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§0. Preliminaries (revision).

None of the material in this section is examinable.
Although all attempts to split mathematics up into parts are fuzzy round the edges —

again and again it turns out that some combinatorics creeps into analysis, or algebra into
topology or vice versa, or geometry into statistics, or whatever — nevertheless there is a
crude characterization of analysis as that part of mathematics which deals with “limiting
processes”. In algebra, you may add or multiply two objects; in geometry, you may carry out a
construction finitely many times; but only in analysis can you do something infinitely often
and ask whether anything sensible results. And, in order to talk about limits in practice rather
than in the abstract, you have first of all to decide what you mean by a real number.

I shall take the natural numbers  (forming the set ) for granted. They are so"ß #ß $ß á �
familiar, and the properties we shall use so everyday, that deeper discussion is unnecessary.

The  (forming the set ) are conveniently constructed as equivalencerational numbers �
classes of triples  of natural numbers under the relation :Ð7ß 8ß :Ñ µ

“ ” means “ ”. (1)Ð7ß 8ß :Ñ µ Ð7 ß 8 ß : Ñ 7: � 8 : œ 7 : � 8:w w w w w w w

The idea behind this definition is that the triple  is to be a particular representativeÐ7ß 8ß :Ñ
of the rational number which we should normally write as the fraction ; the other triples7�8

:

in the equivalence class represent the same number. By using triples, we obtain negative,
zero, and positive rationals at one go. We define addition and multiplication in the way this
suggests: for instance, writing square brackets for equivalence classes,

c d c dÐ7ß 8ß :Ñ � ÒÐ7 ß 8 ß : ÑÓ ³ Ð7: � 7 :ß 8: � 8 :ß :: Ñw w w w w w w w . (2)

You must check that this addition is “well-defined”. As it stands, the right-hand side of
(2) denotes the equivalence class of a triple that depends on the choice of a specific represent-
ative for each class on the left-hand side. It is necessary to show that in fact the right-hand
side (the equivalence class, that is) is the same no matter what choices of representatives on
the left-hand side are made. One must show, therefore, that, if  andÐ7ß 8ß :Ñ µ Ð+ß ,ß -Ñ
Ð7 ß 8 ß 8 Ñ µ Ð+ ß , ß - Ñw w w w w w , then

Ð7: � 7 :ß 8: � 8 :ß :: Ñ µ Ð+- � + -ß ,- � , -ß -- Ñw w w w w w w w w w .

This once established (by elementary algebra), (2) defines a genuine addition of equivalence
classes. Similarly for multiplication. It is now straightforward but tedious to show that  is a�
field, i.e. satisfies all the usual laws of arithmetic, including the existence of multiplicative
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inverses for non-zero elements. The rational zero, written , is , and the rational! ÒÐ"ß "ß "ÑÓ
identity, written confusingly , is . Notice that ." ÒÐ"ß !ß "ÑÓ ! Á "

However,  is also an ordered field. We can define a partial order on the set of triples:�

“ ” means “ ”.Ð7ß 8ß :Ñ Ÿ Ð7 ß 8 ß : Ñ 7: � 8 : Ÿ 7 : � 8:w w w w w w w

It is easily checked that this does define a partial order, and . Since it isÐ"ß "ß "Ñ Ÿ Ð"ß !ß "Ñ
clear from (1) that the order carries over to equivalence classes, we get a partial order on . It�
is even a  order (because of (1)), and, for any ,total α " # �ß ß −

if , then , and
if  and , then .

α " α # " #

α " α"

Ÿ � Ÿ �

� ! � ! � !

I have in effect already noted that , i.e.  and . These properties are what! � " ! Ÿ " ! Á "
we mean when we say  is an ordered field. Notice too that  includes a copy of ,� � �
consisting of the equivalence classes of triples , and a copy of , consisting of theÐ8ß !ß "Ñ ™
equivalence classes of the triples .Ð8ß 7ß "Ñ

Whilst the treatment I have just sketched is fairly sleek and “modern” (equivalence
relations, partial orders, and what-not), things that have all the properties of the rational
numbers — or at least of the non-negative ones — have been around for a long time in the
familiar guise of “fractions”. The Greeks, who tended to think of things geometrically,
noticed that, because of Pythagoras’s theorem, not all “lengths” could be rational multiples of
each other. Although the use of geometry begs several questions about the relation of
diagrams to logic, this indicates that for many purposes. Onrational numbers are not enough 
the other hand, we can certainly find rational numbers that approximate the ratio of any two
lengths as closely as we wish, so that, in some vague sense, the possible lengths of line
segments form “numbers” that fill out the rational numbers. These are the real numbers
(forming the field ).‘

As with the rational numbers, and even the natural numbers, there are several methods of
defining things that have all the properties intuition requires of the real numbers. In the days
when I taught the basic analysis course (MATH 205), I used to define them simply as infinite
decimal expansions, with the usual rules for the ambiguous case, for addition and for
multiplication. This is not really very satisfactory; apart from anything else, why decimal
expansions? And I had to slide over division, which is messy, and  that Dedekind’sassert
axiom (below, 0.5) was a simple consequence (which it is, but the simplicity is not
overwhelming).

There are two standard ways of defining real numbers; they were originally published by
Dedekind  and by Cantor , both in 1872 (though Dedekind had invented his in 1858), and1 2

both can be seen as elaborations of ideas going back to the Greeks. Here is Dedekind’s, which
in some rather Pickwickian sense is the simpler.

Definition 0.1.  A subset  of  is called a  or  ifE � Dedekind section Dedekind cut

Þ
ßà

(i)
(ii)
(iii)

 ,
given , any  for which  also belongs to , 
for any , there exists such that .

(3)
g Á E Á

− E − � E
− E − E �

�

α " � " α

α # # α

We say the cut  is  if it does not contain the rational number .E !non-negative

1 , Brunswick, 1872. It was republished in 1963 in New York, apart fromStetigkeit und irrationale Zahlen
appearing in his Collected Works, vol. 3.

2 Math. Ann. V (1872), pp. 123–130.
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Because of , a non-negative cut consists entirely of positive rationals. If  is a cut and(ii) E
" � " α " α "− Ï E E � ³ Ö � À − E×, then  is a non-negative cut. Such a  exists, by .(i)

Given a cut , letE

�E ³ Ö� À − Ï E Ðb − Ï EÑÐ # Ñ ×" " � # � # "& . (4)

(†)
ðóóóóóóóóóñóóóóóóóóóò

Then  is also a cut (notice that we have to include the condition (†) in (4) to ensure�E
0.1 is satisfied. For instance, the set of all positive rationals is a cut, but its complement,(iii) 
the set of all non-negative rationals, has a largest member, namely ; changing the sign of all!
its members gives a set with a least member, making false). The  (for temporary(iii) zero cut
convenience, I call it ) is defined by^

^ ³ Ö − À # !×α � α ,

which is indeed a cut. More generally, if , let0 �−

WÐ Ñ ³ Ö − À # ×0 α � α 0 , 

which is also a cut.
If  and  are both Dedekind cuts, we defineE F

E � F ³ Ö � À − E − F×α " α "& .

It is easily seen that  is also a cut, and that the “addition of cuts” thus defined isE � F
commutative and associative. Furthermore,  and  for any cut .E � ^ œ E E � Ð�EÑ œ ^ E
(The last statement requires some argument.)

If  and  are non-negative cuts, we defineE F

EF ³ Ö À − E − F×α" α "& , (5)

which is also a cut. (This would definitely be false if  or  had a negative member). If E F E
and  are general cuts,  non-positive rationals , and thenF − Ï Eß − Ï Fchoose - � . �
E � F � ÐE � ÑÐF � Ñ- . - . and  are non-negative cuts. Hence,  is a cut, and so is

ÐE � ÑÐF � Ñ � WÐ� ÑÐ�EÑ � WÐ� ÑÐ�FÑ � WÐ Ñ- . - . -. . (6)

It may be shown that this cut does not depend on the choice of  and , and we can take it as- .
the definition of  for general cuts. (For non-negative cuts we could take , andEF œ œ !- .
it is easily seen that (6) reduces to (5). This very awkward definition of multiplication of cuts
is the principal defect of Dedekind’s theory; in this respect Cantor’s is superior, but pays for
its superiority in other ways.) Finally, we say that, for cuts  and ,E F

“ ” means “ ”.E Ÿ F F © E

With all these definitions, it may be proved — not without effort — that the set of cuts forms
an ordered field, which we agree to be . The cuts  for  form a subfield which is‘ 0 0 �WÐ Ñ −
isomorphic to ; in effect, then,  includes a copy of  (with the same addition,� ‘ �
multiplication, and order). We denote these “rational reals” by the names of the
corresponding rationals, and write  for its copy in  (and  and  for their copies in that� ‘ � ™
copy of ).�

The details of the theory can be varied in many ways, but its governing idea is that a real
number should be defined, at least for mathematical purposes, as the set of rational numbers
that “ought to be bigger” than that real number. For instance,  should be thought of as theÈ#
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set of all positive rational numbers whose squares are greater than . The reason for the#
condition 0.1 , which at first sight may seem superfluous, is that without it the rational real(iii)
numbers would be represented twice; , for instance, would correspond not only to the$
genuine cut , but also to , which does not satisfy .WÐ$Ñ Ö − À � $×α � α (iii)

I have commented that the definition of multiplication of cuts is messy. The reason for
this is that the whole construction is founded on the order relation in , and the arithmetical‘
operations have little to do with it. Indeed, if we had any reason to do so, we could introduce
Dedekind cuts in any totally ordered set.

Apart from the basic idea, Dedekind’s peculiar contribution was in indicating a property
of  which can be used as the foundation of all analysis. This is the ‘ Dedekind completeness
axiom, which fails for . Again, it really only uses the order structure of .� ‘

Definition 0.2.  Let  be a partially ordered set, where the partial order  is suchÐX ß Ÿ Ñ Ÿ
that & . Let  be a subset of . Suppose , .ÐB Ÿ C C Ÿ BÑ B œ C E X + − E > − XÖ

(i) least element
(ii) minimal element

(iii) upper bound

+ E ÐaB − EÑ + Ÿ B
+ E

ÐaB − EÑÐB Ÿ + Ê B œ +Ñ
> E

 is the  of  if .
 is a  of  if

.
 is an  for  if ÐaB − EÑ B Ÿ >

E X
.

 is  (in ) if it has an upper bound.(iv) bounded above

If  is changed to , one has the definitions of the  element, a  element,Ÿ � greatest maximal
and a  bound. A set is described as  if it is bounded both above and below.lower bounded

If  has a greatest element , then  is an upper bound for , and, conversely, if an upperE + + E
bound for  also belongs to , then it must be the greatest element of . But, for instance,E E E
the open interval  has no greatest element. (Whatever  you take, Ð!ß "Ñ + − Ð!ß "Ñ Ð" � +Ñ"

#

is greater). It has many upper bounds in , such as  and .‘ " #
There can be at most one least element, because if  are both least elements, then+ß +w

+ Ÿ + + Ÿ +w w and , so they are equal.
It is obvious that a greatest element of , if one exists, is also a maximal element. In aE

general partially ordered set, a maximal element need not be greatest; for instance, in the set
Ö+ß ,ß -× + Ÿ ,ß + Ÿ - , -, with the ordering  and nothing else, both  and  are maximal but
neither is greatest.

On the other hand, when  is  ordered by , which is the case for , theE Ÿtotally ‘
distinction between a greatest element and a maximal element of  disappears. If  isE +
maximal and , then  is only possible if  by the definition of maximality;B − E B � + B œ +
thus, either  or , by the total ordering (by the way, we define  to meanB œ + B � + B � +
+ Ÿ B B � + B Ÿ + Á B B Ÿ +, and  to mean ); that is, . This fact, that “maximal”

elements and “greatest” elements are the same for subsets of , is the reason why we‘
sometimes speak of the maximum value of a function rather than of the greatest value
(supposing that one exists). Notice, though, that the function 0 À Ð!ß "Ñ Ð!ß "Ñ À B È BÒ
has no greatest value.

Definition 0.3. The partially ordered set  is  (or ) ifX Dedekind-complete boundedly complete
every nonnull subset of  that is bounded below has a greatest lower bound; that is to say, ifX
the set of lower bounds for  is non-null, then it has a  element. When such aE greatest
“greatest lower bound” exists, it is commonly called the  of  and written .infimum E Einf
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In older books  is sometimes denoted g.l.b. . The significance of the infimum isinf E E
that, as remarked above, a non-null set that is bounded below, such as , need not have aÐ!ß "Ñ
least element; the infimum in  is, as it were, the nearest approach to a least element that one‘
can have in such a case. For , the infimum is , since the lower bounds form the wholeÐ!ß "Ñ !
interval .Ð�∞ß !Ó

Lemma 0.4. If the partially ordered set  is boundedly complete, then any non-null subset X E
of  that is bounded above has a least upper bound.X

Proof.  Let  be the set of upper bounds of . By hypothesis, , and  is boundedY E Y Á g Y
below (by any element of ). Thus  has a greatest lower bound . However, any  isE Y ? + − E
a lower bound for ; thus . This shows that  is itself a upper bound for , .Y ? � + ? E ? − Y
As  is in  and is a lower bound for , it is the least element of .? Y Y Y �

The asymmetry of Definition 0.3, in which I mentioned only sets bounded below and
lower bounds, was, therefore, only apparent; the property would be the same if I used sets
bounded above and upper bounds. (In , one can simply change the signs of all the numbers‘
to see this, but it is true in a general partially ordered set).

The word “complete” is over-used in mathematics, and its principal meaning in this
course is quite different; its use in Definition 0.3 is therefore qualified by “Dedekind” or
“boundedly”. It is necessary for our purposes to demand that  should be bounded below,E
since  itself has no infimum in . Less trivially,  has no infimum in . However, in some‘ ‘ ™ ‘
partially ordered sets  non-null subsets have a least upper bound and a greatest lowerall
bound; an example is , with the usual partial order. A less banal example is this. Let Ò!ß "Ó H
be any set, and take  to be the class of all subsets of  (that is, the “power class”  ofX Ð ÑH c H
H d). There is a natural partial order in :  “ ” means “ ”. Then any subset  ofX E Ÿ F E © F
X œ U œ U has both a supremum and an infimum. Indeed,  and .sup infd d- +

U− U−d d

We can now prove “Dedekind’s axiom” for the real numbers.

Theorem 0.5.  ‘ is Dedekind-complete.

Proof.  Let  be a non-empty subset of  that is bounded below, with a lower bound . NowE ,‘
, + − E + © , 5 ³ + is a Dedekind cut of , as is any element , and . Let ; thus� -

+−E

5 © , Á 5 Á g + Á g 5 − 5� α, and  as each  by 0.1 . Hence,  satisfies 0.1 . If , there(i) (i)
is some  with , and, if  in , then  too; so . This means+ − E − + � − + − 5α " α � " "
that  satisfies 0.1 . Similarly, there exists some  with , and, as , 5 − + � − 5 5(ii) # # α #
satisfies 0.1 .  is a Dedekind section of ; and, by definition,  is the smallest set which(iii) 5 5�
includes all . It is, therefore, the greatest lower bound of .+ − E E �

For any  subset  of , or of , or of any  set, one mayfinite totally orderedÖ+ ß + ß á ß + ×" # 5 ‘ �
find the greatest element by comparing elements in pairs, and this greatest element is denoted
maxÖ+ ß + ß á ß + ×" # 5 . It is of course the supremum of the subset. For totally ordered sets, it is
only infinite subsets that may not have suprema.

The common, and not altogether false, impression that people have of analysis is that it is
full of s and s. They are related to the preceding remarks by% $
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Lemma 0.6.  Let  be a non-null subset of , and let . Then  is the supremum of  ifE B − B E‘ ‘
and only if

(i)
(ii)

for every , , and
for every , there exists some  such that .

+ − E + Ÿ B
# ! + − E B � � +% %

Proof. (i) clearly says that  is an upper bound for . Suppose that  is the least upper bound.B E B
Then, for any ,  (being than ) cannot be an upper bound for  — which% %# ! B � B Eless 
means that there is some  with , or . On the other hand, if  is+ − E + Ÿ B � B � � +y % % (ii)
satisfied but  is not the least upper bound, there is some upper bound  for  with .B C E C � B
Take ; then  says there is some  with , and this contradicts% ³ B � C # ! + − E C � +(ii)
the assumption that  is an upper bound. Consequently  must be the least upper bound.C B �

Lemma 0.7.  Let  be a non-null subset of , and let . Then  is the infimum of  ifE B − B E‘ ‘
and only if

(i)
(ii)

for every , , and
for every , there exists some  such that .

+ − E + � B
# ! + − E + � B �% % �

The proof of this Lemma may be by the obvious modification of the previous proof, or by
means of the following

Lemma 0.8.  Let  be a non-null subset of , and let . Then  isE �E ³ Ö�+ À + − E× B −‘ ‘
the supremum of  if and only if  is the infimum of .E �B �E �

   Lemmas 0.6 and 0.7 constitute a link between the order structure of  and its “metric‘
structure”. I shall have more to say about this link later, because it has an influence on
integration theory.

Definition 0.9.  Let  be a set. A  (or ) on  is a functionH Hmetric distance function
. À ‚ Bß Cß D −H H Ò ‘ H such that, for any ,

(a)
(b)

  if and only if , and
 .
.ÐBß CÑ œ ! B œ C
.ÐBß DÑ Ÿ .ÐBß CÑ � .ÐDß CÑ

The pair  is called a . Very often, when the metric  has been unambigu-Ð ß .Ñ .H metric space
ously fixed, one speaks of “the metric space ”.H

The definition is often stated in slightly different, less concise, and perhaps more natural
forms. Taking  in  and applying ,  for any ; since B œ C .ÐCß DÑ Ÿ .ÐDß CÑ Cß D − C(b) (a) H
and  may be swapped, we deduce  always. Taking , we findD .ÐCß DÑ œ .ÐDß CÑ B œ D
similarly that , so that  only takes non-negative values.! Ÿ #.ÐBß CÑ .

(Note for those who have had some contact with these matters: theoretical physicists, and
some differential geometers, use the word “metric” to denote not the actual distance function
on a manifold but its “infinitesimal” version, which is a structure in the tangent bundle.)

In  and in , there is a standard metric given in each case by‘ �

.ÐBß CÑ ³ B � C ³ ÐB � Cß C � BÑk k max .
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(It is not really essential for the definition to demand that metrics take values in . In the case‘
of , the metric just defined takes only rational values.)�

Definition 0.10.  Let  be a sequence in the metric space , and let . We sayÐB Ñ Ð ß .Ñ B −8 H H
that  tends to  as  tends to infinity, or that  converges to , or (briefly) thatB B 8 ÐB Ñ B8 8

B Ä B R8 , if, for any positive real number , there exists some natural number  such that%
.ÐB ß BÑ � 8 � R B − B Ä B8 8% H whenever . If there is some  such that , we say that
ÐB Ñ B B B œ B8 8 8

8Ä∞
 is convergent or that the limit of  is , .lim

It is clear that one could allow for  only positive rational values, or even numbers of the%
form  for , without affecting the meaning of the definition. I am assuming here"Î5 5 − �
that a “sequence” is indexed by some subset of . The conventional warning is worth� ∪ Ö!×
repeating: the sense of the word “convergent” depends on the context; convergence of series
is a different concept from convergence of sequences or from convergence of integrals.

Unfortunately, Definition 0.10 is not helpful in many situations of real practical import-
ance, because very often you do not know in advance what the limit is. For instance, very
often you try to find a solution of some equation by a procedure of successive approximation,
without knowing in advance that there is a solution. How can you say the sequence of
approximations converges to a solution?

Definition 0.11.  A sequence  in the metric space  is  (that is, it is aÐB Ñ Ð ß .Ñ8 H Cauchy
Cauchy sequence) if, for any positive real number , there exists some natural number  such% R
that  whenever  and ..ÐB ß B Ñ � 7 � R 8 � R7 8 %

Again, it would be enough to consider values , for , for . I leave it to you to"Î5 5 − � %
make the necessary changes in the arguments.

Lemma 0.12.  A convergent sequence in any metric space is Cauchy. �

Theorem 0.13.  A Cauchy sequence in  is convergent in .‘ ‘

Several proofs are possible. (It is a consequence of Dedekind-completeness; indeed, the
two properties are in a sense equivalent.) By Lemma 0.12 and Theorem 0.11, Cauchy
sequences and convergent sequences of real numbers in  are the same; this is called the‘
General Principle of Convergence in some old textbooks. However, a Cauchy sequence of
rational numbers need not have a limit in . A familiar example is the sequence defined�
inductively by

+ œ "ß + œ + �
" #

# +
" 8�" 8

8
Œ  ,

which converges in  to  , so is Cauchy, but is a sequence in  whose limit is not in .‘ � �È#

Definition 0.14.  The metric space  is  if every Cauchy sequence in Ð ß .ÑH Hcomplete
converges in .H

This is the commonest meaning of the word “complete” as far as we are concerned; in
situations where it is ambiguous, one might say “metrically complete”.
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§1. Introductory remarks.

Again, this material is not examinable.

A. The general problem.

In any elementary treatment of integration (for instance in MATH 113), one meets two
notions of the integral of a function  (where  in ). The first,0 À Ò+ß ,Ó + � ,Ò ‘ ‘
customarily called an , is a   such thatindefinite integral function 1 À Ò+ß ,Ó Ò ‘
1 Ð>Ñ œ 0Ð>Ñ > − Ò+ß ,Ó 1 Ð+Ñw w at every point , it being understood that  means the right

derivative at  and  means the left derivative at . This concept goes back to Newton; I+ 1 Ð,Ñ ,w

shall sometimes call it the Newton integral. It obviously arises naturally from the notion of
the derivative, and has the further advantage that, for many functions that are useful in
applications, we can find explicit indefinite integrals; indeed, much of 113 was about
methods of doing so.

The second notion, usually called the , and essentially due to Leibniz, isdefinite integral
merely a ; speaking intuitively, it is the area under the graph of  over the intervalnumber 0
Ò+ß ,Ó 0. (More exactly, that is the definite integral when  takes only non-negative values — if
0 Ò+ß ,Ó were to change in sign, its definite integral over  would be the difference of the area
above the interval and below the graph and the area below the interval and above the graph). I
shall sometimes call it the Leibniz integral. Leibniz and Newton, of course, thought of a
function as something defined by a rather simple formula.

Unfortunately, as I used to stress when I taught these things, there is a difficulty with the
Leibniz integral: it takes for granted that we know what is meant by “area”. There are two
aspects of this question, the philosophical/psychological (what is the basic concept of area,
where does it come from, and why do we believe there should be such a thing?) and the
computational (how can we calculate the area of a specific figure, supposing such a number to
exist?). As very often in mathematics, we can, for mathematical purposes, fudge the
philosophy and psychology by defining the area of a figure to be the result, , of awhen it exists
suitable procedure of calculation. For simple figures like rectangles or polygons, there are
more or less mechanical rules for calculating their areas directly (split them up into triangles
and add the areas of the triangles). It is less clear what to do for figures like circles, or more
generally anything with a curved boundary, although our intuition — whatever its origin —
certainly does not balk at the idea that such figures should have areas.

This was already a problem for the Greek mathematicians, and one of their great achieve-
ments was the calculation of areas and volumes of some curved regions. Their results are now
easy exercises in integration, but, of course, they did not have a satisfactory algebraic notation
to help. It is a historical commonplace that modern mathematics really started with the devel-
opment of good notation. Anyway, the Greek idea was that the area of a curvilinear region in
two dimensions should be calculated by, and therefore , the result of approximating theis
region by polygons; and that is essentially the idea which everybody has followed since.

There are, however, figures in , even ‘regions’ under the graphs of functions (I shall‘#

temporarily say ‘region’ to mean ‘set in ’), for which the very notion of area seems‘#

strange. The hackneyed example is the ‘region’ under the graph of the function
0 À Ò!ß "Ó 0Ð>Ñ œ " > 0Ð>Ñ œ ! >Ò ‘ , where  when  is rational and  when  is irrational.

(Some people call this the “Dirichlet function”). The graph of this function would appear to
the naked eye as a line segment at height 1 above the -axis, actually consisting of the points>
at that height over rational values of , and a second line segment on the axis, reallyB
containing only the irrational points; thus neither is a genuine segment at all. Any polygon
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which includes the whole ‘region’ has area at least , and any polygon included in the"
‘region’ has zero area. Approximation of the ‘region’ by polygons is, therefore, not really
possible. There are many other similar constructions.

Such examples suggest serious difficulties with the concept of area. The practical man
will say, of course, that our example is merely artificial, and that, in the real world, such
functions and such ‘regions’ will never arise. There is quite a large grain of truth in this, for it
is difficult to see how a description of the real world might have to call on them directly; but
what if the mathematical techniques you then apply lead to these “impractical” functions?
Our function , for example, is a the limit (pointwise) of a sequence of continuous functions.0
It is, therefore, very difficult to see a good reason why a function like  should be considered0
illegitimate; its definition seems logically unassailable.

