the way in which they arose.

Definition 5.1. Let() be any set. Ang in 2 (or, more preciselyjray of subsets d2 ) is a
subsetR ofP(€2) such that

0] DeRrR;
(i) if E,FeR,then E\F e R ;and
(i) if E,FeR,then FEUF e R .

Granted(ii) (i) says only thak # ()  (for, i € R , théi) impligs= E\ F € R).
And (ii) alsoentailsthaE N FF = E\ (E\ F)eR

The word “ring” is used because of a very impre@tgebraic analogy (unick  sum,
intersection~ product). As far as | know, Halmosasponsible for the term. A rifg  is
precisely what you need if the disjunctificatioichrof 4.7, applied to a sequence of members
of R, is to construct a new sequence of members of

A typical example of a ring is the cla®s  of polggdn R?, introduced in 81C. There
was a problem in calculating the area of a polygea:had to express it as a findesjoint
union of open triangles. This, and similar exampsesggest the idea of a “semiring”, which,
as it were, generates a ring.

Definition 5.2. A semiring in the sef) (more precisely, a semiring of subsetsf) is a
subsetS ofP(€2) such that

0] ) eS;and
(i) if E,FeS,then E\ F is afiniteisjoint union of members &f

Lemma 5.3. (a) A ring of subsets &2 is always a semiring.
(b) LetS be a semiring if2 . Then the class of finigaiht unions of members of
constitutes a ring i) . In particular, it is thers@ as the class of arbitrary finite unions.
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Proof. (a) is obvious, and I think it is appropriate to ledl) as arexercise. It is proved by
several tedious inductions. O

Remark 5.4. In linear algebra, any subsét of a vector spaspans or “generates” a linear
subspace that we may call span (also denotedi)in solne). There are two ways of
defining spafA4) . On the one hand, it is the setlofexdtors that may be obtained as linear
combinations of elements of ; this is the “intefnat “constructive” definition, which
builds spaf4) fromA by telling us exactly what theneénts of spgm) look like. On the
other hand, spdm) is the smallest linear subspacg dfiat includesA . This is the
“external” or “implicit” definition, which tells usothing at all about the individual elements
of sparfAd) .

Both definitions require supplementary facts. Far first, one needs the trivial statement
that the linear combinations of elementsAdf fortmaar subspace, whilst for the second,
one must prove (which is easy) that the classraali subspaces including , ordered by
inclusion, has a least element.

In group theory, similarly, any subsét of a gr@augenerates a subgroup, which may be
described “internally” or “constructively” as thetsof elements off obtained by evaluating
words on the elements df , and “externally” asl#@st subgroup af that includds

In algebraic situations like these, we are deahity finitary operations. As | remarked at
the start, algebra is in some sense the studyitéfy operations — mostly of binary ones.

Let A be any subclass of the setQ2) . Take:= AU {0} , andl,if s constructed,
let A, ., consist of all subsets 6f that may be obthiae either the union or the difference
of two members of4,,

Apy1 ={EUF, E\F:E,FeA,)}.

Lemma 5.5. With the notation just established,

@ A, C A, foreachn e NU{0} ,
(b) U2, A, isaringinQ thatincludest |,
(c) if RisanyringinQ thatincludesl ,theR D J, 2, A, .

Proof. Easy exercise. O

It follows immediately that J,~, A, is the smallest rinfjsmibsets of2 that include$
which we may denot&k (A) . Any member Bf(.A) belongs4p r s@men , and thus is
the result of finitely many operations of taking thnion or the difference of two sets, applied
in the beginning to members gf . Wh&n is a semijriR(S) is just the class of finite
unions of members & , by 5.3.

Definition 5.6. Let A C P(Q2) . Afinitely additive signed measui@asm) ond is a function
u: A— R such that
@ w@=0,if )eA;and
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(b) if Ae A and Ay, Ay, ..., A, is a pairwise disjoint finite sequendemembers
of A such that4d = |J;_; 4; , then

p(A) =" p(A). (18)

A finitely additive measuréfam) on.A is a finitely additive signed measurkieh takes
only non-negative values.

Recall 2.2: the equality (18) means that, in theegicircumstances, the right-hand side
always makes senselh  and has value equal o evowthere is no reason why any
member of4 should be a non-trivial finite disjourtion of other members. The conditif)
may sometimes be vacuously true.

If 1 takes only finite values (quite a useful pod#yp— consider the areas of triangles),
or only non-negative values, the sum is alwaysnaefi More generally, one may consider
“finitely additive measures” with values in any &he group. There are many minor modifi-
cations that may be made to the theory withoubssrchange to the proofs.

Lemma 5.7.LetS be a semiring it and let : S — R be afasm®n  thkes at most
one infinite value. Then there is a unique fasmR(S) — R  chghat ¢|S =0 . Ifo is
afam, sois .

Proof. By 5.3b), any memberRk € R(S) is a finite disjoint uniQd" or some
n € N and some (disjoint) members, &f . S0R) mustE§ Sy)  he anly

problem withdefining (R) by this formula is thd& may be eeqmible as a finite disjoint
union of members a§ in more than one way (aghinktof S as the set of trianglesi¥ ).
Let (C;)2, and(D,)™, be finite disjoint sequencesSin  such tha

7=1
For each choice of,; (;ND; isiR(S) , and, by®B , is atdimisjoint union of
members of : for some(i, j) € N and some members S of <k < p(i, ) :

1 (Z’,")
C;ND;= UZ:; Biji ,

where the B;;, for different: are (pairwise) disjoitit.follows that B, N By = 0
whenever the triplegi, j, k) an@’,j,k’) differ; for instance,ji# j , then B;;, C D;
and By C Dy ,butD; N Dy =( . However,

ci=cin (UL, p) =UL@noy=U" (U Bar).

and this is a finite disjoint union of membersfSimilarly, D, = (", (J*") B zgk) , also
a finite disjoint union.
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Now, o is a fasm. So

Z j= 12 Biji.) szlzz Biw), and
> Z Zj 12 " o(Big)
- Zj:lZi:le:l a( B k) = Z o(D )

Thus, the manner in whiclR € R is expressed as a fahg@int union of members &
does not affect the sum of the corresponding vadfies and we may unambiguously define
5(R) = Z;”:la(sq) when R = U;; S,
for any choice of a finite disjoint sequenég, S,, ..., S, ofrnbers ofS whose union is
R.
It remains to check that , so defined, is a fasriRomwhich is trivial. O

The condition that takes at most one infinite eaisi implicit in the proof, because |
have casually assumed that all the sums make déiseasy to give examples where fasms
on a semiring do not extend to the generated riecalbse the condition is not satisfied.
Indeed, it is a necessary as well as sufficienditam:

Lemma 5.8. LetR be aringimM) ,andlet: R — R  be a fasm. Then tede at most
one infinite value; that is, if £, FE> € R ando(E;) = o0 , therr(Ey) > —o0
Furthermore, if £y C E, ando(E;) = +oo |, thew(E:) = o(E)

Proof. SupposeFE;, F, € R andr(E;) =oco .Byhypothedis \ E2, EsNE, € R, and
o(Ey) =0(E\ BEy) +0o(E1NEy),

which means that eithero(F; \ Es) = 00 ow(FEyNEy;) =00 . In the first case,
EiUE, e R and o(EyUEy) =0(FE;\ Ey) +0(Ey) , and this excludes the possibility
that o(FE,) = —oo , which would make the right-hand side undefinin the second case,
Ey D EiNEy, and o(Ey) = o(Ey \ E1) + o(Ey N Ey) , which forcess(Ey) = oo . (This
argument also proves the last assertion of the Lanihe proof with—oo instead ob  is
identical. O

This is a typical example of arguments about itifssisuch as | warned of in the introduc-
tion to 82. The result has no substantial “matheabtontent”; it says merely that, if we
want to allow infinite values for fasms on a rimgnsistency demands that we only have one.
As | have commented before, it does simplify prabémne forbids infinite values.

Some authors speak of “set functions”, meaningtfans defined on classes of sets. This
has the advantage that a “fam” in@negative finitely additive set functj@o that the more
specialized notion is defined, as one would nonyneXpect, by adding restrictive adjectives
to the more general one (whereas the phrase flfindadditive measure” is linguistically
perverse — it need not, in principle, benaasure inukeal sense 5.10 at all). However, |
think my terminology is the common one.

Lemma 5.9. If M and N are members of the rirlg {1 , apd ais fam7, and
M C N, then u(M) < u(N) .
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Proof. This is much the same argument as 5.8, witly \ M) monvynegative:
N\MeR and u(N) = p(M)+p(N\M) = p(M). .

This property ofx is sometimes expressed by sayiag: is an “increasing set function”.

Definition 5.10. Let A C P(Q) as before, andi: A — R pu is describedcasntably
additiveon A if, whenever(A;)*, is a pairwise disjoint sequeotelements ofA whose
unionis also ind ,A:=J.=, A, € A ,then

o0

A =2 7 4. (19)

A signed measuren A is a countably additive fasm oh .neasure dn aisigned
measure that takes only non-negative values; shatcountably additive fam o

Thus, as | have already remarked, a “signed measwed not be a measure, and a
“fasm” need not be a signed measure. | have seplicitly above that a signed measure
must be finitely as well as countably additive; practice, one usually ha$ € A and
w(0) = 0, and then countable additiviljplies finite additivi(jL9) is to be understood, as
always, as including the assertion that the suthemight-hand side makes sens®in

The phrase “countably additive” is often abbrewdate “c-additive”. Some people (e.qg.
Munroe) call it “completely additive”, or “totallgdditive”. Since the fundamental fact of the
course is that measures can be defined on ratlger tdassesd |, it is worth pausing to point
out the reason why we stop eduntable additivity. The eitpglL9) is only admissible
because we have a satisfactory notion of “additifmr” countable classes of non-negative
numbers (see 2.15, for instance; but notice thatsiiim in (19) must be unconditionally
convergent, sinceél is also the union of any regearent of the sequendel;) ). Tempting
as it is to try to construct “uncountably additiveieasures, the idea is unsatisfactory in
practice becausany subsetldf is a possiohgountable  disjanmdn of singletons. If
(19) were often to hold, and uncountably many sitagls were to have positive measure, this
would mean that unacceptably many sets would hafieite measure; if only countably
many singletons had positive measure, unacceptadhy sets would have zero measure. The
usefulness of Lebesgue measure, on the other anelated to the profusion of sets with
positive finite Lebesgue measure.

As with 5.6, the definitions above lack contentelements ofA are never countable
disjoint unions of sequences.h . The “natural” @mfor a fasm is a ring, in which the set
operations that enable us to extract the full valithe additivity condition (18) do not take
us outside the domain ¢@f ; for signed measuresctineesponding natural domain issa -
ring.

Definition 5.11. A o-ring in the sef) isasubset @®f(2)  such that

@ 0eXx; (b) if E,FeX,thenE\FeX;
(c) if (E;)>, isanysequence B ,then),”, E; €

Lemma 5.12. Ao-ring is aring. If E,Fe X , thenENF e X ; if(E;)>, is any
sequence il , thefi),”, E; €
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Proof. The first statement: také?, .= F Ey,=F -;-=FE;=F3:=0 ,(0). Then, as
inthe remarks after5.1ENF =E\ (F\F)e X wheh, FeX .
For the last statement: tak@ ==, E; € X ,f@ . Then(by Q)\E €X for

eachi . Applyingc) |5 (Q\ E) e X .Byb) N E=Q\ (U (Q\E))ex . O

In short, ar -ring is a ring in which countable aalvas finite unions and intersections are
permitted. A simple example is the class of couetabts iR , which isa -ring by 1.2. The
guestion arises what -rings look like in general.

Lemma 5.13. SupposeA C P(f2) . There exists a smaltest -rin@in theltidesA4 : that
is, there is ar -ring which itself includes  andrisluded in any -ring that included

Proof. Letfl denote the class of all -ringsfh that inew .S is not empty, foP(Q2)
itself is a member ofl . Define

Y(A) = ﬂm . (20)

It is easy to check that, as 5@)L (b) , awd holdefach X € f1 , they hold also for
Y'(A), which is therefore & -ring. It obviously includds and is included in any -ring
that includes4 . (]

An exactly similar argument can be given to prdwe éxistence of a “least ring including
A”, or of a “least vector subspace including a giweiset of a vector space”, and so on.
Notice that I € P(P(P(2))) , for each -ring is a member@fP(2))

One might try toconstruct 3'(.A) as follows, imitating 5.5. Led, := AU {0} and,
when A, is known, let4,,.; consist of all the subset$)dhat may be obtained either as
the countable union of sets ia,, or as the diffegapictwo sets in4,, . Having thus defined
A, inductively for n € N , take A, :== [J 2, A, .One expects that(A) = A

Unfortunately, it is impossible to prove that. shéis 5.11c) , and there are cases
where it does not{ may be the class of open séls iThe proofs are non-trivial; you can
find them in Hausdorff or Kuratowski). The problesnthat an infinite sequence of members
of A, may take itsn th term from4, \ 4,1 . In fact, the proged does work if you
continue the inductive construction to transfiroteinals and stop, not, as we did, at the first
infinite ordinal, but at the first uncountable ordi. However, in doing so, you lose any
explicit description of the members &f (A) , so theradt much point.

The moral is that, for most practical purposes,ltesabouts -rings have to be proved by
“implicit” methods. Here is a simple example.

Lemma 5.14. Let A C P(Q2) . Then, for anyB € ¥'(A) , there is a sequericg)>; of
members ofd such thaB C |J,=; A4,

Proof. Let B be the class @ll subsets(df which are indudesomecountable union of
members ofd . Cleary3 > A , anfl s triviallyoa -ringethte B D >'(.A) . But this is
just the assertion of the Lemma. O

It should be emphasized that the sequefg “depemds” — it is definitely not
always true that there is a single sequence thaksvor all members oBY(A) . A very
simple example is whed is the class of singletori®; then X/(A) is exactly the class of
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countable subsets & , each of which can be codgres®me sequence of singletons, but (as
R is uncountable) they cannot all be covered bystme sequence of singletons.

Proposition 5.15. Let p* be an outer measure §a . Then the cldss p*of soveale sets
inQis ac -ring inQ2 , andp*|X : ¥ — R is a measure.

Proof. This is a restatement of (part of) CarathéodoFyisorem 4.9. O

86. Countable additivity.

In this section we can at last discern a practioaktruction of measures.

Proposition 6.1. LetR be aring i and:: R — R afam. Regaud as a weght
function inQ (that is, takeC :=R and:=p B2 ). Thel(R) (theing generated
by R, cf.(20) 0f5.13) consists @ff -measurable sets.

Proof. Take atestsed € P(2) andl ¢ R .(]M;)>, isasequencRin cuyet,
then (M;\ M) is a sequence iR  covering\ M , apd; N M) iS a sequierR
covering AN M . Hence, from the definition pf  (see)3.3

pHANM) +pf(AnM) <Y 7 M\M + > u(M; 0 M)
—Z w(M; \ M) + pu(M; N M)) by 2.15
:ZH M;) asp is afam o .

Taking the infimum over all such sequendés;) , we firat
pH (AN M)+ pf(AN M) < pf(4).

The opposite inequality comes from @) (c) . It folkothat)/ is:™ -measurable.
By Carathéodory’s theorem 4.9, the class pbf -nmedde sets is a -ring. | have just
shown that¥ O R .Hencel D ¥'(R) , as asserted. O

This result gives a situation of obvious practisighificance (one could tak@  to be the
class of polygons iiR> and to be the area — se@ §R2@hich an outer measure has a
large class of measurable sets. However,ribis ergssthaty’'(R) is exactly the class of
pf-measurable sets; in fact, there are usually venyynmorey” -measurable sets than belong
to ¥'(R) . The other defect of the Proposition is that,far, we know nothing about the
values of the measure!  Off(R) . It might even be idaltyizero; or its values might, in
practice, be extremely difficult to calculate, whieould make it awkward to integrate with
respect to. We can, however, find a simple critetfaat fixes some values off

Lemma 6.2.In 6.1, x'|R = 1 if and only if. is countably additive Gt

Proof. By Carathéodory's theorem 4.9, is countably adelion the class of.' -
measurable sets; by 6.1, this class inclddes if S0,
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Suppose thaj: i -additve cR andeR . As is covdrgdthe sequence
A0,0,... inR, clearly ut(A) < u(A) . (21)

Let (M;)>, be any sequencef™ that covdrs ;thenMgt=M,NAcR redch
1, and disjunctify as at 4.7:

Ni=Mj, Niyg=M,\ (U,izl M/i:) for i e N.

Then (IV;) is a disjoint sequence (as | remarkest &ftl), V; C M; for each , and

A= Uil M! = U: N;.

By the hypothesis that is countably additive Bn n(A4) = > =, u(N;). However, for
eachi , u(N;) < p(M;) by 5.9; hencg(A) < 3% w(M;) . This holds for any sequence
(M;) inR that coverst , and sp(A) < u'(A) . With (21), this comggehe proof. [

Theorem 6.3. LetR be aringif? and:: R — R a measure. Then therenseasurei
on X(R) suchthati|R = 1 , namelgi := uf|2(R)

Proof. 4.9, 6.1, and 6.2. O

Lemma 6.4. LetS be a semiringi ,andlgt: S — R  be afasmSon ctvhakes only
one infinite value. The induced fasiin: R(S) — R (5e& o) is itasdon R(S) ifand
only if i iso -additive or§ .

Proof. Exercise. O

We now have a method for constructing measuresfféict, all we have to do is to define
a countably additive measure on a semighg , wkpebvided it takes at most one infinite
value) will then extend to a measure on the wholb® generated -ring. However, there are
a number of loose ends. Perhaps the most conspidadhbat the classt off -measurable
sets always contair@ itself, by @9 , whergass) ny— S may, for instance, be
the class of singletons i , and might take tHeeva on each singleton.

It is also clear from 4.9 that, i/ ¢ M and"(M)=0 ,thany setbof M also
belongs toM . This property (it is, unfortunatelysually called “completeness” of the
measure) need not be true faf(R) . A subtler objedsdhat, as | observed after 4.9, the
Suslin operation applied to membersief  yields menmlof M , and it is more general than
countable unions; one might therefore suppose ttatresults should be formulated for
classes of subsets @f closed under the Suslirmbper

The course | have taken is, however, justifiable.d€al with the last objection first — |
have already remarked that the Suslin operatioargdy used in mainstream analysis, and it
will turn out that for all of this course, and forost purposes outside it, we need only deal
with differences and countable unions. We shoulg therefore, demand that our measures
have properties stronger than we need for our tamry, since we want our theorems to be
as general as possible. The same applies to canmpkat; indeed, probabilists absolutely must
work with incomplete measures much of the time.

The objection tha2 must e -measurable, but maypeadn ¥'(R) , is in a way more
serious. Broadly speaking, the reason | have uS¢®) above is that there is a uniqueness
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theorem: if ©: R — R is a measure @ , and satisfies atiitefness condition”, then it
has only one possible extension to a meagure’(R) — R 19 hist true if one allows
the extended measure to have a larger domainhioreasong -rings have an important part
in the theory, and Halmos goes so far as to devedapything in terms of them. But | shall
not follow him. He is almost the only writer whoshao consistently avoided the usesof -
algebras, and the conclusion of his efforts — aftersiderable striving — is that, in practice,
there is little reason to do so. The uniquenesgrém is the only point where -rings really
make a difference; and, to save time, | shall m&tuss it here anyway.

Definition 6.5. A classX of subsets &2 isfield algebra ¢ feld algebra of
subsets of2) if itis a ring in€2 and in additiorf2 € X . Itis&field oralgebrainQ ifitis
ao-ring inQ) and in additiorf € X

Probabilists tend mostly to speak of -fields andlgsts more often of -algebras, but
there is no rule. Notice that Carathéodory’s theo#de9 says that the class of sets measurable
with respect to an outer measure s a -algebrgusbao -ring.

Exactly as in 85, one may construct, for adyC P(Q2) aate -field inQ) that includes
A; itis simply the intersection of all the -fieltsat includeA . | shall denote it by(.A)

Lemma 6.6. Forany A C P(2) ,X(A)={Y CQ:Y eX(A) or Q\Y e X' (A)}.

Proof. Firstly, anyo -field>X which includegl isa -ringg <2 Y/(A);and,as? ey ,
Q\Y eX forany Y € X , and in particular for any € ¥'(A) . Hence

SOB={YCQ:YeX(A) or Q\Y € T(A)}. (22)

On the other hand, whenevd? € B, then\ B € B too; A3 X' (A) , Badbs
) € B, and thereforeQ2 € B . Now supposE, F € B . If both belongX¥d.4) then
E\F e (A) becausex’(A) isa -ring. 2\ E,Q\F X' (A) ,then

E\F=(Q\F)\(Q\FE)eX(A).
If Q\ E,F e (A),then (Q\ E)UF € ¥'(A) by the definition, 5.11, and so
E\F=Q\((Q\E)UF)e€B,

whilst F\ E=(Q\E)NF € ¥'(A) byb5.12.

Finally, suppose();) is a sequenceAn . We may Splittd a sequencéFE,,) in
Y'(A), and a sequencgF;,)  such tHat\ F,, € ¥'(A) for each . Eitheotbrdf these
sequences may be a finite sequence, or indeednoateems at all. Now

U, BEneX(A) by511, () (Q\F)eX(A) by512

and so, if the sequencer,,) is non-empty, M; = (U,,En) \ (N, (2\ F,)) € ¥'(A),
whilst otherwiseQ \ (U, M;) =, (Q\ F,) € ¥'(A) .
HenceB is & -field. From (22), it is the least eldiincludingA . O

In the cases that will mostly interest US(A) = X/(A) anyway.

Lemma 6.7. Suppose thatA C P(2) is such that, for some sequegnte™, A,in
Q=UZ A . ThenX(A) =%'(A) .
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Proof. Indeed,2 € ¥(A) , as it is a countable union of memberglof Y/(A).

Definition 6.8. Let Q2 be a topological space with topology . TBarel o -algebra f Qo
often denoted3(f2) ,i(7) . The membersXf7 ) areBbeel sets (2 ofith (respect
to the topology? ).

Since | shall later be takifg to be an intervaRint is worth recalling that theubspace
topologyor relative topologyn a subseX of a topological spdée 7) is thexl

(XNU:UeT}

of subsets ofX . That is, waefine a set to be opeK it it i3 the intersection withX of a
set open i .

§7. Convergence ideas.

Definition 7.1. Let (M,,)>°, be a sequence iR(2) . Define
lim sup,—.. M, = limsupM, = limsup\, = lim\, := ﬂ:il (U;ik Mn) ,
theupper limit or limes superiorf the sequence, and

liminf,, o M, =liminf M, =liminf M, =im a1, :={ .~ (", M),

thelower limit orlimes inferior of the sequence.

Lemma 7.2. limsupM,, is the set of all elements 6f that areiify, fdmitely many
indicesn , whilstliminf M,, is the set of elements{of thalohg to M, for alln with
finitely many exceptions: that 3s , ifvy(z) = (fn € N:z € M,}) € NU {oo} and
w(x) =#{neN:z ¢ M,},

limsupM,, = {z : vi(z) =00}, IliminfM, = {z:(z) < oo}. O

Corollary 7.3. For any sequencéM,) i®(Q) lim M, Clim M, and

3 | use the “hash” sign # to mean “the number ofmelets in (the set in question)”, understood asgein
either a non-negative integer®r . There are séveasons. The notatiofd|  you may be more accustamed
is a little confusing in our context, where abselutlues of real numbers and moduli of complex rensilcan
also appear; this is the same as my reason foermpiref \ to — for set difference. But also | suspiet
notation |A| usually denotes “the cardinalof ”; fofinite A, it may be many different infinities.
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Definition 7.4. Let (£,)>°, be asequence® . Define

limsup, .« & = limsupt, = limsug, = ling, == infey SUp-i &, 23)
lim infn—»oc gn = “m—!pof gn =liminf én :”ﬁfn ‘=sup keNinf n>k én .

Definition 7.5. Given the sequenc&,) R , saythat R isipper number  Jower
numbef for the sequence if the inequality < &, [ar > &, ] holds bnly finitely many
indicesn .

Clearly, if v is an upper number for the sequencg an> u , thenv is also an upper
number. However, there may or may not Heasst uppetber, so that they need not form
a Dedekind cut (cf. O(i) ).

Lemma 7.6.(a) lim¢, is the greatest extended real number which idithi in R of an
infinite subsequence df,) . Itis also the infimurRiof the set of upper numbers f@,)
thus any number greater thdim &, is an upper number.

(b) limé¢&, is the least extended real number which is thatlin R of an infinite
subsequence dft,) . Itis also the supremui® in  of¢hef lower numbers fofg,) ; thus
any number less thalim &,  is a lower number.

() lim¢, <limg,.

Proof. Firstly, (¢). For anyk,l € N ,inf,>1 &, < Emaxi,y) < SUP>1&n - Sosup> &, (for a
givenl) is an upper bound fdinf,~; &, : k € N}, and

SUP>1 &, > SURen INf>; &, = MG, .