We are therefore faced with a definite, if imprecise, question: for what sorts of set in ‘#

can we reasonably speak of their “area”? To make the question precise, we should first have
to specify what we require of “area”. We could, for instance, arbitrarily assign “area”  to all"
non-null sets in ; such a definition would have no useful properties at all. Presumably we‘#

want our “areas” either to agree with ordinary area on polygons, or at least to have properties
as good as ordinary area on polygons.

Once we agree a method of defining areas for some class of subsets of , we shall auto-‘#

matically acquire a definition of the Leibniz integral for a corresponding class of functions,
namely those for which the ‘regions’ between the graph and the axis belong to the class of
subsets in question. That is obvious; and, suitably interpreted, it is also true the other way
round: a reasonable definition of the Leibniz integral will lead to a definition of area for a cor-
responding class of regions. In short: theories of (Leibniz) integration and theories of area are
more or less equivalent.

The Newton integral ought to reappear here, as a possible method of defining definite
integrals and therefore areas. But it, too, is subject to a rather surprising objection: given a
real-valued function on an interval in , there is at present no way of determining whether it‘
is the derivative of a differentiable function; the class of functions which have Newton
integrals has never been intrinsically characterized. The derivative of a differentiable function
is known to have many special properties, but no necessary and sufficient condition for a
function to be a derivative has yet been discovered. One may presume that any such condition
would have to be rather messy. In practice, you know a function has a Newton integral if you
know what that Newton integral is.

The important fact is, of course, that any  function is a derivative. This is onecontinuous
of the assertions of Cauchy’s “fundamental theorem of calculus”. To prove it, one makes use
of an integral of the Leibniz type, namely the Riemann integral. However, a discontinuous
function as simple as  for ,  for , cannot be Newton-0ÐBÑ œ ! B Ÿ ! 0ÐBÑ œ " B # !
integrable, though it is Leibniz-integrable on any interval  .Ò+ß ,Ó

It is possible to extend the Newton integral in a simple way so as to encompass all the
functions of a single real variable that one needs for elementary purposes. The idea is to
require that the indefinite integral  should be continuous, and that it should satisfy the1
equality  . (Non-trivial argument is needed to1 ÐBÑ œ 0ÐBÑw except at countably many points
show that this definition has some of the properties one expects of an integral). This allows 0
to have plenty of discontinuities and still be “Newton-integrable” in this extended sense, but
the class of such “integrable” functions remains obscure. In practice, we can make more
progress by studying the Leibniz integral first.
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For the sake of its appeal to intuition, I have talked about the problem of assigning an
“area” to a figure in . By extension, there is a like problem in  for . Once the‘ ‘# 8 8 � $
difficulty is recognized, however, it is clear that there is an analogous problem even in . An‘
interval has a well-defined length, and so has any set which can be expressed as the union of a
finite class of intervals. When one considers more complicated sets, is there any reasonable
sense in which one can talk about their “length”? Intuition suggests, rather unreliably, that
maybe there ought to be, because some sets (even amongst subsets of  that have the same‘
cardinality) seem “thinner” or “sparser” than others.

The first aim of the course is to construct a general theory which will enable us to speak
of the “length” of a set in , or the “area” of a set in , or the “volume” of a set in , with‘ ‘ ‘# $

the confidence that the numbers we are assigning to these sets behave in a way appropriate to
our intuition. This is a surprisingly difficult task. For historical reasons, to emphasize the
theoretical framework, and to avoid terms like “length” or “area” that are felt to be specific to
a given dimension, the general word actually employed is “measure”; the subject is called
“measure theory”, and embraces not only the ordinary lengths, areas, and volumes, which
correspond to “Lebesgue measure” in , but also generalizations both to other spaces and‘8

to other ways of describing the size of sets in . (As an example: the “area” of a straight‘8

line segment in  is zero, but it is possible to define a measure in  which assigns to each‘ ‘# #

straight line segment its length and takes the value  on ‘two-dimensional regions’). The∞
theory as we have it, basically Lebesgue’s, was introduced in his thesis in 1902, but our
treatment follows some improvements, though not the nomenclature, due to Caratheodory in´
his 1918 book on the subject. After him the theory became more abstract and general, and
much of the terminology now commonly used, which I shall reproduce, was invented by
Halmos (his book came out in 1950). It remains true that the vocabulary of the subject is not
entirely fixed, but I have tried to follow the commonest usages.

With the abstract idea of a  in any set whatever, we shall be able to associate anmeasure
integral of the Leibniz type: the so-called “Lebesgue integral”. This procedure does not
require the measure to be Lebesgue measure in , or the domain of the integrand to be a‘8

subset of . Furthermore, the definition, as we shall present it, is quite intuitive. Indeed, the‘8

only really serious reason why the Lebesgue integral is not mentioned in earlier courses is the
difficulty of explaining what a measure is and of constructing interesting measures. (The
Lebesgue integral does involve other technical problems, as we shall see, but they are no
worse than those for the Riemann integral.)

The Lebesgue integral is the single most essential tool of modern analysis, and I am about
to devote some space to praising it. Nevertheless, it is only after seeing what results from it —
it is more satisfactory in almost every way than the Riemann integral — that you will begin to
grasp why it is so important.

Lebesgue measure in  assigns a “measure” to    ‘ ‘8 8all sets in that one can meet in
practice, and has all the properties expected of a “volume” (and some more). It follows —
almost — that the Lebesgue integral, unlike Riemann’s, enables us to integrate all functions
that we can reasonably hope to. (There are functions that we should not expect to be able to
integrate: for instance, the function , where0 À ‘ Ò ‘

0ÐBÑ ³
" B Ÿ !
�" B # !œ when ,

when .)
(7)

As this example suggests, the integrals we can define are “absolutely convergent”. Other
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integrals have been invented since to permit integration of certain functions whose integrals
are only conditionally convergent, such as sin  over the whole of , but they have to doÐB Ñ# ‘
so by abandoning some of the desirable properties of the Lebesgue integral and usually by
restricting attention to . One relatively recent theory (48 years old or more by now) begins‘
by a clever modification of the definition of the Riemann integral, and there are other
definitions of an integral that have similarly been invented with the aim of simplifying the
construction, of handling special situations, and, in particular, of cutting short the discussion
of measure, but their final results have always been more or less expressible in terms of the
Lebesgue theory and they have often been less generally applicable.

In short, the Lebesgue integral, understood after Carathéodory as the integral with respect
to a measure that may not necessarily be Lebesgue measure in , seems in a sense to be ‘8 the
integral. You can trim it round the edges or put fringes on it, but any essential change will
lose you some useful property. This is not mere prejudice; once the existence of a measure is
granted, the construction of the Lebesgue integral is strikingly “natural”. Indeed, the most
sternly “practical” applied mathematicians, who still regard anything beyond the Riemann
integral as an idle theoretical subtlety, tend nevertheless tacitly to assume the Lebesgue
integral exists and has the properties they want.

I have presented the case for the Lebesgue theory of integration on the basis of the
“geometrical” problem “what is area?”, but there is another reason. Kolmogorov pointed out
in 1932 that a rigorous mathematical theory of probability, which had been conspicuously
lacking until then, could be founded on the idea that probability is in fact a measure defined
on the “events” in “sample space” (which need not be ), that “expected values” are in fact‘8

integrals, and so on. This was a conceptual breakthrough, because, despite a great deal of
probabilistic knowledge, no-one had really had a satisfactory notion what the logical basis of
probability should be. (I do not mean here the quite different problem of finding the
probability of a specific event).

My treatment of the theory is thoroughly old-fashioned. I shall begin by  constructing a
large class of measures, of which Lebesgue measure is overwhelmingly the most important
example, and then discuss integration with respect to a measure, which need not be Lebesgue
measure. There is a good reason for proceeding in this way: almost all the concepts we shall
meet have applications outside their immediate context. The abstract concept of a measure
crops up not only in probability theory but in logic, number theory, theoretical physics, and,
indeed, in almost all of modern mathematics. Furthermore, as I have already hinted, by
sticking to the main road of measure theory I shall be using the methods and nomenclature
that are most commonly met. Indeed, I make a deliberate effort to conform to the conventions
of the more recent writers on related subjects.

There is a wealth of books on measure and integration, and quite a number of them are
recommendable. I hope my notes will be more or less sufficient, but the three books I
customarily suggest as supplementary sources are

S. Saks, .Theory of the Integral
I give the title of the second edition, which is available in the Library in the Dover reprint;

the first “published” edition, in French, is also there (the first edition of all consisted of
lecture notes in Polish). This is a great classic, which remains the principal reference for
many of its unfashionable later topics. We are only concerned with the first three chapters,
which Saks rushes through with great clarity and efficiency. You are warned, though, that his
notation is old-fashioned; he writes unions as sums, intersections as products, and so on. His
terminology has also been in some respects superseded.
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M. E. Munroe, .Introduction to the theory of measure and integration
Not a classic, but a very superior American textbook, not infrequently cited as a reference.

Its great merits are that it is readable, assumes remarkably little of the reader, and covers in a
very clear and accessible fashion several topics often slighted nowadays; furthermore, it takes
the space to discuss some important side-issues and applications, which more ambitious and
advanced books, such as Saks or Halmos, often understandably ignore. Its defects are, again,
that it uses rather singular and outdated terminology, that it takes a very long time to come to
the integral — for example, the very extended first chapter consists of general mathematical
culture, very interesting in itself, but only occasionally needed later — and that Munroe is
perhaps not a very good mathematician. There are parts of the book where he loses his way
and makes very heavy weather of easy facts; in other places he seems to miss an essential
point; and the first printing of the first edition even contained a whopping error in the main
text, which cannot possibly be described as a slip. The second corrected printing still has
minor inaccuracies. But, taking it as a whole, it remains one of the most informative and most
interesting elementary introductions to the subject.

P. R. Halmos, .Measure Theory
Probably still the standard reference, and not only in English. As I have said above, it was

responsible for fixing quite a lot of the terminology we shall use; and it was the first really
coherent presentation of the subject in “modern” guise. It is also both clear and very readable,
as usual with Halmos. As a textbook, however, it is defective; it tends to relegate concrete
examples, no matter how important, to exercises, and — for quite defensible reasons —
develops the foundations at infuriating length and in a generality which is not really desirable
for a first course. The definition of the integral arrives irritatingly late and is expressed in a
rather odd way; some important topics are omitted altogether; and the last three chapters,
irrelevant for us, expound a rather eccentric version of the theory they discuss.

Several other books are also acceptable, but I cannot say much about them. There is one
by Berberian, which seems very close to the spirit of the course; one by Williamson, restricted
to the integral in , but pleasingly concise; one by Zaanen, which includes some valuable‘8

material neglected elsewhere; one by Burkill. The book by Kolmogorov and Fomin, which
has been published in English in several versions, is a very readable discussion of a alrge
amount of material in which two chapters are relevant to our course.

At a rather higher level, there is a superb book by Dudley, which includes most of the
things I should have put in a book if I had written one, but is too compressed to be a good
introduction. An enormous number of books on functional analysis, harmonic analysis,
probability theory, etc., begin with abbreviated treatments of integration more or less exactly
on our lines (for example, Dunford and Schwartz’s , Zaanen’s earlier bookLinear Operators
Linear Analysis Probability Theory Geometric Measure Theory, Loève’s , Federer’s ), and
there are other books such as Rudin’s  which include goodReal and Complex Analysis
discussions of measure and integration. Generally speaking, any book with ‘real analysis’ in
its title will do so.

Avoid Bourbaki, who is heavy going and takes a different and less practical route from
ours. The first part of Riesz and Nagy’s , though very readable andFunctional Analysis
informative (Riesz wrote it), also takes a rather unusual approach to the subject that scarcely
touches ours at all, and is less general. The “generalized Riemann integral” or “Henstock-
Kurzweil integral” is discussed in books by Henstock, McLeod, and Bartle. The central
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position of our subject means that many approaches are possible, and if you have some
special application in mind you may prefer some unusual derivation of the main results.

§B. Conventions.

To avoid later explanations, here are a few remarks on phrases and what-not that will appear
again and again.

Definition 1.1.  Let  be a set. We say that  is  if there is a one-to-one corres-I I countable
pondence between  and a  of the set  of natural numbers.I subset �

Notice that an infinite subset  of  is necessarily in one-to-one correspondence with theJ �
whole of . The correspondence may carry the least element of  to , the next least element� J "
of  to , and so on. Thus any set  which is both countable and infinite is in one-to-oneJ # I
correspondence with  itself.�

My use of “countable” means “either finite or denumerably infinite”. Rather often, I shall
casually neglect the possibility that a countable class may be finite, and it is to be understood
that in such a situation any argument, if I were to give it, would be unchanged in the finite
case except for minor alterations in notation. For instance, I might write , as if there-

3œ"
∞

3J
were infinitely many indices , even though in fact there may be only finitely many.3

Lemma 1.2.  If  is a countable set and , then  is countable; if  and  are bothI I ª J J I L
countable sets, then so is ; if  is a countable class whose members are countableI ‚ L T
sets, then the union of the members of  is also a countable set. T �

Make sure you understand what is being said here. As an example, if  is a countableI3

set for each of the indices , then  is also a countable set.3 − I� -
3œ"
∞

3

There are a number of phrases we shall naturally use whose literal meaning is debatable,
or even definitely different from their customary meaning.

If I speak of a ‘finite union of sets from a class ’, what is meant is a set  which can beT I
expressed in the form , where  is a finite subclass of . In other words,  isI œ O I-

O−U U T

called a ‘finite union’ because it can be written as the union of finitely many sets, not because
it is itself a finite set. This is a quite standard turn of phrase, and one talks likewise of ‘finite
intersections’, ‘finite Cartesian products’, ‘countable unions’, and so on. With this
convention, the last assertion of 1.2 is often briefly stated in the apparently tautologous form:
a countable union of countable sets is countable.

Similarly, if, again,  is a class of sets, we describe it as a ‘disjoint class’ when any twoT
of its members are either the same or disjoint (or both). That is:  is a disjoint class if, forT
any , either  or . In the same way, a sequence of sets Eß F − E œ F E ∩ F œ g ÐI ÑT 8 8œ"

∞

will be called a ‘disjoint sequence’ if  whenever . (In such a sequence,I ∩ I œ g 8 Á 77 8

any repeats must be null.) Some people describe such sequences as ‘pairwise disjoint’, for
obvious reasons.

The   of two sets  is & . I shallset difference I Ï J Iß J ÖB À B − I B Â J ×
customarily write it with a ‘backslash’ or ‘slant’ to distinguish it from arithmetical
subtraction, since we shall often be using both. Many authors use an ordinary minus sign.
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We shall also occasionally use the  of the two sets  and , which issymmetric difference I J
customarily written  and is defined to be . It is the set of elementsI J ÐI Ï J Ñ ∪ ÐJ Ï IÑ?
belonging to exactly one of  and .I J

As these remarks have probably already suggested, a great deal of the course will involve
manipulations (unions, intersections, differences) with sets. They will be made more
confusing by the fact that often whole sequences of sets, rather than one or two, will be in
play. So, firstly, do be on your guard — it is very easy even for experienced mathematicians
to be deceived by complicated formulæ of set unions and differences into supposing various
equalities to hold that are in fact wrong. As an example: it is quite tempting to suppose on the
basis of the notation that, for any sequences  of sets,ÐI Ñß ÐJ Ñ8 8

. . .Š ‹ Š ‹
8œ" 8œ" 8œ"

∞ ∞ ∞
8 8 8 8ÐI Ï J Ñ œ I Ï J ,

but, if you think about it more carefully, you will see that equality does not hold in general.
(Take, for instance,  and .) The equality is true if theI œ Ò8ß 8 � "Ñ J œ Ò8 � "ß 8 � #Ñ8 8

I J © I 88 8 8 are disjoint and  for each , by the way.
This may seem to mean that every formula, other than the simplest, needs scrupulous

analysis; but fortunately there is a simple way of deciding, at least in the easier cases, what
ought to be true: namely, Venn diagrams. The second piece of advice is therefore not to
despise Venn diagrams, which are often the quickest way of grasping set-theoretic formulæ.
They cannot, of course, constitute a proof in themselves, and they have to be drawn carefully,
but very often they suggest how a proof might go.

The algebra of sets uses various operations such as . As far as I know,∪ ß ∩ ß Ï ß ?
there is no ‘official’ order of precedence amongst these operations, such as we are taught in
school for the arithmetical operations  of ordinary algebra. Thus � ß � ß ‚ ß ƒ E ∩ F ∪ G
is literally meaningless. In Saks’s day  was written as  and  as multiplication, , and∪ � ∩ Þ
the precedence of multiplication was observed;  meant . (ThisEF � G ÐE ∩ FÑ ∪ G
notation was perhaps dropped later because of such odd-looking statements as the distributive
law ). Today, however, some care is necessary in setting outÐE � GÑÐF � GÑ œ EF � G
set-theoretical formulæ. I shall try to be careful to insert brackets where they are logically
necessary for the sense to be unambiguous, but many other authors (including Munroe and
Halmos) rely only on the typeface and on common sense; thus, in an expression like

E ∪ I,
8œ"

∞
8 ,

the size of the ‘intersection’ sign, and its affixes, are considered to make the interpretation of
the formula certain, despite the absence of the parentheses that I should consider desirable.

Whatever the formal prerequisites, this course is, I think, surprisingly near to being self-
contained in terms of the concepts required, although you do need a certain familiarity with
abstract argument. We shall use only the basic facts about the algebra of sets, convergence of
series, and so on. Nevertheless, I shall occasionally refer to some elementary concepts of
topology such as ‘open sets’, ‘closed sets’, ‘compactness’, and so on, and I shall not discuss
them at any length when this happens.
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§C. Jordan content.

This subsection may be ignored if you are in a hurry, and is in any case not central. It outlines
the theory of area which corresponds to the Riemann integral and was superseded by
Lebesgue’s ideas. This theory (in essence due to Camille Jordan, some time after Riemann’s
death) makes an immediate appeal to our intuition; it is, in fact, more or less the idea the
ancient Greeks worked with; and its construction requires only a remarkably slight
modification to yield Lebesgue’s  of measure in . (The deeper properties ofdefinition ‘8

Lebesgue measure cannot, however, be established so easily). There is no point in developing
Jordan’s theory in detail, since Lebesgue’s results are better in every respect, but my sketch
will perhaps explain where Lebesgue’s work began.

Let  be points in . The with vertices  is the set+ß ,ß - +ß ,ß -‘# open triangle 

J - . / - . / ‘ - . / - . /Ð+ß ,ß -Ñ ³ Ö + � , � - À ß ß − # ! # ! # ! � � œ "×& & & & .

If  are collinear, the triangle is called . The with the same+ß ,ß - degenerate closed triangle 
vertices is

J - . / - . / ‘ - . / - . /
–

& & & & .Ð+ß ,ß -Ñ ³ Ö + � , � - À ß ß − � ! � ! � ! � � œ "×

The words ‘open’ and ‘closed’ in these definitions are merely conventional, and you should
not think of them as directly related to the topological terms ‘open’ and ‘closed’.

The geometrical meaning of the definitions is important. To begin with a simpler instance,
the set & &  is precisely the line segment betweenÖ + � , À # ! # ! � œ "×- . - . - .
+ , + , + œ , and , excluding the points  and  themselves — unless , when it is just the
singleton . In the same way,  is the “interior” (again, in a geometrical ratherÖ+× Ð+ß ,ß -ÑJ
than topological sense) of the triangle with vertices , as long as  are the vertices+ß ,ß - +ß ,ß -
of a genuine triangle. If  are all on a single straight line  but not all the same,+ß ,ß - j
JÐ+ß ,ß -Ñ j is the open segment of the line  between the two furthest separated points of
+ß ,ß - +ß ,ß - Ð+ß ,ß -Ñ Ö+ß ,ß -× Ð+ß ,ß -Ñ. If  all coincide,  is the singleton . For , change

–
J J

the word “open” to “closed”. It is geometrically obvious (I shan’t give a formal proof) that,
when  are not collinear, they are the only possible vertices for . (To avoid+ß ,ß - Ð+ß ,ß -ÑJ
bias towards dimension ,  is often called the open 2-simplex spanned by# Ð+ß ,ß -ÑJ
Ö+ß ,ß -× ; there are corresponding constructions in higher dimensions).

It is never necessary in what follows to talk explicitly about closed triangles. The reason is
that  is a disjoint union of open triangles, namely of some selection of ,

–
J JÐ+ß ,ß -Ñ Ð+ß ,ß -Ñ

J J J J J JÐ,ß -ß ,Ñ Ð-ß +ß -Ñ Ð+ß ,ß +Ñ Ð+ß +ß +Ñ Ð,ß ,ß ,Ñ Ð-ß -ß -Ñ +ß ,ß -, , , , , . If  are not
collinear, all these open triangles are disjoint and have union ; but, of course, only

–
JÐ+ß ,ß -Ñ

the first is non-degenerate.

Let  be an open triangle in . If  is a subset of a line, set ; if not, let itsI I +ÐIÑ ³ !‘#

vertices be , , , and then define+ œ Ð+ ß + Ñ , œ Ð, ß , Ñ - œ Ð- ß - Ñ" # " # " #

+ÐIÑ ³ l, - � , - � - + � - + � + , � + , l"
# " # # " " # # " " # # " .

(The expression inside the absolute value signs is the third coordinate of the vector product
ÐÐ- ß - ß !Ñ � Ð+ ß + ß !ÑÑ ‚ ÐÐ, ß , ß !Ñ � Ð+ ß + ß !ÑÑ !" # " # " # " # , which has  as both its first and its

second coordinate. Thus its magnitude is just the absolute value of the third coordinate. But
the magnitude of the vector product is sin , where  is the angle betweenl ll l- � + , � + ) )
the vectors  and . This is twice the ‘ordinary’ area of the triangle with adjacent- � + , � +
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sides described by the vectors . So our formula expresses the area of the triangle- � +ß , � +
with vertices ).+ß ,ß -

Let us say that a set  in  is a  if it is a finite union of open triangles. It followsT ‘# polygon
immediately that the union of two polygons is still a polygon.

There are two less obvious facts. Firstly, a polygon may be written as a finite disjoint
union of open triangles (many of them degenerate, of course). Secondly, the difference of two
polygons is still a polygon — notice that, in particular, the null set is a polygon, .JÐ+ß +ß +Ñ
You may easily convince yourself of the truth of these statements by drawing simple pictures;
the formal proofs must involve induction, beginning from an argument to show that the
difference of two open triangles is a finite disjoint union of open triangles. This, incidentally,
is the reason why it is convenient to use triangles.open 

Let  be a polygon in . Express it as a disjoint union of open triangles, and take theT ‘#

sum  of the areas of these triangles. This sum does not depend on the way  is+ÐT Ñ T
expressed as a disjoint union of open triangles, because, if you so express it in two different
ways, you can split it up in a third way more finely so that every triangle of either of the first
two decompositions is a finite disjoint union of triangles of the third, and its area is the
corresponding sum of the areas of the smaller triangles. (This, whilst obvious, is  easy tonot
prove, although the proof is not subtle or clever; it is just long and not very interesting). Thus
+ÐT Ñ T may naturally be described as the area of . This concept has the obvious property,
which we should expect of any notion of area, that

+ÐT ∪ T Ñ œ +ÐT Ñ � +ÐT Ñ" # " #

whenever the polygons  and  are disjoint.T T" #

Thus we have a class  of sets in , namely the class of polygons, which has thec ‘#

property that, when , both  and  also belong to  (and, as aT ß T − T ∪ T T Ï T" # " # " #c c
consequence,  also belongs to ). Furthermore, the area functionT ∩ T œ T Ï ÐT Ï T Ñ" # " " # c
+ À c Ò ‘  is such that

Þ
ßà

(i)
(ii)
(iii)

+ÐgÑ œ !

+ÐT Ñ � +ÐT Ñ T ß T − T © T

+ÐT ∪ T Ñ œ +ÐT Ñ � +ÐT Ñ T ß T − T ∩ T œ g T ∪ T −

,
for any  such that , and

if , , .
(8)" # " # # "

" # " # " # " # " #

c

c c

Condition  on its own is described by saying that  is  on . (The hypothesis in(iii) additive+ c
(iii) that  is automatically satisfied for the class of polygons.)T ∪ T −" # c

The additivity of  derives most of its force from the set-theoretical properties of . As an+ c
extreme instance, one might have a function  on some class  which satisfied , , and+ c (i) (ii)
(iii) (iii), but for which  held only because there were no disjoint pairs of non-null sets in c
whose union is also in .c

For the class of polygons, on the other hand,  has its full value, because for any(iii)
T ß T − T T Ï T" # " # "c c one has a disjoint pair in  consisting of  and , and its union is
T ∪ T − T Ï T T ∩ T" # # " " #c . Incidentally, and  form another disjoint pair, so we get

+ÐT ∪ T Ñ œ +ÐT Ñ � +ÐT Ï T Ñ +ÐT Ñ œ +ÐT Ï T Ñ � +ÐT ∩ T Ñ" # " # " # # " " #and .

The properties , ,  are perhaps the natural requirements for an “area”. So far,(i) (ii) (iii)
then, we can define the area of any  in a way that agrees with our intuition andpolygon
satisfies (as one would expect) the requirements one would like to impose on any idea of area.
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The elementary notion of area that one learns in school is based on rectangles, not
triangles. This leads to a smaller class of sets for which areas are defined, as above, by taking
finite unions. Even triangles cannot be expressed as  unions of disjoint rectangles.finite

Let . Define the of  to beI © I‘# outer Jordan content 

- ÐIÑ ³ Ö+ÐT Ñ À I © T − ×‡ inf c .

If  is a bounded set in , it is included in a sufficiently large triangle, so that  isI - ÐIÑ‘# ‡

finite. Conversely, if  is unbounded, it cannot be included in any polygon (all polygons areI
bounded), so that, symbolically (see §2), . It is evident from (8)  that - ÐIÑ œ ∞ -‡ ‡(ii)
agrees with  on polygons, and, unlike , it is defined for any set . Moreover, it satisfies the+ + I
properties corresponding to (8)  and (8) . Unfortunately, it does not automatically satisfy(i) (ii)
(8) . For instance, if(iii)

I ³ ÖÐBß CÑ À ! Ÿ B Ÿ " ß ! Ÿ C Ÿ " B − ×

I ³ ÖÐBß CÑ À ! Ÿ B Ÿ " ß ! Ÿ C Ÿ " B Â ×
"

#

, ,
, ,

�

�

then  is the unit square, so that , and , but bothI ∪ I - ÐI ∪ I Ñ œ " I ∩ I œ g" # " # " #
‡

- ÐI Ñ - ÐI Ñ "‡ ‡
" # and  are . (This corresponds to the ‘Dirichlet function’ of (7)).

The question therefore arises whether the analogue of (8)  for  is true for any(iii) -‡

interesting class of sets. The problem with the example just given is — intuitively speaking
— that the sets  are geometrically very peculiar; each has the whole unit square as itsI ß I" #

topological boundary. There is a natural way of eliminating such sets from consideration. We
define the of a set  to beinner Jordan content I

- ÐIÑ ³ Ö+ÐT Ñ À I ª T − ×‡ sup c ,

and say that a set  is  if it is bounded and . (The idea isI - ÐIÑ œ - ÐIÑJordan-measurable ‡
‡

that a Jordan-measurable set can be squeezed between two polygons whose areas differ by an
arbitrarily small number. Thus it is desirable to restrict attention to bounded sets; otherwise
the outer content would be , and there are examples of nasty unbounded sets whose inner∞
Jordan content is also . For instance, take the union of the left half-plane with .)∞ I"

It may be shown rather easily that a bounded set is Jordan-measurable if and only if its
topological frontier has outer Jordan content zero.

When  is Jordan-measurable, the common value of the inner and outer Jordan contentsI
of  is called simply the Jordan content of , and I denote it by .I I -ÐIÑ

Theorem 1.3.  Let  denote the class of Jordan-measurable sets in . Then , so] ‘ c ]# ©
that , and ; more generally, for any , ; for anyg − -ÐgÑ œ ! T − -ÐT Ñ œ +ÐT Ñ] c
N ß N − N Ï N − N ∪ N − N ß N − N ∩ N œ g" # " # " # " # " #] ] ] ], both  and ; if  and , then
-ÐN ∪ N Ñ œ -ÐN Ñ � -ÐN Ñ -ÐN Ñ � ! N −" # " # ; and  for any .] �

In effect, all the properties which we noted for the area function  and the class of+
polygons extend to the Jordan content function on the class of Jordan-measurable sets, and
this class is much more inclusive. It contains all “elementary geometrical figures”, even with
curved boundaries. (This statement cannot be without a more precise notion ofproved 
“elementary geometrical figure”). Jordan content is precisely the notion of “area” which
corresponds to the Riemann integral.
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The definition of outer Jordan content may be reformulated as follows. Given a set ,I
- ÐIÑ I‡  is the infimum of the sums of the areas of finite collections of triangles that cover .
(Indeed, if the triangles are disjoint, their union is a polygon including  whose area is justI
the sum of the areas of the triangles; if they are not disjoint, the sum of their areas is not less
than the area of their union, which is itself a disjoint union). The devastating insight of
Lebesgue was to substitute collections of triangles in this definition; thecountable 
corresponding construct is the  of . Since limitingLebesgue 2-dimensional outer measureI
processes are essential at every stage of his construction, for instance in summing countably
many areas, nothing is gained here by using triangles — the same outer measure results from
taking coverings by countable collections of coordinate rectangles, which was in fact
Lebesgue’s definition. The change in the definition from Jordan’s version may well seem
nugatory (the limiting procedure has just been shifted to an earlier stage of the construction),
but it turns out to have remarkable consequences.

The original treatment of Lebesgue followed Jordan’s arguments rather closely; in
particular, inner (Lebesgue) measure was also defined for bounded sets, and such a set was
defined to be  if its inner and outer measures agreed. The extension to unboundedmeasurable
sets was achieved by splitting them up as unions of countably many bounded sets. A rather
similar procedure was followed in defining the integral: first integrate bounded functions on
bounded sets, then extend to unbounded functions, then to unbounded sets. In all these
respects, Lebesgue’s original theory, like many other theories in their first versions, was
rather messy. Some 15 years later, Caratheodory proposed simplifications which removed the´
necessity of introducing inner measure; he could define measurable sets in an ingenious
fashion requiring no boundedness assumption. The theory becomes a little less intuitive,
because Carathéodory’s definition of measurability is rather unexpected, and the analogy with
Jordan content is less transparent, but there is a great gain in generality and elegance. Crudely
speaking, one is no longer tied to . This is the version of the theory that we shall study.‘8

Even in , Lebesgue’s theory is a great improvement on Jordan’s, because ‘8 all
reasonable sets in are measurable‘8 . In everyday language, any set you can actually get
hold of has an area (or volume, or whatever you call it in higher dimensions) which agrees
with the ordinary idea of area of a triangle (or cube or whatever) and has the properties (8)
you hope for, and even some better ones. Since every useful set has an ‘area’, the
corresponding notion of integration will handle every useful function we might hope to
integrate. (As I pointed out in §A, there are, nonetheless, simple functions which must be
non-integrable).

There is, however, a thorny point here. In talking of ‘reasonable’ or ‘useful’ sets, I am
obviously being very vague. Any set which is obtained from polygons (or polyhedra) by the
standard procedures of analysis, all of which are “countable” in character, will be Lebesgue-
measurable, and these are the sets I have in mind. But it is not clear whether all sets can be
constructed in this way, and, in fact, if one assumes the Axiom of Choice, which most people
very sensibly prefer to do, one can show that there must be some sets in  which are not‘8

Lebesgue-measurable. Being constructed by means of the Axiom of Choice, they are ‘all in
the mind’ and cannot be specified in any explicit way. However, if we are to allow that they
exist, then in all our later work we must be careful either to impose the hypothesis that the
sets we deal with are measurable, or, where appropriate, to prove that they are. In more
general spaces and for measures other than Lebesgue measure, there may be certain sets
which are clearly non-measurable. This is the reason why the later part of the theory is framed
by the rather complicated apparatus of -algebras and so on; we must take account of the5
possibility that some sets do not fit the theory.
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§2. The extended real numbers.

In first-year tutorials, I have been in the habit of telling students “infinity is not a number”, to
discourage those who want to write things like . More exactly, what I haveÐ& ‚ ∞ÑÎ∞ œ &
in mind is that, since the symbol  cannot be related to any idea of counting or mensuration,∞
it should not be subjected to the usual laws of arithmetic, which ultimately derive from such
ideas. In most undergraduate courses, the only serious use we make of  is as a symbol in∞
expressions like “ as ”, whose meaning, as usually defined, does not have+ Ä ∞ 8 Ä ∞8

anything to do with a real object called .∞
In measure theory, on the other hand, there is good reason to allow  as a ‘formal’ value∞

of some measures. (The word ‘formal’ in this context is mathematical jargon for ‘having no
natural interpretation’.) An attractive instance is that the area of the whole plane obviously
“must” be  if we want to speak of it at all. But, if we wish to allow infinite values, we also∞
need to decide what arithmetical rules, if any, these infinite values will obey. It is not difficult
to settle on a suitable list; I shall explain the motives behind it once I have given all the rules
in question, but it is important to grasp that,  being just a symbol, we are free to make our∞
own rules for using it, and we choose rules that are appropriate to our purposes. They are not
absolute rules established for ever. (For instance, the symbol  is also used in complex∞
analysis, where the appropriate rules are substantially different).

The use of  and  is by no means a universal convention; in particular, Saks is∞ �∞
reluctant to employ it. It has to be admitted that it often forces us to divide proofs into two
cases, a trivial one where infinities occur and a serious one where they don’t. Nevertheless, I
think most people implicitly or explicitly follow the line I shall take, and, despite the minor
complications it introduces, it does tend to simplify the statements of theorems.

So we agree to proceed as follows.

Definition 2.1.  Let  be two elements different from each other and from all elements∞ß ∞
of . The set  is called the set of . We order  by—‘ ‘ ‘ ‘³ ∪ Ö∞ß ∞× extended real numbers
the relation , defined by¥

∞ ¥ + + ¥ ∞ + − ∞ ¥ ∞

+ß , − + ¥ , + � ,

— — and for any , and ,
and, when ,  if and only if .

‘

‘

Then  is a total order on , such that  is the least element and  the greatest.—¥ ∞ ∞‘

Next, we define algebraic operations in . For any ,‘ ‘B −

(i)

(ii)

(iii)

∞ � ∞ ³ ∞ ∞ � ∞ ³ ∞ ∞Þ∞ ³ ∞
∞Þ∞ ³ ∞ ∞Þ∞ ³ ∞ ∞Þ∞ ³ ∞

B � ∞ œ ∞ � B ³ ∞ B � ∞ œ ∞ � B ³ ∞
B � ∞ œ ∞ � B ³ ∞ B � ∞ œ ∞ � B ³ ∞
B # ! BÞ∞ œ ∞ÞB ³ ∞ BÞ∞ œ ∞ÞB ³ ∞
B �

, , ,—
— —, , .

, ,
, .

If ,  and ;
if ! BÞ∞ œ ∞ÞB ³ ∞ BÞ∞ œ ∞ÞB ³ ∞

!Þ∞ œ ∞Þ! ³ ! !Þ∞ œ ∞Þ! ³ !
,  and .

, .(iv)

Here I have listed the definitions of operations which involve infinities. For elements of ‘
itself, which are called the “finite” elements of , the algebraic operations are to be the usual‘
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ones. There are various slightly different formulations of the rules; for instance, I have not
listed the ‘unary’ operation of reversal of sign, which we might define as subtraction from ,!
so that, by ,  and . Others might take  as the primary— —(ii) �∞ œ ∞ �∞ œ ∞ B È �B
operation, and  subtraction from it, as reversal of sign followed by addition.define

Notice that the domain of the operation  is not the whole of , since we have not� ‚‘ ‘

specified values for  and . Hence  is not an abelian group with respect to— —∞ � ∞ ∞ � ∞ ‘
� , or any other kind of familiar algebraic object.

The set , with the order  and the operations of addition, subtraction, and‘ ¥
multiplication defined as above, is called the . We usually writeextended real number system
� ¥ �∞ ∞ ∞ instead of , and  instead of , and say that  is positive or has positive sign,—

whilst  is negative or has negative sign. (In this section I shall often retain  for the—�∞ ∞
sake of clarity). We say that  and  are .∞ ∞ opposite infinities

The rules –  are precisely what you expect on the basis of well-known theorems(i) (iii)
about limits of sequences. For instance, if  (where  and each  are in ) andB Ä B � ! B B8 8 ‘
C Ä ∞ C B C Ä �∞8 8 8 8 (where each  is in ), then , and this indicates that we want‘
BÞ∞ œ ∞— . The notable absences from the list correspond to cases where no such theorem is

true. As an example, if  and , nothing general can be said about theB Ä ∞ C Ä ∞8 8

behaviour of , so the list does not mention ; we say that  isB � C ∞ � ∞ ∞ � ∞8 8

“undefined” or “does not make sense”, in common with other binary expressions that are not
explicitly given a value in the definition.

On the basis just suggested, the rules  may seem rather surprising — there are no(iv)
theorems about sequences to which they correspond; if  and , no generalB Ä ! C Ä ∞8 8

conclusion can be drawn about the behaviour of . One would therefore expect thatB C8 8

!Þ∞ !Þ∞ and  should be undefined. In the context of measure theory, however, the stated—

rules are natural, for a rectangle of length  and height , such as the -axis in , is∞ ! B ‘#

expected to have zero two-dimensional area. We shall see that  leads to results that are(iv)
consistent with intuition.

It may also seem odd that there is no mention of division. Of course, if  andBß C − ‘
C Á ! B ƒ C ∞ ƒ C ∞ÞC, we know how to interpret , and  may be interpreted as ; thus�"

those divisions are already implicit. Furthermore,  and  have no reasonable∞Î∞ B ƒ !
values. However, I have not listed “for any ,  and ” as rules.—B − B ƒ ∞ œ ! B ƒ ∞ œ !‘
There is no deep reason for the omission; the proposed rules would lead to no logical
difficulties; but they are also quite useless for our purposes.

Note 2.2.  There is an important convention to which we shall adhere throughout. A statement
of equality between two expressions involving extended real numbers is understood to
include the assertion that either both expressions make sense or both are undefined. Thus, if I
write

+ œ , � - ,

this states both that  makes sense and that its value is . In detail,  and  cannot be, � - + , -
opposite infinities; if they are both infinite, they are equal to each other and to . If only one+
of them is infinite, it is equal to .+

Remark 2.3.  Since  and  (and ) are binary operations, we cannot, in principle, write� � Þ
+ � , � - +Þ,Þ- or ; brackets should be written in certain places, according to well-known

rules of mathematical grammar, to indicate the order of carrying out the operations,
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Ð+ � ,Ñ � - + � Ð, � -Ñ or  . However, it is clear after a moment’s thought that, for any
finite sequence  of extended real numbers,+ ß + ß á ß +" # <

(i) any grammatical method of inserting brackets in the product   will give+ Þ+ Þá Þ+" # <

an expression that makes sense, and its value will not depend on the bracketing. If all the ’s+
are finite, this is just the usual statement of associativity of multiplication in . If any of the‘
+ ! ! ! ∞’s is , the product is . If none is  but some are infinite, the product is  when the number
of negative factors — including ’s — is even, or  when the number of negative factors is— —∞ ∞
odd. Also,

(ii)  the sum  either makes sense in any grammatical bracketing+ � + � á � +" # <

(which occurs when all the terms  that are infinite, if there are any, have the same sign),+3

and then the value of the bracketed sum does not depend on the bracketing; or it does not
make sense in any grammatical bracketing, which occurs when and only when two of the
terms are opposite infinities.

The general principle, then, is that we may omit brackets exactly as for sums in , the‘
only added complication being that the sum may not make sense (no matter how it is
bracketed). Multiplication is distributive over addition in the strongest possible sense:

+ÞÐ, � -Ñ œ +Þ, � +Þ- ,

where, in accordance with the convention of 2.2, each side makes sense if and only if the
other does. (Check the possible cases).

Lemma 2.4.  Every subset of  has a least upper bound and a greatest lower bound.‘

Proof.  Let  be a non-null subset of . Then  is bounded both above and below in , forE E‘ ‘
∞ ∞ ∞ Â E Á Ö∞× E ∩ is an upper bound and  is a lower bound. If , and  is bounded— — ‘
above in , then Dedekind’s axiom says  has a supremum in , which is clearly‘ ‘ ‘E ∩ Á g
also the supremum of  in  (the set of upper bounds of  in  consists of the upper boundsE E‘ ‘
of  in  plus ). If  but  is not bounded above in , its only upperE ∩ ∞ E ∩ Á g E‘ ‘ ‘ ‘

bound in  must be , which is therefore its supremum. If ,  is trivially the‘ ∞ ∞ − E ∞
supremum of . The only remaining possibilities are that  or that , when—E E œ Ö∞× E œ g
any element of  is an upper bound and  is the supremum. There are corresponding—‘ ∞
arguments for infima. �

In particular, the supremum of  is , whilst its infimum is ; hence, for the null set—g ∞ ∞
(and for no other), the infimum is larger than the supremum.

Lemma 2.5.  Let  be a non-empty subset of a totally ordered set . An element  isE X > − X
the supremum of  in  if and only if it is an upper bound for  and, for any , thereE X E = � >
exists some  such that .+ − E = � +

Proof.  If  is the supremum and , then  is not an upper bound, and there is some> = � > =
element  not less than or equal to . The order being total, . Conversely, if  is+ − E = + # = >
an upper bound but not the supremum, then there is some  which is also an upper= � >
bound, which contradicts the proposed condition. �

Of course this Lemma really repeats 0.6, except for the use of subtraction.
If  is a sequence in a partially ordered set , we describe it as  ifÐB Ñ \8 increasing

B Ÿ B 8 B Ÿ B Á B 88 8�" 8 8�" 8 for all ; as  if  for all ; as  ifstrictly increasing decreasing
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B � B 8 B � B Á B 88 8�" 8 8�" 8 for all ; as  if  for all ; as  [orstrictly decreasing monotonic
strictly monotonic] if it is either increasing [or strictly increasing] or decreasing [or strictly
decreasing].

Many authors write “monotonic increasing” etc., instead of just “increasing”.

Definition 2.6.  Let  be a sequence in . We define the convergence of such a sequenceÐ+ Ñ8 ‘

to a limit in as follows.‘
(i)   if, for any , there exists  such that  whenever+ Ä ∞ O − R − + � O8 8‘ �

8 � R +. [This is exactly the usual definition; but, of course,  is now allowed to take the8

values  and . If , there can be only finitely many indices  for which ,— —∞ ∞ + Ä ∞ 8 + œ ∞8 8

and, if  for infinitely many indices , the subsequence given by those indices—∞ � + � ∞ 88

tends to .]∞
(ii)   as  if, for any , there exists  such that—+ Ä ∞ 8 Ä ∞ O − R −8 ‘ �

+ Ÿ O 8 � R + Ä ∞ �+ Ä ∞8 8 8 whenever . [It follows that  if and only if .]—

(iii)  If , then  as  if, for any positive real number , there exists+ − + Ä + 8 Ä ∞‘ %8

R − + � + � 8 � R +™ % such that | |  whenever . [In particular, this means that  must8 8

be finite except for a finite number of values of .]8

The definitions of the various kinds of convergence given above are exactly thead hoc 
standard ones, with the one extension that  is allowed to take infinite values. In fact, the+8

definition 2.6 can be derived as convergence with respect to a suitable metric on . One such‘
metric is , where, for any ,3 ‘Bß C −

3 3

3 3

3 3

3 3

ÐBß CÑ œ ÐCß BÑ œ �
B C

" � B " � C

ÐBß ∞Ñ œ Ð∞ß BÑ œ � "
B

" � B

ÐBß ∞Ñ œ Ð∞ß BÑ œ � "
B

" � B

œ Ð∞ß ∞Ñ œ #Ð∞ß ∞Ñ

º ºk k k k
º ºk k
º ºk k

,

,

— — ,

— — .

(Another possible choice of metric is tan tan , with3w �" �"ÐBß CÑ ³ B � Ck k
3 3 1 3 3 1w w w w" "

# #
�" �"Ð∞ß BÑ œ ÐBß ∞Ñ œ � B ß Ð∞ß BÑ œ ÐBß ∞Ñ œ � B¸ ¸ ¸ ¸tan tan .

However, this definition uses the transcendental function tan  instead of the elementary�"

functions used above.) In effect, this metric results from mapping  on to the closed interval‘
Ò�"ß "Ó ∞ " B − BÎÐ" � B Ñ ∞ �" by the mapping  which takes  into ,  into , and  into .—9 ‘ k k
Then, for any , .α " ‘ 3 α " 9 α 9 "ß − Ð ß Ñ œ Ð Ñ � Ð Ñk k

Throughout the course I shall tend, as above, to omit the phrase “as ”, at least8 Ä ∞
when it is obvious that the convergence in question must be as . I shall have some8 Ä ∞
deeper remarks about Definition 2.6 later.

Lemma 2.7.  Any convergent sequence in  is bounded both above and below. An increasing‘
sequence in  converges in  if and only if its terms are bounded above, and its limit in that‘ ‘

case is the supremum. Any increasing sequence in  converges in  to its supremum. In‘ ‘
either case, if the original increasing sequence converges, any infinite subsequence also
converges to the same limit; if the original increasing sequence (in ) does not converge in‘
‘, then neither does any subsequence.
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Proof.  Suppose  is a sequence in  convergent to . Then, taking “ ” to be  in Defin-ÐC Ñ C "8 ‘ %
ition 0.10, there exists  such that . Therefore,R − 8 � R C � " � C � C � "� Ö 8

Ða8 − Ñ ÐC � "ß C ß C ß á ß C Ñ Ÿ C Ÿ ÐC � "ß C ß C ß á ß C Ñ� min max" # R�" 8 " # R�" ,

which means that the sequence has both a lower and an upper bound in .‘
Now, let  be increasing in  and bounded above in , with supremum . GivenÐB Ñ B8 ‘ ‘

% %# ! R B # B � 8 � R, Lemma 0.6 shows there exists some  for which . Whenever ,R

B � � B Ÿ B Ÿ B% R 8

(since  because the sequence is increasing and  because  is an upperB � B B Ÿ B B8 R 8

bound). Hence , as required.8 � R B � B � BÖ k k8

Let  be increasing in . It has a supremum  in . There are three cases. If ,ÐD Ñ ; ; œ ∞8 ‘ ‘
then  for all , so . If , then, by 2.5, there is some D œ ∞ 8 D Ä ∞ ∞ � ; � ∞ Q −8 8 �
such that  for ; so  is an increasing sequence bounded above in ,D # ∞ 8 � Q ÐD Ñ8 8 8�Q ‘

with supremum ; thus it converges in  to . Recall 2.6 . If , then, for any; ; ; œ ∞‘  (iii)
O − P B # O D # O 8 � P‘ , there exists  such that , by 2.5; hence  for , so that 2.6P 8 (i)
is satisfied.

Finally, notice that the set of upper bounds for the whole sequence is the same as the set
of upper bounds for any infinite subsequence, so they have the same supremum. �

If you know about nets, you can formulate and prove a version of the above argument for
nets instead of sequences. This makes the discussion of unordered summation a little shorter.

Definition 2.8.  Let  be a sequence in . Then the series  ÐB Ñ B8 88œ"
∞

8œ"
∞‘ � converges to the

sum \ − ‘ , which is expressed by the expression , if each partial sum\ œ B�
8œ"
∞

8

5 ‘ 5 ‘: 8 :8œ"
:³ B : œ "ß #ß á Ð Ñ�  is defined in  (for ), and the sequence  converges in 

to . We say that the series   in  if there is some element  such\ B \ −�
8œ"
∞

8 converges ‘ ‘

that the series converges to the sum .\
If  is a sequence in , the series  , andÐB Ñ B8 88œ"

∞
8œ"
∞‘ � converges to the sum \ − ‘

one writes , if the sequence  of partial sums of the series converges in \ œ B Ð Ñ�
8œ"
∞

8 :5 ‘

to . We say that the series   in  if there is some element  such\ B \ −�
8œ"
∞

8 converges ‘ ‘

that the series converges to the sum .\

The most important difference between series in  and in  is that in  there is the‘ ‘ ‘
possibility that partial sums may not be defined. This only occurs if both  and  occur as∞ ∞
terms of the series. In fact, if only one infinite value appears (possibly repeatedly) as a term of
the series, then the series sums to that infinite value. If, on the other hand, all terms of the
series are finite, then it converges in  if the sequence of partial sums converges in .‘ ‘

As I warned you, the word “convergence” has a different meaning for series from the
previous one in Definition 0.10. Perhaps for this reason, students tend to have difficulty with
it, although there is another reason: the whole concept of a “series” is odd, and, I think, is
rarely defined in precise language. One might say, as one of several possible definitions not
usually given, that a series  just a sequence whose terms are specified indirectly as partialis
sums of a related sequence. It would be tedious to keep repeating such an explanation, and so
we write something like “the series ” as a shorthand reminder that the series is the�

8œ"
∞

8B

sequence of partial sums of the sequence . The series converges if  (which isÐB Ñ B8 88œ"
5�

its th term) has a limit as . But we also want a notation for this limit when it exists,5 5 Ä ∞
and it is unfortunate that the natural choice is , which thus comes to denote both the�

8œ"
∞

8B
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series itself and the limit; and the limit is equally naturally called the sum. It would be
possible to avoid these ambiguities by writing  for the series and  for its� �B B8 88œ"

∞

“sum”, but no-one consistently does so that I know of.
Since we need partial sums, it is only reasonable to talk of series whose terms belong to

some object in which they may be added. Although, for the moment, we are only interested in
‘ ‘ ‚ ‘ ‚ or , one can also have series in , in  or , or in a more general normed space.8 8

Definition  2.9. The series  is a of the series  if there is a� �
8œ" 8œ"
∞ ∞

8 8C Brearrangement 
one-to-one and onto mapping  such that  for each .5 � Ò �À C œ B 88 Ð8Ñ5

A one-to-one and onto mapping is often called a .bijection
There are fairly obvious modifications of Definitions 0.10, 2.6, 2.8, 2.9 that apply when  

the sequence or series is indexed by  or an infinite subset thereof, and I shall use� ∪ Ö!×
them without comment.