As this is true for any , we find similarly thdim &, = inf,cysup,>; &, > lim¢&,

Now for (a). Letc be an upper number for the sequehbere existé such tha, < c
for n>k;so,forl >k ,sup> & < Supsié, <c , and lin¢,, < ¢

Conversely, if ¢ > lim ¢, = infyeysup,>r & , by 0.6 there exists sorhe  suctt tha
sup.>r &, < ¢, and consequently,, < ¢  whenever> %k .&o is an upper auribis
proves thatlim &, is the infimum of the upper numberstid¢ too that if ¢’ > lim¢&, , we
can takec € (lim¢,,c¢') , and then is an upper number; this @aghat no subsequence of
(&) can converge te’

Supposen(1),n(2),...,n(r) have been chosen. Take- lim ¢, + 27! , and then we
have just seen thaf, < c for ab > k&, for some suitabléake d :=lim¢, — 2771,
and then d <infisup.>r &, SURsmaxkm(r+1)én >d , and there must be some
n(r+1) > max(k,n(r) +1) for which d < ¢,,.1) <c . In this way we can construct,

inductively, a subsequendg,,)), 2,  such that, for each ,
lImé&, —27" <& <limé§, +27".

It therefore converges tim &, . As shown above arger barmcan be the limit of a
subsequence. This proveg (b) s proved similarlygoconsidering(—¢,,) ). O

It is clear that there is a similarity between @w-theoretic meaning oim  and its
meaning for real-number sequences. It is possibigve a common formulation.
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Suppose that(7', <) is a partially ordered set. We mayitsés countably order-
completeif any countable subset has an infimum and a swpne Then any sequende,)
in T has upper and lower limits defined by (23).idt an exercise to show that
lim¢, <limt,.

The two cases studied above dre:= P(12) , with £ B " meanidgC B”, and
T := R, with the usual order. Both of them amler-complete in thessethat all subsets
have a supremum and an infimum, not just countsdti® For a subsgt  &1((2)

supA=J, A, infA=,_, A
(I leave it as an exercise to check these asssjtion

Lemma 7.7. Let the partially ordered sét be countably ordemplete. Suppose thét, )
and (s,) are sequencesin

(@ If s,<t, except for finitely many indices , thefims, <Ilimt, and
Ii_msn S ”ﬂtn .

(b) If (t,))i2, is aninfinite subsequence of,) , then

liminf ¢, < Iiggnjgof ok <limsup 2,y < Iirpﬂsgptn.

k—o00

(c) Bothlim¢, andlimt, are unchanged if finitely many temns omitted from the
sequence. O

ForR, there is the added complication that it i/ ddoundedly order-complete (see 0.3);
this means that, to make the definitions 7.4, iulddbe necessary to hypothesize from the
start that(¢,,) is bounded above and below, and thempiper and lower limits iR are the
same as those R

Definition 7.8. The sequencet,) in the countably order-completeafigrordered set
(T, <) is order-convergentf limt, =Ilimt¢, . If that is so, the common value bin ¢,
and lim¢, is called theorder-limit of (t,) ,which is saiddoder-converge toit. In
particular,

Definition 7.9. A sequence()M,,) of subsets of a Qet cdavergent lirii M, = lim M,
In that case, the common value of the limits isechthelimit of the sequence.

This notion of convergence of a sequence of sets iMaelieve, originally proposed by
Fréchet; as far as we are concerned, it is theamdyof interest, which is why it is not usually
called “order-convergence”. By 7.2, one may chandwe it as follows:()/,,) is convergent
if and only if every element d that belongs 3d, or infinitely many indices actually
belongs toM,, for all indices with finitely many ext®ns. This is clearly a very strong
condition, but it is satisfied in some useful siioas.

Definition 7.10. Let T be a partially ordered set. A sequelitg,cy 7 igindreasing(we
write ¢, 1T ) if, for all ne N, ¢, <t, ; it isdecreasing (ort, | ) ift, >t,.; for all

n € N; it is monotonicif it is either increasing or decreasing.

Lemma 7.11. A monotonic sequence in a countably order-comgdatéally ordered set is
order-convergent. An increasing sequence order-eges to its supremum and a decreasing
sequence order-converges to its infimum.
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Proof. If ¢, T, then, for allk , sup,>i t, = SUpent, , Whilst inf-;t, =%, ; hence,
lim¢t, =infrenSUPsen tn = SUPent, = SURentr = SURn  inEyt,.
Similarly if ¢, | . O

We have now had two distinct notions of convergefmresequences of real numbers:
metric convergence, 0.10, and order-convergen&e(strictly speaking, either fdsounded
sequences only, or for sequenceRin ). They arvagquat. This fact is one of the central
properties of real numbers, like Dedekind-complessn metric completeness, or the
compactness of closed bounded intervals; eachesfiie others, in the sense that, once you
have define®R in a fashion that makes one of threl the others may be deduced without
further use of the definition. For this reason,réhare many different ways of proving all
three facts.

Proposition 7.12. A sequence(¢,) iR converges toc R if and only if deor
converges tg . A sequen¢g,) Rn converges bR ifoahy if it is bounded and
order-converges tg .

Proof. The definitions 0.10 and 2.6 may be consolidatggd) converges tg if and only if,
forany a,b € R suchthat < ¢ <b ,thereid e N forwhiech> N = a<§&,<b .
(If £ is infinite, for instanceco , nd@ exists and thecond inequality holds vacuously.) It
follows thatb is an upper number amd is a lowanhber for the sequence, and so, by 7.6,

This holds for anya <& <b , and it follows that, necedgarilimé, =& =Iimé, .
(Suppose, for example, thgt< lim ¢, ; we could take shahg < b < lim ¢, , and this
would contradict (24)).

Now suppose the sequence order-convergés to alet{ <b By 7.6,b is an upper
number and: a lower number, so there exist N, suath th

nle:gnSba nZN2:€an
Take N :== max(N;,N;) ,andthem > N —= a <, <b ,sothg  convergestod
| can now give a simple proof of Cauchy’'s “Gendtahciple of Convergence”, 0.11.

Theorem 7.13. A sequence iR is convergentlfin ) if and onlyig Cauchy.

Proof. Suppose¢, — £ € R . Then, forany> 0 , there exi8ts  such fhat £| < %e
whenevern > N . Hence, ifm,n > N ]&, — & <& — & +]&n — & < 3¢+ e =€.
That is, the sequence is Cauchy. (The statemeftif.& general metric space has the same
proof, using the triangle inequality for the mekric

Now suppose that the sequencg) is Cauchy. Fitaltg, “c := 1 ” in the definition;
there isN such thaf,, — &, <1  forablw,n > N . This implies (fix o te N ) that

Ev—1<¢, <é&v+1 forall n> N.

The sequence is therefore bounded (an upper bauméx{&;, &, ..., Ev-1,&v + 1}, and a
lower bound ismin{&;, &, ..., én 1,&n — 1} ). Sdim &, lim ¢, are definedRn
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Now suppose is an arbitrary positive number. Thiegre existsN’  such that
n>N = &v—e<& <Ev+e.
Hence, (v — € Is alower numbefy + ¢ is an upper numbersandy 7.6,
Ev —e<limé¢, <lmg, <&v +e,

from which 0 <Ilim¢, —lim &, < 2¢ . This conclusion must hold for ary> 0 ; @
sequence is order-convergent. Apply 7.12. O

| have developed the proofs above in a ratherreigdiashion in the hope of emphasizing
the concepts involved, for we shall have other deesipper and lower limits. But there are
many other possible proofs of 0.11. For instartds,easy to prove that, if a Cauchy sequence
(in a metric space) has subsequence convergent to a peirthen the whole sequence
converges ta . As above, a real Cauchy sequermiisded; so one need only prove that

a bounded sequence has a convergent subsequence. ) (25

This is also included in 7.6. (If one started framdifferent point, for instance from Cantor’s
definition of the reals, (25) might be a conseqeenicthe Bolzano-Weierstrald theorem).

Definition 7.14. Let(2 be any set, ang : @ — [0,00] @ nonnegative extendedvedaed
function. Theordinate setsoff are

L(f) = {(2,§) € 2 x[0,00] : 0 <& < f(2)},
D(f) = {(z,6) €2 x[0,00] : 0 < £ < f(a)}.

In other words,I'(f) is the set of poirgisictly underneath the graplf,aindT'(f) the set
of pointsunder or onthe graph of . These are not standatations.

Remark 7.15. The classF of functionsf : @ — R can itself be given aiglkorder, if
we define ‘f < ¢ " to mean thatVz € Q) f(z) < g(x) . (This may be called {h@ntwise
order’; notice that it immot a total order, unle€’s s ai singleton ofy .) The# is order-
complete. It is easy to see thattif is a subkéi,ats supremum is the functian , where

(Ve e Q) g(x):=sup{f(z): feXx}.

(g is the ‘pointwise supremum’ ¢ .) The infimum &fis similarly constructed pointwise.
We may therefore define the upper and lower limftsequences of function® — R
according to the order in the class of functioms] they agree with the “pointwise limits”.
Indeed, it is only necessary to know for this pwthatcountable classes of functions have

suprema and infima, a remark of some later sigmiite.

Lemma 7.16. Let (f,,) be a sequence of nonnegative extended-réadddunctions. Then
r(liminf £,) Climinf T(f,), limsupT(f,) C T(imsupf,).

Proof. (z,¢) € L(lim f) (im fo)(z) (im in F)

lim (f(z)) (im inR).
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By 7.6, £ <lim (f,(x)) means that (¢ +1im (f,(z))) is a lower number fof,(z)) ,
which in turn means (by the definition 7.5) thaterd exists N  for which
fa(z) > (€ +1im (f,(z))) whenevern > N . Hence, fon > N

fal@) 2 3(E+1im (fu(2))) > €, (2,8) €L(fn).

That is, (x,&) € I'(f,) except for finitely many indicesg, &) € liminfL'(f,) . Tisisows
that I'(lim f,,) Clim I'(f,,) . The other result is proved similarly (or“dyality”). O

88. Measurable and measure spaces.

Definition 8.1. A measurable spads a pair(€2,Y) consisting of as@t anda -algebra
of subsets of2 ¥ may be described asmnteasurable structure Qon .b&etl of() is
described as measurable with respect to the given measurstilecture X , or as:-
measurableif it is a member ok ; anll may also be descriiether -algebra (or algebra)
of measurable sets {n

This is the modern convention: we specify a -fiefd'measurable” sets, as it were by
decree. Of course one important way of doing soasan outer measugg® §a , but | have
been careful to speak in that case.d6f -measuralde gery often, the -field is fixed by
the context and one talks of measurable sets witlvother qualification; for instance, when
dealing with sets ifR" , one often describes themneasurable without specifying that they
are measurable with respect to Lebesgue outer meeasu

The definition is analogous to the definition aibpological space, and the ambiguities of
terminology are also similar. Thdea of a topologisphce arises from the notion of “open
set” in R™, but in the modern version “open sets” st members of a “topology” — in
effect, they are open by decree. There are thuscbmgentions in operation, a historical one
and a modern one. In practice this rarely caudésudiy, but you should be aware of it.

Definition 8.2. A measure spacis a triple (2, %, 1) , wher& isa -field of subset<(bf
and ;. : ¥ — R is a measure. ¢igned measure spaceis a tripl@,%,0) , wh&re isa
o-field of subsets off and : ¥ — R is a signed measure.

Much of the following theory requires only thatigaeid measure space should be given,
although in probability theory the measurable dtmeeon{)2 can sometimes be variable. Of
course, we often say “I€t  be a measure spacahgdke notationdl and as read.

Lemma 8.3. If 2 is a measure space ad;) >, is a sequenke inn, the

’M(U,jl EZ) < lel ,U(El) .

Proof. “Disjunctify” (M;) to (N;), as at 4.7, so thatN; C M; for eachand
UZ, N =UZ, M,;.By5.9and 2.14, théV;  being pairwise disjoint,

“(U:;Ml) - M(Ulei) = Zzl p(N;) < Z:l p(M;) . O



48

This is of course the same reasoning as | presantdd7, but with slightly different
hypotheses. (We could have extenged 1to and apihleeremark in 4.7 instead.)

Remark 8.4. Suppose that(2,>,0) is a signed measure space, and, Bt > where
B C A. As o is finitely additive,o(A) = o(B) +0(A\ B) . Ifo(B) is finite, one ma
deduce from this that (A \ B) = 0(A) — o(B) , this including the postipithat o(A)
may be infinite (in which case (A \ B) =c(A) ). B(B) is infinithen o(A) = o(B)
and the only information o (A \ B) s that it cannot be opposite infinity (see 5.8).

Now recall 7.11.

Proposition 8.5. Let (£2,%,0) be a signed measure space. Suppose (th&p) >, is a
sequence i .

(@) If (M,) isincreasing, then, as — oo q(M,) — o(lim M,)

(b) If (M,) is decreasing and, for some index q¢(Mj}) is finithen

o(M,) — o(lim M,) as n — oo .

The conclusion in both cases is that © commuteh its™ o(lim M,,) =lim o(M,,) .
The finiteness restriction ifb) is unavoidable; ddes M,, := [n,o0) , which has Lebesgue
measure (lengtho for all , but whose limiflis noéasured .

Proof. (a) Disjunctify, setting Ny := M; , Npy1 :== M1 \ M,, . Then, as$N,) is a
disjoint sequence ik anrd is countably additive,

o(lim M,) = a( :il Mn) = U(U:; Nn) = Z::l o(Ny)

=1lm > ' o(N,) by the definition of the “sum”
= lim o(M,) again ag i -additive.

(b) The sequenceM;, \ M,)>, isincreasing, with limit¥in )

U O\ 0y = M\ (), )

and so, bya) ,
o(Mi\ (7, M) = fim, o(M,\ M), (26)

As o(M;) is finite, 5.8 shows that, for any> k& ¢,(M,.), o(M; \ M,), o(N,2, M,)  are
all finite. From 8.4,

o(My\ M,) =0o(My) —o(M,) foreachr >k ,and
J(Mk \ (ﬂik M)) o (M) — a(ﬂzk M,) . Apply (21):
o (M) — J(HZk MT) lim (o(Mj) — o(M,)) .

Since all the terms are finite, it follows tha{}\/,) neerges too ()2, M,) . However,
m:ik M, = n;-)il M, = lim M, . O

The asymmetry between the increasing and the dengeacases has substantial
consequences in the later development.
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Lemma 8.6. Suppos€(2, X, 1) is a measure space, and,) is a sequehcd men
p(liminf M) <liminf u(M,) .

Proof. Foreachk € N and each>Fk ()2, M, C M, 6.2, M,) < u(M,) by
5.9. But, therefore u(,,2, M,) < inf.>, u(M,) . On the other harff)°, M,)~, is an
increasing sequence i , so, by 8.5,

p(liminf M,) = ﬂ(Uk‘il( = Mn)) — lim “(ﬂ:ik Mn)

= SUP:en u(ﬂ:ik Mn) < SUpen infop (M)
= liminf u(M,), as asserted. O

Lemma 8.7. Suppose ir8.6 that there exists an indéx  and somedse X for which
p(A) < oo and M,, C A wheneven > N . Then

limsupp(M,,) < p(limsuph,,).

Proof. By 7.7, | may omit the term&/,, M, ..., My_;  without affecting thmits, and so
| may assume without loss of generality thef, C A tonaThen, using 7.3,

limsupp(My) = p(A) — liminf(u(A) — p(My))

w(A) —liminf p(A\ M,)

p(A) — p(liminf (A\ M,)) by8.6

w(A\ liminf (A\ M,)) = plimsup M,,) . (|

A

Corollary 8.8. Let (2,X, ) be a measure space, andy/,) a sequence in thath
1(Uneqy M) < oo If the sequencélM,,) is convergent, thefim M,,) = lim y(MM,,)

Proof. p(lim M,) <lim u(M,) by8.6
< lim pu(M,) by7.6
< u(lim M,,) by 8.7,
and the hypothesis says the ends of this chaimegfualities are equal. O

The finiteness hypothesis is needed (why?). Howewee obvious way of satisfying it
leads to an unexpectedly strong conclusion. Thithésfirst Borel-Cantelli lemma (The
second Borel-Cantelli lemma involves the notionimdependence, so is more explicitly
probabilistic.)

Lemma 8.9. Let (2,3, 1) be a measure space, and suppose (that) iguesee ink
such that)" <, u(M,) < oo . Themu(lim M) =0
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Proof. Given e > 0 , there existy such that * , u(M,) <e .Butnow

ptim ) = (7, (U M) < (U )
< Z:ijv /“L(M”) <€
so that0 < p(lim M,) < e , foranye >0 .Hencg(lim M,) =0 . O

This result is not surprising if one recalls thiat M, consists of the points that appear in
infinitely many M, , and so are “counted infinitelyt@f” in > u(M,,) .

89. Lebesgue-Stieltjies measures in one dimension.

The last two sections, although they have introduecaumber of ideas that will be significant
later, have not contributed anything directly te tmain question whether we can find
interesting examples of measures — that is, messigéned on large -fields and having
plenty of finite positive values. Here, at last, sleall construct a substantial class of such
measures ifR  (or in a subinterval®f , though ihatrather trifing generalization).

J will denote a non-null interval iR that is opem the left; that is, of the fornfa,b) or
(a,b],whereb>a and maybeco .(FO&,b] ,we also asslmreco ).

Definition 9.1. Let f:.J — R be a function, ands € J f ontinuous on the right at
a (orright-continuous at;) when

(Ve>0)(36 >0) zeJN(a,a+6) = |f(x)— f(a)| <e.

Equivalently,f is right-continuous at if and omfl\eithera is the right-hand end-point of
(there may be no right-hand end-poiwt),lim ., f(z) is defiand equal tof (a)

This is the usual definition of continuity at a pioi, except that attention is restricted to
values ofr to the right af

Definition 9.2. A function f: J — R is a_ebesgue-Stieltjes distribution function ©Hnf
(a) itisincreasing; thatis, whenevef,y € J and<y ,thér) < f(y) nda
(b) itis right-continuous at each point #f (or “rigt@ntinuous ory ).

| shall abbreviate “Lebesgue-Stieltjes distributfonction” to d.f.

Example 9.3. (a) The Lebesgue distribution functiois given by(Vx € R) f(x) =« . This
is, of course, overwhelmingly the most importanample. Other uncomplicated examples
are

f(z)=2*, f(z)=expz, f(z)=tan'z.
These are altrictly increasing, continuous, and evderdiitiable on the whole @t

1 . .
(b) Set f(z):= - for x > 0 . This is a d.f. o0, c0) , which cannot beeaxied

further to the left. It is strictly increasing adiferentiable.
(c) Set f(x)=0 forze(-1,0) andf(x)=1 forze[0,1] . Thisis a d.f. on
(—1,1]. Itis only non-decreasing, and is discontinudi a
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(d) Set f(z) = [z] , the integer part of . This is a d.f.Rn isltmportant to notice
that an integer is its own integer part, so that s a right-continuous function.

Definition 9.4. Let S(J) be the class of bounded subintervals/of thefform (a,b] ,
wherea is greater than the left-hand end-poinf othat is, they are to be closed on the right
and open on the left, and their closureRin afeetocluded inJ .

S(J) is a semiring inJ . Indeed, the difference of twemfers ofS(.J) is the disjoint
union of at most two members 6%.J)

Definition 9.5. Let f be a Lebesgue-Stieltjes distribution functmn/ . The corresponding
Lebesgue-Stieltjes weighting functiefn : S — R is defined by

(V(a,b] € S) 77((a,0]) = f(b) = f(a).

As f is increasing,r; is nonnegative-valued. Thﬁj\n ee (8.3) is thd_ebesgue-Stieltjes
outer measure i/ induced by When f is the Lebesgue d.fr;cr is called tiebesgue
outer measure in/. The measure spacg/, >y, ) in whichy is the -fieldrﬁf -

measurable subsets 8f and := r}\Z s is tledesgue-Stielties measure space induced
by the d.f.f.

Theo -algebra¥; does depend pn . For instancee#sgy proved that, for the d.f.s of
9.3(c) and(d) ,X; = P(J) . We shall see that this cannot be buthe Lebesgue d.f. On the
other hand,7; may easily be seen to be a famSon e %s&), and therefore by 6.1
YD Y(R(S)) =X(S). Thusall Lebesgue-Stielties measures are defined-4qs),
which is in fact the Boreb -field in/ (see below,19). This raises the possibility of
comparing them, as measures 6/ ) .

The thing still lacking is information on thealues @f; This will be provided by 6.3
and 6.4, if we can prove that  is countably additmS and not just finitely additive. Here
is where the right-continuity of is required, ahd theory at last comes down to earth.

Theorem 9.6. Let a,b € R and a <b . Suppose given any clag,,d,) : « € A} of
open intervals such thaia,b] C |J,. 4 (ca;da) . Then there exists definubsetB of the
index setd such thafa, b] C |, 5 (cas da)

A more modern formulation is thany covering of a bounded closed interval by open
intervals admits a finite subcoveriniy intuitive terms, most — all but a finite nunmbe- of
the open intervalgc,,d,) are redundant for the purpdseowering [a,b] . This is the
original observation of Heine, when he proved thabntinous function on a closed bounded
interval is uniformly continuous; Borel was thesfito state it explicitly, and, in a generalized
statement, it is thédeine-Borel property of certain subsets of a metpace. Finally it
became the definition of @@mpact set in a topological spacsubsetX of the topological
spacef? iompact if any covering of by open set$20f itlanfinite subcovering (i.e.
only finitely many of the open sets in the coveriaag really needed). It is an extremely
important property with many equivalent forms, asl will know if you have done 312. Its
importance lies in its being a “topological versiohfiniteness”, and the curious thing, of
course, is that interesting compact sets (thatiss that are not finite) should exist at all.

Undergraduate folklore when | was a student sa& gtoof | am about to give was
invented by a candidate in an examination, faced lgyestion that expected the “standard”
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proof presented in lectures. It is, indeed, ratierple by comparison with the somewhat
messy arguments that are given in old textbooks.

Proof. Say that a pointz € [a,b] iseachable if there is a finite sub&ebf A for which
la, 2] € U,ex (€asda) - (“You only need finitely many of the given opemérvals to reach
from a”.) Evidentlya is reachablex( belongs doe  o€&tbpen intervals). So the set of
reachable points is non-empty and bounded abové. IBy Dedekind’'s axiom, it has a
supremum q € [a,b] . Now there is some indexe A for whighe (c,,d,) .C8in
ca < q, 0.€ii) applies, and there is a reachable point wfoch ¢, < r < ¢ .

Let ¢ := 1(¢+ min(b,d.)) € (ca,ds) N[a,b]. Thenq is also reachable ( may be
reached by finitely many of the given intervalsdate one additional intervalc,, d,)
suffices to reachq’ ), andy/ > ¢ . Ag was the supremunthef reachable points,
necessarilyq = ¢’ , which, sincel, > ¢ and>q¢ , can only occur it ¢ =b. We
conclude thab is reachable, which is just whalesired. O

Proposition 9.7. Let f:J — R be a Lebesgue-Stieltjes distribution functidhen the
associated weighting function; : S — R is countably additnsS .

Proof. As already remarked (after 9.5) is a famSon
Suppose thata,b] € S is expressible as the disjoint uoi@sequence of setséh

(a,b] =, (ar, by .

Here a <b anda; <b, for eaclk . For any e N (a,b] D U, (ak, bs] , and if
necessary we may re-index these intervals so théta, < as < a3 < --- < a, (It is not
possible for two left-hand end-points to coincidehe corresponding intervals are disjoint).
But then, to ensure disjointness; < by < ays <by <az<---<b, 1 <a, <b, <b, and,
asf isincreasing,

71((a,0]) = f(b) — f(a) =

f
(0n) = flan) + f(bn1) = --- = flaz) + f(br) — f(a1)
>

(becausef(a,) > f(bp-1),..., f(a2)
the sum, so, for any
a b > Z ak,bk

This being so for alh , we also have (the sum éessthpremum over )
(I b > Z CLk, bk (27)

The difficulty in establishing the contrary inedjtiais that one cannot usually reorcst
the end-points as a monotonic infinite sequence.ifsiance, one might have the intervals
(27 427 m 27n 4 27 for m,n € N ; they constitute a countable disjoint corgri
of (0, 1], but their end-points cannot be set out in aotonic sequence. (Whether it is to be
a decreasing or an increasing sequence, it wikinge below the largest numbgr™ that is
less than the first term listed.)

Suppose thate > 0 . Ag is right-continuousaat , thediste o’ € (a,b) such that
f(a') = f(a) < 3¢, and, for eaclt such that is not the right-havidtpf J , there exists
bj, > by, with b}, € J, such thatf(b},) < f(br) +27%te . Iy should be the right-hand

f
f

>

f(b1) ). Of course the re-indexing does nottaffe
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end-point ofJ , one may extend the definitionfof tlsat, for anyx > b, ,f(x) = f(bx) ,
and letb, be any number greater tign . Now

la’,b] C (a,b] = U;:;(ak’bk] C U;:l(ak,bﬁc).

By the Heine-Borel property 9.6, only finitely maaf/the open interval$a;, b;,) are needed
to cover|a’,b] . LetN be the largest index that appeathis finite list:

@' b €, (ab4).