Definition 2.10. A series  in  [or in , or more generally] is � B8 ‘ ‘ unconditionally conver-
gent in ‘ [or in , etc] if all rearrangements of  converge in  [or in , etc] to the‘ ‘ ‘� B8

same sum. A series  in  [or in a normed space] is  if � � k kB B8 88œ"
∞‘ absolutely convergent

[or ] converges in .� l l8œ"
∞

8B ‘

Definition 2.11.  Let  be a set and  a function.  has the W 0 À W 0Ò ‘ unordered sum
B − # ! J W‘ % if, for any , there exists a finite subset  of  with the property that, whenever

K W J B � 0Ð=Ñ � is a finite subset of  including , .k k�
=−K %

Lemma 2.12.  Let  be functions which have the unordered sums .0ß 1 À W Bß C −Ò ‘ ‘
Then the function  has the unordered sum .0 � 1 B � C

Proof.  Given , there are finite subsets  of  such that, for any finite subset  of% # ! J ß J W K" #

W K ª J B � 0Ð=Ñ � K ª J C � 1Ð=Ñ �,  and . Take" #=−K =−K
" "
# #Ö % Ö %k k k k� �

J ³ J ∪ J K ª J ÐB � CÑ � Ð0Ð=Ñ � 1Ð=ÑÑ �" # =−K; then .Ö %k k� �

Recall that a real sequence  is just a function . I shall say that a seriesÐB Ñ B À8 � Ò ‘� B ÐB Ñ8 8 in  is if the sequence  has an unordered sum in .‘ ‘unorderedly convergent in  ‘

Lemma 2.13.  If the series  in  is unorderedly convergent with sum  in , it is� B B8 ‘ ‘
unconditionally convergent with sum .B

Proof.  Given , there is a finite subset  of  such that, whenever  is a finite subset% �# ! J K
including , . Take . If , the finite setJ B � B � R ³ J − 8 � Rk k�

8−K 8 % �max
Ö"ß #ß á ß 8× J B � B � includes , and so . Thus the series is convergent in thek k�

5œ"
8

8 %

given ordering. However, unordered convergence and the unordered sum are clearly
unaffected by rearrangement. �

The converse is also true, but is left as an .exercise

Theorem 2.14.  A series in  whose terms are all non-negative is convergent in  if and only‘ ‘
if its partial sums are bounded above; in that case it is unorderedly convergent, and so
unconditionally convergent, in . The sum is strictly decreased if the values of any non-null‘
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set of non-zero terms are strictly diminished. Any series in  whose terms are all non-‘

negative is unconditionally convergent in .‘

Proof.  For a series  of non-negative terms in , all partial sums are defined. TheÐB Ñ8 ‘
sequence of partial sums increases; apply Lemma 2.7 to get the assertions about convergence.

Suppose  is an upper bound in  for the partial sums. For any finite ,F J ©‘ �

� �
5−J 5œ"5 5

J
B Ÿ B Ÿ F

max

since all  are non-negative. Thus  is also an upper bound for the finite sums .B F B5 55−J
�

Conversely, any upper bound  for the finite sums must also be an upper bound for the partial
sums, which are a special kind of finite sum. Let  be the common least upper bound. For anyA
% � A %# ! J © B # �, there must be some finite  such that , since otherwise�

5−J 5

A % �� K © K ª J would be an upper bound; but then, if  is also finite and ,

A A %� B � B # �� �
5−K 5−J5 5 ,

so that . This proves unordered convergence to . Apply 2.13.k k�A % A� B �5−K 5

The effect of changing any non-zero term  to  is to reduce all the laterB B − Ð!ß B Ñ: ::
w

partial sums by at least . Thus  will be an upper bound for all theB � B � ÐB � B Ñ: :: :
w wA

partial sums, and their supremum cannot exceed it.
The case remaining is where the partial sums of the original series have supremum  in∞

‘ ‘. For any , there must be a partial sum . If   is aO − B # O B� �
5œ"
7

5 Ð5Ñ5

rearrangement of the series, choose ; then theR ³ Ö Ð"Ñß Ð#Ñß á ß Ð7Ñ×max 5 5 5�" �" �"

indices  all crop up among , and, whenever ,"ß #ß á ß 7 Ð"Ñß Ð#Ñß á ß ÐRÑ 8 � R5 5 5

� � �
5œ" 5œ" 5œ"

8 R 7
Ð5Ñ Ð5Ñ 5B � B � B # O5 5 .

This shows that the rearranged series also converges to . ∞ �

The last paragraph of the proof could be substituted by an argument from 2.13, if I had 
done 2.13 for series in . In fact, unordered convergence is really a form of convergence of‘
nets, as I remarked after 2.7.

The result I really need is a rather more general version of the above. For series of non-
negative terms in , the sum is unaffected not only by rearrangement, as just shown, but also‘
by “grouping of terms”. It is also unaffected by the insertion or removal of any number of
terms whose value is ; I leave it to you to work out precisely what that means, and to prove!
it. To make the statement true without exception, one needs to give their customary meaning
to finite sums and to regard the “empty sum” (the sum of no terms) as .!

Theorem 2.15. Suppose that, for each ,  is a sequence of non-negative terms3 − ÐB Ñ� 83 8œ"
∞

in . Let  be a one-to-one correspondence, and set . Then  ‘ � Ò � �; À ‚ C œ B4 ;Ð4Ñ

� � �Š ‹
4œ" 3œ" 5œ"

∞ ∞ ∞
4 53C œ B .

Since all the series have only non-negative terms, they converge unconditionally in .‘
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Proof.  Let us suppose first that  for each . Consider a “finite grouping”�
5œ"
∞

53B � ∞ 3� �Š ‹3œ"
∞

5œ"
8Ð3Ñ

53B Þ The partial sums of this series form a subsequence of the partial sums of

the series , which is aB � B � â � B � B � B � â � B � B � â"" #" "# ## "$8Ð"Ñß" 8Ð#Ñß#

rearrangement of  with certain terms reduced to . By 2.14, then,� C !4

� � �Š ‹
4œ" 3œ" 5œ"

∞ ∞ 8Ð3Ñ
4 53C � B .

Take any . Then there exists some  such that . Each  is anO � C R C # O C� �
4œ" 4œ"
∞ R

4 4 4

B 5 353  for some suitable choice of  and ; thus

O � C Ÿ B Ÿ B� � � � �Š ‹ Š ‹
4œ" 3œ" 5œ" 3œ" 5œ"

R Q 8Ð3Ñ ∞ 8Ð3Ñ
4 53 53 .

for some suitable  and some suitable  for each  between  and . By 2.14Q − RÐ3Ñ 3 " Q�

again, . Hence , which� � � � � �Š ‹ Š ‹ Š ‹3œ" 3œ" 5œ" 3œ" 5œ"
∞ ∞ ∞ ∞ ∞

5œ"
8Ð3Ñ

53 53 53B Ÿ B O � B

implies that ; otherwise take  to get a� � � � �Š ‹ Š ‹4œ" 3œ" 5œ" 3œ" 5œ"
∞ ∞ ∞ ∞ ∞

4 53 53C Ÿ B O ³ B

contradiction.
Now consider . If all the internal series converge in , it is a familiar� �� �3œ" 5œ"

P ∞
53B ‘

fact that , and this remains true even if one of the� � � �� � Š ‹3œ" 5œ" 5œ" 3œ"
P ∞ ∞ P

53 53B œ B

internal series sums to , by 2.14. The partial sums of this last series form a subsequence of∞
the partial sums of a rearrangement of  with some terms reduced to ; hence, from 2.14,� C !4

� � �Š ‹
3œ" 5œ"

P ∞
53 4B Ÿ C ,

which is, therefore, an upper bound for the partial sums of . So� �Š ‹3œ" 5œ"
∞ ∞

53B

� � �Š ‹
3œ" 5œ"

∞ ∞
53 4B Ÿ C .

This completes the proof of the required equality. �

The proof could probably be presented more economically, but most authors seem to treat
it as obvious and assume it without comment.

We can now begin the serious development.
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§3. Outer measures.

In §0C, I introduced the ideas of ‘outer Jordan content’ and of ‘inner Jordan content’ in .‘#

They are based on the area of polygons, and a moment’s thought will convince you that the
outer Jordan content of a bounded set  could be defined as the infimum of the numbersI
obtained as the sums of the areas of finite systems of triangles covering . The idea ofI
Lebesgue was to use systems of triangles instead — or rather countable systems ofcountable 
rectangles, which after a good deal of work can be seen to give the same answer.
Subsequently, Carathéodory observed that only the construction is really necessary.outer 

Definition 3.1.  Let  be any set. The   of  is the set whose members are allH c H Hpower set Ð Ñ
the subsets of  (including  and  itself): .H H c H Hg Ð Ñ ³ ÖI À I © ×

Logicians sometimes call the power set . Topologists tend to use  to denote the# #H H

class of  subsets of a topological space, so I prefer . Incidentally, that  isclosed c H c HÐ Ñ Ð Ñ
also a set is an axiom of formal set theory.

Definition 3.2.  Given the set , a  in  is a mapping , whereH H 7 V Ò ‘weighting function À
V c H is a subset of  containing  andÐ Ñ g

(a) , (b) C .7 V 7ÐgÑ œ ! Ða − Ñ ÐGÑ � !

For instance,  might be the class of triangles and  the area. I may call  the V 7 7ÐGÑ weight
of , but neither this nor my name “weighting function” for  are in common use.V 7

Definition 3.3.  If  is a weighting function in , and , let7 V Ò ‘ H c HÀ I − Ð Ñ

7 7 V ‘†ÐIÑ ³ ÐG Ñ À ÐG Ñ I © G −infš ›� .
5œ" 5œ"

∞ ∞
5 5 55œ"

∞ is a sequence in  and .

In words,  is the infimum (in ) of the sums of the weights of sequences in  that7 ‘ V†ÐIÑ
cover . The set whose infimum is taken will commonly be an uncountable class (there beingI
often uncountably many ways of covering  by sequences of members of ) of non-negativeI V
extended real numbers. It may well be the case, however, that   be covered byI cannot
countably many sets from  —  might, for instance, consist entirely of countable sets,V V
although  is uncountable. In that case , as . That understood, I ÐIÑ œ ∞ g œ ∞7 7† †inf
becomes a function .c H Ò ‘Ð Ñ

In general, there is no reason to suppose that the function  resembles  in any7 7†

significant way. It is easy, for instance, to give examples where  is always zero when  is7 7†

not. The really important thing is that  is defined for  .7 H†ÐIÑ I ©any
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Lemma 3.4.  Given a weighting function  in ,  has the properties7 H 7†

(a)
(b)
(c)

.

 ,
if  and , then ,
for any sequence  in ,

7

c H 7 7

c H

7

†

† †

† †

ÐgÑ œ !

Qß R − Ð Ñ Q © R
ÐI Ñ Ð Ñ

ÐQÑ Ÿ ÐRÑ

I Ÿ ÐI Ñ

8 8œ"
∞

Š ‹. �
8œ" 8œ"

∞ ∞
8 87

Proof.   and  are trivial. For , there are two cases. If , there is(a) (b) (c) �
8œ"
∞

87†ÐI Ñ œ ∞
nothing to prove. Suppose that , and, consequently,  for�

8œ"
∞

8 87 7† †ÐI Ñ � ∞ ÐI Ñ � ∞
each . Let . For each , there exists by 0.7 a sequence  in  such that8 # ! 8 ÐG Ñ% V83 3œ"

∞

I © G8 833œ"
∞-  and

7 7 7 %

7 7 % 7 %

† †

† †

ÐI Ñ Ÿ ÐG Ñ Ÿ ÐI Ñ � #

ÐG Ñ Ÿ Ð ÐI Ñ � # Ñ œ ÐI Ñ �

8 83 83œ"

∞ �8

8œ" 3œ" 8œ" 8œ"

∞ ∞ ∞ ∞
83 8 8

�8

�
� � � �Š ‹ Š ‹

, and so

. (9)

Rearrange the double sequence  as a single sequence . ThenÐG Ñ ÐH Ñ83 4

. . .Š ‹
.

8œ" 8œ" 8ß3œ"

∞ ∞ ∞
8 83

8œ"

∞
8

I © œ G œ

I

. .
Š ‹ �

3œ" 4œ"

∞ ∞
83 4

4œ"

∞
4

G H

Ÿ ÐH Ñ

and

by definition.7 7†

By 2.15, . Hence, by (9),� � �� �4œ" 8œ" 3œ"
∞ ∞ ∞

4 837 7ÐH Ñ œ ÐG Ñ

7 7 %† †Š ‹ Š ‹�.
8œ"

∞
8I Ÿ ÐI Ñ �

8œ"

∞
8 . (10)

But , and  is arbitrary; hence, in fact,�
8œ"
∞

87 %†ÐI Ñ � ∞

7 7† †Š ‹ �.
8œ"

∞
8I Ÿ ÐI Ñ

8œ"

∞
8 .

(If this were untrue, we could take  and get a% 7 7³ � ÐI Ñ # !"
# 8œ"

∞
8ˆ ‰� � ˆ ‰�† †-

8œ"
∞

8I

contradiction to (10)). �

It appears at first sight that from , whose properties were feeble in the extreme, we have7
constructed a function  which is not only defined for all subsets of  but also has far7 H†

stronger properties. However, we are not really getting something for nothing; the problem is
that  may be quite mysterious or quite uninteresting. But let us continue.7†

Definition 3.5.  An  in a set  is a function  such thatouter measure H . c H Ò ‘‡ À Ð Ñ

(a)
(b)
(c)

 ,
if  and , then ,
if  is any sequence in , then

.

.

c H . .

c H

. .

‡

‡ ‡

8

‡ ‡

8œ" 8œ"

∞ ∞
8 8

ÐgÑ œ !
Qß R − Ð Ñ Q © R ÐQÑ Ÿ ÐRÑ
ÐQ Ñ Ð Ñ

Q Ÿ ÐQ ÑŠ ‹. �
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Notice that  and ensure  for all , so that the sum in  must(a) (b) (c). H‡ÐQÑ � ! Q ©
make sense.  is sometimes expressed by the statement that  is  (as a(b) nondecreasing.‡

function on ).  says that  is .c H .Ð Ñ (c) countably subadditive‡

3.4 proves that  is an outer measure.7†

3.3 is the standard elementary construction of an outer measure. The question arises
whether every outer measure can arise in this way, or whether outer measures constructed
from weighting functions are somehow special. The answer is uninteresting:

Lemma 3.6.  If  is an outer measure in , , and , then .. H V c H 7 . 7‡ ‡³ Ð Ñ ³ † œ .‡

Proof.  If , and  is a sequence in  such that , thenI © ÐI Ñ Ð Ñ I © IH c H8 88œ"
∞-

. . 7‡ ‡

8œ" 8œ"

∞ ∞
8 8ÐIÑ Ÿ ÐI Ñ œ ÐI Ñ� �

by 3.5 . So  is a lower bound for the sums that define  (see 3.3), and(c) . 7‡ÐIÑ ÐIÑ†

. 7‡ÐIÑ Ÿ ÐIÑ Iß gß gß á I† . On the other hand, the sequence  covers , and thus

7 . . . . .†ÐIÑ Ÿ ÐIÑ � ÐgÑ � ÐgÑ � â œ ÐIÑ � ! � ! � â œ ÐIÑ‡ ‡ ‡ ‡ ‡ .

Putting the two inequalities together, , as required.7 .†ÐIÑ œ ÐIÑ‡ �

Lemma 3.7.   Suppose that  is any family of outer measures in . Define(a) Ð Ñ. Hα α
‡

−E

ÐaI © Ñ ÐIÑ ³ Ö ÐIÑ À − E×H . . α‡ ‡sup α .

Then  is an outer measure in .. H‡

(b) If  are outer measures in , so is , defined by. . H . ." # " #
‡ ‡ ‡ ‡ß �

ÐaI © Ñ Ð � ÑÐIÑ ³ ÐIÑ � ÐIÑH . . . ." # " #
‡ ‡ ‡ ‡ .

(c) If  is a sequence of outer measures in , defineÐ Ñ. H5
‡ ∞

5œ"

ÐaI © Ñ ÐIÑ ³ ÐIÑH . .‡ ‡

5œ"

∞

5� .

Then, again,  is an outer measure in .. H‡ �

These statements are not really remarkable, for the conditions 3.5 are not very demanding,
and there are many uninteresting outer measures. For instance, the zero function is an outer
measure, as is the function which is  on the null set and  on every other set.! ∞

§4. Sets measurable with respect to an outer measure.

The substance of this section was invented by Carathéodory; as I remarked in §1A, he pointed
out that a satisfactory theory does not need “inner measure”. The essential step is Definition
4.1, which is both unexpected and states an extremely demanding condition.

Definition 4.1.  Let  be an outer measure in the set . A set  is said to be. H c H‡ Q − Ð Ñ
measurable with respect to measurable. . c H‡ ‡, or - , if, for every ,E − Ð Ñ

. . .‡ ‡ ‡ÐEÑ œ ÐE Ï QÑ � ÐE ∩ QÑ . (11)
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.‡-measurability of  is thus not an “internal” property of , but rather describes howQ Q
Q E © E behaves in society: it splits  set  “additively”. I may occasionally refer to every H
in (11) as a “test set”. In the interesting cases,  has very many members, so 4.1 is, inc HÐ Ñ
principle, very unlikely to be true. The surprise is that there are interesting outer measures for
which there are many measurable sets.

On the whole I shall write  for the complement of  in . Other notations that areH HÏ I I
in use are  and . Both of them assume the set  is fixed.I I- V H

There is also a point of vocabulary. For the rest of this section, only one outer measure .‡

will be considered. In such a situation, one might well write “measurable” instead of -.‡

measurable; and in many books, especially older ones by authors who were brought up on
Lebesgue’s original theory in , the word “measurable” always means “measurable with‘8

respect to Lebesgue outer measure” (which we shall construct later) and “outer measure”
always means Lebesgue outer measure. Unfortunately, there is a more modern usage we shall
soon meet, and to avoid confusion I shall, therefore, retain the ..‡

Lemma 4.2.  Given the outer measure  in ,. H‡

(a)
(b)

g
I − Ð Ñ Ï I

 is -measurable,
if  is -measurable, so is .

.

c H . H

‡

‡

Proof.   holds as , and  since (11) is symmetrical between  and .(a) (b). H‡ÐgÑ œ ! I Ï I �

Remark 4.3.  In fact, if  and , then  is -measurable. Given a testI − Ð Ñ ÐIÑ œ ! Ic H . .‡ ‡

set , . But  by 3.5 , ,E ÐE ∩ IÑ Ÿ ÐIÑ œ ! ÐEÑ Ÿ ÐE Ï IÑ � ÐE ∩ IÑ. . . . .‡ ‡ ‡ ‡ ‡ (a) (c)
whilst  by 3.5 . So 4.1 is satisfied.. .‡ ‡ÐE Ï IÑ Ÿ ÐEÑ (b)

Lemma 4.4.  Given the outer measure  in , let  be -measurable. H .‡ ‡
" # 8I ß I ß á ß I

subsets of . Then  is also -measurable.H .-
5œ"
8

5
‡I

Proof.  It will suffice to show that, if  and  are -measurable, so is ; the resultI J I ∪ J.‡

will follow by induction. Let  be a test set. As  is -measurable,E © IH .‡

. . .

. . .

. .

‡ ‡ ‡

‡ ‡ ‡

‡ ‡

ÐEÑ œ ÐE ∩ IÑ � ÐE Ï IÑ
ÐE ∩ ÐI ∪ J ÑÑ œ ÐE ∩ ÐI ∪ J Ñ ∩ IÑ � ÐÐE ∩ ÐI ∪ J ÑÑ Ï IÑ

œ ÐE ∩ IÑ � ÐE ∩ ÐJ Ï IÑÑ

and (12)

, (13)

the latter equalities arising from the test set . However,  is also -E ∩ ÐI ∪ J Ñ J .‡

measurable, and so, taking  as a test set,E Ï I

. . .

. .

‡ ‡ ‡

‡ ‡

ÐE Ï IÑ œ ÐÐE Ï IÑ ∩ J Ñ � ÐÐE Ï IÑ Ï J Ñ

œ ÐE ∩ ÐJ Ï IÑÑ � ÐE Ï ÐI ∪ J ÑÑ . (14)

Adding  to both sides of (12), and applying (13) and (14) in succession,.‡ÐE ∩ ÐJ Ï IÑÑ

. . . . .

. .

. . .

‡ ‡ ‡ ‡ ‡

‡ ‡

‡ ‡ ‡

ÐEÑ � ÐE ∩ ÐJ Ï IÑÑ œ ÐE ∩ IÑ � ÐE Ï IÑ � ÐE ∩ ÐJ Ï IÑÑ

œ ÐE ∩ ÐI ∪ J ÑÑ � ÐE Ï IÑ

œ ÐE ∩ ÐI ∪ J ÑÑ � ÐE ∩ ÐJ Ï IÑÑ � ÐE Ï ÐI ∪ J ÑÑ . (15)

We wish to “cancel ”. However, there may be infinite values, so a little care.‡ÐE ∩ ÐJ Ï IÑÑ
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is needed. If , then 3.5 implies that  and. .‡ ‡ÐE ∩ ÐJ Ï IÑÑ œ ∞ ÐE ∩ ÐI ∪ J ÑÑ œ ∞(b) 
. .‡ ‡ÐEÑ œ ∞ ÐE ∩ ÐJ Ï IÑÑ � ∞. On the other hand, if , either both sides of (15) are

infinite, in which case omitting  on either side will still leave , or both.‡ÐE ∩ ÐJ Ï IÑÑ ∞
sides are finite, when we may apply subtraction in . In all cases, then,‘

. . .‡ ‡ ‡ÐEÑ œ ÐE ∩ ÐI ∪ J ÑÑ � ÐE Ï ÐI ∪ J ÑÑ . �

Lemma 4.5.  If  and  are -measurable subsets of , so are  and .I J I ∩ J I Ï J. H‡

Proof.  By  4.2 ,  and  are -measurable; by  4.4, so is their union. By  4.2(b) (b)H H .Ï I Ï J ‡

again,  is -measurable. And  isI ∩ J œ Ï ÐÐ Ï IÑ ∪ Ð Ï J ÑÑ I Ï J œ I ∩ Ð Ï J ÑH H H . H‡

.‡-measurable in the same way. �

Notice that 3.5  was used in  4.2 , and 3.5  in 4.4. The next Lemma, however,(a) (a) (b)
depends on 3.5 . It is a curious result, stating a property of -measurable sets that we shall(c) .‡

never need in its full strength.

Lemma 4.6.  Let  be a disjoint sequence of -measurable sets in , and let .ÐI Ñ E ©8
‡. H H

Set . ThenI ³ I-
8œ"
∞

8

. .‡ ‡

8œ"

∞
8ÐE ∩ IÑ œ ÐE ∩ I Ñ� .

Proof.  Let , for . Suppose that, for a given ,J ³ I 5 œ "ß #ß $ß á 55 88œ"
5-

. .‡ ‡
5 88œ"

5
ÐE ∩ J Ñ œ ÐE ∩ I Ñ� . (16)

(This is certainly true when ). By 4.4,  is measurable, and so5 œ " J5

. . .

. .

.

‡ ‡ ‡
5�" 5�" 5 5�" 5

‡ ‡
5 5�"

8œ"

5�" ‡
8

ÐE ∩ J Ñ œ ÐE ∩ J ∩ J Ñ � ÐÐE ∩ J Ñ Ï J Ñ

œ ÐE ∩ J Ñ � ÐE ∩ I Ñ

œ ÐE ∩ I Ñ� because of (16).