Reject successively from the sequence;,b}), of intenaaly term whose
intersection with[a’, b] is included in the union of teaemaining. After finitely many steps,
what is left is an “irredundant” covering, from whino further member can be removed
without leaving some point ofa’,b]  uncovered. (Conviyoarself this procedure can be
performed with the stated effect). Suppose thisldeesn done; | may still denote the number
of remaining intervals byv . Reorder them so that< a; < --- < ay Then

!/ / / /
a2<b'1, a3<b/2,...,a]v<b§\771.

a<a <ay<az<--<ay,
(28)

Each of these conditions must be satisfied if thervals form an irredundant covering.
As f is increasing, the conditions (28) imply that

SO )~ flan) = fO) — fla) + S (PO — flapn)
> f(by) — fla) > f(b) - f(a)
Hence, F(b) = fla) < F(B) — f(a) + ke
< ST (F0) — flan) + L

8?2'

MMM M)

B
Il
_

But e was ararbitrary positive number, so
(@, b)) = ) — fla) < 327 (Flo) = fla) = 3.0 rrl(anbil).  (29)
The inequalities (27) and (29) prove the result. O

In a vague philosophical sense, the result justrgiis the heart of the matter. It is the
compactness of bounded closed intervals that allasvéo prove countable additivity, and
thus to construct measures whose values on ingeavalknown.

Theorem 9.8. Given a Lebesgue-Stieltjes distribution functigh: J — R there is a
measure space(J, Xy, nr)  such thaf C Xy and:((a,b]) = f(b) — f(a) for any
(a,b] € S.

Proof. 9.7, 6.4, and 6.3. O
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Certainly theo -fieldX; inJ includes the -field(S) ihgenerated by . Recall that
¥/(S) denotes ther ring generated 8y , and thay) is thel Befield in J (theo -
field in J generated by the relatively open setg)n

Lemma 9.9. Any (relatively) open set ih  is a countable digjanion of (relatively) open
intervals inJ .

Proof. Let U be a (relatively) open set h . By definitiosach rational point¢ € U
belongs to a (relatively) open interval includedlin The union of all such intervals must be
the greatest possible relatively open intervé&f) t@ioimg ¢ and included i/ . Distinct
intervals 7(£) are disjoint, for if two of them met.eth union would be a relatively open
interval bigger than either. Any € U  is contained ame relatively open interval; (x)
included in U ; I;(x) must contain a rationgl , and thén(x) C I(¢) Therefore,
U = Uecrng 1(€) , which meand/ is a countable disjoint union ofropeervals. O

Lemma 9.10. B(J) =¥/(S) = X(S) .

Proof. Firstly, S C B(J) . Take a typical membér,b] 8f . Then
(a,b] = (), (J N (a,b+27F)),

so that (a,b] is a countable intersection of open sefs iAs B(.J) is a -algebra, it follows
that >'(S) C 3(S) C B(J) .

For the contrary inclusion, it will suffice to shotkat any open set in the subspace
topology onJ , including/ itself, belongs 6'(S) . Thie o -ring generated by the open
sets will automatically be & -algebra, and must®g/); and, as¥'(S) is a -ring,
¥'(S) 2 B(J). For simplicity | shall deal only with one caseheave J := (¢,00) and
oo > ¢ > —oo; the other possibilities may be dealt with verynigrly (with minor
complications), or by proving some general theoré&ome of these are in the exercise sets).

Because of 9.9, | need only prove that any aptxrval (a,b) CJ  elongs toX'(S) .

Firstly, supposeb < oo . Then(a,b) =J,°, (a+27%,b—-27%] , where, of course,
some of the intervals may be null, but they albbegltoS .

If b=o00, (a,00) =2, (a+27%, 2%, where again all the intervals belong&o

Thus, in fact, any open setih may be expressedcasintable union of elements®f ;
which is sufficient. (]

The point of this Lemma is that all Lebesgue-Saslimeasures oA  are defined on the
Borel o -algebra, which is very large — as we shadl, st contains “all the sets one normally
needs”. In particular, it contains all singletonsl all intervals (open, closed, or half-open).

Definition 9.11. A measure which is defined on the Barel -algehra topological space
is called eBorel measureir( .

Thus uf\B(J) is a Borel measure ih , for any ¢ff. Jin of@ measure” in older
books means the restriction of Lebesgue measutbetdBorel sets. This is for historical
reasons — Borel noticed that the idea of “lengittild be extended step by step to ever more
complicated sets, before Lebesgue produced a neoierg procedure.
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Remark 9.12. In metric space topology as it was developed waitdut 1940, and as it is
expounded in Kuratowski’'s book or Hausdorff's, thaion of metric ball took precedence
over the notion of a topology, and the class ohogets (i.e. the topology) in a metric spéce
was often denoted . The class of closed sets widtsenvF. (Munroe suggests, not
implausibly, thal was suggested by “Gebiet” @hdy “fermé”.) Then the subscripts and
6 were used to suggest countable unions and inteyssc

Given A CP(Q2) , As denotes the class of subset§2of that Imeagxpressed as the
intersection of a sequence of sets all belonging tand. 4, the class of subsets that may be
expressed as the union of a sequence of sets laldieg to A . EvidentlyG =G, and
F = Fs, and it is not difficult to show that, in a metdpace,G C F, andF C Gs . Much
less obviously, the sequendg Gs, (Gs)o, ((Gs)o)s, - - - (it is customary bbreviate to
Gso, Usos, - - - ) IS Strictly increasing in important cases. This is thekgeound to my remarks
after 5.13; the whole Boret -algebr&((2) cannot bestowted by this inductive
procedure (unless you pass to transfinite indugtion

Borel's idea was to define the measure of setshm dlassesG, Gs, Gso, Gsos, - - -
inductively by limiting procedures like 8.5.

Lemma 9.13.Letf be a Lebesgue-Stieltjes distribution functiod . Then, ifa € J

pr(la}) = fla) —lim f(z).

Proof. By 8.5b), as{a} =2, (JN(a—27%a]) and, onde is large enough to ensure
thata —27% € J , us((a —27%,a]) = f(a) — f(a — 27%) < 0o, therefore

pr({a}) =lim pg((a — 27", a]) =lim (f(a) = fa - 27"))
= f(a) —lim f(a —27") = f(a) - lim f(z).

(asf is increasing, it is easily seen th%{t f(z) exiatsis the same dsn,, .., f(&,)  for
any sequence, T a ). O

Together with 9.8, this enables us to determinevdiee of 1, on any interval. Notice
that it tells us that the; -measure of the singlefaf will be positive if and only it: is a
point of discontinuity off .

Remark 9.14. The Lebesgue-Stielties measuyre is defined at ma3(.J) . Quite often
the fact that the construction @f;  defines it osignificantly largers -fieldX; is tacitly
ignored; this slovenly custom has the justificatibvat that largers -field is merely the
“completion” of B(J) with respect tqu; (although | hawet proved it). It has also the
crucial property that, for any closed bounded ek, b) C J ,

pr(la, b)) = f(b) —lim f(z) < co.

(In topological termsy.; is finite on compact setsi)

It is not difficult to show that, sincg is incr@as, it has only countably many points of
discontinuity. It is possible to carry out the cwastion of T} without assuming right-
continuity of f ; then 9.7 fails. Suppose, in fattatt;, is any Borel measure ih  which is
finite on all closed bounded intervals.n , andegia € J , set
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_ Jwl(a,x])  fora<zelJ,
/(@) '_{li,u((:c,a]) for a>ze.J.

This is a distribution function because of 8.5, dydthe uniqueness theorem (which also |
have not proved!) and 9.1Q,; apd agreel{) . Ehtee reason for imposing the
right-continuity condition in the definition of afd

Overwhelmingly the most important example is Lelesgneasure. Notice that our
arguments have proved ththere is a measure@  (and by the uniquehessdm only one)
defined for all Borel sets ilR  which agrees witldioary length on intervalslt is really
rather startling that this is possible focauntably additive\ , wiih inconsistencies. For
instance, the sef) , which Jordan’s theory could Imandle, is a countable union of
singletons, each of measwre ,30Q) =3, .o A({a}) =2 ,c00=0

It is possible to extend the idea of Lebesgue{ftgemeasures to signed measures, but the
corresponding d.f.s and the whole constructionirequore subtlety.

810. Non-measurable sets.

It is by no means clear which sets afe -measufableon-trivial distribution functiong .

All Borel sets are, and it seems at least concé&vtiat all sets are, without restriction. In
1905, however, Vitali gave a simple constructioraadet that is not Lebesgue-measurable. In
1908, Bernstein gave a much more demanding comistnuaf a subset that is not measurable
for any non-trivial Lebesgue-Stieltjes outer measuarishing on singletons. It is on p. 422 of
Kuratowski’s vol. | (1958 French edition) or in @kiy's little book, p. 23. Here is Vitali's
construction, which is sufficient for most purpasés denotes the class of Lebesgue-
measurable sets R )\, is Lebesgue measure.

Let me define, foranyr €¢ R ,amapping, : R — R by

(VteR) R,(t) =x+t.

R, is usually calledranslation byx . It is clearly one-one and omtdh inverseR_, .
In the construction of Lebesgue measure, everyistédpanslation-invariant”. That is, for
any r,a,b € R andanyE CR

71(Ra(a,b]) = 74((a,b]) andso r}(R.(E)) =7(E) ,

and, thereforely is Lebesgue-measurable if andibni, (F) is Lebesgue-measurable, and
then they have the same Lebesgue measure. Thpaparty specific to Lebesgue measure.
Let J :=(0,1], and, foranyz € R , defind,:J — J by

(VtelJ) T.(t)=z+t—[z+1t]=(R(t)),

where [z +t] denotes the integer partwof- t ael.(¢)) denoteYrtictional part” of
R.(t). ThusT, is “reduction of?, moduld . Itis easilyedked that

Tyry=1T1,0T,, Ty=1 (the identity map).

[In effect, we are looking at the quotient groBgZ ndéranslations in it.]
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Lemma 10.1.Let J D Ae X,z € J .ThenT,(A) € ¥ and\(7,(A)) = A(A)

Proof. A is the disjoint uniof AN (0,1 —z]) U(AN(1—=,1]) , and since intervals are i
Y,both Ay =AN(0,1—-z]€X andAy:=AN(1—-=x,1] € X .However,

for te Ay, T,(t)=x+1t, whilst
for te Ay, T,(t)=z+t—-1.

T.(A;) andT,(A;) are both Lebesgue-measurable, and theysjoindli for
Hence

AMT5(A)) = MTu(A1)) + AT (A2)) = A(A1) + A(Az) = A(A). -

We can introduce an equivalence relation/in , mgitic ~ y when there is eational
number¢ such thatlzz =y . Notice thdtx = T,z only whgm diffgran integer.
Each equivalence class is countableQas is. fecgfthe equivalence classes are the cosets
of the subgroupQ/Z in the grouR/Z .] A& is uncountatiie number of equivalence
classes must be uncountable (because of 1.2).

Choose one element from each equivalence classhéetet thus constituted b . (An
algebraist would call it a transversal for the @etof Q/Z onR/Z , with one representative
for each orbit — the orbits being the cosets.)

Lemma 10.2. W ¢ ¥.

Proof. |assert that the sef& (V) fgre QN J  are all disjoint.

If acTe(W)NT,(W),then a =T¢(w) =T,(w') forsomew,w’ € W , and therefore
w' = Te_,(w). That implies w ~ w' , which, by the definition ¢¥ , isilg possible if
w=w". Intun, Tew = T,w only if £ —n € Z , which is impossible fo€,n € QN J
unless¢ =n . Thatis, ifl:(W)NT,(W) # 0 , then necessarily(W) = T,,(W)

If W € X, then each translaté; (1/7) is also¥n . Hence, d@eimdditive on: ,

M) = MUegns TEV)) =D NIV = 3" AW). (30)

There are two possibilities. IN(W) =0 , (30) shows thet/) = 0 whijlst, if A\(W) >0,
(30) shows that\(J) = co . However\(J) =1 . The contradiction pothati’’ cannot
be Lebesgue-measurable. O

Remark 10.3. The argument shows thHt , as constructed, caratondp to any -field of
sets inR that is invariant under rational transfagi includesB(R) , and admits a rational-
translation-invariant measure that is positive fanite on (0, 1] . Since the Lebesgue-measur-
able sets form sucheaa -algeb¥d, cannot be Lebesgasurable.

The first, and obvious, comment is that we have eneskential use of the translation-
invariance of the Lebesgue construction. Thisss lamiting than it may seem — once a non-
measurable set has been found for Lebesgue meé#smiay be manipulated in various ways
to yield examples for other suitable measures.Barhstein’s construction is in this respect
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much more general, being based on other (namelyldggal) properties of Lebesgue-
Stieltjes measures; unfortunately, it is also éssIstraightforward.

Secondly, asW ¢ ¥~ , one may extelRd to a larger -figld:=X(XU{W}) ltis
possible to define a measure  ah such thgt = A . (@bsertion is not entirely
trivial, though not profound either.) The extenswiti have to lose the desirable properties
that made the Vitali and Bernstein examples possibl

Remark 10.4. The ideal would be to have, for “useful” spa€esnatural” measures defined
on the whole of the power clagg({2) . This ideal fdilthe measure is to be translation-
invariant, as a consequence of Vitali’'s examplewkler, one might still hope that (at least
for Lebesgue measure iR ) the tedious apparatus-faglds might be avoided to some
extent: maybe an “unnatural”’, non-translation-imaar, measure or°(R)  could be con-
structed by extending step by step, as suggest®@.8; all its practical applications would
only involve Lebesgue measure. Unfortunately, thera famous theorem of Ulam (1930)
which says, in its basic version, thiat) is of cardinality X; a,measure defined on all of
P(£2) and vanishing on singletons must be identicallyso, if we assume the nticmum
hypothesighat the cardinality oR i; ,any extensionbf tbafl P(R) would have to
be identically0 .

Vitali's construction was criticized very early. &loffensive step was the definitionof
by choosing one element from each equivalence .cisge there are uncountably many
equivalence classes and no visible method to pisgezial element from any of them, this
must involve some version of thxiom of Choice , which, in alyastrong formulation,
asserts that,  is any set whose members arenudirsets, there exists a 96t  consisting of
exactly one element from eadli € C

These days the Axiom of Choice is relatively uncoversial, principally because Godel
proved in 1940 that it is consistent with the othenal axioms of the set theory he was using;
that is to say, if the set theory itself is coramst(leads to no contradictions), adding the
axiom of choice to the theory will not allow you tterive any contradictions either.
(Mendelson in 1958 showed that the denial of theo#xis also consistent with set theory.)
But previously the Axiom was regarded with sericarsd not entirely unfounded, suspicion.
The reason was, | suppose, that it seemed to lwagequences that are in a sense too good to
be true, for instance the theorem that any vegiace, over any field, has a basis. New is a
vector space ove) , but it seems quite impossiblspecify, or even to imagine, a basis.
Oversimplifying the matter, one might say that pineblem is “naming”; any such basis must
be uncountable, we lagkames for so many objects, dhdrkinds of specification one can
think of seem unlikely to work.

The effects of this suspicion can be seen in madgrdooks. Littlewood always took
care, in proofs where infinitely many choices werquired, to prescribe (if possible) how to
make them; see his lectures on the foundationsalysis. In Zaanen’s “Linear Analysis”
(first published in 1953), the author comments 048 that he avoids using the Axiom of
Choice because it is controversial. (He changedimisl later.)

| mentioned the continuum hypothesis above. It prased by Cohen in 19634 that the
generalized continuum hypothesis and its negatieralso consistent with the axioms of set
theory, even if they are enriched by the Axiom di€e. It was known earlier (Sierpinski)
that the denial of the GClplies the Axiom of Choice.eTBCH, however, though not
devoid of consequences (see Ulam’s theorem abievayather different matter from the AC;
it has no intuitive appeal.

It is not really necessary for our purpose to geplieinto the various forms of the Axiom,
its applications, or its relations with other sugjgel axioms. | used to hand out notes on it,
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but these days, now that we have an undergradwafe kcourse, they are probably
unnecessary. Nevertheless, one or two further cartsmeay be helpful.

My own view, for what it is worth, is hesitantly &bnist. | think that mathematical
concepts do exist, in some unclear absolute sengefaet, | can see no reason for studying
mathematics if you seriously believe it is justaang with rather bizarre rules, quite unrelated
to reality. Indeed, | agree with the usual jocs@tement that “mathematics is independent of
its foundations”. The foundations postdate the kamiheorems, and were constructed for the
sake of clarifying the logical structure; if theyere unsatisfactory, either by leading to a
contradiction or by failing to imply a standard ¢hem, we should not throw away mathe-
matics in the mass, but rather modify the foundaetito preserve the mathematics, albeit
attempting to preserve our intuition about the emts we are dealing with. This process has
really happened once, when Russell pointed ouirthéequacy of Frege’s set theory. The
axioms of set theory were adjusted so that Russadlitadox ceased to hold. It is conceivable
that a contradiction might arise that could notsbeeasily resolved — the Intuitionists came
close to saying that about Russell’s paradox —, ibuthat case we should also have to
reconsider the validity of our whole system of thbu(as, indeed, the Intuitionists claimed). |
am not suggesting that the distinction between stoictive” and “nonconstructive” proofs
that they introduced is a silly one, only that acanstructive proof ought still to be a proof.

In short, the foundations, however dubious in tlleitails, are there to support an edifice
most of which is already built and should not bendished except under extreme necessity.
By and large, mathematiggorks very well, both in ftegld as a means of analyzing the real
world; it would be silly to demolish it for an aifgiry thing like Russell’s paradox, which
clearly does not deal with “practical” constructs.

The Axiom of Choice seems to me manifestly “tru¢tlae level of intuition. From a
strictly logical point of view, one could divideiitto various cases: thimite  axiom of choice
(when the seC is finite) is actually a theoremtlzd standard set theories, tbeuntable
axiom of choice (fo€ countable) is already unptdeabut seems relatively unexceptionable,
and so on. If very large sets are to be allowedeé&ms clear that we should allow “choice
functions” in all these cases, just as anothermspecifically allows “power sets”. The only
serious objection to doing so is the fear that>aoma that, as it turns out, has such sweeping
consequences, and is apparently unprovable fromgu® axioms, might be inconsistent
with the rest of set theory; and once Gddel hadvshib was not, denying it loses all point.
Why should we not happily accept that every vesfrace does have a basis, if the statement
both agrees with our intuition and entails no cadiction? But — and this is where things
get messy — we must also accept the existence lmddgeie non-measurable sets as part of
the package, and, therefore, our exposition of areasinR or inR™ will have to assume
they are defined only om -fields. (By the way, B#eain’s construction also uses the Axiom
of Choice, albeit in a far less elementary fashinwolving transfinite arithmetic.) In any case,
there are other situations, not just Lebesgue autmsure iR and its relatives k¥ but
completely different spaces and measures, whersures to be interesting, must be defined
on o -fields smaller than a whole power set. Ulaniisorem mentioned above is a weak
example of this.

As | said above, the reason why the Axiom of Cheaippears at all is that without it we
cannot handle very large sets, although our seirghdemands they should exist. It is a
paradox of sorts (not lagical paradox but a “semantiadu”, a linguistic curiosity) that
we can set up theories which discuss, and reg@existence of, uncountable sets, despite
the countability of the set of symbols at our dsglo The oddity is no greater than that
involved in the statements people occasionally maken what precise grounds | have no
idea — that the total number of fundamental pagtiéh the universe is less than (sayy°
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or whatever number they use, so that you can desdoy finitely many symbols and quite
unambiguously, a number (s&9®” ) that you believieaee no physical correspondent at
all. At any rate, most applications of the Axiom@hoice have to do with the existence of
something too large to be described explicitlyelik basis oR ovef) . In this sense, the
constructs provided by the Axiom are “all in thenatii, and their practical significance, at
any rate once one goes beyond the countable axiarhoace, is nil. To put this idea more
precisely: the effects of the Axiom tend to be he unrestricted statement of many results
which would otherwise be true with some provisaa dire satisfied “in all cases of practical
importance” anyway. That the vector sp&&ce hadgeberaic basis over the field , orthata
function space of infinite dimension has an algeblzasis, are assertions that have no
“practical” consequences.

This does not exclude some oddities. There areupleoof notorious theorems (the
existence of Haar measure and of the Shilov boyhdanere the Axiom was used to prove
the existence of something which was subsequehtws to be unique, so that no “choice”
is really present. In one of these cases (Haarunegasn alternative proof of equal generality
was subsequently found. For the Shilov boundarggntains a puzzle why, or whether, the
Axiom is needed. The whole idea is very abstrau, maybe the Axiom can be avoided “in
all practical cases”; but it is not clear what ‘greal” would mean, and as far as | know no
adequately general proof has been found that datasse the Axiom.

The question arises whether the Axiom is absolutelgessary for the existence of a
Lebesgue non-measurable seRin . This was (almest)ved by Solovay in 1970. Provided
that the existence of an inaccessible cardinabmsistent with set theory (which has not been
proved, although it seems to be generally belidgeedeasons | don’'t understand), there is a
model for set theory (even adding in a form of tbentableaxiom of choice, the so-called
“principle of dependent choices”) in which every sereal numbers is Lebesgue-measurable.
So there seems to be little point in hunting norasoeable sets without the Axiom of Choice.
Denying the (uncountable) Axiom and assuming tHageds inR are measurable might seem
a useful possibility, but to do so you would alswvé to abandon other consequences of the
Axiom, many of which are extremely convenient; fertmore, it would not follow thany
measure you wanted to use inabhitrary sface couldfeede®nP(2) . So we are in a
slightly uncomfortable position: we are convincedttany set we can actually define in any
“practical” way must be Lebesgue-measurable, loubet consistent, we must still prove it in
each case. Fortunately, the proof is usually fdiljal, granted the standard properties of
Lebesgue-measurable sets.
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811. Lebesgue-Stieltjes measures in higher dimensi

Definition 11.1. Leta := (a1, as9,...,a,), b:= (b,bs,...,b,) be points ofR” . Define

a<b tomean (Vi,1<i<n)a <b; ,
a<b tomean (Vi,1<i<n)a; <¥b; ,
(a,b] ={z e R":a <z <b},

[a,b] = {x e R":a <z < b},
(a,b) ={zeR":a <z <b}.

Notice that < isnot a total order iR” , and that doesmean “< and# ". The
“multi-intervals” (a, ), [a,b], (a,b) may be described dmlf-open on the left closed, or
open (a,b] is empty if, for any index ,a; >b; . The formal values = —co and
b; = oo may also be allowed when the intervals are opdimeatorresponding ends.

Definition 11.2. SupposeJ := (a,b] as above. For any suiset of the inieigeval
(1,n) :={1,2,...,n},
where P := {j1,j2,...,Jp} andj; < jo <---<j, ,let

P . i~ . q. .
a = (A1,a2, .y gy Ay ey ey ey Gy Gty e Q)

b R . i
b7 = (b1, b2, e By, s Dy D, bty ey b

where the ‘hats’ indicate that the terms they deiish are omitted. (This is a common
convention.) Then let/? := (af, 0] CR"? . In wordsI” is the set ofngoin R" 7
whose coordinates are obtained from those of atpoiy by omitting those indexed by
members ofP .

Definition 11.3. SupposeJ = (a,b] as above; lete (1,n) and < a < g <, f
f:J — R, defines’{" f: I —R by
(‘1:17'1:27 7'1:71*1) = f(il?l,!l?Q, 7xi717ﬁ7 Ly Ligly--- 7'177171)
— f([l)l,.CCQ, cee s Lj 1,0 gy Ljg 1y - ,xn—l) .

If a <c:=(c1,¢9,...,¢,) <d:=(dy,dy,...,d,) <b,define

Aoaf =605 eR 02 gt gntin ¢ (31)

co,ds Cn1,n—1 Cnydy

This is in effect a number, the last step beingdhbtraction of two values of a function
(a1,b] — R, whether or not you interpret{’™  as a singleton.

The formula (31) is only one of several possibleysvaf expressingA.; . There are
commutation relations among the sl i< j<n ank g y<6 Jin
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J.(1n—1) ci,(I,n) _ ¢i—1,(1,n—1) ¢j,(1,n)
0 b5 =0 0 S
(In fact, the$ s are coface operators correspontinthe boundary operators for cubical
homology.) There is, therefore, no need to begi{3i) with then th coordinate.

Remark 11.4. The idea behind (31) is this. We think of the €dR¢ as occupied by matter
of varying density whose total mass over all spacknite. Then f(c) is the mass of the
matter occupying the stz € R" : x < ¢}  of all points as it wiaeow and to the left” of
c; eachs thus selects the mass of a “slice” of tie@ipus set. In dimensich (5,(?27"521=2}f(:c1)

is the mass of the strip
{(€1,&) 1o <& < dy, & <11},

and A, f selects the mass of the rectandlg,&r) 1 co < & < dy, c1 <& < di}
Alternatively, one can consid¢gr as a cumulativabpbility distribution in the same way.

Definition 11.5. Let f:J — R as abovef iseparately right-continuous ah  when, for
any c:=(c,c9,...,¢,) € J and anyi € (1,n) , and for any>0 , there exists- 0
such that, whenevet; < x < ¢;+6 and<b;,

‘f(01702, ey Ci 1, T,Ci4 1, .- ,Cn) — f(Cl,CQ, ey Ci1,Ciy Cit1, ...,Cn)| < €.

That is, all the functions of one variable (defir@dthe intervals(a;, b;] for the various )
that are obtained fronfi by fixing all coordinates bare right-continuous ofu;,b;] . Less
formally, f is right-continuous in any one coordmathen the others are fixed.

f would bejointly right-continuous if, for any € (a,b] and>0 , thevere >0

such that, for any z € (a,b] for which, for each g <z, <c¢+6 , then
|f(z) — f(c)] < e. (An equivalent formulation is that there is sonde> ¢ such that,
wheneverz € J N (c,d) ,thenf(z) — f(c)] <e .)