Thus, (16) holds for all . As  for each , 3.5  and (16) give5 − J © I 5� 5 (b)

. . .‡ ‡ ‡
5 88œ"

5
ÐE ∩ IÑ � ÐE ∩ J Ñ œ ÐE ∩ I Ñ àŠ ‹�

this holds for all , so5

. . .‡ ‡ ‡
5 8 88œ" 8œ"

5 ∞
ÐE ∩ IÑ � ÐE ∩ I Ñ ³ ÐE ∩ I Ñsup � � .

However, the opposite inequality is assured by 3.5 . (c) �

Remark 4.7. If  is a sequence of subsets of , there is a standard procedure forÐI Ñ8 H
obtaining a related disjoint sequence. For lack of a better name I have sometimes called it

disjunctification. Define  and . Then  forI ³ I I ³ I Ï I I © I" 5�" 5
w w w

" 5�" 8 58œ"
5Š ‹-

each  and the sequence  is disjoint (by construction,  is disjoint from  for all5 ÐI Ñ I I8 8
w w

7

7 � 8 ). But also



32

. .
8œ" 8œ"

5 5

8
w

8I œ I (17)

for any . The inclusion  is obvious; but any element  of the right-hand side5 − ∪ Ö∞× © B�
must belong to an  of smallest possible index, and then  too.I B − I8 8

w

As a consequence of this procedure, the requirement 3.5  of the definition of outer(c)
measure could be (and sometimes is) stated in the apparently weaker form

if  is any  sequence in , then .ÐQ Ñ Ð Ñ Q Ÿ ÐQ Ñ8 8 8
‡ ‡

8œ" 8œ"

∞ ∞
disjoint c H . .Š ‹. �

Lemma 4.8.  Let  be a sequence of -measurable subsets of . Then ÐI Ñ I ³ I8 8
‡

8œ"
∞. H -

is also -measurable..‡

Proof. Since each finite union  is -measurable by 4.4 and 4.5 ensures theJ ³ I5 88œ"
5 ‡- .

difference is -measurable,  is -measurable for each ,. .‡ w ‡
5�" 5�" 88œ"

5I ³ I Ï I 5 � "Š ‹-
and  is too. In view of (17), it will suffice to consider the disjoint sequence .I ³ I ÐI Ñ" 8

w w
"

Take any test set . Then, for any ,E − Ð Ñ 5 −c H �

. . .

. .

. .

‡ ‡ ‡
5 5

8œ"

5 ‡ w ‡
8 5

8œ"

5 ‡ w ‡
8

ÐEÑ œ ÐE ∩ J Ñ � ÐE Ï J Ñ

œ ÐE ∩ I Ñ � ÐE Ï J Ñ

� ÐE ∩ I Ñ � ÐE Ï IÑ

Š ‹�
Š ‹�

by 4.6 (or (16)) 

by 3.5 .(b)

This inequality holds for all , and therefore5

. . .

. .

‡ ‡ w ‡

8œ"

∞

8

‡ ‡

ÐEÑ � ÐE ∩ I Ñ � ÐE Ï IÑ

� ÐE ∩ IÑ � ÐE Ï IÑ

Š ‹�
by 3.5 .(c)

However, the opposite inequality also follows from 3.5 and 3.5 . (Apply 3.5 to the(a) (c) (c) 
sequence ).E ∩ Iß E Ï Iß gß gß gß á �

It is a curiosity of this lemma that it employs only the “finite version” (16) of 4.6. And the
culminating Theorem below only uses the case .E œ H

Theorem 4.9. . (Carathéodory) Let  be an outer measure in the set , and let  be the. H D‡

class of -measurable sets in . Then  has the following properties.. H D‡

(a)
(b)
(c)

  and .
If , then .
If  is any sequence of elements of , then  too.

g − −
Iß J − I Ï J −
ÐI Ñ I −

D H D

D D

D D8 88œ"
∞

8œ"
∞-

Furthermore, if  is a disjoint sequence of members of , thenÐJ Ñ8 8œ"
∞ D

. .‡ ‡

8œ" 8œ"

∞ ∞
8 8Š ‹. �J œ ÐJ Ñ .

Proof.   is 4.2;  is part of 4.5;  is 4.8. The last assertion is the case  of 4.6.(a) (b) (c) E œ H �
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The class  of -measurable sets in  has, therefore, quite remarkable properties.D . H‡

Unfortunately, it is quite possible — indeed it is “usually” the case — that  has only the twoD
elements  and , so that the properties in question reduce to trivialities. We need furtherg H
information about  to ensure that  is large enough for the Theorem to be interesting, but. D‡

we shall first digress to look at the properties in more detail.
The last assertion of 4.9 is often expressed by saying that  is  on .. D‡ countably additive
The class of -measurable sets satisfies even stronger conditions than those given in 4.9..‡

Suslin, in 1917, invented a method of combining sets which is more general than taking
countable unions or intersections. (He was hoping, wrongly, that he could construct all
Lebesgue-measurable sets in this way). If you apply the “Suslin operation” to a system of -.‡

measurable sets, the result is also -measurable. This is proved on pp. 47–50 of Saks; much.‡

more information on Suslin’s construction can be found in Kuratowski’s or Hausdorff’s
books. However, the Suslin operation appears only rather rarely in mainstream analysis.

§5.  Rings, fields, measures.

Although outer measures are, both historically and intuitively, perhaps the most natural way
of constructing measures (there are other ways), the further theory scarcely notices them. The
properties of  listed in 4.9 turn out to be more important than the way in which they arose.D

Definition 5.1.  Let  be any set. A  (or, more precisely, a ) is aH ring in ring of subsets of H H
subset  of  such thate c HÐ Ñ

(i)
(ii)
(iii)

g −
Iß J − I Ï J −
Iß J − I ∪ J −

e

e e

e e

;
if , then ; and
if , then .

Granted ,  says only that  (for, if , then implies ).(ii) (i) (ii) e e eÁ g I − g œ I Ï I −
And  also entails that .(ii) I ∩ J œ I Ï ÐI Ï J Ñ − e

 The word “ring” is used because of a very imprecise algebraic analogy (union sum,¸
intersection product). As far as I know, Halmos is responsible for the term. A ring  is¸ e
precisely what you need if the disjunctification trick of 4.7, applied to a sequence of members
of , is to construct a new sequence of members of .e e

A typical example of a ring is the class  of polygons in , introduced in §1C. Therec ‘#

was a problem in calculating the area of a polygon: we had to express it as a finite disjoint
union of open triangles. This, and similar examples, suggest the idea of a “semiring”, which,
as it were, generates a ring.

Definition 5.2.  A  (more precisely, a ) is asemiring in the set semiring of subsets of H H
subset  of  such thatf c HÐ Ñ

(i)
(ii) disjoint

 ; and
if , then  is a finite  union of members of .
g −

Iß J − I Ï J
f

f f

Lemma 5.3.  A ring of subsets of  is always a semiring.(a)  H
(b) Let  be a semiring in . Then the class of finite disjoint unions of members of f H f

constitutes a ring in . In particular, it is the same as the class of arbitrary finite unions.H
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Proof.   is obvious, and I think it is appropriate to leave  as an . It is proved by(a) (b) exercise
several tedious inductions. �

Remark 5.4.  In linear algebra, any subset  of a vector space  spans or “generates” a linearE Z
subspace that we may call span  (also denoted lin  by some). There are two ways ofÐEÑ ÐEÑ
defining span . On the one hand, it is the set of all vectors that may be obtained as linearÐEÑ
combinations of elements of ; this is the “internal” or “constructive” definition, whichE
builds span  from  by telling us exactly what the elements of span  look like. On theÐEÑ E ÐEÑ
other hand, span  is the smallest linear subspace of  that includes . This is theÐEÑ Z E
“external” or “implicit” definition, which tells us nothing at all about the individual elements
of span .ÐEÑ

Both definitions require supplementary facts. For the first, one needs the trivial statement
that the linear combinations of elements of  form a linear subspace, whilst for the second,E
one must prove (which is easy) that the class of linear subspaces including , ordered byE
inclusion, has a least element.

In group theory, similarly, any subset  of a group  generates a subgroup, which may beE K
described “internally” or “constructively” as the set of elements of  obtained by evaluatingK
words on the elements of , and “externally” as the least subgroup of  that includes .E K E

In algebraic situations like these, we are dealing with finitary operations. As I remarked at
the start, algebra is in some sense the study of finitary operations — mostly of binary ones.

Let  be any subclass of the set . Take , and, if  is constructed,T c H T T TÐ Ñ ³ ∪ Ög×! 8

let  consist of all subsets of  that may be obtained as either the union or the differenceT H8�"

of two members of :T8

T T8�" 8³ ÖI ∪ J ß I Ï J À Iß J − × .

Lemma 5.5.  With the notation just established,

(a)
(b)
(c)

  for each ,
  is a ring in  that includes ,
if  is any ring in  that includes , then 

T T �

T H T

e H T e T

8 8�"

8œ!
∞

8

8œ!
∞

8

© 8 − ∪ Ö!×

ª

- - .

Proof.  Easy exercise. �

It follows immediately that  is the smallest ring of subsets of  that includes ,-
8œ!
∞

8T H T

which we may denote . Any member of  belongs to  for some , and thus ise T e T TÐ Ñ Ð Ñ 88

the result of finitely many operations of taking the union or the difference of two sets, applied
in the beginning to members of . When  is a semiring,  is just the class of finiteT f e fÐ Ñ
unions of members of , by 5.3.f

Definition 5.6.  Let . A  (fasm) on  is a functionT c H T© Ð Ñ finitely additive signed measure
. T Ò ‘À  such that

  , if ; and(a) . TÐgÑ œ ! g −
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  if  and  is a pairwise disjoint finite sequence of members(b) E − E ß E ß á ß ET " # 8

of  such that , thenT E œ E-
5œ"
8

5

. .ÐEÑ œ ÐE Ñ�
5œ"

8
5 . (18)

A (fam) on  is a finitely additive signed measure which takesfinitely additive measure T
only non-negative values.

Recall 2.2: the equality (18) means that, in the given circumstances, the right-hand side
always makes sense in  and has value equal to . However, there is no reason why any‘ .ÐEÑ
member of  should be a non-trivial finite disjoint union of other members. The condition T (b)
may sometimes be vacuously true.

If  takes only finite values (quite a useful possibility — consider the areas of triangles),.
or only non-negative values, the sum is always defined. More generally, one may consider
“finitely additive measures” with values in any abelian group. There are many minor modifi-
cations that may be made to the theory without serious change to the proofs.

Lemma 5.7. Let  be a semiring in  and let  be a fasm on  that takes at mostf H 5 f Ò ‘ fÀ
one infinite value. Then there is a unique fasm  such that . If  is~ ~5 e f Ò ‘ 5 f 5 5À Ð Ñ l œ
a fam, so is .~5

Proof.  By 5.3 , any member  is a finite disjoint union , for some(b) V − Ð Ñ We f -
;œ"
<

;

8 − W ÐVÑ ÐW Ñ� f 5 5 and some (disjoint) members  of  . So  must be . The only~
; ;;œ"

<�
problem with   by this formula is that  may be expressible as a finite disjoint~defining 5ÐVÑ V
union of members of  in more than one way (again, think of  as the set of triangles in ).f f ‘#

Let  and  be finite disjoint sequences in  such thatÐG Ñ ÐH Ñ3 43œ" 4œ"
7 8 f

. .
3œ"

7
3 4

4œ"

8
G œ H .

For each choice of ,  is in , and, by 5.3 , is a finite disjoint union of3ß 4 G ∩ H Ð Ñ3 4 e f (b)
members of : for some  and some members  of , ,f � f:Ð3ß 4Ñ − F " Ÿ 5 Ÿ :Ð3ß 4Ñ345

G ∩ H œ F3 4 3455œ"

:Ð3ß4Ñ. ,

where the  for different  are (pairwise) disjoint. It follows that F 5 F ∩ F œ g345 345 3 4 5w w w

whenever the triples  and  differ; for instance, if , then Ð3ß 4ß 5Ñ Ð3 ß 4 ß 5 Ñ 4 Á 4 F © Hw w w w
345 4

and , but . However,F © H H ∩ H œ g3 4 5 4 4 4w w w w w

G œ G ∩ H œ ÐG ∩ H Ñ œ F3 3 4 3 4 3454œ" 4œ" 4œ" 5œ"

8 8 8 :Ð3ß4ÑŠ ‹ Š ‹. . . . ,

and this is a finite disjoint union of members of . Similarly, , alsof H œ F4 3453œ"
7

5œ"
:Ð3ß4Ñ- -Š ‹

a finite disjoint union.
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Now,  is a fasm. So5

5 5 5 5

5 5

5

ÐG Ñ œ ÐF Ñ ÐH Ñ œ ÐF Ñ

ÐG Ñ œ ÐF Ñ

œ ÐF Ñ œ

3 345 4 3454œ" 5œ" 3œ" 5œ"

8 :Ð3ß4Ñ 7 :Ð3ß4Ñ

3œ" 3œ" 4œ" 5œ"

7 7 8 :Ð3ß4Ñ
3 345

4œ" 3œ" 5œ"

8 7 :Ð3ß4Ñ
345

� � � �
� � � �

� � �

, , and

�
4œ"

8
45ÐH Ñ .

Thus, the manner in which  is expressed as a finite disjoint union of members of V − e f
does not affect the sum of the corresponding values of , and we may unambiguously define5

5 5~ when ,ÐVÑ œ ÐW Ñ V œ W� .
;œ" ;œ"

< <
; ;

for any choice of a finite disjoint sequence  of members of  whose union isW ß W ß á ß W" # < f
V.

It remains to check that , so defined, is a fasm on ; which is trivial.~5 e �

The condition that  takes at most one infinite value is implicit in the proof, because I5
have casually assumed that all the sums make sense. It is easy to give examples where fasms
on a semiring do not extend to the generated ring because the condition is not satisfied.
Indeed, it is a necessary as well as sufficient condition:

Lemma 5.8.  Let  be a ring in , and let  be a fasm. Then  can take at moste H 5 e Ò ‘ 5À
one infinite value; that is, if  and , then .I ß I − ÐI Ñ œ ∞ ÐI Ñ # �∞" # " #e 5 5
Furthermore, if  and , then .I © I ÐI Ñ œ „∞ ÐI Ñ œ ÐI Ñ" # " # "5 5 5

Proof.  Suppose  and . By hypothesis , andI ß I − ÐI Ñ œ ∞ I Ï I ß I ∩ I −" # " " # " #e 5 e

5 5 5ÐI Ñ œ ÐI Ï I Ñ � ÐI ∩ I Ñ" " # " # ,

which means that either  or . In the first case,5 5ÐI Ï I Ñ œ ∞ ÐI ∩ I Ñ œ ∞" # " #

I ∪ I − ÐI ∪ I Ñ œ ÐI Ï I Ñ � ÐI Ñ" # " # " # #e 5 5 5 and , and this excludes the possibility
that , which would make the right-hand side undefined. In the second case,5ÐI Ñ œ �∞#

I ª I ∩ I ÐI Ñ œ ÐI Ï I Ñ � ÐI ∩ I Ñ ÐI Ñ œ ∞# " # # # " " # #, and , which forces . (This5 5 5 5
argument also proves the last assertion of the Lemma.) The proof with  instead of  is�∞ ∞
identical. �

This is a typical example of arguments about infinities such as I warned of in the introduc-
tion to §2. The result has no substantial “mathematical content”; it says merely that, if we
want to allow infinite values for fasms on a ring, consistency demands that we only have one.
As I have commented before, it does simplify proofs if one forbids infinite values.

Some authors speak of “set functions”, meaning functions defined on classes of sets. This
has the advantage that a “fam” is a , so that the morenonnegative finitely additive set function
specialized notion is defined, as one would normally expect, by adding restrictive adjectives
to the more general one (whereas the phrase “finitely additive measure” is linguistically
perverse — it need not, in principle, be a  in the usual sense 5.10 at all). However, Imeasure
think my terminology is the common one.

Lemma 5.9.  If  and  are members of the ring  in , and is fam on , andQ R +e H . e
Q © R ÐQÑ Ÿ ÐRÑ, then .. .
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Proof.  This is much the same argument as 5.8, with  now non-negative:.ÐR Ï QÑ

R Ï Q − ÐRÑ œ ÐQÑ � ÐR Ï QÑ � ÐQÑe . . . .and . �

This property of  is sometimes expressed by saying that  is an “increasing set function”.. .

Definition 5.10.  Let  as before, and .  is described as T c H . T Ò ‘ .© Ð Ñ À countably
additive on  if, whenever  is a pairwise disjoint sequence of elements of  whoseT TÐE Ñ3 3œ"

∞

union is also in , , thenT TE ³ E −-
3œ"
∞

3

. .ÐEÑ œ ÐE Ñ�
3œ"

∞
3 . (19)

A  on  is a countably additive fasm on . A  on  is a signedsigned measure measureT T T
measure that takes only non-negative values; that is, a countably additive fam on .T

Thus, as I have already remarked, a “signed measure” need not be a measure, and a
“fasm” need not be a signed measure. I have stated explicitly above that a signed measure
must be finitely as well as countably additive; in practice, one usually has  andg − T
.ÐgÑ œ ! , and then countable additivity  finite additivity. (19) is to be understood, asimplies

always, as including the assertion that the sum on the right-hand side makes sense in .‘
The phrase “countably additive” is often abbreviated to “ -additive”. Some people (e.g.5

Munroe) call it “completely additive”, or “totally additive”. Since the fundamental fact of the
course is that measures can be defined on rather large classes , it is worth pausing to pointT
out the reason why we stop at additivity. The equality (19) is only admissiblecountable 
because we have a satisfactory notion of “addition” for countable classes of non-negative
numbers (see 2.15, for instance; but notice that the sum in (19) must be unconditionally
convergent, since  is also the union of any rearrangement of the sequence ). TemptingE ÐE Ñ3
as it is to try to construct “uncountably additive” measures, the idea is unsatisfactory in
practice because subset of  is a possibly  disjoint union of singletons. Ifany uncountable‘
(19) were often to hold, and uncountably many singletons were to have positive measure, this
would mean that unacceptably many sets would have infinite measure; if only countably
many singletons had positive measure, unacceptably many sets would have zero measure. The
usefulness of Lebesgue measure, on the other hand, is related to the profusion of sets with
positive finite Lebesgue measure.

As with 5.6, the definitions above lack content if elements of  are never countableT
disjoint unions of sequences in . The “natural” domain for a fasm is a ring, in which the setT
operations that enable us to extract the full value of the additivity condition (18) do not take
us outside the domain of ; for signed measures, the corresponding natural domain is a -. 5
ring.

Definition 5.11.  A -ring in the set  is a subset  of  such that5 H D c HÐ Ñ

(a) (b)
(c)

 ; if , then ;
if  is any sequence in , then .
g − Iß J − I Ï J −
ÐI Ñ I −

D D D

D D3 33œ"
∞

3œ"
∞-

Lemma 5.12.  A -ring is a ring. If , then ; if  is any5 D DIß J − I ∩ J − ÐI Ñ3 3œ"
∞

sequence in , then .D D+
3œ"
∞

3I −
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Proof.  The first statement: take , , , in Then, asI ³ I I ³ J â œ I œ I ³ g Þ" # % $ (c)
in the remarks after 5.1,  when .I ∩ J œ I Ï ÐI Ï J Ñ − Iß J −D D

For the last statement: take , by . Then, by ,  forU ³ I − U Ï I −-
3œ"
∞

3 3D D(c) (b)
each . Applying , . By , .  3 ÐU Ï I Ñ − I œ U Ï ÐU Ï I Ñ −(c) (b)- + -� �3œ" 3œ" 3œ"

∞ ∞ ∞
3 3 3D D �

In short, a -ring is a ring in which countable as well as finite unions and intersections are5
permitted. A simple example is the class of countable sets in , which is a -ring by 1.2. The‘ 5
question arises what -rings look like in general.5

Lemma 5.13.  Suppose . There exists a smallest -ring in  that includes : thatT c H 5 H T© Ð Ñ
is, there is a -ring which itself includes  and is included in any -ring that includes .5 T 5 T

Proof.  Let  denote the class of all -rings in  that include .  is not empty, for — —5 H T c HÐ Ñ
itself is a member of . Define—

D T Dw

−
Ð Ñ ³ ,

D —
. (20)

It is easy to check that, as 5.11 , , and  hold for each , they hold also for(a) (b) (c) D − —

D T 5 T 5wÐ Ñ , which is therefore a -ring. It obviously includes , and is included in any -ring
that includes .T �

An exactly similar argument can be given to prove the existence of a “least ring including
T”, or of a “least vector subspace including a given subset of a vector space”, and so on.
Notice that , for each -ring is a member of .— − Ð Ð Ð ÑÑÑ Ð Ð ÑÑc c c H 5 c c H

One might try to   as follows, imitating 5.5. Let , and,construct D T T Tw
!Ð Ñ ³ ∪ Ög×

when  is known, let  consist of all the subsets of  that may be obtained either asT T H8 8�"

the countable union of sets in  or as the difference of two sets in . Having thus definedT T8 8

T � T T D T T8 ∞ 8 ∞8œ!
∞ w inductively for , take . One expects that .8 − ³ Ð Ñ œ-

Unfortunately, it is impossible to prove that  satisfies 5.11 , and there are casesT∞ (c)
where it does not (  may be the class of open sets in . The proofs are non-trivial; you canT ‘
find them in Hausdorff or Kuratowski). The problem is that an infinite sequence of members
of  may take its th term from . In fact, the procedure does work if youT T T∞ 8 8�"8 Ï
continue the inductive construction to transfinite ordinals and stop, not, as we did, at the first
infinite ordinal, but at the first uncountable ordinal. However, in doing so, you lose any
explicit description of the members of , so there is not much point.D TwÐ Ñ

The moral is that, for most practical purposes, results about -rings have to be proved by5
“implicit” methods. Here is a simple example.

Lemma 5.14.  Let . Then, for any , there is a sequence  ofT c H D T© Ð Ñ F − Ð Ñ ÐE Ñw ∞
3 3œ"

members of  such that .T F © E-
3œ"
∞

3

Proof.  Let  be the class of subsets of  which are included in  countable union ofU Hall some
members of . Clearly , and  is trivially a -ring. Hence . But this isT U T U 5 U D Tª ª Ð Ñw

just the assertion of the Lemma. �

It should be emphasized that the sequence  “depends on ” — it is definitely notÐE Ñ F3

always true that there is a single sequence that works for all members of . A veryD TwÐ Ñ
simple example is when  is the class of singletons in ; then  is exactly the class ofT ‘ D TwÐ Ñ
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countable subsets of , each of which can be covered by some sequence of singletons, but (as‘
‘ is uncountable) they cannot all be covered by the same sequence of singletons.

Proposition 5.15.    be an outer measure in . Then the class  of -measurable setsP/> . H D .‡ ‡

in  is a -ring in , and  is a measure.H 5 H . D D Ò ‘‡l À

Proof.  This is a restatement of (part of) Carathéodory’s Theorem 4.9. �

§6. Countable additivity.

In this section we can at last discern a practical construction of measures.

Proposition 6.1.  Let  be a ring in  and  a fam. Regard  as a weightinge H . e Ò ‘ .À
function in  (that is, take  and  in ). Then  (the -ring generatedH V e 7 . D e 5³ ³ Ð Ñ3.2 w

by , cf.  of ) consists of -measurable sets.e .(20) 5.13 †

Proof.  Take a test set  and . If  is a sequence in  covering ,E − Ð Ñ Q − ÐQ Ñ Ec H e e3 3œ"
∞

then  is a sequence in  covering , and  is a sequence in ÐQ Ï QÑ E Ï Q ÐQ ∩ QÑ3 3e e
covering  . Hence, from the definition of  (see 3.3),E ∩ Q .†

. . . .

. .

. . e

† †ÐE Ï QÑ � ÐE ∩ QÑ Ÿ ÐQ Ï QÑ � ÐQ ∩ QÑ

œ Ð ÐQ Ï QÑ � ÐQ ∩ QÑÑ

œ ÐQ Ñ

� �
�
�

3œ" 3œ"

∞ ∞
3 3

3œ"

∞
3 3

3œ"

∞
3

by 2.15 

as  is a fam on .

Taking the infimum over all such sequences , we find thatÐQ Ñ3

. . .† † †ÐE Ï QÑ � ÐE ∩ QÑ Ÿ ÐEÑ .