These are the definitions of separate and of joghit-continuity on the whole of , and it
is obvious how to define separate and joint righttmuity at an individual point of . There
are also definitions of left and of two-sided cantty. Joint two-sided continuity is, in effect,
just “continuity” on.J , in the usual sense for funas of several variables.

It should be emphasized that joint continuity (of &ind) is genuinely a much stronger
condition than separate continuity of the corresiyom kind. This is less obvious than it
might be because one usually considers rather sifupttions.

Definition 11.6. Let J := (a,b] C R" as above. The functiofi: /] — R id.abesgue-
Stieltjes distribution function id if

(@ whenevera <c<d<b ,Ayf>0 ,and
(b) f is separately right-continuous dn

Condition (a) reduces in one dimension to(8)2 . Theaedor it is Remark 11.4; it
seems difficult to express the idea in any moredliway. The curious aspect (@) is that
only separate right-continuity is required, butvitl result from the theory (and can easily be
proved directly) that, in the presencqaf (b)  impj@nt right continuity.

If 1is a measure defined on the Borel setRinh ,famtd on bounded intervals, define
f(a) == p((0,a]) whenevera >0 . It follows thatA,, f = u((y,z]) whel <y <z
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which explains(a) . On the other hanth) follows frond.8Indeed, even joint right-
continuity would follow from 8.5.

It is not easy to recognize examples of d.f.sRifh begause ofa) . Nevertheless, they
abound. Suppos¢;  isla -dimensional d.f(dn b;] o i <n Then define

f:dJ—R:x=(x1,29,...,2,) — fi(z1)fo(xs) -+ fr(xy).

f will be a d.f. inJ , thgroduct distribution function or the product of the d.ff, ..., f,
The most important example is the -dimensidredesgue distribution function

f($17$27"'7$n) = T1X2 T,
for which A.;f is just thex -dimensional volume of theltiinterval (c,d] .

Definition 11.7. Let J := (a,b] be a multi-interval inR™ , and lef : /] — R"  be a
Lebesgue-Stieltjes distribution function. Define

S={(c,d] CR":a<ec<d<b},
and, for each(c,d] € S , lets((c,d]) == Acaf

Lemma 11.8. S is a semiring in/ 7y is countably additive 6n . (]

Neither the finite nor the countable additivityestirely trivial. One needs the fact that a
bounded closed multi-intervale, d| is compact (a fintdevering of it by open multi-
intervals admits a finite sub-covering). The probtherwise much as before, 9.7, except for
non-trivial technical changes.

Definition 11.9. Given the d.f.f as above,} is thebesgue-Stieltjes outer measure/in

induced byf; if the d.f. is the Lebesgue d.f., the outer meassithe Lebesgue outer measure
in J. The resulting measure spacd, >y, 1if) is the Lebesteky (or Lebesgue)
measure space oh

The crucial fact is of course that((c,d]) = A.qf  forafy,d] € S

We now have a very substantial stock of interestiregsure spaces. It is possible to carry
the study of measures a great deal further, butdfermoment we shall change tack and
discuss integration. Since we cannot assume ousunesm are defined on all subsets of the
domain{) because of 810, we must first study thesctd functions that are in some sense
adapted to the -algebra on which the measure witlddined.
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812. Measurable functions.

Definition 12.1. Let F be a field irf2 . A functionf :  — R imeasurable with respect
to F, or F -measurableor (if there is no ambiguity)measurablg if, for eyea € R, the set

f o0l ={z € Q: f(z) > a}
is a member ofF .

This is not the only definition of a measurabledtion that you will find in the literature,
but it is convenient for our purposes and consistgti other definitions.

Lemma 12.2. LetX be ar -field if) .
(@) Let f:Q— R beX -measurable. Then, for any,3 € R , each of #i8 s
f e, Bl f e, 6], f e, B), f7' (o, 3) belongs ta .

(b) f:Q— R isX-measurable if and only if the sefs'{—cc} f;{c} and
fY(a,00) belong toX for everyy € R

Proof. (@) If B> —oc, [f1B,00]=Up [ B+7,00€X. If B=—0c, then
[ (B,00] = f(—00,00] = U2, fH—k,00] € X. Hence, f7}(3,00] €L whenever
BeR.Then f'a, Bl = fa,o0] \ f71(B, 0] € ¥. And so on.

b) fa,00]= N2y f (= 3,00)U f{oo} € X, and so on. O

Proposition 12.3. Let ¥ be aoc -field inQ and letf,g: 2 — R bE -measurable
functions. Then the sets

{zel: flx) >g(x)}, {zeQ: f(z) 2 g(x)}, {ze: flz) =g(z)}
all belong toX: .

Proof. Any non-empty open interval R contains a (fipitational, and) is countable. So
{zeQ: f2) > g(a)} =], o {z €Q: f(2) > a>g(x)}
=,z f@) = a}\ {2 g(z) > a}) € %,
But then

{re: f(z) <g(z)} = Q\{z: f(x) >g(z)} €X and
{zreQ: f(z) =g(x)} ={z: f(z) <g(z)}n{z: g(zx) < f(z)} € X. .

Lemma 12.4. Any constant functiorf : @ — R & -measurable, for anidfi€ in Q2.

Proof. Indeed, if f(z) =c forallz € Q , thenf'([a,00]) =0 wher <o , and also
F (e, 00]) = Q whene > o . =

Remark 12.5.In the next proposition, | have to mention the sym ¢ (and difference
f — g) of two X -measurable functions agd . In princifiies means the pointwise sum:
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(f+9)(x) = f(x) + g(z) forall z € Q.However, | am allowing ang to takeiiife
values, so thaif + ¢ , so understood, may be undefinedmae points, namely wherg )

and g(x) are opposite infinities. For the sake of gpsénstatement of the proposition, let us
agree that, at such pointsf + ¢)(x)  is understood t bed, likewise, thal{f — g)(z) is
understood to bé at points whefér) ayid) are the safimity. Similarly, in part

(d), let us say thaff(x)| meansoco  when>0 afidr) = oo , mdans  when
a=0 (even if f(x) =0 ;itis a curious point thabt’ is not aby defined, butz" in
formulee is commonly understood as meaning evemwhe=0) and mean$ when

a <0 and f(x) = oo . These are meredyl hoc conventions, not intendesipersede
the general rules of 2.1. In the later developntieey will scarcely be needed.

Proposition 12.6. LetY be ar -field if2 ,andlef,g: 2 — R @ -measurable.iThe
(@) the pointwise sunf + g , defined asl&t5 Xis -measurable;
(b) the pointwise maximumax(f,g) 15 -measurable,
(c) foranyconsnt a € R, the functiomf & -measurable,
(d) foranyae R\ {0} ,|f|* (defined pointwise as12.5 Mis -measueabl
(e) the pointwig productfg iS2 -measurable.

Proof. (a) Take y€ R, and considerE, := {z € Q: f(z) + g(x) >~} . There are
various cases. Of coursB_,, = Q2 € ¥ . Next,
By ={z: f(z) = 0, g(z) > —c} U{z: f(z) > —00, g(z) = oo}
= (f'({eo}) N g™ (=00, 00])) U (g7 ({oo}) N f7H((—00,00])) € =

by 12.2. Now consider the case when is finite positive Then v < f(z) 4+ g(z) < oo is
only possible when botlf(z) anglz) are both finite, dadany o € R,

{z:y—g(zx)>a} ={z:g(z) <y—a} =g ([~o0,y—0a]) € %,

again by 12.2. Hence, the functidn: Q@ — R : z +— v — g(z) is definedvaty point of
Q2 and is also measurable, and

E,=E,U{zx:0<~vy< f(z)+g(z) < oo},
=FE.U{x: f(z) > h(x)} € X,

the second set of the union beingin by 12.3.
If —oo <~ <0, then the conventions of 12.5 must be takea aansideration, and

Ey=ExU{z: f(z) > h(z)} U ({z: f(x) = 0o} N{z: g(z) = —o0})
U({z: f(z) = —oo} N{z: g(z) = o0}).

This shows that, once agaif;, € ¥ . All cases have nesm laliscussed.
(b) Foranya eR ,

{z € Q:max(f(z), g(x)) = a} = f~([a, 00)) Ug™" ([, o0]) € T

() If a>0,then {z:af(z)>a}={x: f(x)>a'la} e X. Likewise, if a <0,
{x:af(x) >a}={x: f(x)<ala}eX, by 12.2. If a =0 , thenaf is the constant
function “zero”, so is measurable by 12.4.

(d) Examine the cases that arise, much gs)in
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(e) This can be done in more than one way, but &fett is perhaps easiest to proceed
as follows. Leth(z) := 1{|f(z) + g(=)] — | f(z) — g(x)|*}, with the conventions of 12.5.
Define Q; ={z € Q: f(x),9(x) eR} e X . If z € Dy, f(x)g(x) = h(x) ; this is defin-
itely untrue at some points oft; . For instancefifr) = oo and g(x) =1 ,h(x) =0 by
12.5, but f(z)g(x) = oo .

h is measurable b§g) (¢) ,arfd) . Thus, givere R ,

UN{ze: flz)glzx) >a=UN{zeQ:h(x)>a}eX.
If «>0,then

{z: fw)g(z) = a} \ 1 = ({z: f(x) = oo} N {z: g(x) > 0})
U({z: f(z) >0} n{z: g(z) = oo})
U{z: f(z) <0}n{z:g(z) = —oo})
U({z: f(z) = —oo} n{z: g(z) <0}),

which is certainly in2 . If—oo < a < 0 , change each to aadle> to> . So, for
any a > —oo ,

{z: f(e)g(z) = a} = ({2 : f(2)g(x) = a} ) U ({z: f(x)g(z) = a} \ ) € 2.
Finally, if « = —oo, {z: f(x)g(z) > —oc0} = O

The difficulties of this proof arise almost whoftpm the presence of infinite values, but
the next Lemma should demonstrate why it is corerrto allow them.

Lemma 12.7. LetX be ar -field in2 . Suppose thaf,) is a sequaice-measurable
functions Q@ — R . The function®f, f,, sup, f., liminff,, limsupf, ak -measurable.

Proof. Given a € R ,
{x eQ:(inff)(x) >a}={xeQ:inf(f.(z)) >a}= ﬂ
soinf f, is¥ -measurable; thesupf, = —inf(—f,) 3s -measurable. Thdaoksivs. O

X o fule)>alex,

n=1

Recall from 7.15 that the infima or suprema herelwadescribed either as defined point-
wise or in terms of the partial order on the fumes Q@ — R . The Lemma then says that the
induced partial order on the subset of measuralnletions is countably order-complete. (It is
not usually order-complete, for a non-Lebesgue-oradre function oR , for instance, is the
supremum ofuncountably many functions that are non-zero eéxgem singleton, and each
such “singleton function” is Lebesgue-measurable.)

In summary: all the usual operations of analysisenvapplied t@ -measurable functions,
yield 3-measurable functions.

Lemma 12.8. SupposeX is ar -field if2? andp):R — R is continuous and
f:Q — R isX-measurable. Theno f ¥ -measurable.

Proof. Take a € R . Asp is continuousy~!((a,00)) is openRn . Hencs # countable
unsion of open intervals (this was proved in %8y, ¢ ((«, 00)) = U2, (cx,dx) . Then
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(¢of) =, ' ((er,di) €3,
as each f'((cy,dr)) €X by 12(@) . Sincebo f does not take infiniteuesl
(pof) 1 (—o0)=(pof) ' (c0)=0,and 12.80) establishés -measurability. O

This result has been stated for finite-valued fioms because | have not discussed
continuity for extended-real-valued functions, lius true more generally. However, itnst
usually true that¢o f is measurable for Lebesgue-miabl ¢ : R — R . This is
inconvenient for some purposes, and probabilisgamicular often restrict attention to Borel-
measurable functions; that is to say, they spetif, for functionsR — R  (or indeed
more generally), measurability is understood imterof the Borelo -fieldB(R) . Iff is
measurable) — R and is Borel-measuralie— R , then f issumaiale
Q — R. (Exercise.)

Definition 12.9. Let A € P(2). The indicator function of the setd is the function
4: Q2 — R defined by

1Lu(z) = 1 whenze A,
A= 0 whena ¢ A

This concept seems quite obvious. It is clear ithatjust the adaptation to valuesin  of
Cantor’s idea that we use to show tH(2) has cditinzf‘) . However, it is said that it
was first explicitly defined as late as 1915 byal¥allée Poussin.

Both the name and the notation are disputed. Atsmalyien called it theharacteristic
functionof A, and denoted it by, of4 . Unfortunately, probsts, before their subject
was properly grounded in analysis, grew accustorieedise the phrase “characteristic
function” of something else (the Fourier transfoimfact), and as a consequence preferred
the name “indicator function”. It is sometimes distbby I, or even byl . (1)

Lemma 12.10.LetF be afieldif2 14 i -measurable if and orilyd € F . O

Definition 12.11. A function f:Q — X (whereX may bR @ ) is callsoinple with
respect to the fieldr, or F- simpleor (when there is no ambiguity) simple, if it i5-
measurable and assumes only finitely many valuwes f .

f is calledelementary with respect to the -fiekl ,X%r -eleraay, if it isX-measurable
and assumes only countably many values.

Recall that a “linear combination” of a set of ftinos with values iR is understood
pointwise, and is by definition fnite  linear combioati— i.e. it is a sum of finitely many
terms, each a constant multiple of one of the fonstof the set.

Lemma 12.12. Given a fieldF in(2 , any real linear combination refal-valuedF -simple
functions isF -simple; the pointwise product and theximum of two real-valued (or
extended-real-valued¥ -simple functions &e -simple

Proof. In each case, it is easy to see that the newimbias only finitely many possible
values, and 12.6 shows that it is measurable. O
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Lemma 12.13. Any F -simple functionf : Q — R may be expressed as a reahi
combination of the indicator functions of pairwiigjoint sets ofF whose unionfis

Proof. Let the distinct values of b&,bs,...,0. € R . Take, for=1,2,...,r
E(r)=f({b;}) € F.

Then EG)NE(G) =0 ifi#j;if € EG)NE(Y), f(z)=b and f(z)=>b; simul-
taneously, which is impossible ds # b, . Also,ijife Q@  f(y) mios one of thé s, so
that y € E(k) for som& betwedn and ;thts=J,_, E(k) .And, finally,

f= Z,::l b1y (32)
because, for any: € 2 , there is exactly dne for whick E(I), which means that
f(z) = by, and that is precisely _ by 1, (2) - O

| shall, for convenience, describe a real lineanlomation of the indicator functions of
pairwise disjoint measurable sets whose unidn is astandard form of the simple function
that is its sum. (Notice that (32) is, in additi@anspecial kind of standard form, becayse
takes a different value on each of the¢k) ).

Simple functions are useful because of the nextgsibion.

Proposition 12.14. Let F be a field inQ2 , and letf : Q — R be aR -measurable
function taking non-negative valud$for brevity, we often speak of a “non-negative
measurable function’]Then there is a sequende,) of non-negative rdakdar -
simple functions which is (pointwise) increasingl @onverges pointwise b

Proof. Define

n foreachz € Q suchthaf(z) >n
() = 0 when f(x) =0 , and
O | i — 1 : .
22n when 17 < f(z) < % , for integers such thét< i < 2"n

The verification that the sequence has the degiregerties is routine. (To understand what
is going on, try to think of it in terms of the graof f .) O

813. Integration of simple functions.

As | remarked in 81A, there are many approacheakedantegral. The one | shall present has
the advantage of needing little further preparaéind being rather “natural”. It has one sticky
point, where we need to appeal to the countabléiaitidof the measure.

If fis a real-valuedr -simple function (see 12.iflhas a standard formy_,_, arlpg)
as in 12.13. In principle it may have many standards; only one of them will have the
property that all the coefficientg,  are differadawever, it is not really desirable to impose
this as a further condition, because it may berdgstl if two simple functions are added.
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Definition 13.1. LetF be afield if2 , and let be afam®n [orddie a fasm otF ]. Let
f be anF -simple function with valueltr ®&r . It wilé convenient to set

Q(f) ={z € Q: f(z) #0}.
f isintegrablewith respecttpe  [or ] ifu(Q(f))) < oo [orif—oco < o(Q(f)) < oo 1.
Lemma 13.2. Given the fieldF 2 , with a fam and a fasm , febe anF -simple

function @ — R , and lety"" | a;1p and_", bjlp; be standard forms for efhf
f i1s non-negative,

Yo ainlE@) =" bju(E()),

where the sums make sens®in , whilsf, if) — R is iabdg with respect to-
> ojaio(B@) =" bjo(F(),

where the sums make sens&in

Proof. Set H(i,j) = E(i) N F(j) ;theH(i,5) are pairwise disjoint and belongrto ut B

n

@) = B@) ne=£6)0 (U, F0) =U., EOnFG) =, H.))

J=1 J=

for each choice of , and similarly’(j) = U, H(i,j)  for each . Thasions are disjoint,
sothaw(E(z')):z;;lu(mz',j)) andu(F (j)) = Y% u(H (i, j)) . Hence

Zim 'L Zm ZTL . Hz . :leaz M(H(Za]))’
S = S ) 3 )

If w(H(3,j) =0, then a; n(H(3,j)) =bju(H(i,5) =0 . If p(H(,j5))#0, certainly

H(i,j) 70t xe H(i,j), a=f(z)=>b;, and so agaim; u(H(i, j)) = b;j p(H (4, j))
Hence, 3 " a; p(E(i)) = 32, ;i p(H (i, 5) = 325 ;05 n(H (4, 5)) = 3251, b n(F'(5)) -

The argument for the signed measaire is identickdrm. In the previous paragraph, the
sums considered are defined because all their tarenaon-negative (the coefficients, b;
are values off , and so non-negative), whereaharcase otr , the sums are defirzedi
finite because all the terms are finite. Specificallygjf# 0, then E(i) C Q(f) , and, ag is

o-integrable, 5.8 ensures that(F(i)) € R ; the teruno (E(7)) is finitea; = 0, the
convention 2.@iv) ensures thato(E(i)) =0 . Similar argumentdydppthe other sums
that appear. (Compare 5.7.) O

Definition 13.3. WhenF is a field irf2 ,f : Q — R is a non-negatife  -simpladiion,
andy is a fam otF , define tpee-integral off with respectt@  to be the sum

S(f, Fom) =" a; p(E(i)), (33)

where >~ a; 1) is a standard form fgr . By 13.2, the sumiefined inR and does not
depend on the choice of standard form; nor is dessary to assumg is integrable with
respect tqu .
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Similarly, if o isafasm oF andg : Q — R is @ -simple dtion integrable with
respect tar , thpre-integral off with respect t® is the sum

S(f, Fi0) =) " aio(E(),

which is defined inR (and independent of the chatestandard form forf ) becauge s
integrable with respect ©

The term “pre-integral” is aad hoc invention. Most aoith would call it the “integral”
of f, with respect tqx ob as the case may be; iheé only reasonable value for the
“integral” of anF -simple functiorf . | shall abbrew the notation t&(f) when the other
data have been fixed. The problem lies in extentlwegidea of the integral to more general
functions, and that is where the -additivity of theasure will come in.

Lemma 13.4. Let F be a field i) p afamaf f,g:Q—R non-negativetdin
valuedF -simple functions, and, 5  non-negative extémdal numbers. Then

(@ S(f)=0;

(b) if fis finite-valued,S(f) < oo ifand only if is integrks
() S(af+pBg)=aS(f)+ BS(g); in particular, S(0) =0 ;
(d) if f<g (pointwise), thenS(f) < S(g)

Proof. Each term in (33) is non-negative,(®  followsa/fis finite, the terma; p(E(i))
will be finite if and only ifeither a; is) or the measung E(i)) < oo This provegb) .

Suppose inc) thad ™ a;1z; is a standard form for 3nd, b;1p;  aadstrd
form for g. Define H (i, j) .= E(i) N F'(j) , and theny ., 1<jc, (@a; + Bbj) 1y is a
standard form forvf + B¢ . It follows (compare 13.2) that

S(af +89) = 3, (aa; + by) u(H(, )

= o> o> ulH () + B b3, mH )

=ay  aip(B@)+ 8 bju(F(j) = aS(f) + 8S(g).
If f <g,then, for each paifi,j) suchth&f(i,j) #0 a; <b; .So
S(f) = au(H(i,j) <) biu(H(i,j) = S(9), 0

Part(b) is still true if one considers the pre-ingdgmwith respect to a fasm on Bf -
simple functions integrable with respecito

Corollary 13.5. SupposeF is afield @ 1, afam &n (fn) be an insir@sequence of
non-negativeF -simple functior@ — R . Thé®(f,,, F, 1)) IS an insirg@ sequence in
R, and so converges R 1&y7 . O

In view of 12.14, this immediately suggests a waydefining the “integral” of a non-
negativeY. -measurable function, whéte S a -fiel@j that is reasonably consonant with
our idea of the integral as the “area under thptgtarhe only problem is that a non-negative
Y-measurable function may be the limit of many défg increasing sequences of non-
negativeX. -simple functions. Here, for the firstéimve make essential usecof -additivity.
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Proposition 13.6.Let (2, X, 1) be a measure space, and (ét) be an increasiggence
of non-negativeX> -simple functionQ — R . Suppose that also a non-negative& -
simple function, and thalim f,, > g . Thdm S(f,) > S(g)

Proof. There are two cases: whegn is or is not integrablgpose firstly that it is not
integrable. Sincg has only finitely many valuegveay, there must be some > 0 such
that (g *({a})) = oo . Define

E(n) ={reQ: fu(z) > ja}. (34)

Since f, 1 , clearly E(n) 1 too. Aslim f, >¢g U2, E(n) 29 '({a}) . By &9 |,
p(E) 1 p(UnSy B) 2 (g ({a}) = " However, (34) shows thaf, > bals,
and soS(f,) > S(3algw) = san(E(n)) by 13() ;and s8(f,) T co = S(g)

Now, suppose thay is integrable. (There is a spemse whenu(Q(g)) =0 ; then
S(g9) =0, so the result is immediate; but the followinglargnt still works.) Sincg s
simple, it has only finitely many values. Lt  b®largest value.

Take any\ € (0,1) . Foreach € Q(g) g(z) > Ag(x) . Define — for this fixed —

F(n) = {x € Qg) : fulx) > Ag(x)} € Q(g). (35)
As at (34),F(n) T , becausg, T ;in this case, howeliar,F'(n) = Q(g) weer,
9= 9-Lr(m) + 9-Lg)\r@) »
and g.1r,), 9-1g(g\rn) are both non-negative integrable -simple fanst By 13.4c) ,
S(9) = S(9-1pw)) + S(9-1g)\Fm)) - (36)
Each of the terms on the right of (36) is finitelaron-negative, and from (35)
91ou\rm) < M1genrm),  S(9-1gunrm) < Mu(Q(9) \ F(n)).
Putting these facts together with 1@)4(d),

(fn) > S(Ag 1Fn )
_)‘8< F(n) )
= AS(9) — AS(9-1g(g)\F(n))
= AS(g9) = AMpu(Q(g) \ F(n)).

Now, however, Fi(n) 1 Q(g) andu(Q(g)) <oo , so, by &5 u(Q(g)\ F(n)) 10
Hence, lim S(f,,) > AS(g) . However\ could have been any numbé6ji) we ¢onclude

that lim S(f,,) > S(g) . (|

by (35)

Theorem 13.7. Let (£2,%, ) be a measure space, and suppose {lfal (@na are
increasing sequences of non-negative simple fumstid — R that have the same limit.
Then the sequencés(f,, 2, 1))  at8(gn, 2, 1)) have the same lifit in

That is: if, for eachz € Q ,f,(x) T h(z) andy(z) T h(x) , then the correspogdi
pre-integrals have the same limiim S(f,,) =lim S(g,,)

Proof. Fix k. Then g <lim f, , and so, by 13.&(gx) <lim S(f,,) . This holds forheac
k; ergo, lim S(g,,) <lim S(f,) . The converse inequality must also hojdsymmetry. [
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814. The integral in general.

Throughout this section (and, indeed, until furthetice) (2, X, 1) is a fixed measure space.

Definition 14.1. Let f be a non-negatiVE -measurable function— R . Byt 4, there
is an increasing sequencg, ) of non-negalive -sifypletions that converges pointwise
to f. Define thentegral of f with respect to the measure [ f dp , by

/ Fdp = lim, S(f,).

The limit exists by 13.5, and, by 13.7, it does depend on the choice of the sequence
(fn) - (It would be possible tdefine the integral using tpedfic sequence given in 12.14,
but 13.7 is essential to show that it has usefaperties). It will be convenient to write
“isnsf” for “increasing sequence of non-negativalie functions”.

The notation is very variable, according to theadatt are fixed. For the time being, we
may write just [ f . But if the space, tle -algebra theasure, or the “variable of integ-
ration” are in doubt (fof may involve several pagders), one may see

/Q 3 /Q pan, [ pau, /f<x>du<x>, [ @ dnte).

The “d” in these expressions has no independent mga#- it is a historical survival from
Leibniz’s notation for the integral, which was itsdlogical; but it has the merit of corres-
ponding to the phrase “with respect to”. A slightgs irrational notation that is also in use is
[ f(x) p(dz), where {i(dz) " does at least vaguely indicate the ideassigning “mass” to
“small bits dx of the domaif2 ”. Another notation thiatoccasionally met with ig:(f)

The probabilistic notation is quite different, dnghall explain it later.