The opposite inequality comes from 3.4 , . It follows that  is -measurable.(a) (c) Q .†

By Carathéodory’s theorem 4.9, the class  of -measurable sets is a -ring. I have justD . 5†

shown that . Hence , as asserted. D e D D eª ª Ð Ñw �

This result gives a situation of obvious practical significance (one could take  to be thee
class of polygons in  and  to be the area — see §2C) in which an outer measure has a‘ .#

large class of measurable sets. However, it is  asserted that  is exactly the class ofnot D ewÐ Ñ
. .† †-measurable sets; in fact, there are usually very many more -measurable sets than belong
to . The other defect of the Proposition is that, so far, we know nothing about theD ewÐ Ñ
values of the measure  on . It might even be identically zero; or its values might, in. D e† wÐ Ñ
practice, be extremely difficult to calculate, which would make it awkward to integrate with
respect to. We can, however, find a simple criterion that fixes some values of ..†

Lemma 6.2.  In ,  if and only if  is countably additive on . 6.1 . e . . e†l œ

Proof.  By Carathéodory’s theorem 4.9,  is countably additive on the class of -. .† †

measurable sets; by 6.1, this class includes . So, if ,  must be -additive on .e . e . 7 5 e†l œ
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Suppose that  is -additive on  and . As  is covered by the sequence. 5 e eE − E
Eß gß gß á ÐEÑ Ÿ ÐEÑ in , clearly . (21)e . .†

Let  be any sequence in  that covers ; then set  for eachÐQ Ñ E Q ³ Q ∩ E −3 33œ"
∞ w

3e e

3, and disjunctify as at 4.7:

R ³ Q ß R ³ Q Ï Q 3 −" 3�"" 3�" 5
w w w

5œ"

3Š ‹. for .�

Then  is a disjoint sequence in  (as I remarked after 5.1),  for each , andÐR Ñ R © Q 33 3 3e

E œ Q œ R. .
3œ" 3œ"

∞ ∞

3
w

3 .

By the hypothesis that  is countably additive on , . However, for. e . .ÐEÑ œ ÐR Ñ�
3œ"
∞

3

each ,  by 5.9; hence . This holds for any sequence3 ÐR Ñ Ÿ ÐQ Ñ ÐEÑ Ÿ ÐQ Ñ. . . .3 3 33œ"
∞�

ÐQ Ñ E ÐEÑ Ÿ ÐEÑ3  in  that covers , and so . With (21), this completes the proof. e . .† �

Theorem 6.3.  Let  be a ring in  and  a measure. Then there is a measure e H . e Ò ‘ .À s
on  such that , namely .D e . e . . . D eÐ Ñ l œ ³ l Ð Ñs s †

Proof.   4.9, 6.1, and 6.2. �

Lemma 6.4.  Let  be a semiring in , and let  be a fasm on  which takes onlyf H . f Ò ‘ fÀ
one infinite value. The induced fasm  (see ) is -additive on  if and~. e f Ò ‘ 5 e fÀ Ð Ñ Ð Ñ 5.7
only if  is -additive on .. 5 f

Proof.  Exercise. �

We now have a method for constructing measures. In effect, all we have to do is to define
a countably additive measure on a semiring , which (provided it takes at most one infinitef
value) will then extend to a measure on the whole of the generated -ring. However, there are5
a number of loose ends. Perhaps the most conspicuous is that the class  of -measurable` .†

sets always contains  itself, by 4.9 , whereas  may not —  may, for instance, beH D f f(a) wÐ Ñ
the class of singletons in , and  might take the value  on each singleton.‘ . "

It is also clear from 4.9 that, if  and , then  subset of  alsoQ − ÐQÑ œ ! Q` .† any
belongs to . This property (it is, unfortunately, usually called “completeness” of the`
measure) need not be true for . A subtler objection is that, as I observed after 4.9, theD ewÐ Ñ
Suslin operation applied to members of  yields members of , and it is more general than` `
countable unions; one might therefore suppose that the results should be formulated for
classes of subsets of  closed under the Suslin operation.H

The course I have taken is, however, justifiable. To deal with the last objection first — I
have already remarked that the Suslin operation is rarely used in mainstream analysis, and it
will turn out that for all of this course, and for most purposes outside it, we need only deal
with differences and countable unions. We should not, therefore, demand that our measures
have properties stronger than we need for our later theory, since we want our theorems to be
as general as possible. The same applies to completeness; indeed, probabilists absolutely must
work with incomplete measures much of the time.

The objection that  must be -measurable, but may not be in , is in a way moreH . D e† wÐ Ñ
serious. Broadly speaking, the reason I have used  above is that there is a uniquenessD ewÐ Ñ
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theorem: if  is a measure on , and satisfies a “ -finiteness condition”, then it. e Ò ‘ e 5À
has only one possible extension to a measure . This is not true if one allows. D e Ò ‘s À Ð Ñw

the extended measure to have a larger domain. For this reason, -rings have an important part5
in the theory, and Halmos goes so far as to develop everything in terms of them. But I shall
not follow him. He is almost the only writer who has so consistently avoided the use of -5
algebras, and the conclusion of his efforts — after considerable striving — is that, in practice,
there is little reason to do so. The uniqueness theorem is the only point where -rings really5
make a difference; and, to save time, I shall not discuss it here anyway.

Definition 6.5.  A class  of subsets of  is a  or  in  (a or  D H Hfield algebra field algebra of
subsets of -field -algebraH) if it is a ring in  and in addition . It is a  or  in  if it isH H D 5 5 H−
a -ring in  and in addition .5 H H D−

Probabilists tend mostly to speak of -fields and analysts more often of -algebras, but5 5
there is no rule. Notice that Carathéodory’s theorem 4.9 says that the class of sets measurable
with respect to an outer measure is a -algebra, not just a -ring.5 5

Exactly as in §5, one may construct, for any , a least -field in  that includesT c H 5 H© Ð Ñ
T 5 T D T; it is simply the intersection of all the -fields that include . I shall denote it by .Ð Ñ

Lemma 6.6.  For any , .T c H D T H D T© Ð Ñ Ð Ñ œ Ö] © À ] − Ð Ñw or H D TÏ ] − Ð Ñ×w

Proof.  Firstly, any -field  which includes  is a -ring, so ; and, as ,5 D T 5 D D T H Dª Ð Ñ −w

H D D D TÏ ] − ] − ] − Ð Ñ for any , and in particular for any . Hencew

D U H D Tª ³ Ö] © À ] − Ð Ñw or (22)H D TÏ ] − Ð Ñ×w .

On the other hand, whenever , then  too; as , necessarilyF − Ï F − ª Ð ÑU H U U D Tw

g − − Iß J − Ð ÑU H U U D T, and therefore . Now suppose . If both belong to , thenw

I Ï J − Ð Ñ Ð Ñ Ï Iß Ï J − Ð ÑD T D T 5 H H D Tw w w because  is a -ring. If , then

I Ï J œ Ð Ï J Ñ Ï Ð Ï IÑ − Ð ÑH H D Tw .

If , then  by the definition, 5.11, and soH D T H D TÏ Iß J − Ð Ñ Ð Ï IÑ ∪ J − Ð Ñw w

I Ï J œ Ï ÐÐ Ï IÑ ∪ J Ñ −H H U ,

whilst  by 5.12.J Ï I œ Ð Ï IÑ ∩ J − Ð ÑH D Tw

Finally, suppose  is a sequence in . We may split it into a sequence  inÐQ Ñ ÐI Ñ3 7U
D T H D Tw w

8 8Ð Ñ ÐJ Ñ Ï J − Ð Ñ 8, and a sequence  such that  for each . Either or both of these
sequences may be a finite sequence, or indeed have no terms at all. Now

  by 5.11, by 5.12,. ,
7 87 8

w wI − Ð Ñ Ð Ï J Ñ − Ð ÑD T H D T

and so, if the sequence  is non-empty, ,ÐI Ñ Q œ I Ï Ï J − Ð Ñ7 3 7 83 7 8
w- - +� � � �� �H D T

whilst otherwise .H H D TÏ Q œ Ï J − Ð Ñ� � � �- +
3 83 8

w

Hence,  is a -field. From (22), it is the least -field including .U 5 5 T �

In the cases that will mostly interest us,  anyway.D T D TÐ Ñ œ Ð Ñw

Lemma 6.7.  Suppose that  is such that, for some sequence  in ,T c H T© Ð Ñ ÐE Ñ3 3œ"
∞

H D T D Tœ E Ð Ñ œ Ð Ñ-
3œ"
∞

3
w. Then .
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Proof.  Indeed, , as it is a countable union of members of .H D T T D T− Ð Ñ © Ð Ñw w

Definition 6.8.  Let  be a topological space with topology . The  of ,H g HBorel -algebra5
often denoted , is . The members of  are the  of  (with respectU H D g D g HÐ Ñ Ð Ñ Ð Ñ Borel sets
to the topology ).g

Since I shall later be taking  to be an interval in , it is worth recalling that the H ‘ subspace
topology relative topology or  in a subset  of a topological space  is the class\ Ð ß ÑH g

Ö\ ∩ Y À Y − ×g

of subsets of . That is, we  a set to be open in  if it is the intersection with  of a\ \ \define
set open in .H

§7. Convergence ideas.

Definition 7.1.  Let  be a sequence in . DefineÐQ Ñ Ð Ñ8 8œ"
∞ c H

lim sup lim sup lim sup lim8Ä∞ 8 8 8 8 8
8Ä∞ 5œ" 8œ5

∞ ∞
Q œ Q œ Q œ Q ³ Q, .Š ‹ ,

the or  of the sequence, andupper limit limes superior

lim inf lim inf lim inf lim8Ä∞ 8 8 8 8 88Ä∞ 5œ" 8œ5

∞ ∞
Q œ Q œ Q œ Q ³ Q. ,Š ‹ ,

the  or  of the sequence.lower limit limes inferior

Lemma 7.2.  lim supQ Q8 8 is the set of all elements of  that are in  for infinitely manyH
indices , whilst  is the set of elements of  that belong to  for all  with8 Q Q 8lim inf 8 8H
finitely many exceptions: that is , if #  and3 / � �" 8ÐBÑ ³ ÐÖ8 − À B − Q ×Ñ − ∪ Ö∞×
/ �# 8ÐBÑ ³ ÐÖ8 − À B Â Q ×# ,

lim sup lim infQ œ ÖB À ÐBÑ œ ∞× Q œ ÖB À ÐBÑ � ∞×8 " 8 #/ /, . �

Corollary 7.3.  For any sequence  in ,  andÐQ Ñ Ð Ñ Q © Q8 8 8c H lim lim

H HÏ Q œ Ð Ï Q Ñlim lim8 8 . �

3 I use the “hash” sign # to mean “the number of elements in (the set in question)”, understood as being
either a non-negative integer or . There are several reasons. The notation  you may be more accustomed to∞ Ek k
is a little confusing in our context, where absolute values of real numbers and moduli of complex numbers can
also appear; this is the same as my reason for preferring  to  for set difference. But also I suspect theÏ �
notation  usually denotes “the cardinal of ”; for infinite , it may be many different infinities.k kE E E



43

Definition 7.4.  Let  be a sequence in . DefineÐ Ñ0 ‘8 8œ"
∞

Ÿlim sup lim sup lim sup lim inf sup

lim inf lim inf lim inf lim sup inf

8Ä∞ 8 8 8 8 5− 8�5 8
8Ä∞

8Ä∞ 8 8 8 8 5− 8�5 88Ä∞

0 0 0 0 0

0 0 0 0 0

œ œ œ ³

œ œ œ ³

�

�

,

  .
(23)

Definition 7.5. Given the sequence  in , say that  is an [or Ð Ñ ? −0 ‘ ‘8 upper number lower
number] for the sequence if the inequality  [or ] holds for only finitely many? � ? #0 08 8

indices .8

Clearly, if  is an upper number for the sequence and , then  is also an upper? @ # ? @
number. However, there may or may not be a  upper number, so that they need not formleast
a Dedekind cut (cf. 0.1 ).(iii)

Lemma 7.6. (a)  is the greatest extended real number which is the limit in  of anlim 0 ‘8

infinite subsequence of . It is also the infimum in  of the set of upper numbers for ;Ð Ñ Ð Ñ0 ‘ 08 8

thus any number greater than  is an upper number.lim 08

(b)  is the least extended real number which is the limit in  of an infinitelim 0 ‘8

subsequence of . It is also the supremum in  of the set of lower numbers for ; thusÐ Ñ Ð Ñ0 ‘ 08 8

any number less than  is a lower number.lim 08

(c) .lim lim0 08 8Ÿ

Proof.  Firstly, . For any , . So  (for a(c) 5ß 6 − Ÿ Ÿ� 0 0 0 0inf sup sup8�5 8 8�6 8 8�6 8Ð5ß6Ñmax

given ) is an upper bound for , and6 Ö À 5 − ×inf8�5 80 �

sup sup inf lim8�6 8 5− 8�5 8 80 0 0� œ� .

As this is true for any , we find similarly that .6 œ �lim inf sup lim0 0 08 6− 8�6 8 8�

Now for . Let  be an upper number for the sequence. There exists  such that (a) - 5 Ÿ -08

for ; so, for , , and .8 � 5 6 � 5 Ÿ Ÿ - Ÿ -sup sup lim8�6 8 8�5 8 80 0 0

Conversely, if , by 0.6 there exists some  such that- # ³ 5lim inf sup0 08 5− 8�5 8�

sup8�5 8 80 0� - � - 8 � 5 -, and consequently  whenever . So  is an upper number. This
proves that  is the infimum of the upper numbers. Notice too that if , welim lim0 08 8

w- #
can take , and then  is an upper number; this implies that no subsequence of- − Ð ß - Ñ -lim 08

w

Ð Ñ -08
w can converge to .

Suppose  have been chosen. Take , and then we8Ð"Ñß 8Ð#Ñß á ß 8Ð<Ñ - ³ � #lim 08
�<�"

have just seen that  for all , for some suitable ; take ,0 08 8
�<�"� - 8 � 5 5 . ³ � #lim

and then , , and there must be some. � # .inf sup sup5 8�5 8 88� Ð5ß8Ð<Ñ�"Ñ0 0max

8Ð< � "Ñ � Ð5ß 8Ð<Ñ � "Ñ . � � -max  for which . In this way we can construct,08Ð<�"Ñ

inductively, a subsequence  such that, for each ,Ð Ñ <08Ð<Ñ <œ"
∞

lim lim0 0 08 8
�< �<

8Ð<Ñ� # � � � # .

It therefore converges to . As shown above, no  number can be the limit of alim 08 larger
subsequence. This proves ;  is proved similarly (or by considering ).(a) (b) Ð� Ñ08 �

It is clear that there is a similarity between the set-theoretic meaning of  and itslim
meaning for real-number sequences. It is possible to give a common formulation.
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Suppose that  is a partially ordered set. We may say it isÐX ß Ÿ Ñ  countably order-
complete if any countable subset has an infimum and a supremum. Then any sequence Ð> Ñ8

in  has upper and lower limits defined by (23). It is an exercise to show thatX
lim lim> Ÿ >8 8 .

The two cases studied above are , with “ ” meaning “ ”, andX ³ Ð Ñ E Ÿ F E © Fc H

X ³ ‘ , with the usual order. Both of them are  in the sense that  subsetsorder-complete all
have a supremum and an infimum, not just countable sets. For a subset  of ,T c HÐ Ñ

sup infT Tœ E œ E. ,
E− E−T T

, .

(I leave it as an exercise to check these assertions).

Lemma 7.7.  Let the partially ordered set  be countably order-complete. Suppose that X Ð> Ñ8

and  are sequences in .Ð= Ñ X8

(a) If  except for finitely many indices , then  and= Ÿ > 8 = Ÿ >8 8 8 8lim lim
lim lim= Ÿ >8 8 .

(b) If  is an infinite subsequence of , thenÐ> Ñ Ð> Ñ8Ð5Ñ 5œ"
∞

8

lim inf lim inf lim sup lim sup
8Ä∞ 8 8

5Ä∞
8Ð5Ñ 8Ð5Ñ

5Ä∞ 8Ä∞
> Ÿ > Ÿ > Ÿ > .

(c) Both  and  are unchanged if finitely many terms are omitted from thelim lim> >8 8

sequence. �

For , there is the added complication that it is only boundedly order-complete (see 0.3);‘
this means that, to make the definitions 7.4, it would be necessary to hypothesize from the
start that  is bounded above and below, and then the upper and lower limits in  are theÐ Ñ0 ‘8

same as those in .‘

Definition 7.8.  The sequence  in the countably order-complete partially ordered setÐ> Ñ8

ÐX ß Ÿ Ñ > œ > > is  if . If that is so, the common value of order-convergent lim lim lim8 8 8

and  is called the of , which is said to  to it. Inlim > Ð> Ñ8 8order-limit order-converge
particular,

Definition 7.9.  A sequence  of subsets of a set  is  if .ÐQ Ñ Q œ Q8 8 8H convergent lim lim
In that case, the common value of the limits is called the  of the sequence.limit

This notion of convergence of a sequence of sets was, I believe, originally proposed by
Fréchet; as far as we are concerned, it is the only one of interest, which is why it is not usually
called “order-convergence”. By 7.2, one may characterize it as follows:  is convergentÐQ Ñ8

if and only if every element of  that belongs to  for infinitely many indices actuallyH Q8

belongs to  for all indices with finitely many exceptions. This is clearly a very strongQ8

condition, but it is satisfied in some useful situations.

Definition 7.10.  Let  be a partially ordered set. A sequence  in  is  (weX Ð> Ñ X8 8−� increasing
write ) if, for all n , ; it is  (or ) if  for all> Å − > Ÿ > > Æ > � >8 8 8�" 8 8 8�"� decreasing
8 − � ; it is  if it is either increasing or decreasing.monotonic

Lemma 7.11.  A monotonic sequence in a countably order-complete partially ordered set is
order-convergent. An increasing sequence order-converges to its supremum and a decreasing
sequence order-converges to its infimum.
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Proof.  If , then, for all , , whilst ; hence,> Å 5 > œ > > œ >8 8�5 8 8− 8 8�5 8 5sup sup inf�

lim inf sup sup sup sup inf> œ > œ > œ > œ >8 5− 8− 8 8− 8 5− 5 5− 8�5 8� � � � � .

Similarly if .> Æ8 �

We have now had two distinct notions of convergence for sequences of real numbers:
metric convergence, 0.10, and order-convergence, 7.8 (strictly speaking, either for bounded
sequences only, or for sequences in ). They are equivalent. This fact is one of the central‘
properties of real numbers, like Dedekind-completeness, metric completeness, or the
compactness of closed bounded intervals; each implies the others, in the sense that, once you
have defined  in a fashion that makes one of them true, the others may be deduced without‘
further use of the definition. For this reason, there are many different ways of proving all
three facts.

Proposition 7.12.  A sequence  in  converges to  if and only if it order-Ð Ñ −0 ‘ 0 ‘8

converges to . A sequence  in  converges to  if and only if it is bounded and0 0 ‘ 0 ‘Ð Ñ −8

order-converges to .0

Proof.  The definitions 0.10 and 2.6 may be consolidated:  converges to  if and only if,Ð Ñ0 08

for any  such that , there is  for which .+ß , − + � � , R − 8 � R + � � ,‘ 0 � Ö 08

(If  is infinite, for instance , no  exists and the second inequality holds vacuously.) It0 ∞ ,
follows that  is an upper number and  is a lower number for the sequence, and so, by  7.6,, +

+ Ÿ Ÿ Ÿ ,lim lim0 08 8 . (24)

This holds for any , and it follows that, necessarily, .+ � � , œ œ0 0 0 0lim lim8 8

(Suppose, for example, that ; we could take  such that , and this0 0 0 0� , � , �lim lim8 8

would contradict (24)).
Now suppose the sequence order-converges to . Let . By 7.6,  is an upper0 0+ � � , ,

number and  a lower number, so there exist  such that+ R ß R" #

8 � R Ÿ , 8 � R � ," 8 # 8Ö 0 Ö 0, .

Take , and then , so that  converges to .R ³ ÐR ß R Ñ 8 � R + Ÿ Ÿ ,max " # 8 8Ö 0 0 0 �

I can now give a simple proof of Cauchy’s “General Principle of Convergence”, 0.11.

Theorem 7.13.  A sequence in  is convergent (in ) if and only if it is Cauchy.‘ ‘

Proof.  Suppose . Then, for any , there exists  such that 0 0 ‘ % 0 0 %8 8
"
#Ä − # ! R � �k k

whenever . Hence, if , .8 � R 7ß 8 � R � Ÿ � � � � � œk k k k k k0 0 0 0 0 0 % % %7 8 8 7
" "
# #

That is, the sequence is Cauchy. (The statement 0.12 in a general metric space has the same
proof, using the triangle inequality for the metric).

Now suppose that the sequence  is Cauchy. Firstly, take “ ” in the definition;Ð Ñ ³ "0 %8

there is  such that  for all . This implies (fix  to be ) thatR � � " 7ß 8 � R 7 Rk k0 08 7

0 0 0R 8 R� " Ÿ Ÿ � " 8 � Rfor all .

The sequence is therefore bounded (an upper bound is , and amaxÖ ß ß á ß ß � "×0 0 0 0" # R�" R

lower bound is ). So  are defined in .min lim limÖ ß ß á ß ß � "× ß0 0 0 0 0 0 ‘" # R�" R 8 8



46

Now suppose  is an arbitrary positive number. Then, there exists  such that% R w

8 � R � � � �w
R 8 RÖ 0 % 0 0 %w w .

Hence,  is a lower number,  is an upper number, and so, by 7.6,0 % 0 %R Rw w� �

0 % 0 0 0 %R 8 8 Rw w� Ÿ Ÿ Ÿ �lim lim ,

from which . This conclusion must hold for any ; so the! Ÿ � Ÿ # # !lim lim0 0 % %8 8

sequence is order-convergent. Apply 7.12. �

I have developed the proofs above in a rather leisurely fashion in the hope of emphasizing
the concepts involved, for we shall have other uses for upper and lower limits. But there are
many other possible proofs of 0.11. For instance, it is easy to prove that, if a Cauchy sequence
(in a metric space) has a  convergent to a point , then the whole sequencesubsequence B
converges to . As above, a real Cauchy sequence is bounded; so one need only prove thatB

a bounded sequence has a convergent subsequence. (25)

This is also included in 7.6. (If one started from a different point, for instance from Cantor’s
definition of the reals, (25) might be a consequence of the Bolzano-Weierstraß theorem).

Definition 7.14.  Let  be any set, and  a nonnegative extended-real-valuedH H Ò0 À Ò!ß ∞Ó
function. The of  areordinate sets 0

> 0 H 0

> 0 H 0

Ð0Ñ ³ ÖÐBß Ñ − ‚ Ò!ß ∞Ó À ! Ÿ � 0ÐBÑ×

Ð0Ñ ³ ÖÐBß Ñ − ‚ Ò!ß ∞Ó À ! Ÿ Ÿ 0ÐBÑ×

,

.

In other words,  is the set of points  the graph of , and  the set> >Ð0Ñ 0 Ð0Ñstrictly underneath
of points  the graph of . These are not standard notations.under or on 0

Remark 7.15.  The class  of functions  can itself be given a partial order, ifY H Ò ‘0 À
we define “ ” to mean that . (This may be called the ‘pointwise0 Ÿ 1 ÐaB − Ñ 0ÐBÑ Ÿ 1ÐBÑH
order’; notice that it is  a total order, unless  is a singleton or .) Then  is order-not H Yg
complete. It is easy to see that, if  is a subset of , its supremum is the function , wherek Y 1

ÐaB − 1ÐBÑ ³ Ö0ÐBÑ À 0 − ×H k) .sup

(  is the ‘pointwise supremum’ of .) The infimum of  is similarly constructed pointwise.1 k k

We may therefore define the upper and lower limits of sequences of functions H Ò ‘
according to the order in the class of functions, and they agree with the “pointwise limits”.
Indeed, it is only necessary to know for this purpose that classes of functions havecountable 
suprema and infima, a remark of some later significance.

Lemma 7.16.  Let  be a sequence of nonnegative extended-real-valued functions. ThenÐ0 Ñ8

> > > >Ð 0 Ñ © Ð0 Ñ Ð0 Ñ © Ð 0 Ñlim inf lim inf lim sup lim sup8 8 8 8, .

Proof.   (  in )

(   in ).

ÐBß Ñ − Ð 0 Ñ ! Ÿ � Ð 0 ÑÐBÑ

! Ÿ � Ð0 ÐBÑÑ

0 > × 0 Y

× 0 ‘

lim lim lim

lim lim
8 8

8
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By 7.6,  means that  is a lower number for ,0 0� Ð0 ÐBÑÑ Ð � Ð0 ÐBÑÑÑ Ð0 ÐBÑÑlim lim8 8 8
"
#

which in turn means (by the definition 7.5) that there exists  for whichR
0 ÐBÑ � Ð � Ð0 ÐBÑÑÑ 8 � R 8 � R8 8

"
# 0 lim  whenever . Hence, for ,

0 ÐBÑ � Ð � Ð0 ÐBÑÑÑ # ÐBß Ñ − Ð0 Ñ8 8 8
"
# 0 0 0 >lim , .

That is,  except for finitely many indices, . This showsÐBß Ñ − Ð0 Ñ ÐBß Ñ − Ð0 Ñ0 > 0 >8 8lim inf
that . The other result is proved similarly (or by “duality”).> >Ð 0 Ñ © Ð0 Ñlim lim8 8 �

§8. Measurable and measure spaces.