Notice that, for a non-negative measurable funcfiprf f is defined and is iR . If s,
in fact, a non-negative simple function, theff = S(f) ceirthe chosen sequence may
consist off alone. This is wh§(f) is usually callkd tintegral” of the simple functioff

Lemma 14.2. Supposef,g are non-negative measurable functions fardg (that is, for
eachz € Q , f(z) < g(z) ;se&.15).Therff < [g

Proof. Take isnsfsf, T f, g, Tg . Then, for any fixéd f. <g=Iimg, . Apply 13.6;
S(fr) <limS(g,) = [g¢, and so, lettingk — oo ,[f =1limS(fx) < [g . O

Definition 14.3. The non-negative measurable functjon integrable  [jf < co

This is consistent with the terminology for finkelued simple functions, by 13B)
Notice, however, that for a non-negative measurabietion the integral is alwaydefined ;
integrability means something else. For this reasome authors use a different convention.
What we call “integrable”, they call “summable”,thdere and later.
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| recall the abbreviation (introduced for simpladtions, but useful in general)
Q(f) ={z e Q: f(z) # 0}.

There are, vaguely speaking, two ways in which @-megative measurable function may be
non-integrable. Ityalues may be “too large”; & f) maytbe large. To make this a little
more precise:

Definition 14.4. A set A C ) isco finite with respect toX, )  if there is a sequefdg
in X such thatA C | J.°, E; and, for ea¢h pu(E;) < oo

(The phrased -finite” occurs in several contexts;ihstance;. might be substituted by a
signed measure on ).

Lemma 14.5. If the non-negative measurable functign Q — R is inddxde, then

(@ Q(f) iso-finite, (b) up{z: f(x)=00})=0.

Proof. (@) Let (f,) be an isnsf tending t6 . Then, by definitiaf(f,) 1 [f, and so
S(fn) < oo foreachn . By 134) u(Q(f.)) < oo . But, clearly,

QU =U,- Q).

and, consequenth@(f) s -finite.
(b) Let A={zxeQ: f(zr) =00} €X.Then, foranyn e N f>nl, .By14.2,

oo>/f2/n1A:S(n1A):nu(A).

But this shows thaj(4) <inf{[f/n:neN}=0 ,andse(4)=0 . O

Lemma 14.6.Let f be a non-negative measurable function. Thiegh=0 f and only if

wQ(f)) =0.

Proof. Let (f,) be anisnsftending t6 . l&(Q(f)) =0 , then evidentlyQ(f,)) =0

for eachn , sinceQ(f,) C Q(f) ,andthu$(f,) =0 .Henf¢ =ImS(f,) =0
Conversely, suppose:(Q(f)) >0 . Definel(n) ={xeQ: f(z)>1/n} ¥ , for

eachn € N . ThenA(n) C A(n+1) for each , anQ(f) =U,2, A(n) As is non-

negative. By 8.&) , u(Q(f)) =limu(A(n)) , so that, for sufficiently large,

1(A(n)) > 0. Since f, > n 1, , 14.2 shows that theff > [ f, > n 'u(A(n)) >0

This establishes the desired result. (]

Remark 14.7. The above lemma has a number of consequencea.dtart, it is important to
realize thata non-negative measurable function may have zdegial without vanishing
identically. If f is the “Dirichlet function” on[0, 1] mentioned B1A,

ft)=1 whenteQn[0,1] , f(t)=0 otherwise,

then f is in fact the indicator function ¢ N [0,1]  (andasimple function)Q N [0,1] is
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countable, so its Lebesgue measufe is , AidA =0 X\ , tidgriebesgue measure. This
is the more surprising in thd@t is not Riemanngrable at all.

In elementary courses, one often meets assumptibribe kind that the (Riemann)
integral of a non-negative function is zero onlyhi¢ function is zero; generally speaking, this
is because the functions are continuous. Indeéslainazingly difficult to prove, on the basis
of the Riemann integral alone, even that the Riegmategral of a function that is Riemann-
integrable anéverywhere positive oft), 1]  must be positive. Attgmpt to prove it carries
you a long way towards the Lebesgue integral. Yetppoof above of a more general fact for
the Lebesgue integral was not hard, and, genesppking, we shall find that many results
which arise fairly naturally for Lebesgue integoatiand ought, therefore, to be true for the
Riemann integral (in suitable formulations) aréeitfalse or far less easy to prove.

In these remarks | am taking for granted that Lgbesintegration with respect to
Lebesgue measure generalizes Riemann integratiathei sense that a Riemann-integrable
function on a multi-interval is necessarily Lebesgutegrable with the same value for the
integral. It is rather probable that | shall notegia proof of this — although it is not very
difficult, it is rather time-consuming — but | shaksume it occasionally.

The fact that certain functions are not “detectieg’the integral has led to a whole list of
phrases expressing the idea.

Definition 14.8. Let P be a property of points 6  [for example,(if,) is a sequence of
functions Q@ — R , P(z) might mean thatf,(z) — f(z) ; this may be true Jome
x €  and false for some others]. We say that  h¢lds:) almest everywhere i if
thereisaseff € ¥ suchthafF)=0  aftiz) is true whenevérE' That is to say,
the set of pointg for whiclP(xz) false is a subset ofeasurable set of measure

It is of course “usually” the case that the setaffs = for which P(z) is false (often
called, especially in informal discussion, teceptional set Jtgelf measurable; in 8§10, |
explained that there are reasons why this shoulsbbe R” , although we cannot assume it,
for all “practical” propertiesP . However, the casmy be altered for peculiar spaces or
measures or properties.

One often saysP holds a.e.” In older books in ksigl“p.p.” (for presque partout
Lebesgue was French) is sometimes used insteadeqf and of course corresponding
abbreviations are (sometimes) used in other laregialhere are also other forms of words,
such as P(x) foralmostat ifR .

Lemma 14.9. Suppose thatf,g: ) — R  are non-negative measurable furstaord
«, 3 are non-negative extended real numbers. Then

[tass9=afr+sfs

Proof. Supposea =oo . Ifff >0 ,thenby14.6(Q(f)) >0 ,andsince
{reQ:af(r) =00} =Q(f),
14.5b) showsaf is non-integrable. Saxf = oo =aff  .df= o0 afigd = 0 , then,
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from 14.6, u(Q(f)) =0 ; henceu(Q(af)) =0 ;and 14.6 shows in turn that

/aszzoo.Oza/f.

Now supposel < a < oo , and létf,,) be anisnsfwifh? f . Tlierf,,) alds an
isnsf, af, T af ,andS(af,) = aS(f,) foreach ,by183 .So

/af =lim S(af,) =lim aS(f,) = alim S(f,) = a/f.

It will now suffice to show that[(f +g¢) = [f + [g .Takeisnsfs, 1 f gn T g then
(fn+9gn) isanisnsfand f, +g,) T (f +9) . So, again using 18)4

/ (F+9) = M S(fy + ga) = M (S(f) + S(g0))
—lim S(f,) +1im S(g,) = / P+ / g. 0

Definition 14.10. Let f: Q — R . Define
f+3:ma)((f,0), f’:—mlr(f,()):ma)(—f,()) :

These are, of course, tipwintwise  maximum and minimum {s&8): for eachz € Q

fH(x) =max(f(z),0) and f~(z) = —min(f(z),0) = maX—f(x),0).

Lemma 14.11.(a) f*,f  are non-negative.
(b) If f:Q— R isX-measurable, botlf™ anf- are -measurable.
© f=f"-rf.

Proof. Only (b) is not obvious, and it follows from 12% (c) For (c), notice thatf* and
f~ cannot take opposite infinite values at the saaietp O

Briefly, any functionf can be expressed as thestifice of two non-negative functions,
both measurable if is. Howevef, can usually bexgaressed in many ways. The form
fT — f~ is the most ‘economical’, becauge afid are thadlest possible functions
that can appear in such a decomposition. Anothegr afigutting the same idea is that, for
each pointz € Q , eitherf*(z) =0 off (x) =0 . In graphical ternfs, espond to
the “part of the graph that is above the axis”, anan.

Definition 14.12. Let f:Q — R beX -measurable. Ttietegral of f is defined when
JfT and [f~ are not both infinitef istegrable if botfif"™  andf~ firgte. In
either case, thimtegral of f is to be

fr-Jr-fr

Thus, f is integrable precisely when its integsatlefined nd as finite Also, notice that,
by specifying f* andf~ , we are ensuring that the abésastegrable functions is as large as
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possible for a definition that depends on expregsgiras the difference of two non-negative
measurable functions. The most important elemermtiasgrvation is this:

Lemma 14.13. The measurable functiofi  is integrable if and oiily|f| (which is
measurable and non-negative) is integrable.

Proof. |f| = f*+ f~, by considering the case&z) <0 arfidz) > 0 separately. So,
if [ff<oo and [f~ <oco, [|fl=[ft+[f <o by 14.9. Similarly, from 14.2,
[P <[|fl and [f~ < [|f| ,sothat, iff| isintegrabl¢,” arfd must lwe to O

It is unfortunate that Definition 14.12 does nomediately lead to the central properties
of the integral, which | shall postpone to the nexttion. You pay a price for the simplicity
of the definition. For the moment, it should be @bed that we have only defined the
integral over the whole ¢

Lemma 14.14. Let f,g:Q — R beX -measurable functions, and suppose that g
a.e. Then[f existsifandonly iy  exists, afd = [g particular, f is integrable if
and only ifg is integrable.) O

Lemma 14.15.(a) Let f,g:Q— R be measurable, supposg| < g a.e. (which
implies thaty is a.e. non-negative), anddet kegnable. Thery is integrable.

(b) If the integral of h : Q — R exists, then[h| < [|h|  (which is definash is
non-negative measurable).

Proof. (a) follows from 14.2, 14.8, and 14.13. As {o) , 4
Jrl=| = foef e o= fim .

Remark 14.16. Suppose that\/ € > . Define
M ={EnM:Eex}.

It is easily seen thatt™ is a -field of subsets Mf and, of course, XM C ¥
Consequently, the restriction of Y  is a measur&Z?’ | and our definitions will yield
the ideas of¥¥ -measurability or “relative measuigil(both of subsets of\/ and of
functions M — R ), of2™ -simplicity of functions, and ofetfintegral with respect t&
and pu|xM

In particular, a¥ -measurable functiorf : Q — R restricts ao~" -measurable
function on)M , whose integral, when it exists, maydenoted/,, f/ . That s,

[=] fIM.
M MM |

Then [, f existsifand onlyiff, f1,; exists, in which caisey are equal.

(a) Furthermore, if[, f exists, then so dogs f

(b) If |, f exists and is finite (that is, if is integleton(), then so isf,, f f( is
integrable on\/ ).
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(c) If [,f exists and [, f has an infinite value, thep f mhiave the same
infinite value.

(d) If fis non-negative (of ), therf, f > [,, f

On the other hand, iff : M — R 8™ -measurable, defijne? — R by

-~

g(xr) =g(x) whenze M, 7g(x)=0 whenz¢ M .

Thenq isX -measurable, anfxizﬁ is defined if and dnlf]\} syt 9 is defined, and in

that case they are equal.
These facts explain why | have defined the integrdy on the whole of) . They are
straightforward consequences of the definitionsd, ldeave the proofs as exercises.

815. Properties of the integral.

It will be easiest to begin with one of the grdsdrems about the Lebesgue integral, which
on our definition (unlike Lebesgue’s) becomes natbasy. As before, the measure space
(Q,%, 1) is fixed. First, a lemma:

Lemma 15.1. Suppose that, foreach ¢ N f,: Q — R , and th#t < f. a.e. for
eachn . Then the sequengg,) is increasing a.e.

Proof. By hypothesis, there is, for each , a sBf € & sueh #(Z,) =0 and
fo(z) < for1(z) whenx ¢ Z, . TakeZ :==J,~; Zr ;therZ € ¥ , and 8.3 shows that

0<u(2) <37 mZ) =0,

whilst, if x ¢ Z ,thenx ¢ Z, for aln , so thatf,,(z) < f,.1(x) forall sirtaneously.
That is, the sequendgf,,)  is increasing a.e. O

Remark 15.2. More generally, the argument shows that the catijon of any countable
class of properties, each of which holds a.e., latdds a.e. This general fact saves authors the
effort of distinguishing clearly between the vasomeanings of “a.e.” when applied to
properties of sequences — as, for instance, “ilsongaa.e.” ought to mean, as | used it above,
that the property “for alln , f,(z) < f,41(x) " holds a.e., but ibud easily be
misunderstood to mean that, for each individual f,(z) < f,+1(z) a.e. The Lemma
reassures us that the distinction is unimportaptraatice.

Now the big theorem. Lately it is usually calledE&mglish the Monotone Convergence
Theorem; but it is still sometimes known as Beppwils theorem. (The use of his forename
is, | suppose, because there was another well-knitalian mathematician of the same
surname at the time, E. E. Levi.) Because of owragch to the integral, which was
influenced by this theorem to begin with, the frlbecomes mere “bookkeeping”, albeit not
completely obvious; all the hard work is in 13.@it ldeducing it directly from Lebesgue’s
definition as B. Levi did is less easy.

Theorem 15.3. Let (fn) be an a.e. in_creasing sequence of a.e. noatimegmeasurable
functions 2 — R . Suppos¢g : ) — R is measurable ghd f a.e. Then
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[r=im [1.

Proof. By 15.2, we may remove an exceptional 8et  of oeazero. It will suffice, by
14.14, to prove the result on the assumption that f,, < f,.1 T f at every point of2 , and
then consideK)\ Z (see 14.16) insteadof

For eachn |, Iet(gl(g")),;ﬁ1 be an isnsf such ti‘ﬁf) T f, . (The nomdsta symbol
k k
means “tends ag& — oo ", with the implication that efl.) Set, for giverr ,

hy, = max{g,g”) :n <k} .
By 12.12,h;, is also simple. But alsgg’ﬁl > g,(f) for each Anso that
hj1 = max{g,€+1 n<k+1}> ma{g” :n<k+1}
zmax{gk n<k}=h,
so that(h;) isincreasing. Fix .When>n hy > gﬁf”) by definitiso that
limy hy > limy, gk, = fn.

Since this is true for each lim; h,. > sup, f, = lim, f, = f
On the other hand, for every ahdgl(,”) < fa , SO thak f; amd h; < f. The
conclusion must be thdimy h;, = f . Thuay) is an isrigf,] f Janti4.1

/f = lim S(hy) .
But, from 13.6, ashy, < fi = lim; g") S(h) <lim;S(g") = [fi < [f by 14.2.So
/félim/ka/f-
This is the result. (]

Notice the advantage of allowing infinite valuesrédheThe corresponding result for
Riemann integrals would include the hypothesis thaas well as eacly,, , is Riemann-
integrable; and it would not be easy to prove bejy‘Riemann-integral” methods.

Corollary 15.4. If (f,) is a sequence of a.e. non-negative measufabtions o) ,

[ ) =25 (/)

Proof. Apply 15.3 to the sequence of partial sums, regall4.9. O

This result is more striking than useful. The nere, however, is different; although
superficially rather unmemorable, it turns out ® liy far the easiest method of deducing
some non-obvious facts later on. Because of thi|gs a naméd:atou’s lemma .
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Lemma 15.5. Let (f,,) beany sequence of non-negative measurableidmsctThen

/(Iiminf fn) <liminf /fn.

Proof. Set g, .= inf,>; f, , foreachk € N . Thep, is also measurable ancdhegative,
and g, T lim f,, . By the monotone convergence theorem 15.3,
k

[im s, <tim [ 37

However, for eachn >k .f, > g, and s¢g; < [f, (by 14.2). This beingfor all
n >k, infact [g; <inf,>; [f, . Take the limit ag — o Ii;ﬂn [gr <lim [f, .Theresult

follows by putting this together with (37). O

Although we cannot at present fill in the detalfsitou’s lemma may be understood in
terms of an alternative definition of the integrhlis possible to define, from the given
measure spacé(?, >, ) and fraRh  with Lebesgue measunerodutct measure space”
consisting of a “product -algebra®® i@ x R  and a “pmott measure”u®  thereon,
satisfying various appropriate properties. A nogateve functionf orf2 & -measurable if
and only if the ordinate sets of 7.14 aifé  -meaderab that case the integral ¢f is the
product measure of either ordinate set. (This i8asly the measure-theoretic interpretation
of Leibniz’s definition of the integral.) Then Fate lemma results from the first assertion of
7.16 and from 8.6. The interest of this way of logkat it is that it reinforces the need to
consider lower limits, which may at first seem mathtrange.

We now return to the properties of the integral.
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Proposition 15.6. Let (M,,) be a sequence of measurable sets suchithaf; N ;) =0
wheni#j ;let M =JX, M, , and suppose thgt: M — R is relatively mealsler

on M and a.e. non-negative. Then
M Zn:l ]\/[n

Proof. Let f, := f1,,, . Thenf, is relatively measurable and a.e. megative on\/ , and
f= anl f. a.e.onM

(the points where equality fails form a subset(9f,; (M; N M;) whijch, as a countable

union of measurable sets of measure zero, is itlseHsurable of measure zero). The result
follows from 14.14 and 15.4. (]

The above proposition concerns a.e. non-negatinetifins, integrable or not. The next
one is about general measurable functions.

Lemma 15.7. Suppose M, M,,..., M, are measurable sets ahb:=J", M, ; let
f: M — R be relatively measurable o . Thén is integraibld/ if and only if it is
integrable onM; foreach . Wk(M; N M;) =0 whenevegs j | then

M /= Z; (/M,;f> '

Proof. In one direction, the result follows from 14(b$ a,Suppose that is integrable on
each M; . ‘Disjunctify’ in the usual way, 4.7, so thdt is expressed as a disjoint union of
measurable setd//  for whichf! C M; for each . By 1b)l6f s integrable on each
M/ . Now apply 15.6, takingV/, , , = M) ., =---=1{ , to obtain

AJer:Zi_l(/M{f+>’ Mf:Zil—1</M,{f>,

which are both finite; s¢  is integrable 6h .
If ©(M; " M;) =0 when i # j,then 15.6 applies without disjunctificet

M 1= Z¢:1 (/J\[ f+> Y F= Z¢:1 (/M,; f_) '

and the final assertion follows. O

It is a consequence of our definition of the ingédghat very often statements are true in
two cases: when everything in sight is non-negatal#tnough some values may be infinite),
and when the functions are integrable. This is#@son why some very basic properties have
been postponed until now.

Since an integrable function is finite a.e. by {d)&nd 14.13, one may usually assume,
by omitting an exceptional set of measQre , thatfions areeverywhere finite-valued; this
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avoids the difficulty of 12.5. As a reminder, Itgtahe next result for finite-valued measurable
functions only.

Proposition 15.8.Let f,g: Q2 — R be integrable, andv,3 € R . Themf + Bg is also

integrable, and
J@r+sg=aft+o]s.

Proof. If >0, (af)f=aff and af =af ; if «a <0, (af)t =—af and

(af)” = (—a)fT. Applying 14.9, one obtains in the first case

Japnr=afr [ap =afr

(which are both finite), and in the second case

Jen =cafr. [en =cafr

(which again are both finite). So, in either cas¢, is integrable, and[ (a.f) = o[ f
To complete the proof of the Proposition, it rensato deal with addition. Given the
integrable functiong’ angl , there are in princgatght cases to consider: set

E, ={xeQ: f(x) >0}, E_ ={zxeQ: f(x) <0},
={zeQ: g(x) >0}, F. o ={zeQ:g(x) <0},
Gy ={zxeQ: f(z)+g(x) >0}, G_={zxeQ: f(z)+g(z) <0},
H(E,C,U)ZZEEﬁFcﬂGQ, for ¢,(,0 =+

The eight setsH (¢,(,n) are measurable, disjoint, and cdv&8ome of them, specifically
H(+,4+,—) and H(—,—,+) , are always empty, whatever the functifnsd ¢garBy 15.7,
it will suffice to prove the result on eacH(e,g,n) sepalrg and in each case this is

straightforward from 14.9. For instance, éh(—,+,—) —f ahd — g andg are non-
negative andg + (—f — g) = , SO that 14. 9 gives
/ 9+ / —-f—9) / —f);
as [¢g and[(—f)=—[f are finite, we deduce thgt- f — g) must alsénite,fand so
[G+a==[cr-9=[s- [n=[1+ s
The same sort of argument works on diye, ¢, n) : O

The conclusion of the proposition is true in sortteeo cases. It is sufficient, for instance,
for « to be finite (i.e. iR )f to be integrabledafig to exist. | leave this as an exercise.

Lemma 15.9.Supposef,g: Q2 — R are measurable and their integrals areneéf and
f<g ae.Then[f < [g .Furthermore, if one ¢fg is integrabiel f < ¢ a.e., then
the integral of the other function exists, afid = [¢  yahlf =g a.e.
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Proof. If [f~ =00 (so that [f=—oc0 ) or if [¢g" =00 (so that[g=occ ) then
[f < [Jg immediately. If [f~ <oco and[g" < oo , then (as, rather trivially,” < g*
and g- < f~ ) bothf ang are integrable, and finite acethat 15.8 applies. But

[o-[1=[w-n

(to repeat the point of the remark before 1%8: f  deBned except on the set of measure
zero wheref ang have opposite infinite valuest stakes no difference how we define it
there — provided it is measurable). Byig — f) is theegnal of a a.e. non-negative
function, so is non-negative. This proves the fasdertion.

For the second, suppoge is integrable. Themyas. /= [g ,< oo, and [¢g exists.
If [f= [g,theng is integrable, and by 15.§(g9— f) =0 .But-f >0 aoenjtting
the exceptional set, we may apply 14.6 to dedgee f .e. a O

We may now generalize the monotone convergenceeireo

Lemma 15.10. Let (f,,) be an a.e. increasing sequence of measufahlgions such that
[ f1 is defined and is notco . If =lim f,, a.e., thehf =lim [ f,

Proof. Apply the monotone convergence theorem to theesezg( f,, — f1) . O

The details of the above proof are left as an éserc
It is a long time since signed measures were meadioThey are very common.

Proposition 15.11. Let (F,,) be a disjoint sequence of measurable séts= J,, F,
Supposef : F — R s relatively measurable afidf is defimbdn

Jo=220 )

n

(All these integrals are defined; s&4.16 ).

Proof. Apply 15.6tof" andtof~ separately. O

Notice that the existence off, f must be assumed;sitquite possible for
- (an f> to be defined, and even to be zero, althoyglf neefined. (There are

easy examples).
One may interpret this in an interesting way.j!{f s defined, then the “indefinite

integral of f " is the functions : ¥ — R defined by
VEE€Y) o(E) ::/ f,
E
and the Proposition states that is a signed measut .
Beppo Levi’'s theorem is, from our point of viewgtfirst of the great theorems of the
Lebesgue theory. It has the obvious disadvantagentionotone sequences of functions are

rather rare. The second great theorem, which effiean that disadvantage, is thleminated
convergence theorempart from these two theorems, Lebesgue’s extiitaary contributions
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to integration theory had to do with differentiatjcand we, like many other recent authors,
shall not discuss them seriously; this is regréttator they are profound and illuminating,
and are of great significance in harmonic analysisbut they have had relatively little
influence in wider mathematics, and my aim is éatithe most essential topics.

Theorem 15.12. Let (f,) be a sequence of measurable functions— R ,_aprioseg
is a non-negative integrable function @n  such thét < g a.e. for alln . Therdim f,, and
lim f,, are both integrable, and

[z 5. [im g, <im [7.

In particular, if f, — f a.e. (wher¢ is measurable),théis integrable and
/ f=Ilim / fn.

Proof. Evidently |limsupf,| < g > |liminff,| a.e. The first assertion follows frord.1
and 14.15. Ayy is a.e. finite by 14.12 and {#).5 ,maay remove an exceptional set of
measure) and assume that all the functipns And e firmte-valued (everywhere) and
9> fn>—g everywhere. Asg— f, andg+ f, are now non-negative meaksurab
functions, we can apply Fatou’s lemma 15.5. In vedwhe linearity of the integral, 15.8, we
find

/g—/mfnZ/(Q—an)z/lim(g—fn)Slim/(g—fn)z/g—lﬁ/fn,

and, since all these numbers are finite, it folldhat W/fn < /W f,, . Similarly,

Jo fim s, = [tg+imp) = fim g+ ) <tim [+ £.) = [g-im [,

sothat/li_mfnslm/fn.

To complete the proof, notice that, if, — f , thdéim f, =Iim f,, = f aamd the
chain of inequalities (the middle one comes fro6{cj)

/li_mfnslm/fnsnﬁ/fns/lﬁfn

has ends equal to each other. So all the inecesghtiust be equalities. O

The name of the theorem arises from the staterhahttie sequencgf,,) is “dominated”
by the integrable function . A particular casehelbounded convergence theorerh f,, is
measurable for alh , and sofs , arfd — f a.e., afd) < co nd tleere exists some
constantX such thalf,| < K a.e. forall , thdiy, — [f 1aS— 00 .Tasults
from taking ‘¢” in 15.0 to be the constant functwith valueK .)

If we assume that the function, , their linfit , ahd dominating functioy are all
Riemann-integrable, we obtain a theorem for Riemiategrals. Again, it may be proved
(very painfully) by using the theory of the Riemantegral, but there is no point in doing so.
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The proof above obviously relies on the possibildf integrating such functions as
infnZk fn .

It is very tempting to suppose that the two the@atnove about interchanging limits and
integrals — the monotone and dominated convergdre@mems — altogether supersede the
theorems one meets in undergraduate courses. Eosithplest such theorem (uniform
convergence on a bounded domain), of course, wehawe a much better resultniform
convergence has been weakenedaminated convergenceVveQwiee more advanced and
specialized theorems tend to deal with impropeegrdls of various sorts, and recall that
Lebesgue integrals must be “absolutely converged&nce, the Lebesgue theorems are
sometimes inapplicable because the Lebesgue ihisgraavailable. This is irritating, but if
you define “integrals” in unusual ways for spe@akrposes you cannot also preserve all the
properties of the standard definition and must ekfeneed special proofs of some results.

Remark 15.13. The dominated convergence theorem only givesficient nditon that
flim f,, =lim [ f,, . For instance, take

folz) = 0 when z < (n+1)"2 and whenr > n=2
T A nS2 when (n+ 1)<z <n?

Then f,, — 0 pointwise (indeed, there is at mostone #uahf,(z) # 0 ), and

[ =0 = 1)) =

so the limit of the integrals is the integral oé timit. However, if f > f,, for allh , then

(2n 4 1)n°/?

n?(n+ 1)2 -0

f(z) >n? for (n+1)_2<x<n_2, and so
/f>Zn‘)/2 —(n+1)7%),

which diverges by comparison with>n~'/2 . Th(g,) is nandwted.
It follows that even the dominated convergencerr@as not the last word.



85

816. Introductory remarks on probability theory.

This section could be inserted almost anywhereisperhaps most appropriate here.

| commented long ago (in 81A) that the modern agghoto probability theory is to say
“probability is a measure on the space of evemitsfact, the question “whas probability?”
had been a serious philosophical puzzle for a tong, and | imagine we have all felt some
unease when told, for instance, that if you tog®ia randomly (whatever that means), the
proportion of heads will settle down in the longhrio some number, ne%r , and that the
limiting proportion is the probability of heads. Whkhould there be a limiting proportion at
all? To be sure, experiments may be, and have lbaetmed out, but they can neither establish
the genuine existence of a limit nor be genuineintiom”. | suspect that a good deal of the
training one gets in statistics courses is intertdgult this unease to sleep. However, it must
also be admitted that statistical theory was ghighly developed long before the logical
foundations of probability were decently establigsh@nd that many famous probabilists did
brilliant work on the basis of what one supposeseadntuition.

To get the philosophical question out of the wagtfil don’t think the situation is really
different, except for its complexity, to what onashin other branches of science. We say a
body has a “mass”, which we suppose to be in plac precise number in whatever units
we are using, even though experiments to measigenaiss give imprecise and somewhat
variable results. Similarly, we say that an evesd B “probability”, despite the lack of any
direct method of measuring it. In both cases, ®umption that there really is a quantity
called “mass” or “probability” is suggested to ug imtuition — possibly supported by
experience — and is justified by later deductidrs.be a little more explicit, we construct a
mathematical model of the phenomena that intergstnwolving relations between various
guantities (for instancéorce = mass x acceleration ); experimental observetithen tell
us whether these relations are plausible and wddaes should be assigned to the quantities
that are not directly observable, let us say theshv@d the proton. Our intention is that the
“laws of nature” we propose should be exact retetibetween exact quantities; observed
discrepancies from the laws should be ascribedeipérimental error” unless there is
evidence that it is an inadequate or untenableaggpilon. The greater unease we often feel
about probability as a quantity is perhaps due h® tather abstract entities (“events”
consisting of “outcomes” of “experiments”) to whighis attached, which means that it has
no immediate appeal to our senses. By contrasgxperience mass or electric charge, say,
rather directly, and are accustomed to regard flea@mena of ordinary life as deterministic.
(One would expect even the spin of a roulette wivedbe completely determined by the
conditions; there is an intellectual problem in uasig that its results are genuinely
“random”.) When we come to theories that do notiimgp on everyday perception, such as
the structure of the atom, probabilistic interptietas are perhaps less offensive to our
imagination, partly because we have fewer precdimep about the laws which should
operate; and they do seem to be validated by #digtions they lead to.

The real philosophical problem, although it is h#wdpose it exactly and it could be
described as “psychological”, seems to me to bk witr intuition. Where do we get the idea
that eventhiave probabilities, or that successivevikrof the die are “independent™? No-one
who considers the questions doubts the answerdgewdrabizarre misconceptions may also
be common. The same applies to many other matheashgtind not only mathematical)
concepts. But this is a digression.
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The modern approach to probability, therefore,oissét up a model without worrying
overmuch about the values of the quantities thgeap Putting it very crudely, it is the
domain of statistics to discuss the values thatulshbe inserted. The reason for taking a
model based on measure theory is ffwat want probabilities to be countably additi@nd in
general to behave well under “countable” operadiovidthout this, one could not discuss the
probabilities associated with a sequence of experim

Definition 16.1. A probability spaces a triple (2, 7, P) , wheré) is a set (tegent space ),
F is ao -field inQ2 , andP is a measure #n  such tR4f)) = 1 In general, a measuye
on a measurable spa¢g, ¥) is callggt@bability measure , gprabability p(§) =1

My impression is that probabilists prefer to chkit o -algebrasF , although analysts tend
to useX . Where analysts say “almost everywhere*fasralmost all x € 2 ”, probabilists
say “almost surely” (a.s.), or “almost always”.

One should think of2 as the set of possible outsofean experiment. An idealized
example might be the following. A gun at the cerdiref a spher& shoots bullets in random
directions; therf2 might be the set of all pointsSofn “outcome” being the point you hit.
would be the class of subsets®f to which a pritibaimight be assigned, which we call
“events”. We expect, this being roughly what we még “random?”, that the probability of
hitting a point in a sed — of the “evend — whle proportional to the solid anghk
subtends aD ; more precisely, it ought to bed)/A(S) A , ndpéebesgue measure (I slide
discreetly over the question of defining “Lebesgueasure” on a sphere; it is possible, of
course.) There are three aspects to this.

In the first place, wassume orpostulate the values of the prolitgbThey are ndbased
on experiment. A probability is in most cases ay\amplicated entity, which could not be
found even approximately by purely experimentalitsswithout assumptions on its general
character. Our postulated values may need subsequaification if experiments suggest
they are wrong; that is the province of so-calleydsian statistics.

When, as so often, people say that some obsergatiave only a 1 in 10,000 probability
of having arisen by pure chance, the “pure chanefgrs, at root, to a probability they have
themselves defined. | am not suggesting dishormstjupidity here, but only that, very often,
entirely credible assumptions are involved thatncérbe seriously or even superficially
tested. An example is when expert witnesses givs ath DNA matches. It is obvious that
these odds areot based on convincing statisticaplsagn— the odds quoted are usually
such that no large enough sample could ever haate tested —, but oa priori  assumptions
about the random behaviour of DNA sequences. Aerasimilar but older example is the
crude assertion that “no two people have the sangerprints”, which | heard in primary
school; it must have meant that the standard ctearsiics used to analyze fingerprints are in
principle sufficient to distinguish any two peopie the world, and was based on the
unspoken assumptions that these characteristicg walependently and so on. It is
inconceivable that the assertion has ever beenkebebty any scrupulous survey of
fingerprints. (A final “proof” would require fingerinting everybody without exception, and
analyzing all the fingerprints.)

To put much the same idea another way, what catesitrandom behaviour” depends on
your point of view and the information you have italae. If the gun in my example were
known to be able only to fire in a plane, we shouétht to take the probability in this case to
be proportional to Lebesgue measure on dinele ofildeshkits; “random” behaviour
would be random relative to the added informat{@uonversely, if we found in practice that
it seemed over many firings to hit points near tbixad plane more often than others, we
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should be inclined to suspect some asymmetry in rtfenting and to modify our
assumptions about the probability accordingly; thithe Bayesian idea.)

Secondly, the event spa€e is not, in real lifeplagous as all that. Each firing of the
gun is associated with many phenomena, not just svibullet-hole in the sphere, and so it
might be more realistic to consider &n far “latgéian S. We might, for example, have
reason to expect that the bullets’ trajectories foil some reason be very irregular. In that
case we might want to také to be the whole “spdiqeossible trajectories” starting at the
gun and ending on the sphere. Then the positiothefhits, which was all we looked at
before, would give the functiofl — S that assigns tche@majectory its end-point on the
sphere. Similarly, there might be other “randomé&pbmena (the mass of the bullets or their
initial speed or whatever) that we want to take iatcount, and the spafe  may be given
more structure, more dimensions as it were, tonalty that.

This being so, probabilists tend to avoid explicgntion ofQ2 . Where an analyst might
write p({z € Q: f(z) > 3}), for instance, a probabilist might write tead P(f > 3) . In
general, probabilists use rather abbreviated motatiecause of the intuitive approach that
was typical of the subject. It is usually easy ejiotio see what is meant, and | may on
occasion be similarly casual; but it is importamtappreciate that an argument in which an
analyst might mentiof2  on every line may be phrdsed probabilist in such a way tHat is
neither named nor mentioned, although the mathealaiibstance is identical.

The third remark is the oddest. We have seen dnathe Axiom of Choice, there must be
subsets of the sphere (actually, we argued for ittterval (0,1] , and some slight
modifications are needed for the sphere) thatrareLebesgue-measurable. So there are
possible events — that the bullet should hit suchoa-measurable set — to which no
probability can be assigned. This is a little distjng. The idea of probability arose from
gambling, and we might expect that you can laytaobheanything. The suggestion that some
events are unavailable for wagers is at first ssiry; but, of coursethe events in question
(the non-measurable setsgnnot even be described explicitly, and laying a bet oevant
that you cannot specify in any realistic way isroaginable; you would never know whether
you have won. In short, our intuitive feeling tadit events have probabilities should not be
interpreted too generously — it is only “specifi@bkvents that it can apply to, and other
events magxist by logical necessity.

Several other probabilistic notations may be memtibhere.

A measurable function is called@adom variable , and commonhotied by upper-case
italics like Z,Y, X, ... , without mention of2 of . The integjra called theexpectation or
expected valuéon the “frequency” interpretation of probabilitywould be the average value
of the random variable over an infinite sequenceepktitions of the experiment, if such a
thing were possible):

EX =FE(X):= /QX(w) dP(w).

In cases wher® ,a 6r ,isin doubt, they mainberporated in the notatiort’(X; P)
or E(X;€), and so on.

The standard joke is that probability theory is suga theory plus the notion of inde-
pendence. It should not be taken too seriously,tbaete is no doubt that a theorem in
probability theory in which the idea of independertas no part at all is likely to be a
theorem (though possibly an uninteresting oneure @nalysis.

Definition 16.2. Let (2,3, P) be a probability space. The evemsB € ¥ iadepend-
entif P(ANn B)= P(A)P(B).
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Once again, the mathematical theory of probabiktynot interested in the practical
guestion when the “actual probabilities” of evemtsthe real world make them “indepen-
dent”; that, in two successive throws of a die,dbiécome of the first and the outcome of the
second exactly satisfy the law just stated ishenfirst instance, belief rather than an experi-
mental observation. To be specific, in this case

0:=1{1,2,3,4,5,6} x {1,2,3,4,5,6} = M x M, say,

and we have an evemt .= K x M  which consists all of theayaés for which the first
throwisin K C M ,and an eve8 := M x L. of the outcomes forclhihe second throw
is in L. Then weexpect P(ANB) = P(K x L)=P(K x M)P(M x L) = P(A)P(B)
by our intuitive feeling that the first and secdhdows are “independent” in some real-world
sense. Of course, our belief would have to be alraedl if it appeared to be substantially
contrary to experience, which it isn’'t; and, equathe theoretical concept is introduced to
model similar situations to this one. But, from theoretical point of viewP is given, and
independence is defined relative ®o . The physicalimstances in which we suppose the
concept of independence to be instantiated arewaat to the theory.

Definition 16.2 has various extensions, which | bhare.
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817. Types of convergence.

To simplify the statements of this section, leiegtablish the conventions thg®, 3, i) Is a
fixed measure space; thate N  ; and that the functibns h, f., g., h, areX -measurable
functions 2 — R ., 3,~v will be real numbers. Several of tledirdtions and results do
not require these conventions (for instance, ttimitiens 17.1 do not require the functions to
be measurable or the existence of a measure).€Brction to finite-valued functions is not
in practice very significant — see the remark atter7; but it avoids irrelevancies.

Definition 17.1. (a) f, — f pointwise on{) (or just pointwise when there is no
ambiguity) means that, for eache 2, the numericalisege(f,,(z)) converges tf(x)

(Vx € Q)(Ve > 0)(IN) n> N = |fu(z) — f(x)] <,

whereN is specific to the particular and undersideration.

We have already used this idea many times, wrjtisgy f,, — f or f, T f .

(b) (fn) is pointwise Cauchy of2 means that, for eachr € 2 , the numerical
sequence f,(x)) is Cauchy:

(Vx € Q)(Ve > 0)(AN) n,m >N = |f,(x) — fu(x)] <€.

Lemma 17.2. If f, — f pointwise, then(f,) is pointwise Cauchy.(lf,) @rpwise
Cauchy, then there exisfs such that— f pointwise. O

Definition 17.3. (a)  f, — f uniformly on2 means that
(Ve > 0)AN)Vz € Q) n>N = |f.(z) — f(z)| <e. (38)

In other words N is now no longer specific to agien: ; for the giverr N has to ‘work’ for
all x. (38) implies that

(Ve > 0)(AN) n>N=sup{|fu(z) — f(z)|: z € Q} <, (39)
which could be taken as an alternative definitdstill more abstract version is
sup{|fu(z) — f(z)|: 2 € Q} —0 as n—oo. (40)

The equivalence of (38), (39), and (40) is a ttieeercise, but notice that the passage from
(38) to (39) involves a change, for the chosenomfr< to < ; to return from (39) to (38) it
is necessary to consider different valuesfor .

(b)  (fn) is uniformly Cauchy o2 means that

(Ve > 0)(AN)Vx € Q) n,m >N = |f,(z) — f(2)]| <e€. (41)
This condition also may be formulated in other wayiich | leave to you.

Lemma 17.4. If f, — f uniformly, then(f,) is uniformly Cauchy. (ff,,) isiformly
Cauchy, then there exisfs such that— f uniformly. O
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In this lemma, as in the previous one and othersotoe, the assertion is of a kind of
“‘completeness”; it is not always the case thatehsra metric involved, so Definition 0.14
may not apply in the form | gave, but, nevertheléke main statement is that a Cauchy
sequence must necessarily converge (the conversaudly trifling). The method is always
the same. To find the putative limit of the seq@eryou consider some other kind of conver-
gence — in spaces of functions often pointwise eogence. Having found a candidate for
the limit in this weaker sense, you must checlstlfir that it, too, belongs to the space under
consideration, and then that it is the limit in #ense desired, not just in the sense used to
construct it. (My usual joke here is that it iselikhe procedure for electing an American
president. The parties look, by any means availdblesuitablecandidates. Having found
one, they must check that he or she supports ¢ party. There have been instances in
living memory where both parties wanted to fielé 8ame candidate, having no idea which
he favoured. And finally, he must be elected.) ©Onenore of these steps may be redundant.
In the lemma above, “uniformly Cauchy” implies “ptwise Cauchy”, which implies
“pointwise convergent” by 17.2; the ‘hard’ part,tneery hard in this case, is to show that
convergence pointwise to the pointwise limit isoalsiform convergence. Indeed, given
e > 0, there existsV  such that,n > N = (Vz € Q) |f.(x) — fin(x)] < €; as thisis so
for any m > N (whenn > N is kept fixed), one has in the timf,(z) — f(x)| <e.
Thisissoforanyn > N andanye Q ,sb — f uniformly@n

So farQ2 might have been any set.

Definition 17.5. f, — f a.e. onQ if the set{x € Q: f,(z) %4 f(x)} , which must belong
to 32, is of . -measure zero.

(If I had not demanded at the start thiat f were oradde, | could still have defined
“ f. — f a.e.” to mean that there is a measurable&set medsure) such that, for any
x ¢ A, f.(x) — f(z). See 14.8. That, on our assumptions, the “eiaegdtset” is inX ,
follows from the equality

fre: fu@) 4 @t = (M (U € 9 @) - £@) = m 1Y),

m=1
which it is an amusing exercise to prove.)

Definition 17.6. (f,) is a.e. Cauchy of2 means that{z € Q : (f,(z)) is not Cauchy |,
which must belong t& , is of measure

A similar remark applies to this definition. Notiteat

fo € Q: (fu(@) notCauchy = (Ma, Uy {2 @) = fil@) 2 m™1}) ).

m=1

Lemma 17.7. If (f,) converges a.e. t¢ , thefy,,) is a.e. Cauchyf}f) is a.e. Cauchy
on(2, then there is sonfe  such that— f a.e.

Proof. Remove the exceptional sets and apply 17.2. O

Definition 17.8. f, — f a.e. uniformly(or uniformly a.@if there exists asef € ¥  such
that u(Z) =0 andf, — f uniformlyomM)\ Z
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Definition 17.9. (f,,) is a.e. uniformly Cauchy of2, or uniformly Cauchy a.d. there
existsY € ¥ suchthap(Y)=0 angdf,) is uniformly Cauchyn Y

Lemma 17.10. If (f,) is a.e. uniformly Cauchy, then there exigtsuchsthat f, — f
uniformly a.e. O

Although the definitions 17.8 and 17.9 are nataras to make, there is something odd
about them. It may be seen from the alternativenfvation of 17.8:

(vmeNEN €N) (|, (7€ Q:1fu@) - @) 2 m™'}) = 0.

It is rather strange to demand that, for sashe tlead not be chosen independentlyrof
the measure of the set in questionelzactly( . (To detldc® take the union of these sets
over allm .) Indeed, all the definitions so far giveely only on the structure of the sets of
measure zero — the non-zero valueg of have noeinfle on them.

This remark brings us to the first kind of converge that is strikingly new and really
exploits the measure. Although | state it for measspaces, its simplest interpretation is in
terms of probabilities.

Definition 17.11. f, — f in measure o) (or, wheny is a probability,f, — f in
probability) if, for eache > 0 ,u({z € Q: |fu(z) — f(z)| > €}) = 0 asn — oo . Thatis,

(Ve > 0)(Vn > 0)3AN e N)(Vn = N) p({z € Q:[fu(z) - f(2)] = €}) <n. (42)

The general idea behind this definition is, obvigwenough, that therobability thaf,
andf will differ by more tham becomes very smatllargen ; in probabilist-speak,

P(lfu = flZ€) —0.

However, the definition is quite different from tipeevious ones, since there is no fixed
exceptional set off which the convergence occuather, there is an exceptional set that
depends orr and , and is used to measure the' ‘Gizhis set, so that, at least in
principle, the whole structure of may be called @nturns out that this is not entirely true
in practice, at least in many useful cases.)

The statement (42) is often cast in a differentnfor

(Ve>0) (AN eN)(Vn>N) pu({zeQ:|fulz)— f(z)] >€}) <e.
It is easy and instructive to show that this imp|{42); the converse implication is trivial.

Example 17.12.Let2 beR or[0,1] , with Lebesgue measure . Define aeece(FE,) of
sets inQ as follows.Ey == [0,1] E»:=[0,35) FE3:=[3,1 Ei:=[0,3) E;=1[33%)
Es =131, E;:=[0,1),.... The rule is that, ifir(r+ 1) <n < 3(r+1)(r +2) and
i=n—r(r+1), E, =[5, 45), whilst E, := [-25,1] whenn = {(r+1)(r+2) .
Take f, :=1g, . Then,ife >1 {z e Q:|f.(x)| >e}t=0 ,whilst,if0 <e<1 ,
{xeQ:|fulx)] > €} =E,.

However, A\(E,)=1/(r+1) , wherer is the largest non-negative ernteguch that
r(r+1) < 2n. It follows that \(F,) — 0 asn — oo , and, therefore, thg; — 0 in
measure (or in probability).
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On the other hand, ifc € [0,1] ¢ € E, for infinitely many ind&ce (exactly once in
the range jr(r+1) <n<i(r+1)(r+2) for each ). So the numerical sequence
(fn(z)) consists of) s antl s, and there are infinitely mafriyoth; the relative frequency of
1s diminishes a% increases, but they never die Tduis, for any fixedz € [0,1] , the
numerical sequencéf,(x)) does not converge. One mighthsa the “exceptional set”
wanders across the whole [of, 1] again and again,leatdttis only “on the whole” (that is,
in probability!) that f,, tends t0 . This example, asithilar examples, should be kept in
mind as the theory is developed.

For the previous kinds of convergence (pointwigefoum, a.e. pointwise, a.e. uniform)
we had a corresponding Cauchy condition and “cotapéss theorem”, and it was obvious
that the limit was “linear”: that is, iff, — f ang, — ¢ ,thexf, + B9, — af + Bg for
any o, € R . None of these ideas is so straightforward donvergence in measure.
However, the clauses that- (3N € N)(Vn > N) ---  ensure the following foa@nts true.

Lemma 17.13. Let f, — f Iin any of the senses listed above (pointwisgorm, a.e.
pointwise, a.e. uniform, in measure). Then any egisnce of(f,,) also convergesfo in
the same sense. O

Definition 17.14. The sequencéf,) Sauchy in measure (orin probability) if, for each
e>0, p({z € Q:|fu(x) — fin(x)| > €}) — 0 asm,n — o ; that s,

(Ve > 0)(Vn > 0)(IN e N)(Vm,n > N) p({z e Q:|fulz) — f(z)] > €}) <n.(43)

As before, (43) is equivalent to the somewhat sampbndition
(Ve > 0)(IN e N)(VYm,n > N) u({x e Q:|fi(x)— fu(z)] >€}) <e.  (44)

Lemma 17.15.1f f, — f in measure, therif,,) is Cauchy in measure.

Proof. Given ¢,n > 0 ,takeN € N such that
(vn>N) ul{z € Q:|fule) ~ f2)| > b} < b0
Then,if m,n> N ,
{z:fal@) = fu(2)| 2 €} C{z 2 [falz) = f(2)| = 36} U{a: |fnl@) = f(2)] = 3¢}

To prove this, suppose is not in the right-handesithen |f,(z) — f(z)] < 3¢ and
| fm(z) — f(z)] < 3¢, sothat|f,(z) — fn(z)] <e and isnotin the left-hand side. Now

p{ = [fo(2) = fn(2)] = €})

< p({z : | fale) = f(2)] = g€}) + p({z : | ful2) = f(2)] > 3€})
<in+n=n. O
Lemma 17.16. Supposef,, — f in measure ang — g in measure, and € R . Then

af, + Bg, — of + Bg in measure. d



93

It is clear that if f, — f andg, — g pointwise or pointwise.a.then f,g, — fg
pointwise or pointwise a.e. The analogous statesndot uniform or a.e. uniform
convergence are not true without additional hyps¢seto do with the boundedness of the
functions considered. For instance, I¢t(x) == for alle N ndar € R, and let
gn(x) =n~t for all z. Then f,g, doemot converge uniformly@o . Eonvergence in
measure, the situation is discussed later, at.

| shall now introduce an idea which constitute® sf amalgam of convergence a.e. and
convergence in measure. As far as | know, it west fnamed by Munroe, although the
concept had been used before.

Definition 17.17. f, — f almost uniformly o if, for any n > 0 , there is a sebl € &
such thatu(F) <n andf, — f uniformlyof2 \ F

It is important to grasp that thate  of uniform corgence onQ2 \ £ will (in principle)
depend onE . By this | mean that, for a given ,edéhtE s may require differem s to
validate (39). A very simple and familiar examplghich should be kept in mind as the
theory proceeds, is wher2 :=[0,1) with Lebesgue measure #nd) =t¢". Then
fn — 0 pointwise on{) , and, for any; € (0,1) f, —0 uniformly of9, 1 — 7]
However,N in (39) must be taken to be greater tlogrz /log(1 — 7)), which (if € € (0,1))
may be made as large as you wish by taking seffiy small.

Definition 17.18. (f,) is almost uniformly Cauchy oft if, for any n > 0 , there is a set
E € ¥ suchthatu(E) <n andf,) isuniformly Cauchy én\ £

Lemma 17.19.(a) Suppose thatf, — f  almost uniformly. Thefj — f a.e. and
fn — f In measure.

(b) If (f,) is almost uniformly Cauchy, theff,) is a.e. Gauand Cauchy in
measure.

Proof. (a) Given me N, let E,, € ¥ be such thawu(E,) < 1/m andf, — f
uniformly on Q\ E,, . Then f, — f pointwise o2\ E,, . Ag,(z) — f(x) for each
xz ¢ E, foreachm ,f, — f forc ¢ (>, E, ;butu(N,—, En) =0 .So,—[f ae.
on . Similarly, given e,n >0 , there exists somg € X with(E) <n  clsuhat

fo— f uniformly on Q\ E ; in particular, there is someV € N suchat
|fn(z) — f(z)| < e wheneverz ¢ E anch > N . This proves convergence in measure
The argument fofb) is analogous. O

Lemma 17.20. (f,) is almost uniformly Cauchy if and only if thereistés f such that
fn — f almost uniformly.