Definition 8.1.  A  is a pair  consisting of a set  and a -algebra measurable space Ð ß ÑH D H 5 D
of subsets of .  may be described as the  on . A subset  of  isH D H Hmeasurable structure I
described as  with respect to the given measurable structure , or as  measurable -D D
measurable, if it is a member of ; and  may also be described as the -algebra (or algebra)D D 5
of measurable sets in .H

This is the modern convention: we specify a -field of “measurable” sets, as it were by5
decree. Of course one important way of doing so is via an outer measure  in , but I have. H‡

been careful to speak in that case of -measurable sets. Very often, the -field  is fixed by. 5 D‡

the context and one talks of measurable sets without further qualification; for instance, when
dealing with sets in , one often describes them as measurable without specifying that they‘8

are measurable with respect to Lebesgue outer measure.
The definition is analogous to the definition of a topological space, and the ambiguities of

terminology are also similar. The  of a topological space arises from the notion of “openidea
set” in , but in the modern version “open sets” are just members of a “topology” — in‘8

effect, they are open by decree. There are thus two conventions in operation, a historical one
and a modern one. In practice this rarely causes difficulty, but you should be aware of it.

Definition  8.2.  A  is a triple , where  is a -field of subsets of measure space Ð ß ß ÑH D . D 5 H

and  is a measure. A   is a triple , where  is a. D Ò ‘ H D 5 DÀ Ð ß ß Ñsigned measure space
5 H 5 D Ò ‘-field of subsets of  and  is a signed measure.À

Much of the following theory requires only that a fixed measure space should be given,
although in probability theory the measurable structure on  can sometimes be variable. OfH
course, we often say “let  be a measure space”, taking the notations  and  as read.H D .

Lemma 8.3.  If  is a measure space and  is a sequence in , thenH DÐI Ñ3 3œ"
∞

. .Š ‹. �
3œ" 3œ"

∞ ∞
3 3I Ÿ ÐI Ñ .

Proof.   “Disjunctify”  to , as at 4.7, so that  for each  andÐQ Ñ ÐR Ñ R © Q 33 3 3 3- -
3œ" 3œ"
∞ ∞

3 3 3R œ Q R. By 5.9 and 2.14, the  being pairwise disjoint,

. . . .Š ‹ Š ‹. . � �
3œ" 3œ" 3œ" 3œ"

∞ ∞ ∞ ∞
3 3 3 3Q œ R œ ÐR Ñ Ÿ ÐQ Ñ . �
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This is of course the same reasoning as I presented in 4.7, but with slightly different
hypotheses. (We could have extended  to  and applied the remark in 4.7 instead.). .†

Remark 8.4.  Suppose that  is a signed measure space, and let , whereÐ ß ß Ñ Eß F −H D 5 D
F © E ÐEÑ œ ÐFÑ � ÐE Ï FÑ ÐFÑ. As  is finitely additive, . If  is finite, one may5 5 5 5 5

deduce from this that , this including the possibility that 5 5 5 5ÐE Ï FÑ œ ÐEÑ � ÐFÑ ÐEÑ
may be infinite (in which case ). If  is infinite, then 5 5 5 5 5ÐE Ï FÑ œ ÐEÑ ÐFÑ ÐEÑ œ ÐFÑ
and the only information on  is that it cannot be the opposite infinity (see 5.8).5ÐE Ï FÑ

Now recall 7.11.

Proposition 8.5.  Let  be a signed measure space. Suppose that  is aÐ ß ß Ñ ÐQ ÑH D 5 8 8œ"
∞

sequence in .D
(a) If  is increasing, then, as , .ÐQ Ñ 8 Ä ∞ ÐQ Ñ Ä Q8 8 85 5� �lim
(b) If  is decreasing and, for some index ,  is finite, thenÐQ Ñ 5 ÐQ Ñ8 55

5 5ÐQ Ñ Ä Ð Q Ñ 8 Ä ∞8 8lim  as .

The conclusion in both cases is that “  commutes with limits”: .5 5 5Ð Q Ñ œ ÐQ Ñlim lim8 8

The finiteness restriction in  is unavoidable; consider , which has Lebesgue(b) Q ³ Ò8ß ∞Ñ8

measure (length)  for all , but whose limit is , of measure .∞ 8 g !

Proof.    Disjunctify, setting , . Then, as  is a(a) R ³ Q R ³ Q Ï Q ÐR Ñ" " 8�" 8�" 8 8

disjoint sequence in  and  is countably additive,D 5

5 5 5 5

5

5 5 5

Ð Q Ñ œ Q œ R œ ÐR Ñ

œ ÐR Ñ

œ ÐQ Ñ

lim

lim

lim

8 8 8 88œ" 8œ" 8œ"

∞ ∞ ∞

<Ä∞ 8œ"

<
8

<Ä∞ <

Š ‹ Š ‹. . �
� by the definition of the “sum”

again as  is -additive.

(b) The sequence  is increasing, with limit (in )ÐQ Ï Q Ñ5 < <œ5
∞ D

. ,Š ‹
<œ5 <œ5

∞ ∞
5 < 5 <ÐQ Ï Q Ñ œ Q Ï Q ,

and so, by ,(a)

5 5Š ‹Š ‹,Q Ï Q œ ÐQ Ï Q Ñ5 < 5 <<œ5

∞

<Ä∞
lim . (26)

As  is finite, 5.8 shows that, for any ,  are5 5 5 5ÐQ Ñ < � 5 ÐQ Ñß ÐQ Ï Q Ñß Q5 < 5 < <<œ5
∞� �+

all finite. From 8.4,

5 5 5

5 5 5

5 5 5 5

ÐQ Ï Q Ñ œ ÐQ Ñ � ÐQ Ñ < � 5

Q Ï Q œ ÐQ Ñ � Q

ÐQ Ñ � Q œ Ð ÐQ Ñ � ÐQ ÑÑ

5 < 5 <

5 < 5 <<œ5 <œ5

∞ ∞

5 < 5 <<œ5

∞

<Ä∞

for each , and 

. Apply (21):

.

Š ‹ Š ‹Š ‹, ,
Š ‹, lim

Since all the terms are finite, it follows that  converges to . However,5 5ÐQ Ñ Q< <<œ5
∞� �++ +

<œ5 <œ"
∞ ∞

< < 8Q œ Q œ Qlim . �

The asymmetry between the increasing and the decreasing cases has substantial
consequences in the later development.
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Lemma 8.6.  Suppose  is a measure space, and  is a sequence in . ThenÐ ß ß Ñ ÐQ ÑH D . D8

. .� �lim inf lim infQ Ÿ ÐQ Ñ8 8 .

Proof.  For each  and each , , so  by5 − < � 5 Q © Q Q Ÿ ÐQ Ñ� . .+ +� �8œ5 8œ5
∞ ∞

8 < 8 <

5.9. But, therefore, . On the other hand,  is an. .� � � �+ +
8œ5 8œ5
∞ ∞

8 <�5 < 8 5œ"
∞

Q Ÿ ÐQ Ñ Qinf
increasing sequence in , so, by 8.5,D

. . .

. .

.

Ð Q Ñ œ Q œ Q

œ Q Ÿ ÐQ Ñ

œ ÐQ Ñ

lim inf lim

sup sup inf

lim inf

8 8 85œ" 8œ5 8œ5

∞ ∞ ∞

5− 8 5− <�5 <8œ5

∞

8

Š ‹ Š ‹. , ,Š ‹
Š ‹,� �

, as asserted. �

Lemma 8.7.  Suppose in that there exists an index  and some set  for which8.6 R E − D
.ÐEÑ � ∞ Q © E 8 � R and  whenever . Then8

lim sup lim sup. .ÐQ Ñ Ÿ Ð Q Ñ8 8 .

Proof.  By 7.7, I may omit the terms  without affecting the limits, and soQ ß Q ß á ß Q" # R�"

I may assume without loss of generality that  for all . Then, using 7.3,Q © E 88

lim sup lim inf
lim inf

lim inf
lim inf lim sup

. . . .

. .

. .

. .

ÐQ Ñ œ ÐEÑ � Ð ÐEÑ � ÐQ ÑÑ

œ ÐEÑ � ÐE Ï Q Ñ

Ÿ ÐEÑ � Ð ÐE Ï Q ÑÑ

œ ÐE Ï ÐE Ï Q ÑÑ œ Q Ñ

8 8

8

8

8 8

by 8.6
( . �

Corollary 8.8.  Let  be a measure space, and  a sequence in  such thatÐ ß ß Ñ ÐQ ÑH D . D8

. . .� �-
8œ"
∞

8 8 8 8Q � ∞ ÐQ Ñ Ð Q Ñ œ ÐQ Ñ.  If the sequence  is convergent, then .lim lim

Proof.  by 8.6

by 7.6

by  8.7,

. .

.

.

Ð Q Ñ Ÿ ÐQ Ñ

Ÿ ÐQ Ñ

Ÿ Ð Q Ñ

lim lim

lim

lim

8 8

8

8

and the hypothesis says the ends of this chain of inequalities are equal. �

The finiteness hypothesis is needed (why?). However, one obvious way of satisfying it
leads to an unexpectedly strong conclusion. This is the . (Thefirst Borel-Cantelli lemma
second Borel-Cantelli lemma involves the notion of independence, so is more explicitly
probabilistic.)

Lemma 8.9.  Let  be a measure space, and suppose that  is a sequence in Ð ß ß Ñ ÐQ ÑH D . D8

such that  . Then .�
8œ"
∞

8 8. .ÐQ Ñ � ∞ Ð Q Ñ œ !lim
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Proof.  Given , there exists  such that  . But now% . %# ! R ÐQ Ñ ��
8œR
∞

8

. . .

. %

Ð Q Ñ œ Q Ÿ Q

Ÿ ÐQ Ñ �

lim 8 8 85œ" 8œ5 8œR

∞ ∞ ∞

8œR

∞
8

Š ‹ Š ‹, . .Š ‹
� , 

so that , for any . Hence .! Ÿ Ð Q Ñ � # ! Ð Q Ñ œ !. % % .lim lim8 8 �

This result is not surprising if one recalls that  consists of the points that appear inlim Q8

infinitely many , and so are “counted infinitely often” in  .Q ÐQ Ñ8 88œ"
∞� .

§9.  Lebesgue-Stieltjes measures in one dimension.

The last two sections, although they have introduced a number of ideas that will be significant
later, have not contributed anything directly to the main question whether we can find
interesting examples of measures — that is, measures defined on large -fields and having5
plenty of finite positive values. Here, at last, we shall construct a substantial class of such
measures in  (or in a subinterval of , though that is a rather trifling generalization).‘ ‘

N Ð+ß ,Ñ will denote a non-null interval in  that is open on the left; that is, of the form  or‘
Ð+ß ,Ó , # + + �∞ Ð+ß ,Ó , � ∞, where  and  may be . (For , we also assume ).

Definition 9.1.  Let  be a function, and .  is 0 À N + − N 0Ò ‘ continuous on the right at
+ + (or ) whenright-continuous at 

Ða # !ÑÐb # !Ñ B − N ∩ Ð+ß + � Ñ 0ÐBÑ � 0Ð+Ñ �% $ $ Ö %k k .

Equivalently,  is right-continuous at  if and only if   is the right-hand end-point of 0 + + Neither
(there may be no right-hand end-point),  is defined and equal to .or lim BÆ+ 0ÐBÑ 0Ð+Ñ

This is the usual definition of continuity at a point , except that attention is restricted to+
values of  to the right of .B +

Definition 9.2.  A function  is a  if0 À N Ò ‘ Lebesgue-Stieltjes distribution function on N
(a)
(b)

it is increasing; that is, whenever  and , then ; and
it is right-continuous at each point of  (or “right

Bß C − N B � C 0ÐBÑ Ÿ 0ÐCÑ
N -continuous on ”).N

I shall abbreviate “Lebesgue-Stieltjes distribution function” to d.f.

Example 9.3.  The  is given by . This(a)  Lebesgue distribution function ÐaB − Ñ 0ÐBÑ œ B‘
is, of course, overwhelmingly the most important example. Other uncomplicated examples
are

0ÐBÑ œ B 0ÐBÑ œ B 0ÐBÑ œ B$ �", , .exp tan

These are all  increasing, continuous, and even differentiable on the whole of .strictly ‘

(b) Set  for . This is a d.f. on , which cannot be extended0ÐBÑ ³ � B # ! Ð!ß ∞Ñ
"

B
further to the left. It is strictly increasing and differentiable.

(c) Set  for  and  for . This is a d.f. on0ÐBÑ œ ! B − Ð�"ß !Ñ 0ÐBÑ œ " B − Ò!ß "Ó
Ð�"ß "Ó !. It is only non-decreasing, and is discontinuous at .
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(d) Set , the integer part of . This is a d.f. on . It is important to notice0ÐBÑ œ ÒBÓ B ‘
that an integer is its own integer part, so that  is a right-continuous function.ÒBÓ

Definition 9.4.  Let   be the class of bounded subintervals of  of the form ,fÐN Ñ N Ð+ß ,Ó
where  is greater than the left-hand end-point of ; that is, they are to be closed on the right+ N
and open on the left, and their closures in  are to be included in .‘ N

f fÐN Ñ N ÐN Ñ is a semiring in . Indeed, the difference of two members of  is the disjoint
union of at most two members of .fÐN Ñ

Definition 9.5.  Let  be a Lebesgue-Stieltjes distribution function on . The corresponding0 N
Lebesgue-Stieltjes weighting function  is defined by7 f Ò ‘0 À

ÐaÐ+ß ,Ó − Ñ ÐÐ+ß ,ÓÑ œ 0Ð,Ñ � 0Ð+Ñf 70 .

As  is increasing,  is nonnegative-valued. Then  (see 3.3) is the 0 7 70 0
† Lebesgue-Stieltjes

outer measure in  induced by LebesgueN 0 . When  is the Lebesgue d.f.,  is called the 0 70
†

outer measure in N . The measure space  in which  is the -field of -ÐN ß ß ÑD . D 5 70 0 0 0
†

measurable subsets of  and  is the N ³. 7 D0 0 0
†¸ Lebesgue-Stieltjes measure space induced

by the d.f. 0 .

The -algebra  does depend on . For instance, it is easily proved that, for the d.f.s of5 D0 0
9.3  and , . We shall see that this cannot be true for the Lebesgue d.f. On the(c) (d) D c0 œ ÐN Ñ
other hand,  may easily be seen to be a fam on  (see 5.6), and therefore by 6.17 f0

D D e f D f D f0
w w wª Ð Ð ÑÑ œ Ð Ñ Ð Ñ. Thus  Lebesgue-Stieltjes measures are defined on ,all

which is in fact the Borel -field in  (see below, 9.10). This raises the possibility of5 N
comparing them, as measures on .UÐN Ñ

The thing still lacking is information on the  of . This will be provided by 6.3values .0

and 6.4, if we can prove that  is countably additive on  and not just finitely additive. Here7 f0

is where the right-continuity of  is required, and the theory at last comes down to earth.0

Theorem 9.6.  Let  and . Suppose given any class  of+ß , − + Ÿ , ÖÐ- ß . Ñ À − E×‘ αα α

open intervals such that . Then there exists a finite subset  of theÒ+ß ,Ó © Ð- ß . Ñ F-
+−E α α

index set  such that .E Ò+ß ,Ó © Ð- ß . Ñ-
+−F α α

A more modern formulation is that any covering of a bounded closed interval by open
intervals admits a finite subcovering. In intuitive terms, most — all but a finite number — of
the open intervals  are redundant for the purpose of covering . This is theÐ- ß . Ñ Ò+ß ,Óα α

original observation of Heine, when he proved that a continous function on a closed bounded
interval is uniformly continuous; Borel was the first to state it explicitly, and, in a generalized
statement, it is the  of certain subsets of a metric space. Finally itHeine-Borel property
became the definition of a  in a topological space: a subset  of the topologicalcompact set \
space  is  if any covering of  by open sets of  admits a finite subcovering (i.e.H Hcompact \
only finitely many of the open sets in the covering are really needed). It is an extremely
important property with many equivalent forms, as you will know if you have done 312. Its
importance lies in its being a “topological version of finiteness”, and the curious thing, of
course, is that interesting compact sets (that is, ones that are not finite) should exist at all.

Undergraduate folklore when I was a student said the proof I am about to give was
invented by a candidate in an examination, faced by a question that expected the “standard”
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proof presented in lectures. It is, indeed, rather simple by comparison with the somewhat
messy arguments that are given in old textbooks.

Proof.  Say that a point  is  if there is a finite subset  of  for whichB − Ò+ß ,Ó \ Ereachable
Ò+ß BÓ © Ð- ß . Ñ B-

α α α−\ . (“You only need finitely many of the given open intervals to reach 
from ”.) Evidently  is reachable (  belongs to of the open intervals). So the set of+ + + one 
reachable points is non-empty and bounded above by . By Dedekind’s axiom, it has a,
supremum . Now there is some index  for which . Since; − Ò+ß ,Ó − E ; − Ð- ß . Ñα α α

- � ; < - � < Ÿ ;α α, 0.6  applies, and there is a reachable point  for which .(ii)
  Let . Then  is also reachable (  may be; ³ Ð; � Ð,ß . ÑÑ − Ð- ß . Ñ ∩ Ò+ß ,Ó ; <w w"

# min α α α

reached by finitely many of the given intervals, and the one additional interval Ð- ß . Ñα α

suffices to reach ), and . As  was the supremum of the reachable points,; ; � ; ;w w

necessarily , which, since  and , can only occur if . We; œ ; . # ; , � ; ; œ ; œ ,w w
α

conclude that  is reachable, which is just what is desired., �

Proposition 9.7.  Let  be a Lebesgue-Stieltjes distribution function. Then the0 À N Ò ‘
associated weighting function  is countably additive on .7 f Ò ‘ f0 À

Proof.  As already remarked (after 9.5),  is a fam on .7 f0

Suppose that  is expressible as the disjoint union of a sequence of sets in :Ð+ß ,Ó − f f

Ð+ß ,Ó œ Ð+ ß , Ó.
5œ"

∞
5 5 .

Here  and  for each . For any , , and if+ � , + � , 5 8 − Ð+ß ,Ó ª Ð+ ß , Ó5 5 5 55œ"
8� -

necessary we may re-index these intervals so that . (It is not+ Ÿ + � + � + � â � +" # $ 8

possible for two left-hand end-points to coincide, if the corresponding intervals are disjoint).
But then, to ensure disjointness, , and,+ � , Ÿ + � , Ÿ + � â � , Ÿ + � , Ÿ ," " # # $ 8�" 8 8

as  is increasing,0

70 8 "

8 8 8�" # " "

ÐÐ+ß ,ÓÑ œ 0Ð,Ñ � 0Ð+Ñ � 0Ð, Ñ � 0Ð+ Ñ

� 0Ð, Ñ � 0Ð+ Ñ � 0Ð, Ñ � â � 0Ð+ Ñ � 0Ð, Ñ � 0Ð+ Ñ

(because ). Of course the re-indexing does not affect0Ð+ Ñ � 0Ð, Ñ ß á ß 0Ð+ Ñ � 0Ð, Ñ8 8�" # "

the sum, so, for any ,8

7 70 0 5 55œ"

8
ÐÐ+ß ,ÓÑ � ÐÐ+ ß , ÓÑ� .

This being so for all , we also have (the sum is the supremum over )8 8

7 70 0 5 55œ"

∞
ÐÐ+ß ,ÓÑ � ÐÐ+ ß , ÓÑ� . (27)

 The difficulty in establishing the contrary inequality is that one cannot usually reorder all
the end-points as a monotonic infinite sequence. For instance, one might have the intervals
Ð# � # ß � # Ó 7ß 8 −�8 �8�7 �8 �8�7�"2  for ; they constitute a countable disjoint covering�
of , but their end-points cannot be set out in a monotonic sequence. (Whether it is to beÐ!ß "Ó
a decreasing or an increasing sequence, it will never go below the largest number  that is#�8

less than the first term listed.)
Suppose that . As  is right-continuous at , there exists  such that% # ! 0 + + − Ð+ß ,Ñw

0Ð+ Ñ � 0Ð+Ñ � 5 , Nw "
# 5% , and, for each  such that  is not the right-hand point of , there exists

, # , , − N 0Ð, Ñ � 0Ð, Ñ � # ,5 5 5
w w w �5�"

5 5 5, with , such that . If  should be the right-hand%
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end-point of , one may extend the definition of  so that, for any , ,N 0 B # , 0ÐBÑ œ 0Ð, Ñ5 5

and let  be any number greater than . Now, ,5
w

5

Ò+ ß ,Ó © Ð+ß ,Ó œ Ð+ ß , Ó © Ð+ ß , Ñw w

5œ" 5œ"

∞ ∞
5 5 5 5. . .

By the Heine-Borel property 9.6, only finitely many of the open intervals  are neededÐ+ ß , Ñ5 5
w

to cover . Let  be the largest index that appears in this finite list:Ò+ ß ,Ó Rw

Ò+ ß ,Ó © Ð+ ß , Ñw w

5œ"

R
5 5. .

Reject successively from the sequence  of intervals any term whoseÐ+ ß , Ñ5 5
w R

5œ"

intersection with  is included in the union of those remaining. After finitely many steps,Ò+ ß ,Ów

what is left is an “irredundant” covering, from which no further member can be removed
without leaving some point of  uncovered. (Convince yourself this procedure can beÒ+ ß ,Ów

performed with the stated effect). Suppose this has been done; I may still denote the number
of remaining intervals by . Reorder them so that . ThenR + Ÿ + Ÿ â Ÿ +" # RÞ

ßà
+ � + Ÿ + � + � â � +

, � , � â � , Ÿ , � ,

+ � , ß + � , ß á ß + � ,

" # $ R
w

" # R�" R
w w w w

# $ R" # R�"
w w w

,
,

.
(28)

Each of these conditions must be satisfied if the intervals form an irredundant covering.
As  is increasing, the conditions (28) imply that0

� �

�

5œ" 5œ"

R R�"

5 R 5
w w w

5 " 5�"

R
w w

"
w "

#

5œ"

R

5
w

Ð0Ð, Ñ � 0Ð+ ÑÑ œ 0Ð, Ñ � 0Ð+ Ñ � Ð0Ð, Ñ � 0Ð+ ÑÑ

� 0Ð, Ñ � 0Ð+ Ñ � 0Ð,Ñ � 0Ð+ Ñ

0Ð,Ñ � 0Ð+Ñ � 0Ð,Ñ � 0Ð+ Ñ �

Ÿ Ð0Ð, Ñ � 0Ð+

.

Hence, %

5
"
#

5œ"

R
5 5

�5�" "
#

5œ"

R
5 5

5œ"

∞
5 5

ÑÑ �

� Ð0Ð, Ñ � # � 0Ð+ ÑÑ �

� Ð0Ð, Ñ � 0Ð+ ÑÑ �

Ÿ Ð0Ð, Ñ � 0Ð+ ÑÑ �

%

% %

%

%

�
�
� .

But  was an  positive number, so% arbitrary

7 70 5 5 0 5 55œ" 5œ"

∞ R
ÐÐ+ß ,ÓÑ œ 0Ð,Ñ � 0Ð+Ñ Ÿ Ð0Ð, Ñ � 0Ð+ ÑÑ œ ÐÐ+ ß , ÓÑ� � . (29)

The inequalities (27) and (29) prove the result. �

In a vague philosophical sense, the result just given is the heart of the matter. It is the
compactness of bounded closed intervals that allows us to prove countable additivity, and
thus to construct measures whose values on intervals are known.

Theorem 9.8. Given a Lebesgue-Stieltjes distribution function , there is a0 À N Ò ‘
measure space  such that  and  for anyÐN ß ß Ñ © ÐÐ+ß ,ÓÑ œ 0Ð,Ñ � 0Ð+ÑD . f D .0 0 0 0

Ð+ß ,Ó − f .