Proof. “If" is easy. Suppose thatf,,) is almost uniformlyu€hy. Then, by 17.18) , itis
a.e. Cauchy; by 17.7, it converges a.e. to sometitmf . Taken > 0 . By hypothesis, there
is some E €Y such thaj(F) <n  anflf,) is uniformly Cauchy @n £ endé

fn — gr uniformly on Q\ E , by 17.4, where the limit functionz may depend orE
Since f, — gr pointwise, necessarily; = f a.e.Qn FE . Lettihge tHe exceptional
set, we deduce thaf, — f uniformlydn\ (FU Z) ,apdEUZ)=pu(E)<n .Thus
fn — f almost uniformly orf) . O
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Before we begin to discuss the major theoremshoulsl be noted that the definitions
given above are sometimes stated in different forfsrather striking instance is the
following.

Lemma 17.21.Let u(2) < oo . Thenf, — f a.e.if and only if either

@ (Ven>0)3NeN) pu({zeQ:(Gn=N) |fulz) - f(z)]=Z€}) <n or
(b) g, — 0 in measure, wherg,, := sup{|f,, — f| : m > n}

Proof. Let f, — f ae.en>0 .SetEg:={zxecQ:(¥Yn>N) |f.(z)— f(z)| <e€}.
Evidently £y T withN , and

o0

im(@\ B¢) =\ (U, B¥) = {o: 1fule) = f(@)| > € .0}

(where “i.0.” denotes “infinitely often”, i.e. fomnfinitely many values ofn ) must be of
measure) as it is a set of points at which,) doasterd to f . However, since
©(§2) < oo, 8.9b) implies thatu(Q2\ ES) | 0 . Consequently, given apd rehmust
exist someV such thagi(2\ Ey) <n . This is the assertiof@)pf

For the reverse implication, it is unnecessarystume 1.(€2) < oo . Indeed, define

Ef = U;ozl Ey,

and then p(Q\ E€) < u(2\ Ey) for eaclV ; therefore, B) u(Q\E)<n . Ergo,
©(Q2\ E€) =0. Now take Z := Q\ (N, EY™) . Certainly

m=1

p(Z) < S W@\ BV =0,

and if t¢ Z andmeN , thenz € EY/™ . Hence, for some
whenevern > N . Thatisf, — f except an
Now considelb) . The condition that, — 0  in measure is

(Ve,n > 0) (AN €N) n>N= pu({z € Q:|g.(x)| >¢€}) <n. (45)

Jn(x) = fl2)] <€

As g, | , the conclusion says merely that{x : gn(z) > €}) <n . On the dthed,
{z:@n=N) [fulz) - f(x)| = e} S{z:gn(2) = €},

so that(a) holds ifg, — 0 in measure. Conversely, fo>> N ,

{z:]gn(@)| 2 e} C{z:gn(z) 2 e} C{z: (A= N) |fulz) = f(2)] = 3¢},
so that, if(a) holds, an&v is chosen to correspongetoandn , (45) follows. This proves
that(a) implies(b) . O
Corollary 17.22. A monotone sequence of functions on a spaceitsf fmeasure converges
in measure to a given limit if and only if it conyes a.e. to the same limit. O

The next theorem can be used as a step in thespodahany other results, but in my
exposition it seems to have few consequences.
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Theorem 17.23.(Egorov*s theorem) .Suppose thatu(2) < co andf, — f a.e. Then
fn — f almost uniformly.

Proof. Let E,,={zxe€Q:(3l>n) |fi(x)— f(x)] >1/k} for n,k € N. This set is
measurable for each choice of and . For fikedE,, ecrehses ag increases, and, if
fo(x) = f(z), ¢ .2 Euw; that meansu(N,=, E.x) =0 foreach , a5 — f a.e.
By 8.9b), u(E.x) 711 0 . Givene > 0 , there exists(k,e)  such that

/J/(En(k €).k ) <2 k

Set A:=U.2; B - Then

(Uk Entre, ) Z:Clz_keze'

If = ¢ A, then, forany givenk € N 1 ¢ E, ;. , So that, by the defom of £, ;. ,
(Vi = n(k,€)) |fi(z) = f(x)] < 1/k.
As a consequencef, — f  uniformly éh\ A . (]

The “rate of uniform convergence”, represented gy sequencén(k,e)) >, , depends
on e (cf. the remark after 17.17). There is a simiksult that a sequence Cauchy a.e. on a
space of finite measure is almost uniformly Caudhy, it is unnecessary to prove it separ-
ately, in view of 17.7, 17.23, and 17.20. The masathat convergence a.e. on a space of
finite measure iequivalent to almost uniform convergenchictv at first glance is more
demanding (and also implies convergence in measkiog)a probability space, almost sure
convergence of random variables implies convergenpeobability.

The question arises whether Egorov’'s theorem camexbended to spaces of infinite
measure. The example 6t := R, with Lebesgue measude famn= 1, ., , which tends
everywhere td) but is not almost uniformly convergeshows that the theorem definitely
fails unless extra restrictions are imposed. Orssipdity is the following.

Theorem 17.24. Let ¢ :[0,00) — [0,00) be an increasing function such that
~1({0}) = {0} . Suppose thatf, — f a.e. dd , and that there existsntagrable
functiong on{2 such that, for alk € @ and all ¢(|f(z)]) < g(z) > ¢(|fn(x)]) . Then

fn — f almost uniformly.

Proof. Define E,;:={zxe€Q: 3 >n) |filx)— f(z)] > / } for n,k €N, exactly
asin17.23. TherE,, | ,and, g% — f ap( .- Ew) = forlany Now

By C{z e Q: |f(@)] > 1/} (U, {2 € Q1 (@) > 1/2R)})
CF,={z€Q:g(zx) = ¢(1/(2k))} ,

and, as¢(1/(2k)) >0 and is integrable, it follows thatF;) < oo . BY(8), there
existsn(k,e) such thap(E, ;) x) < 27%¢ , and the argument proceedsfasebe O

4 The name is transliterated from Cyrillics, so,uasial, appears in several forms. You may see Egorof
Jegorow, Yegorov, and presumably mixtures of a#eh
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This result implies Egorov’s theorem; takg0) :=0 ¢(¢§) =1 for &> 0. It may
also be used to prove the dominated convergenaeetme(and some related results to be
mentioned later).

Theorem 17.25. Suppose(f,) is Cauchy in measure. There exists aguésce( f,,))
which is almost uniformly Cauchy.

Proof. Take n(0):=0 by convention. Now, ift > 1 , suppose(k — 1) has been
chosen. By hypothesis (see (44)), there exists séme N such that

(Vm,n > N) p({z € Q:|fulz) — fulz) 2 27771} <2771

Choosen(k) be the least such natural number whictedsegk — 1) . Thusk < n(k) for
all k, so that(f,)) Is an infinite subsequence( #f)
Given € > 0 ,takep sotha2™” <e ,andlet

E = U]:p {-T eN: ‘fn(k)(x) — fn(k-q-l)(m)‘ > 2—k—1}.

Then p(E) < Z,fiprk—l =27P<e,andifr¢ E andi>i>qg>p ,

-1 -1 »
‘fn(z)('x) - fTL(])('CC)‘ < Zi:] ‘fn(k‘)(x> - fn(k-i—l)(m)‘ < Zi:z 2 bl <279,

This shows that(f,)) is uniformly Cauchy ¢\ £, and salisost uniformly Cauchy
on the whole space . O

We can now fill the obvious gap in the story so far

Proposition 17.26. If (f,) is Cauchy in measure, then there exjsts d¢hah f, — f in
measure.

Proof. By 17.25, there is a subsequengg, ) which is almpsormly Cauchy. By
17.20, there ig’ such that,,) — f almost uniformly. Byl®), f,;) — f in measure.
This is sufficient to ensure that, — f  in measure. étjgivene > 0

(AN e N)(Ym,n > Ny) p({z € Q: |fin(z) — fulz)] > 3e}) < g€ and

(AN, e N)(VE € N) n(k) > Ny = pu({z € Q: \fn(k)(:c) — f(z)| > %e}) < %e.

Take N := max(Ni, N2) . Then, ifn > N , as in the proof of 17.15

p({z e Q| fule) = f(@)| = €}) < p({z € Q: | funy(@) = fulz)] > J€})
+u({z € Q: | fu (@) — f(2)] > 3€})
< %64—%626. O

Behind the above result lies the idea formulateédraf.13, that a Cauchy sequence must
converge if it has a convergent subsequence. lotestate this as a theorem, because | have
not given a general definition of a Cauchy sequexoept in a metric space.

| insert here a result which is often quoted; i®ob is essentially the same as in 17.25.
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Proposition 17.27. Let (2,3, 1) be a measure space. If the sequefte corsv@rge
measure tf of2 , it has a subsequence which coeverg. tof . O

The restrictionu(£2) < oo is not needed. But here is a fdiséis proof:

Proposition 17.28. Let (2,3, P) be a probability space. Let a sequericg,) otloan
variables converge in probability t& . Then théseea subsequencéX, ) which

converges toY almost surely.

Proof. Take any sequence; | 0 ; choos¢k) such tRatX, ;) — X| > ¢;) <27F
Thus 3.2, P(|X,x) — X| > €;) < 1, and by the first Borel-Cantelli lemma 8.9

P(‘Xn(k) — X‘ > € IO) =0

(recall that “i.0.” means “infinitely often”). Thusn fact, X,,;,) — X almost surely. (For any
point not in the exceptional set, there are onlyitdly many indicesk for which
‘Xn(k) - X‘ > €k ) O

If you study this proof carefully, you will see tharemains fundamentally the same as
17.25, although 17.25 gets more out of the ideaaus® it assumes less.

Definition 17.29. Let N/ denote the set of measurable function®onch that

p{xeQ:|f(x)| >K})—0 as K — oo .

If 1(92) < 0o, all measurable functions that are a.e. fitigdong to , by 8) . It is
easily checked that” is a vector space of measufabttions orf .

Lemma 17.30. Suppose thatf, — f andj, — g in measure, wheffgg € N . Then
fngn — fg In measure. A similar statement holds for almestoum convergence.

Proof. Suppose first thatf,, — 0 ang, — 0 in measure. Then, forany0,
{z: | fa(@)ga(@)] > €} S {z: | fu(@)] = e} U{z: |gul(z)] > \/e}, sO
p{a [ fa(@)gn(@)] > €}) < p{z 2 | fa(@)] > Ve}) + n{z : [fa(@)] > V/e}),

and it follows that f,,g, — 0 in measure.
Suppose now thatf, — 0 in measure. Take- 0 . As NV , thergteyi€ N
such thatu({z € Q : [g(z)| > q}) < L¢ . Next, there exist§ € N such that

(V> N) p({z€Q:|fu(2)| > ¢/q}) < Le.
Consequently, ifn > N

p{z = [fo(2)g(@)] = €}) < p({z: [fu(2)] > €/q}) + p({z : g(x)| = ¢}) <e.

This shows thatf,g — 0 in measure.
Finally, supposef, — f andj, — ¢ in measure, wheigy € . Therl M6,
fn—f—0 and g, — g — 0 in measure, and so, by the results just graned 17.16,
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fogn —fg=(fa = F)gn—9) + (fu — g+ flgn —9) — 0

and Jngn — fg .
The argument for almost uniform convergence is ganjlar. O

By the remark after 17.29, the Lemma holdsuif?) < oo withthe restriction orf
andg (provided they are a.e. finite).

Remark 17.31. In this section several notions of convergence fofGauchyness” of a
sequence of measurable functions have been inteddudl the definitions and results after
17.5 really concern only equivalence classes oftfans under equality a.e. (for instance, if
fn — f In measure andg, = f, a.e. for each arfd=g a.e., ther» g in
measure). In the first place, then, our assumpdibthe beginning that all functions were
finite-valued could have been relaxed later totéinéss a.e. But, in the second place, one
could formulate the theory in terms of equivalenlzsses; takd1 to be the vector space of
all measurable a.e. finite functions tn , ¥t lbe vector subspace of functions that are
a.e. zero, and define a.e. convergence, a.e. onifoonvergence, almost uniform
convergence, and convergence in measure, and tihesgonding Cauchy properties, for
sequences in the quotient spade/Z . This will be équmissible for the kinds of
convergence introduced later. However, to avoicatnmal difficulties it is customary in
some of these contexts to blur the distinction leetwfunctions and their equivalence classes.

It is a curiosity of these definitions that theyncernsequences Certain sequences are
described as having limits, which satisfy varioesithble properties. It does not necessarily
follow that there is a topology that determinesahhsequences converge and to what limits,
or that, if there is a topology, that it is unique.

Pointwise convergence (everywhere) can be deschpégbatingM as a subset (with the
subspace topology) dR  with the product topologgifakm convergence (everywhere) is
derivable from a metricd(f, g) := sup{|f(z) — g(z)| : x € Q} , provided that one ressdri
attention to bounded functions. Convergence a.d. wamform convergence a.e. are con-
vergence in the corresponding quotient topologidmost uniform and a.e. convergence
coincide in spaces of finite measure (or if thections are suitably restricted).

The really interesting case from this point of visaconvergence in measure. There is a
topology of convergence in measure on the spéce 17.@0, in which a base of neighbour-
hoods ab) is furnished by the sets

{feN:u({reQ:[f(z)] = €}) <€}

This topology is metrizable; whed  is of finite rsaee (so that\' = M ) one can exhibit
simple formulae for suitable metrics.

Theorem 17.32.Let u(f2) < oo . Define, for a.e. finite measurable funcsigh g on(

0= [T o

d(f,g) = / min(f(z), 1) p(dz)

Then dy,d, are metrics on the spacde(/Z of measurable iimecimodulo a.e. equality
such that the sequences that are metrically corergrgr metrically Cauchy are precisely the
sequences that are convergent or Cauchy in measure.
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Proof. This is a straightforward exercise. O

818. Some inequalities.

We need to know some standard inequalities formeaibers; like 8 , these are matters that
really comebefore the course, and these notes are itetadgive appropriate “revision”, in
a setting that is as general as is reasonablepiiheipal inequality that is already familiar,
and could in fact be treated as the basic ressithé relation between arithmetic and
geometric means:

VapB < i(a+p)  fornon-negativen, 8 . (46)

Definition 18.1. Let £ be a real vector space. A subdet Fof corsvex if
(Va,b e A)(Va € [0,1]) aa+ (1—a)be A. 47)
If Ais such aconvex set,anfl: A— R , we say thafdhetionf  coisvexf
(Va,b € A)(Va € [0,1]) flaa+ (1 —a)b) < af(a)+ (1 —a)f(b). (48)

A set A is convex if, for any two points abd 4fA also includes the whole straight-
line segment joining ank . In intuitive geomettiterms this means that  does not have
“gaps, holes or slits” in its “interior”, or “baysjghts, or re-entrants” on its “boundary” — |
shall not attempt to clarify these vague expressidém the case we shall be dealing with,
where E = R , the convex sets are precisely the interitais necessary to assume that the
setA is convex for the definition (48) to make gens

If the inequality in (48) went the other way, weosld sayf is concave. Obviousfy is
concave if and only it~ f is convex, so concave fiomg are of little independent interest.

Should one know in advance thAt is continuous feehE = R , for instance; more
generally, if £ is a topological vector space), tomdition (48) might be weakened. For a
continuous functiorf , convexity is ensured if

a-+b

(Va,b € A) f( >§%(f(a)+f(b>)-

From this it may be deduced by induction that ([A8)ds whenevex is of the forda "k
for 0 < k < 2", and it therefore holds in general by contiyui

Lemma 18.2. LetJ be an interval iR , andf: J — R . Thgh is conveandl only if
any one of the following equivalent conditions Isold

® forany a,b, ce J witha<b<c ,

b—a — c— ’
(i) forany a,b, ce J witha <b<c , LU < S J@)
(i) forany a,b,ceJ witha <b<c, {0 < HAJD)
(v) if a,bcde] anda<b<ec<d, {8 < JOJO)
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Proof. If a,b,c are given, writea = <= , and thei = aa + (1 — a)c . Convexity pf

implies that f(b) < af(a)+ (1 — a)f (Z)_ or, on rearrangement,
a(f(b) = fa)) < (T =a)(f(c) = f(b)),
which (after multiplying by (¢ — a)/{(c —b)(b—a)} ) is the required couasion for (i).

S

Conversely, ifa,a and are given, sét=aa+ (1 —a)c , and the agpimeverses to
give the inequality (48). The equivalence(pf  with and with(iii) is simple algebfa;)
follows (if b = ¢, itis just(i) ; otherwise it results fnocombining(ii) angii) ). O

Geometrically, this result may be vaguely paraputags saying that the chords of the
graph off have increasing slope as one moves taghe (Since a chord has two ends, some
care is needed to explain what is included in “mguio the right”).

Lemma 18.3. Supposef : J — R is convexy,as,...,a, € J ,and,as,...,q, are
nonnegative numbers for whialy, + as + ... +a, =1 . Then

flaray + agag + ... + apay) < aif(ar) +asf(az) + ... +anf(an) . (49)

Proof. Assumea; <ay <---<ua, .Forn=1 ,itis obvious; when=2 , the result is
just (48). Proceed by inductionan .Let>2 df =1 ,ahera’s vanish, and there is
nothing to prove. Ifa,, <1 , leth) = (aqay + azsas + ... ap1a,-1) /(1 — o) < a,—1 and

by = a, . Then

flarar + agag + ... + anay) = f((1— )by + agbs)

< (1 —ay)f(by) + anf(by) by virtue of (48); (50)
however, sincea; (1 —a,,) ' +... + a,1(1 —a,)~! = 1, one has by the previous step

arf(ar) +oaf(an) +... +an_1f(an-1) |

Substituting this in (50), we obtain the result. O

This result is sometimes called Jensen’s theorem,should not be confused with the
“Jensen’s formula” which is important in complexadysis, or with the theorem probabilists
perversely call Jensen’s inequality (presentedvbel® 19.1).

Lemma 18.4. A nonnegative multiple of a convex function isveon the sum of convex
functions is convex; linear functions of the forfw) = Sz + ~ are convex. d

Although | shall not present the proofs (which depen 18.2), it is worth noting that a
convex function must be continuous, differentiablecept at countably many points, and
twice differentiable almost everywhere. Thus, thguenents which follow are not based on
grossly excessive hypotheses; and, whilst theyaréhe best possible, they suffice in nearly
all applications. We start with a weak version afgtange’s form of Taylor’'s theorem (you
have probably seen a much fuller form of the sargaraent before, since it can be used to
obtain several forms of the remainder after tewhshe Taylor series). Notice that a
function f:[a,b] — R is said to be differentiable da, b] if itsha right derivative
(written f'(a) ) ata , a left derivativef’(b) @t , and a twdesl derivative f'(z) at every
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point z € (a,b) . It is said to be C ofu,b] if it is differeril@ on [a,b] andf’ , defined
as just described, is continuous e b]

Lemma 18.5. Supposef : [a,b] — R i€' , ang” is defined at each pointagh)
Then there existe € (a,b)  such that

fb) = fa) + (b —a)f'(a) + 5(b—a)*f'(c). (51)

If b < a,then, on corresponding hypotheses, there agaists c € (b,a) satisfyingpl) .

Proof. Set, forz € [a,b] ,

F(z) = f() + (b—2)f'(z) + Q0 —2), (52)
where Q :== (b —a) 2(f(b) — f(a) — (b—a)f'(a)), so that F(b) = f(b) = F(a) . Now<
is continuous onfa,b] , and differentiable dm,b) , so ttie hypotheses of Rolle’s

theorem are fulfilled, and there exists= (a, b) such théatc) = 0. However,
Flx) = f'(z) = f'(x) + (b — 2)f"(z) - 2Q(b - x),
so that2Q(b —¢) = (b—c)f"(c) orQ = 5f"(c) . Substitute this in (52). O

Theorem 18.6. Suppose 8.5 thaff” is nonnegative om b) . THen  iveomn
[a, b] .

Proof. Take a; < as infa,b] , anda; >0, ay >0 , such that; +a; =1 . Apply 18.5
to the intervalsja;,q] andg,a;] separately, where= aja; + asay € [aq, as] . Thuethe
exist pointss € [q,as] and- € [a1,q] such that

flaz) = f(q) + (a2 = @) f'(q) + 3 (a2 — @)* f"(s) ,
flar) = f(a) + (a1 — @) f'(q) + (a1 — @)* f"(r) -
Combining these equalities,

a1 f(ar) + aaf(az) = f(q) + (a1 + azaz — q) f'(q)
+ 3{ai(ar — @)2f"(r) + caa(as — q)2f"(s)} -

The expression in braces is nonnegative; the pusvierm vanishes by the definition @f
Hence oy f(a1) + asf(az) > f(q) = f(a1a1 + azaq) , as required. O

Definition 18.7. f isstrictly convexon [a,b] if the inequality
flarar + azaz) < oy f(ar) + azf(az)
holds whenever;, as € [a,b] a1 #a2 @1 >0 @ >0 ,and; +ax =1

That is, strict convexity means that the inequdHt§) is an equality only if the “point in
the middle” is in fact an end-point. The proofsl@6 and of 18.3, with slight modifications,
show in addition that
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Corollary 18.8. If f” in 18.5is strictly positive on(a,b) , therf is strictyonvex on
(a,b). If a1 <ay <---<a,, equality in(49) occurs only if, for any indéxsuch that
ap < api1,eithera; +---4+a, =0 ora;+--+ap =1 . O

These results can be used to deduce most of theasth elementary inequalities of
mathematics, a fact first pointed out by Jefsen19@6 when he introduced the notion of
convex functions. Here are two examples.

Lemma 18.9.1f 0 <z < %w, then sinz > 2z /7 , with equality only whem = 0, %w

Proof. Let f(z):= —sinz . Then f”(z) = sinz > 0 for0 < z < 37 . Hence, by 18.3,
—sin((1 = 8)0 + gr/2) < —(1 — B) sin0 — (3 sif{w/2)

for any € [0,1] , with equality only wheng=0,1 . The result @is by taking
B =2z/7. O

Lemma 18.10. For any n € N and positive numbets, by, ..., b,

b b e bn
(baby...by)V/m < 22t o (53)
n

with equality only wherb; = b, = --- = b,

Proof. Take f(x) :=expz , and thenf”(z) = expr >0 for alt . Let; := log; and
a; == 1/n for alln, and then (49) gives

exp(I0961 + logbs + -+ + Iogbn> < exgd logy) +--- + exp log,)

—_ 1
n n

exactly as required. Furthermore, equality occatg b by = by, = --- = b,,. O

This is perhaps the easiest proof of teneral aritrorggometric mean inequality.
(The “harmonic mean inequality” results by taking! instead ofa; ). However, it is not
purely algebraic, and some authors expend consilderagenuity on more “elementary”
proofs which begin with, /aja; < £(a; +a) and work up to (53). Thequality we shall

need later, which follows, is obtainable from (B§)taking limits, but it is simpler to prove it
directly. The casex = 5 s just (46).

Lemma 18.11.Supposea >0 p>0 P<a<1 .Then
a®b'~ < aa + (1 —a)b,

with equality only ifa = b orifa =0,1 .

5 Acta Math. 30 (1906), 175-193.
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Proof. Take f(z) = — logr , forz >0 . Thenf”(x) =272 >0 .By18.8,

flaa+ (1 —a)b) <af(a)+ (1 —a)f(b), or
aloga + (1 — a)logb < loglaa + (1 — «)b) ,

with equality in the cases stated. Exponentiatabtain the stated result. O

Our use for this inequality will be as a step iroyng the Hoélder and Minkowski
inequalities, which lead to the “Lebesgue spack’’we shall be discussing. The argument
involves some rather puzzling manipulations witbrijigate indices’, and there is a more
general inequality due to W. H. Young (only one sdveral famous inequalities he
discovered) in which more general functions aresstuted for exponentiations and the
manipulations appear more naturally. This leadsQdicz spaces” instead of “Lebesgue
spaces”. However, the Lebesgue spaces are vast/important.
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819. “Jensen’s inequality”.

The quotation marks indicate that this is what ghababilists call it, rather confusingly for
the rest of us. In complex analysis, a quite défiferesult bears much the same name.

Theorem 19.1. Let (2, X, P) be a probability space, anfl: @ — R an integrabla-ra
dom variable. Suppose : R — R is convex and continuoLen -%d) o f exists (though

¢ o f need not be integrable), and
o([1) < [oor

The assumption that be continuous is redundaetttse remark after 18.4. The proof
that follows is complicated by some cases thatnateparticularly useful in practice — the
fundamental idea is rather simple.

Proof. Since¢ is continuousg o f  is measurable (by 12.8).
Let ¢(0) = a, ¢(0) — ¢(—1) = B . According to 18.4, the function

() = o(§) — € — a (54)

is also convex, an@(0) = ¥(—1) =0 . Now, by 18.2,
if £>0, (¥(6) = (0))/(€ 0) >0, so0(E) =0; (55)
if &< -1, (¥(=1)=9()/(-1-£ <0, s0y(£)=0. (56)

Of coursey(§) <0 when—1<¢ <0 , byconvexity. Singe is contirgjdwowever, it is
bounded below orf—1, 0] . Hence, is bounded below fo€¢,aday byy ;¢ o f is also
bounded below by , andy o f  exists (fd?(Q2) =1 , and papo f)” < oo halls
first prove the theorem fap  insteaddf

Construct a sequencg,,) of simple functions such that

when f(z) > 0, s.(z) T f(z); whenf(z) <0 su(z) | f(z) , (57)

and, in addition, s;(z) = -1 whenf(z) < -1 . (One may takg = s, — s, , Where
(s)}) is a misnsf tending pointwise t6" , aisl) is a nfismsding to f/~ ;s may be

n

chosento b® ,and, to be the characteristic fondf {z: f(z) < —1}). Let

m(n)
Sp = § i=1 Apj 1Em;

be a standard form fo,, (see 12.13 et seqq.). Then
Yos, = ZZ(T) Y(an)1p,  and, applying 18.3,
'l/) (/Sn> = Sn - (Z am m ) < Zz w(am') P(Em) — /w O Sp, (58)

since, for each P(E,) >0 and"" P(E,)=P(Q) =1
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Now, [s: — [f* (by the definition 14.1), so thafs, — [f . But intinuous,
and soy ([s,) — ¢ ([f) . Thus, the theorem for  will follow fronBf&as n — oo , if
we can prove thatfy o s, — [¢o f

Partition(2 into three disjoint measurable subsets:

O ={x: f(r) < -1}, ={z:-1< f(z) <0}, Q:={z: f(x) >0}.
On Q;, (57) ensures that1 > s, | f .Howeverpif< (< -1 ,by18.2

$(E) = v(n) _ ¥(0) = (1)
E-=n = 0—(=1)

That is,i) is decreasing ofoo, —1] . Consequently, s, isemsing on(2; . By mono-
tone convergencefﬂlz/;o Sn T fQ] liw o s,) = [¢Yof  (by continuity ¢f ; the valoie
the integral may bec ).

On Q3,0<s,7f,and, as at (59), 18.2 shows that is inargasn [0, c0) . Hence,
on 3, Yos, Tvyof,and, by monotone convergengf&;b os, T [Ypof (which may be
00).

On Q, ,we have—1 < s, <0 forah .Recallthat isboundedbeby~; hence, for
all n, y<vos,<0, and P(Q)=1 . Thus fm P os, — sz o f by bounded
convergence (in this case the limit is finite, thbut may be negative).

Adding the three integrals, we deduce thfifyos, — [ ¢ o f , arsd aleeady
remarked, this suffices, with (58), to establish tiheorem for) . But, by (54),

¢ </f) =1 (/f) +ﬁ/f—|—oz (by hypothesis,/f is finite)

s/(wof+ﬁf+a> (as P(2) =1)

=0, or (&) <v(n). (59)

= /¢ of as required. O

Notice how often | had to invoke the fact thht aigrobability measure.
The most obvious example of Jensen’s inequaligbtsined by takings (&) = || . This

is a convex function of . The result is tth < /\f\ , Whaf course we already knew

(and without restricting ourselves to probabilitgases). But there are easy non-trivial
examples; for instance, it is far from clear astfiglance that, for any functigh integrable on
(0,1) with Lebesgue measuré

exp( f(t)dt)§< / expif(t))dt),
(0,1) (0,1)

which follows from takinge(£) = ¢¢  in Jensen’s theorem.
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820. The Ho6lder and Minkowski inequalities.

Definition 20.1. Let p andg be positive real numbers. They are de=strasconjugate or as
conjugate indicesor conjugate expone(tss conjugate t9 ¢ is conjugatepto ) if
1 1
- +-=1. (60)
P q

The symbolic exponent is also considered as caiguigpl , and vice versa.

Note 20.2. If p andq are conjugate indices, than< min(p,q) <2 < maxp,q) <oc . If
both are finite, then both are greater thad . heésanly exponent conjugate to itself, and the
only natural number whose conjugate is also argerteand the relation (60) (for finitg,q )
is equivalent to each of the equalities

1

p+a=pq, (p—lg=p, qu—ly (61)

all of which are used from time to time.
In what follows, (€2, 3, 1) is a fixed measure space.

Theorem 20.3. (Hoélder's inequality for integrals). Let p,q be finite conjugate indices,

and let f,g: Q2 — R be measurable functions such thaf’ and e iategrable.
Then fg s integrable, and

fiss = (Jur) " (fur) ™

Proof. Let M :={xe€Q: f(x)g(x) #0} e X . If u(M)=0, /|fg| =0, so there is

nothing to prove; assumg(M) >0 , and therc /|f|p < 00 and /|g|q < 00 . For
- |f ()" lg()[*
anyx € M ,takein18.1lx:=1/p 1—a:==1/q ,and:= ~ b=
/ / fM|f|p fM ‘g(iL‘)|1
p q
|f (2)g(x)] < W@F e

(o LE (o 1Y ™ 2L P afy Lol
Integrate this inequality ovéwl

fM ‘fg\ -
(s |f|p)1/p(fM |9|q)1/q B

Thus /Q\fg\ = /M | f9]

VAN
—
=

=
=
~_
Z
=
VR
>\
=

=)
~_

Z
=)
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As so often in mathematics, the proof renders jicoshat at first sight might seem rather
unexpected; one might initially suppose, although mo good reason, thafg iS not
constrained by the integrals ¢f|” amg? . The case ¢ =2 thdsamiliar Cauchy-
Schwarz inequality, to which the same comment appli

Holder’s inequality was originally stated — by Rogén 1888, a year before Holder —
for finite sums of numbers, more or less in therfor

‘Z:Zl akbk‘ < (Z::1 |ak|p) 1/1)(22_1 |bk|q)1/q' (62)

This is an easy corollary of the Theorem; simpligeta? .= {1,2,...,n}, and define
Y =P2), n(E)=#EFE) (‘counting measure it ”). It is possible to yeahe Theorem
itself by gradually working up from this algebraiersion, but there is no advantage in doing
so. Hardy and his students and collabor&tors teridedvoid 18.11 in expositions of
Holder’'s and similar inequalities, because they tfet it was a disproportionately advanced
result for the purpose. There are interesting rdwdth of 18.11 and of (62) which are
“elementary” in the sense of avoiding calculus rehi. They deal directly, by algebraic
methods, with the case when apd are both rati@mal then pass to a limit. However,
there is no circularity involved in our proof, whics far shorter.

Lemma 20.4. Let p > 0 . Letf andy be measurable functions such {liit and |g|” are
integrable. Then f + g|” is integrable, and in fact

/|f+g|p < 2?/\f\”+2p/|g|f’.

Proof. Let A; :={z € Q:|f(z)] > |g9(x)|}, Ay :=Q\ A; . These are measurable subsets
of Q. If ze€ Ay, then |f(z)+ g(z)| < |f(z)| + |g(x)| < 2|f(z)], whilst, if € A,,
similarly |f(x) + g(z)| < |f(x)| + |g(x)| < 2|g(z)|. Thus, forallz € Q ,

(

[f(2) + g(2)" < 27| f ()" + 2°]g(x)]",

and the result follows by integration over . O

Theorem 20.5. (Minkowski's inequality for integrals) Let (2,3, ) be any measure
space, and suppose thdt< p <oo . Llfet and be measurabltidns such thatf|”
and |g|” are integrable. Thefy + ¢g|” is integrable, and

()= (o) "+ (L)

Proof. 20.4 proves integrability. Now let be the indenjgate tgp . Recall from (61) that
p=(p—1)q.Ergo,|f[’, |g]” andf+g|/? " areintegrable, and by Holder's irtity

6 See for instance Hardy, Littlewood and Pélyequalities .J®. 1934 and 1952; the relevant section is
2.7, although 2.5 and 2.6 may clarify what is goomg A similar eccentricity is found in books byiliips and
Titchmarsh, who were also under Hardy’s influence.

7 Hardy, Littlewood, and Pdlydgc. cit .
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- ' 1/p - 1/q
[isir+ o < ( / \f\”) ( 17+ M) ,
- ' 1/p - 1/q
/\ng+9\”_ < (/\g\”) </|f+gl(”_ )q> :
and, therefore,

/|f+g|p < /|f||f+g|p‘1 +/|g||f+g|p‘1

<(fur) //</ ! *9()) e( g)// (fis+ge)"
{(fir)" = (o) Y fror)

If /|f + g|” = 0, there is nothing to prove. But, iy|f +g/” >0 , the lasequality

1/q
may be divided by(/\f - g\”) on both sides:

(o) = (fr-a) = (i) "+ ()" o

Lemma 20.6. Suppose thaf angl are integrable functidils— R . Tiieng is also
integrable, and/\f—l—g\ < /Ifl +/\g\ .
Proof. Indeed, the inequalityf(z) + g(x)| < |f(x)| + |g(z)| holds for every . d

This is Minkowski’'s inequality whenp =1 . It remains ¢onsider its extension to the
case wherep = oo, and “Hélder’s inequality” when= 1, ¢ = oo

Definition 20.7. A function f: 2 — R isessentially boundedor “a.e. bounded”, if there
are a measurable st  of zero measure and a nuRyber 0 such that

(Ve e Q\2) |f(x)] < Kz.

This definition is quite consistent with 14.8, liuhas a peculiarity: the exceptional gkt
may depend on the choice d&f, (or vice versa). Fetairce, the functiony : R — R
which isO except at the non-zero rationals, an@égakalueg at the rational which jg/q
(where g € N ) in lowest terms, is essentially boundéd; consists of all the rationald{,
may be0 , but iZ consists of the rationals with @@mators exceeding) in lowest terms,
then K; must be at leaSt , and so on. There is nsilgesconcept of “a.e. supremum?”,
although | have come across authors who careladsigt the phrase.
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Definition 20.8. Let f:Q — R be measurable. Define thssential supremum and
essential infimunof f, esupf and edsff , by

esupf = sufa € R: u{z € Q: f(x) > a} >0},
esinf f =inf{a € R: p{x: f(z) < a} > 0}.

There are several definitions of the essentialesapm and the essential infimum that are
for practical purposes equivalent. It is easilyvea from the above definition thgt s
essentially bounded if and only if f < oo and iegg > —oco 4(£2) =0, then
esupf = —oo , esff =oo ,and is still essentially bounded.)

Lemma 20.9. essnf f < f < esupf a.e.on? .

Proof. Suppose that? :== e8pf < oo . Then, for anye N ,
E,={zxeQ: f(x) 254—%}

is measurable of measur@ . HencE:={xecQ:f(z)>p}=U,2,E, is also
measurable of measuwe , affdr) < sy fof E . Ibugg = , tearething
to prove. There is a similar argument for the esaleimfimum. O

It follows that if (€2) > 0, then essf f < s8pf

Theorem 20.10.Let f,g: Q2 — R be measurable, and suppose that Qgth lahd e ar
essentially bounded. Then so|j5+ ¢ , and

esudf + g| < esupf| + esug| . O

This result is the analogue of Minkowski’'s ineqtalior the casep = oo , in which
esuff| takes the place off | £|")"/”

Theorem 20.11. Suppose thaf and are measurable functiéhs— R Jeind be
integrable and|g| be essentially bounded. Thég tegable, and

/Q 4] < (essung|) /Q 5l

Proof. By 20.9, there is a measurable &t  of zero measuch that|g| < esigg] on
Q\ E.Thus

/Q fal = /Q ol = (esurg) /Q 1= Cesuy) /Q 1l 0
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When 0 < p < 1 , Minkowski’s inequality definitely fails. Famnstance, let2 := {1,2} ,

1/p 1/p
with counting measure; the</1}{71}> = (/11{72}) =1 ,but

1/p
(/(1{1} + 1{2})”) =27 >2.

Theorem 20.12.Let f,g: 2 — R be measurable. b < p <1 ,then
Jirar< i+ o

Proof. It is easily seen that, i€,n >0 , thef¢ +n)? <& +n? . The resulldek by
integration of this pointwise inequality. O

§21. Complexification.

My definition of the integral assumed that the fimes we consider are all real-valued (or
extended-real-valued; although | have, for simplicstated most of the theorems on the
assumption that all values are finite, it is jushatter of excluding a set of measure zero to
obtain the more general versions). However, onenoiftishes to have a theory of integration
for complex-valued functions, and even for complaldied measures. This is easily
accomplished.

As usual, let(€2, %, 1) be a measure space. A functfon(2? — C efimeld to bex -
measurable if both its real part and its imagingayt areX -measurable; in that cage is
measurable as a real-valued functign. is defiodoketintegrable with respect¥d and if
both its real and imaginary parts are integrabld wespect t&Z and . Since

max(|Rf], [Sf]) < [f] < [RfI+[SF],

it follows that a measurable complex-valued funttfois integrable in the complex sense if
and only if | f| is integrable in the real sense. Thal@gues of the results of §17 are readily
proved by looking at real and imaginary parts.

Hoélder's inequality involves only the integrals ofoduli, and so remains true in the
complex case without any change in the proof. Tdraesapplies to Minkowski’'s inequality
(with some use of the triangle inequality for madiilcomplex numbers) and to the extended
inequalities 20.10 (only the essential supremuth@imodulus is taken), 20.11, and 20.12.

It is natural to wonder whether the integral of anplex-valued function — or, more
generally still, of a vector-valued function — mighe defined directly, and indeed it is
possible. However, such definitions are less dttbogward and natural than ours.
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822. The Lebesgue spaces.

| am not sure exactly why they are called Lebesspares. As beforg2, %, 1) is a fixed
measure space.

Definition 22.1. Let 0 < p < oo . The class of real or complex measurabletfans f on(2
such that|f|” is integrable dd is described aspae ofp th power integrable functions
on (), and is denoted by¥?(Q2, %, 1) . The class of all realoonlex measurable functions
on € is denoted byM(£2,%, ) . The class of all essentiallynioled real or complex
measurable functions dd  is denoted®y (2, X, 1)

The notation varies according to the context; fatance, it may be desirable to indicate
whether the values are to be real or complex, hagktmay be no need to mentianX , jor
explicitly. The affixp may be superscript or sulygtrMy impression is that subscripts are
commoner nowadays, but superscripts are prefegréaeobetter mathematicians.

These classes of functions are vector spaces {ogdieldK , which iSR of® as the case
may be) under pointwise operations. Fady , whdle< p < oo t jsitrivial that
fellAde K= \fe /P, and 20.4 shows thaf,ge LP —= f+ge LP . Fa&>
20.10 takes the place of 20.4. Fot , 126 @nd esitd matter at once.

Definition 22.2. (a) For f € £P ,wherel <p <oco |/f[, = </|f|p> 1/p
() If p=oo, |[fI5 =esudf .
It follows that, if 1 < p < oo , then, forallA e K andf,g € £P
IASI, = AL (L + gll, < (FI + gl -

(The first statement is trivial, the second is 2®8.6, or 20.10.) These are two of the
requirements forl|[|; to berorm i6? . Itis clear thpf||; >0 ordny f € LP . The
remaining axiom of a nornfl|| in a real or complextuespaceV is thaf|z|| =0 only
when z =0 inV; for each of the functiorj|, , this wouleazly amount to saying that a
measurable function that is zero a.e. is zero ewwgye. This is definitely false in
LP(€2, 3, ) unless the only set of measure zer@ is . THUs, ususlly aseminorm (or
pseudonormin £? , rather than a norm.

However, we may introduce an equivalence relationin L?, setting f ~ g whenever
f andg are equal a.e.

Definition 22.3.  The set of equivalence classes of elements £6{$2, 3, 1) r, fo
0 < p < o0, under the relationr~  of almost everywhere equaldgstitutes thé.ebesgue
space of exponept on the measure sg&ze:, i) , denotedL? (2, 3, ) .

If [f] denotes the~ -equivalence class4# of the foncf, one defines the vector
space operations ih? ,far<p<oco ,by

(Va, B € K)(Vf,9€ LF) alf]l+ Blg] = [af + Byl
and, for1 < p < oo , one defines a norm ¥ by

(Vf e L) Al = 15 -
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It is easily checked that the left-hand sides ag#-defined by these prescriptions (that is: if
f~f and g~g , thenaf+pg~af +8¢g and|f[,=If, ) and that?
becomes a vector space o¥er g a noripin

In this way, the Lebesgue spack’ foxK p < become rbumetor spaces over
K. In practice, the conceptual distinction betweleh and £? tends to be blurred; people
write of afunctionf thatf € L? , rather thayf € £ . This does ocazalig involve some
confusion, but it is rarely serious.

The procedure which constructs  froft is quite ganéf |||~ is a seminorm in a
vector spacd” , leZ :={v eV :|v|" =0} .Thehd is a vector subspadé, @nd |||
induces a nornj|||  on the quotient vector spage, utrconstructionZ is the set & -

valued measurable functions that are a.e. equél &md L? := £P/Z . It is worth noting,
however, thatZ is the same for all> 1

Definition 22.4. In the vector spac&? fad <p <1 , define a meuic by

(Vf.g€L?) dy(fl.lg)) = /Q F— gl

It is easily checked thaf, is well-defined; thatsita metric follows from 20.12. (The
right-hand integral defines pseudometric orsemimetric o8”? .) This metannot be
derived from a norm (except in a trivial caselicsi d,(«[f], alg]) = |a|’d,([f],[g]) , and if
it came from a norm we should haj| rather thai n fadt the space&”([0,1])  (with
respect to Lebesgue measure, fox p < 1 ) are standardpdes of topological vector
spaces that are not locally convex.

Definition 22.5. Let (2 be any set, and take to be counting measurg o= P({2) . In this
case, LP(Q, %, ) is naturally identified witl£? (2,2, )  (the  -equivade classes are
singletons); each element is a functign 2 — K whichaguhtably non-zero”, which
means that it takes the valdle except on a countaghl(see 14.5), and such that

erg|f(:r)\p<oo (when0 < p<oo), SUpeql|f(z)] <oo (forp=oo).

The spacel.”(€2, 3, ) is customarily denotEds2)

When ) := N , one customarily write® , and describes ittlas sequence spadé 7;
its elements are usually written as sequenees >, terths =, € K . There is also a
“bilateral sequence spac#’(Z) whéh= 7

Definition 22.6. The sequence spaeg  consists of those sequénggs, with terms in
K, such thatz, — 0 asn — oo . Itis a vector space under tesmwperations, and is
normed by ||(z,)| = sgq:cn| :

In fact, ¢y is a subset of° , it is a vector subspaicé> , and the norm o, is the
restriction of |||, . It is a worthwhile exercise to peothe completeness of these various
sequence spaces directly, i.e. without using actg fimom the theory of the integral.

Definition 22.7. Let (2, X, 1) be any measure space< p < oo . Asequdrfee  LPin
is Cauchy inp -meanor Cauchy ig? , if /|fm — fulP =0 asm,n — oo . | recall that

this means (cf. 0.11)
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(Ve > 0)(IN € N) m,nzN:/\fm—fn\p<e.

Similarly, if f e L£P, f, — f inp-mean or inL? , if /|fn —fIP =0 asn — o .

When p =1 , the phrasgSauchy in mean andonvergent in meanare sometimes used;
for p =2, Cauchy or convergent in mean squaihe definition above has the advantaige
covering both the casp > 1 , when the concepts are tqggropriate to the seminorHrMp
on L? , and the cas® < p <1 , when they may be derived frmmpseudometrie/, . As
before, L? is often written fo? ; one has Cauchy emavergent sequences ii¥

Lemma 22.8. If (f,) is Cauchy inL? , where) < p < oo , it is Cauchy in measufe
fo— f in LP then f, — f in measure.

Proof. Given e¢ >0, chooseN so thatn,n > N = [|f, — fu|" < et . Then, for
m,n >N, u({x € Q:|fn(x) — f.(x)| > €}) < e. Similarly for the second assertiond

Theorem 22.9. Let (f,,) is a Cauchy sequence it , where< p < oo , then tiseae
function f € £P suchthatf, — f InCP

Proof. As (f,) is Cauchy inl? , there existé  such that- N = [|f, — fn|" <1
By 20.4,n > N = [|ful" <22 [|fn|" +2°[|fn — fnIP < 22[|fn]" + 2P, and sO

(¥n € N) /\fn\pgK:: max{/\f1|p,/|f2\p,...,/\fN1\”,2p/|fN|p+2p}.

(Using 20.4, we need not distinguish the caBes p < 1 hrRdp < oo . But the bound

K could be improved by treating them separatelywsidg 20.5 or 20.12 as appropriate.)
By 22.8, (f.) is Cauchy in measure. By 17.25, ther ssibsequencef, )<,  which

is almost uniformly Cauchy. By 17.20, there is aamgable functiorf such that, ;) — f

as n — oo . By Fatou’s lemma, 15.5,

/|f|p=/limi£f\fn( <I|m|nf/\fn [f < K.

Hence f € £ . If e > 0 , there existy  such that,n > N = [|f, — fu]" < > , and,
if n> N, it follows that

. D . . . P . . B P

/|f fn| - /“l?ngf ‘fn(k) fn‘ SllganDCf/‘er(k) fn‘ <e€.

So f,— f InLP . O
Remark 22.10. The general form of the above proof follows thee$i suggested in 17.4; we
constructf as a weaker kind of limit (an almostfamn limit), and only subsequently show

that it is both in the right space and a limitle tright sense. It is not necessary to use almost
uniform convergence, and most authors prefer aevargence, which is weaker still. Of
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course, in the complex case one must establishlthest uniform convergencg,, ) — f
by considering the real and imaginary parts seplyrat

Fatou’s lemma appears here as a sort of deus ekimaaclescending suddenly from the
heavens to resolve an otherwise refractory prolftamestimate of the integral of the limit). |
know at least one book, by Lusternik and Sobolewvhich — for no very clear reason —
they avoid Fatou’'s lemma at this point. It is pbksi but the result is a much more
complicated proof.

It is clear that 22.9 amounts to a proof thzt womplete normed space, i.e. a Banach
space, whenl < p < oo , and a complete metric space whenp < 1 eseltomplete-
ness assertions are sometimes called the RieszefFidoeorem, but the name is also applied
to some equivalent results, more particularlyih which they show to be a Hilbert space.

Theorem 22.11. The normed spacé> is complete.

Proof. Let (f,) be a Cauchy sequencedr® . It is a.e. unifp@auchy, by definition, and
thus converges uniformly a.e. to sorfie , which nigstn £~ too. (See 17.10; but, of
course, one must consider real and imaginary pagarately in the complex case.) O

These results on completeness of the Lebesgue sspaeethe beginning diinctional
analysis the idea of which is to establish theorems abfart,instance, the solutions of
differential equations by considering propertiesfafictions in the mass, rather than by
constructing them individually. They are the magbstantial practical justification for the
Lebesgue integral. The completenesd.éf (and, @dlyeof L?) is fundamental for many
purposes of applied mathematics, for instance @urier series or least-squares regression,
andis definitely false if only the Riemann theory ss@amed An LP-Cauchy sequence of
Riemann-integrable functions need not convergeR@eaann-integrable function.

Theorem 22.12. Suppose) <p< oo ,g€ LP , andf,) is a sequence of measurable
functions convergingeither a.eor in measure to the nraddel function f , such that
|fn] < g a.e.foralln.Thenf,, f € LP forak ,and, — f id?

Proof. That f, € £F for alln is obvious, and clearlyf| < g a.e., $a= L? too (why?)
Suppose thatf|f, — f|’ doe®t tend@o . Then there exists0 d aasubsequence
(fagr))£2, suchthat[|f,u) — f|” > € foralk .Asf,;) — f a.e.orin measure, theee
further subsequencg:;)  such that— f a.e., by 17.232a10.

Now, however, |h; — f|’ — 0 a.e. andh; — f|’ < 2P¢g? , which is integrable. By t
dominated convergence theorem 15.32h; — f|” — 0 ; but trascentradiction, since, by
construction, [|h; — f|” > ¢ for all . The result follows. d

The Theorem is an extension ¥ of the dominatetvv@gence theorem, to which it
reduces wherp = 1

To conclude, | give a Lemma which was used by Halam® his definition of the integral.
Its advantagels that it can be put in a form equally apglite to functions with values i@  or
even in a Banach space; but it has several evitisativantages, perhaps principally that the
definition of the integral must be postponed utiié “kinds of convergence” have been
sorted out. As | commented at the start, thereraney possible ways of defining the integral,
and my aim was to present the one that seemed“naisiral’ in a certain elementary sense,
whilst also introducing the idea of “measure”.
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Lemma 22.13.Let f: 2 — R be @& -measurable function. Thén s integrabl

(a) if and only if there is a sequendg,) of integrabimple functions such that
fn — f inmeasure andf,) is Cauchy in mean, or

(b) if and only if there is a sequendg)) of integrabimple functions such that
fn— f a.e.and(f,) is Cauchyin mean.

If either (a) or (b) is satisfied, therf f =lim [ f,

Proof. By definition (14.1 and 14.12), is integrableaifd only if there are misnsfsf,")

and (f,’) such thatfr 1 f* /71 f ae., anim[fF lim[f are finite. Then
e f, £ 1 f~ inmeasure (I leave this as an exercise, bupepenl7.22), so that, by
17.16, f, == f." — f,, — [ both a.e. and in measure. Certainly

Jin=sl< [Gi=tD+ [Gn=1) for m=n

which tends td) asn,n — oo, sincéf — [f*  and so on.($g) is Gainamean.

Conversely, if(f,) is Cauchyi! and, — f a.e.or in meashy 22.9 there exists
g€ L' with [|f,—g| — 0.Hencef, — g in measure (by 22.8), and some sjulgsee
tends toy a.e., by 17.25 and 17.19. Thus g a.e..fané f in mean. Since

‘/n—/ﬂs/m—f

the final assertion follows. O