Proof.  9.7, 6.4, and 6.3. �
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Certainly the -field  in  includes the -field  in  generated by . Recall that5 D 5 D f f0 N Ð Ñ N
D f 5 f U 5 5wÐ Ñ ÐN Ñ N denotes the -  generated by , and that  is the Borel -field in  (the -ring
field in  generated by the relatively open sets in ).N N

Lemma 9.9.  Any (relatively) open set in  is a countable disjoint union of (relatively) openN
intervals in .N

Proof. Let  be a (relatively) open set in . By definition, each rational point Y N − Y0
belongs to a (relatively) open interval included in . The union of all such intervals must beY
the greatest possible relatively open interval  containing  and included in . DistinctMÐ Ñ Y0 0
intervals  are disjoint, for if two of them met, their union would be a relatively openMÐ Ñ0
interval bigger than either. Any  is contained in some relatively open interval B − Y M ÐBÑ"

included in ;  must contain a rational , and then . Therefore,Y M ÐBÑ M ÐBÑ © MÐ Ñ" "0 0
Y œ MÐ Ñ Y-

0 �−Y∩ 0 , which means  is a countable disjoint union of open intervals. �

Lemma  9.10.   .U D f D fÐN Ñ œ Ð Ñ œ Ð Ñw

Proof.  Firstly, . Take a typical member  of . Thenf U f© ÐN Ñ Ð+ß ,Ó

Ð+ß ,Ó œ ÐN ∩ Ð+ß , � # ÑÑ,
5œ"

∞ �5 ,

so that  is a countable intersection of open sets in . As  is a -algebra, it followsÐ+ß ,Ó N ÐN ÑU 5
that .D f D f UwÐ Ñ © Ð Ñ © ÐN Ñ

For the contrary inclusion, it will suffice to show that any open set in the subspace
topology on , including  itself, belongs to . Then the -ring generated by the openN N Ð ÑD f 5w

sets will automatically be a -algebra, and must be ; and, as  is a -ring,5 U D f 5ÐN Ñ Ð Ñw

D f UwÐ Ñ ª ÐN Ñ N ³ Ð-ß ∞Ñ. For simplicity I shall deal only with one case, where  and
∞ # - # �∞ ; the other possibilities may be dealt with very similarly (with minor

complications), or by proving some general theorems (some of these are in the exercise sets).
Because of 9.9, I need only prove that any open   belongs to .interval Ð+ß ,Ñ © N Ð ÑD fw

Firstly, suppose . Then , where, of course,, � ∞ Ð+ß ,Ñ œ Ð+ � # ß , � # Ó-
5œ"
∞ �5 �5

some of the intervals may be null, but they all belong to .f
If , , where again all the intervals belong to ., œ ∞ Ð+ß ∞Ñ œ Ð+ � # ß # Ó-

5œ"
∞ �5 5 f

Thus, in fact, any open set in  may be expressed as a countable union of elements of ;N f
which is sufficient. �

The point of this Lemma is that all Lebesgue-Stieltjes measures on  are defined on theN
Borel -algebra, which is very large — as we shall see, it contains “all the sets one normally5
needs”. In particular, it contains all singletons and all intervals (open, closed, or half-open).

Definition 9.11.  A measure which is defined on the Borel -algebra in a topological space 5 H
is called a in .Borel measure H

Thus  is a Borel measure in , for any d.f.  in . “Borel measure” in older. U0 ¸ ÐN Ñ N 0 N

books means the restriction of Lebesgue measure to the Borel sets. This is for historical
reasons — Borel noticed that the idea of “length” could be extended step by step to ever more
complicated sets, before Lebesgue produced a more general procedure.
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Remark 9.12.  In metric space topology as it was developed until about 1940, and as it is
expounded in Kuratowski’s book or Hausdorff’s, the notion of metric ball took precedence
over the notion of a topology, and the class of open sets (i.e. the topology) in a metric space H
was often denoted . The class of closed sets was written . (Munroe suggests, notZ Y
implausibly, that  was suggested by “Gebiet” and  by “fermé”.) Then the subscripts  andZ Y 5
$ were used to suggest countable unions and intersections.

Given ,  denotes the class of subsets of  that may be expressed as theT c H T H© Ð Ñ $

intersection of a sequence of sets all belonging to , and  the class of subsets that may beT T5

expressed as the union of a sequence of sets all belonging to . Evidently  andT Z Zœ 5

Y Y Z Y Y Zœ © ©$ 5 $, and it is not difficult to show that, in a metric space,  and . Much
less obviously, the sequence  (it is customary to abbreviate toZ Z Z Zß ß Ð Ñ ß ÐÐ Ñ Ñ ß á$ $ 5 $ 5 $

Z Z$5 $5$ß ß á ) is  increasing in important cases. This is the background to my remarksstrictly
after 5.13; the whole Borel -algebra  cannot be constructed by this inductive5 U HÐ Ñ
procedure (unless you pass to transfinite induction).

Borel’s idea was to define the measure of sets in the classes Z Z Z Zß ß ß ß á$ $5 $5$

inductively by limiting procedures like 8.5.

Lemma  9.13.  Let  be a Lebesgue-Stieltjes distribution function in . Then, if ,0 N + − N

.0
BÅ+

ÐÖ+×Ñ œ 0Ð+Ñ � 0ÐBÑlim .

Proof.  By 8.5 , as  and, once  is large enough to ensure(b) Ö+× œ ÐN ∩ Ð+ � # ß +ÓÑ 5+
5œ"
∞ �5

that , , therefore+ � # − N ÐÐ+ � # ß +ÓÑ œ 0Ð+Ñ � 0Ð+ � # Ñ � ∞�5 �5 �5
0.

. .0 0
�5 �5

�5

BÅ+

ÐÖ+×Ñ œ ÐÐ+ � # ß +ÓÑ œ Ð0Ð+Ñ � 0Ð+ � # ÑÑ

œ 0Ð+Ñ � 0Ð+ � # Ñ œ 0Ð+Ñ � 0ÐBÑ

lim lim

lim lim .

(as  is increasing, it is easily seen that  exists and is the same as  for0 0ÐBÑ 0Ð Ñlim lim
BÅ+

8Ä∞ 80

any sequence ).08 Å + �

Together with 9.8, this enables us to determine the value of  on any interval. Notice.0

that it tells us that the -measure of the singleton  will be positive if and only if  is a.0 Ö+× +
point of discontinuity of .0

Remark 9.14.  The Lebesgue-Stieltjes measure  is defined at least on . Quite often. U0 ÐN Ñ
the fact that the construction of  defines it on a significantly larger -field  is tacitly. 5 D0 0

ignored; this slovenly custom has the justification that that larger -field is merely the5
“completion” of  with respect to  (although I have not proved it). It has also theU .ÐN Ñ 0

crucial property that, for any closed bounded interval ,Ò+ß ,Ó © N

.0
BÅ+

ÐÒ+ß ,ÓÑ œ 0Ð,Ñ � 0ÐBÑ � ∞lim .

(In topological terms,  is finite on compact sets in .).0 N
It is not difficult to show that, since  is increasing, it has only countably many points of0

discontinuity. It is possible to carry out the construction of  without assuming right-70
†

continuity of ; then 9.7 fails. Suppose, in fact, that  is any Borel measure in  which is0 N.
finite on all closed bounded intervals in , and, given , setN + − N
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0ÐBÑ ³
ÐÐ+ß BÓÑ + Ÿ B − N

� ÐÐBß +ÓÑ + # B − Nœ.

.

for ,
for .

This is a distribution function because of 8.5, and by the uniqueness theorem (which also I
have not proved!) and 9.10,  and  agree on . This is the reason for imposing the. . U0 ÐN Ñ
right-continuity condition in the definition of a d.f.

Overwhelmingly the most important example is Lebesgue measure. Notice that our
arguments have proved that (and by the uniqueness theorem only one)there is a measure  -
defined for all Borel sets in  which agrees with ordinary length on intervals‘ . It is really
rather startling that this is possible for a , without inconsistencies. Forcountably additive -
instance, the set , which Jordan’s theory could not handle, is a countable union of�
singletons, each of measure , so .! Ð Ñ œ ÐÖ+×Ñ œ ! œ !- � -� �

+− +−� �

It is possible to extend the idea of Lebesgue-Stieltjes measures to signed measures, but the
corresponding d.f.s and the whole construction require more subtlety.

§10. Non-measurable sets.

It is by no means clear which sets are -measurable for non-trivial distribution functions .70
† 0

All Borel sets are, and it seems at least conceivable that all sets are, without restriction. In
1905, however, Vitali gave a simple construction of a set that is not Lebesgue-measurable. In
1908, Bernstein gave a much more demanding construction of a subset that is not measurable
for  non-trivial Lebesgue-Stieltjes outer measure vanishing on singletons. It is on p. 422 ofany
Kuratowski’s vol. I (1958 French edition) or in Oxtoby’s little book, p. 23. Here is Vitali’s
construction, which is sufficient for most purposes.  denotes the class of Lebesgue-D
measurable sets in ,  is Lebesgue measure.‘ -

Let me define, for any , a mapping  byB − V À‘ ‘ Ò ‘B

Ða> − Ñ V Ð>Ñ ³ B � >‘ B .

V VB �B is usually called . It is clearly one-one and onto, with inverse .translation by B
In the construction of Lebesgue measure, every step is “translation-invariant”. That is, for

any  and any ,Bß +ß , − I ©‘ ‘

7 7 7 70 B 0 B0 0ÐV Ð+ß ,ÓÑ œ ÐÐ+ß ,ÓÑ ÐV I Ñ œ ÐIÑand so ,† †� �
and, therefore,  is Lebesgue-measurable if and only if  is Lebesgue-measurable, andI V ÐIÑB

then they have the same Lebesgue measure. This is a property specific to Lebesgue measure.
Let , and, for any , define  byN ³ Ð!ß "Ó B − X À N N‘ ÒB

Ða> − N Ñ X Ð>Ñ ³ B � > � ÒB � >Ó œ ÐV Ð>ÑÑB B ,

where  denotes the integer part of  and  denotes the “fractional part” ofÒB � >Ó B � > ÐV Ð>ÑÑB

V Ð>Ñ X VB B B. Thus  is “reduction of  modulo ”. It is easily checked that™

X œ X ‰ X X œ MB�C B C !, (the identity map).

[In effect, we are looking at the quotient group  and translations in it.]‘ ™Î
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Lemma  10.1.  Let , . Then  and .N ª E − B − N X ÐEÑ − ÐX ÐEÑÑ œ ÐEÑD D - -B B

Proof.   is the disjoint union , and since intervals are inE ÐE ∩ Ð!ß " � BÓÑ ∪ ÐE ∩ Ð" � Bß "ÓÑ
D D D, both  and . However,E ³ E ∩ Ð!ß " � BÓ − E ³ E ∩ Ð" � Bß "Ó −" #

for ,  , whilst
for ,  .

> − E X Ð>Ñ œ B � >

> − E X Ð>Ñ œ B � > � "
" B

# B

X ÐE Ñ X ÐE ÑB " B # and  are both Lebesgue-measurable, and they are disjoint, for

X ÐE Ñ © X ÐÐ!ß " � BÓÑ œ ÐBß "Ó X ÐE Ñ © X ÐÐ" � Bß "ÓÑ œ Ð!ß BÓB " B B # B, .

Hence

X ÐEÑ œ X ÐE ∪ E Ñ œ X ÐE Ñ ∪ X ÐE Ñ −

ÐX ÐEÑÑ œ ÐX ÐE ÑÑ � ÐX ÐE ÑÑ œ ÐE Ñ � ÐE Ñ œ ÐEÑ
B B " # B " B #

B B " B # " #

D

- - - - - -

and
. �

We can introduce an equivalence relation in , writing  when there is a N B µ C rational
number  such that . Notice that  only when  differ by an integer.0 0 (X B œ C X B œ X B ß0 0 (

Each equivalence class is countable, as  is. [In effect, the equivalence classes are the cosets�
of the subgroup  in the group .] As  is uncountable, the number of equivalence� ™ ‘ ™Î Î N
classes must be uncountable (because of 1.2).

Choose one element from each equivalence class. Let the set thus constituted be . (An[
algebraist would call it a transversal for the action of  on , with one representative� ™ ‘ ™Î Î
for each orbit — the orbits being the cosets.)

Lemma 10.2.  .[ Â D

Proof.  I assert that the sets  for  are all disjoint.X Ð[ Ñ − ∩ N0 0 �

If , then  for some , and therefore+ − X Ð[ Ñ ∩ X Ð[ Ñ + œ X ÐAÑ œ X ÐA Ñ Aß A − [0 ( 0 (
w w

A œ X ÐAÑ A µ A [w w
�0 ( . That implies , which, by the definition of , is only possible if

A œ A X A œ X A � − ß − ∩ Nw . In turn,  only if , which is impossible for 0 ( 0 ( ™ 0 ( �

unless . That is, if , then necessarily .0 (œ X Ð[ Ñ ∩ X Ð[ Ñ Á g X Ð[ Ñ œ X Ð[ Ñ0 ( 0 (

If , then each translate  is also in . Hence,  being -additive on ,[ − X Ð[ ÑD D - 5 D0

- - - -ÐN Ñ œ X Ð[ Ñ œ ÐX Ð[ ÑÑ œ Ð[ ÑŠ ‹. � �
0 � 0 � 0 �

0 0− ∩N − ∩N − ∩N
. (30)

There are two possibilities. If , (30) shows that ; whilst, if ,- - -Ð[ Ñ œ ! ÐN Ñ œ ! Ð[ Ñ # !
(30) shows that . However, . The contradiction proves that  cannot- -ÐN Ñ œ ∞ ÐN Ñ œ " [
be Lebesgue-measurable. �

Remark 10.3.  The argument shows that , as constructed, cannot belong to any -field of[ 5
sets in  that is invariant under rational translations, includes , and admits a rational-‘ U ‘Ð Ñ
translation-invariant measure that is positive and finite on . Since the Lebesgue-measur-Ð!ß "Ó
able sets form such a -algebra,  cannot be Lebesgue-measurable.5 [

The first, and obvious, comment is that we have made essential use of the translation-
invariance of the Lebesgue construction. This is less limiting than it may seem — once a non-
measurable set has been found for Lebesgue measure, it may be manipulated in various ways
to yield examples for other suitable measures. But Bernstein’s construction is in this respect
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much more general, being based on other (namely topological) properties of Lebesgue-
Stieltjes measures; unfortunately, it is also far less straightforward.

Secondly, as , one may extend  to a larger -field . It is[ Â ³ Ð ∪ Ö[ ×ÑD D 5 D D D"

possible to define a measure  on  such that . (This assertion is not entirely. D . D -" l œ
trivial, though not profound either.) The extension will have to lose the desirable properties
that made the Vitali and Bernstein examples possible.

Remark 10.4.  The ideal would be to have, for “useful” spaces , “natural” measures definedH
on the whole of the power class . This ideal fails if the measure is to be translation-c HÐ Ñ
invariant, as a consequence of Vitali’s example. However, one might still hope that (at least
for Lebesgue measure in ) the tedious apparatus of -fields might be avoided to some‘ 5
extent: maybe an “unnatural”, non-translation-invariant, measure on  could be con-c ‘Ð Ñ
structed by extending  step by step, as suggested in 10.3; all its practical applications would-
only involve Lebesgue measure. Unfortunately, there is a famous theorem of Ulam (1930)
which says, in its basic version, that , if  is of cardinality a measure defined on all ofH i"

cÐHÑ ! and vanishing on singletons must be identically continuum. So, if we assume the 
hypothesis any that the cardinality of  is ,  extension of  to all of  would have to‘ - c ‘i Ð Ñ"

be identically .!
Vitali’s construction was criticized very early. The offensive step was the definition of [

by choosing one element from each equivalence class. Since there are uncountably many
equivalence classes and no visible method to pick a special element from any of them, this
must involve some version of the , which, in a fairly strong formulation,Axiom of Choice
asserts that, if  is any set whose members are nonnnull sets, there exists a set  consisting ofV I
exactly one element from each .G − V

These days the Axiom of Choice is relatively uncontroversial, principally because Gödel
proved in 1940 that it is consistent with the other usual axioms of the set theory he was using;
that is to say, if the set theory itself is consistent (leads to no contradictions), adding the
axiom of choice to the theory will not allow you to derive any contradictions either.
(Mendelson in 1958 showed that the denial of the Axiom is also consistent with set theory.)
But previously the Axiom was regarded with serious, and not entirely unfounded, suspicion.
The reason was, I suppose, that it seemed to have consequences that are in a sense too good to
be true, for instance the theorem that any vector space, over any field, has a basis. Now  is a‘
vector space over , but it seems quite impossible to specify, or even to imagine, a basis.�
Oversimplifying the matter, one might say that the problem is “naming”; any such basis must
be uncountable, we lack  for so many objects, and other kinds of specification one cannames
think of seem unlikely to work.

The effects of this suspicion can be seen in many older books. Littlewood always took
care, in proofs where infinitely many choices were required, to prescribe (if possible) how to
make them; see his lectures on the foundations of analysis. In Zaanen’s “Linear Analysis”
(first published in 1953), the author comments on p. 148 that he avoids using the Axiom of
Choice because it is controversial. (He changed his mind later.)

I mentioned the continuum hypothesis above. It was proved by Cohen in 1963–4 that the
generalized continuum hypothesis and its negation are also consistent with the axioms of set
theory, even if they are enriched by the Axiom of Choice. It was known earlier (Sierpinski)´
that the denial of the GCH  the Axiom of Choice. The GCH, however, though notimplies
devoid of consequences (see Ulam’s theorem above), is a rather different matter from the AC;
it has no intuitive appeal.

It is not really necessary for our purpose to go deeply into the various forms of the Axiom,
its applications, or its relations with other suggested axioms. I used to hand out notes on it,
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but these days, now that we have an undergraduate logic course, they are probably
unnecessary. Nevertheless, one or two further comments may be helpful.

My own view, for what it is worth, is hesitantly Platonist. I think that mathematical
concepts do exist, in some unclear absolute sense — in fact, I can see no reason for studying
mathematics if you seriously believe it is just a game with rather bizarre rules, quite unrelated
to reality. Indeed, I agree with the usual jocular statement that “mathematics is independent of
its foundations”. The foundations postdate the familiar theorems, and were constructed for the
sake of clarifying the logical structure; if they were unsatisfactory, either by leading to a
contradiction or by failing to imply a standard theorem, we should not throw away mathe-
matics in the mass, but rather modify the foundations to preserve the mathematics, albeit
attempting to preserve our intuition about the concepts we are dealing with. This process has
really happened once, when Russell pointed out the inadequacy of Frege’s set theory. The
axioms of set theory were adjusted so that Russell’s paradox ceased to hold. It is conceivable
that a contradiction might arise that could not be so easily resolved — the Intuitionists came
close to saying that about Russell’s paradox —, but in that case we should also have to
reconsider the validity of our whole system of thought (as, indeed, the Intuitionists claimed). I
am not suggesting that the distinction between “constructive” and “nonconstructive” proofs
that they introduced is a silly one, only that a nonconstructive proof ought still to be a proof.

In short, the foundations, however dubious in their details, are there to support an edifice
most of which is already built and should not be demolished except under extreme necessity.
By and large, mathematics  very well, both in itself and as a means of analyzing the realworks
world; it would be silly to demolish it for an airy-fairy thing like Russell’s paradox, which
clearly does not deal with “practical” constructs.

The Axiom of Choice seems to me manifestly “true” at the level of intuition. From a
strictly logical point of view, one could divide it into various cases: the  axiom of choicefinite
(when the set  is finite) is actually a theorem of the standard set theories, the V countable
axiom of choice (for  countable) is already unprovable but seems relatively unexceptionable,V
and so on. If very large sets are to be allowed, it seems clear that we should allow “choice
functions” in all these cases, just as another axiom specifically allows “power sets”. The only
serious objection to doing so is the fear that an axiom that, as it turns out, has such sweeping
consequences, and is apparently unprovable from previous axioms, might be inconsistent
with the rest of set theory; and once Gödel had shown it was not, denying it loses all point.
Why should we not happily accept that every vector space does have a basis, if the statement
both agrees with our intuition and entails no contradiction? But — and this is where things
get messy — we must also accept the existence of Lebesgue non-measurable sets as part of
the package, and, therefore, our exposition of measures in  or in  will have to assume‘ ‘8

they are defined only on -fields. (By the way, Bernstein’s construction also uses the Axiom5
of Choice, albeit in a far less elementary fashion involving transfinite arithmetic.) In any case,
there are other situations, not just Lebesgue outer measure in  and its relatives in  but‘ ‘8

completely different spaces and measures, where measures, to be interesting, must be defined
on -fields smaller than a whole power set. Ulam’s theorem mentioned above is a weak5
example of this.

As I said above, the reason why the Axiom of Choice appears at all is that without it we
cannot handle very large sets, although our set theory demands they should exist. It is a
paradox of sorts (not a  paradox but a “semantic paradox”, a linguistic curiosity) thatlogical
we can set up theories which discuss, and require the existence of, uncountable sets, despite
the countability of the set of symbols at our disposal. The oddity is no greater than that
involved in the statements people occasionally make — on what precise grounds I have no
idea — that the total number of fundamental particles in the universe is less than (say) "!#&'
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or whatever number they use, so that you can describe, by finitely many symbols and quite
unambiguously, a number (say ) that you believe to have no physical correspondent at"!10#&(

all. At any rate, most applications of the Axiom of Choice have to do with the existence of
something too large to be described explicitly, like a basis of  over . In this sense, the‘ �
constructs provided by the Axiom are “all in the mind”, and their practical significance, at
any rate once one goes beyond the countable axiom of choice, is nil. To put this idea more
precisely: the effects of the Axiom tend to be in the unrestricted statement of many results
which would otherwise be true with some provisos that are satisfied “in all cases of practical
importance” anyway. That the vector space  has an algebraic basis over the field , or that a‘ �
function space of infinite dimension has an algebraic basis, are assertions that have no
“practical” consequences.

This does not exclude some oddities. There are a couple of notorious theorems (the
existence of Haar measure and of the Shilov boundary) where the Axiom was used to prove
the existence of something which was subsequently shown to be unique, so that no “choice”
is really present. In one of these cases (Haar measure), an alternative proof of equal generality
was subsequently found. For the Shilov boundary, it remains a puzzle why, or whether, the
Axiom is needed. The whole idea is very abstract, and maybe the Axiom can be avoided “in
all practical cases”; but it is not clear what “practical” would mean, and as far as I know no
adequately general proof has been found that does not use the Axiom.

The question arises whether the Axiom is absolutely necessary for the existence of a
Lebesgue non-measurable set in . This was (almost) resolved by Solovay in 1970. Provided‘
that the existence of an inaccessible cardinal is consistent with set theory (which has not been
proved, although it seems to be generally believed for reasons I don’t understand), there is a
model for set theory (even adding in a form of the  axiom of choice, the so-calledcountable
“principle of dependent choices”) in which every set of real numbers is Lebesgue-measurable.
So there seems to be little point in hunting non-measurable sets without the Axiom of Choice.
Denying the (uncountable) Axiom and assuming that all sets in  are measurable might seem‘
a useful possibility, but to do so you would also have to abandon other consequences of the
Axiom, many of which are extremely convenient; furthermore, it would not follow that any
measure you wanted to use in an  space  could be defined on . So we are in aarbitrary H c HÐ Ñ
slightly uncomfortable position: we are convinced that any set we can actually define in any
“practical” way must be Lebesgue-measurable, but, to be consistent, we must still prove it in
each case. Fortunately, the proof is usually fairly trivial, granted the standard properties of
Lebesgue-measurable sets.
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§11. Lebesgue-Stieltjes measures in higher dimensions.

Definition 11.1.  Let  be points of . Define+ ³ Ð+ ß + ß á ß + Ñ ß , ³ Ð, ß , ß á ß , Ñ" # 8 " # 8
8‘

+ � , Ða3ß " Ÿ 3 Ÿ 8Ñ + � ,
+ Ÿ , Ða3ß " Ÿ 3 Ÿ 8Ñ + Ÿ ,

Ð+ß ,Ó ³ ÖB − À + � B Ÿ ,×
Ò+ß ,Ó ³ ÖB − À + Ÿ B Ÿ ,×
Ð+ß ,Ñ ³ ÖB − À + � B � ,×

to mean ,
to mean ,

,
,
.

3 3

3 3
8

8

8

‘

‘

‘

Notice that  is  a total order in , and that  does  mean “  and ”. TheŸ � Ÿ Ánot not‘8

“multi-intervals”  may be described as , , orÐ+ß ,Óß Ò+ß ,Óß Ð+ß ,Ñ half-open on the left closed
open;  is empty if, for any index , . The formal values  andÐ+ß ,Ó 3 + � , + œ �∞3 3 3

, œ ∞3  may also be allowed when the intervals are open at the corresponding ends.

Definition 11.2.  Suppose  as above. For any subset  of the integer intervalN ³ Ð+ß ,Ó T

Ø"ß 8Ù ³ Ö"ß #ß á ß 8× ,

where  and , letT ³ Ö4 ß 4 ß á ß 4 × 4 � 4 � â � 4" # : " # :

+ ³ Ð+ ß + ß á ß + ß + ß á ß + ß á ß á ß + ß + ß á ß + Ñs s s

, ³ Ð, ß , ß á ß , ß , ß á ß , ß á ß á ß , ß , ß á ß , Ñs s s

T
" # 4 4 4 4 �" 8

T
" # 4 4 4 4 �" 8

" 4 �" # : :"

" 4 �" # : :"

,

,

where the ‘hats’ indicate that the terms they distinguish are omitted. (This is a common
convention.) Then let . In words:  is the set of points in N ³ Ð+ ß , Ó © NT T T 8�: T 8�:‘ ‘
whose coordinates are obtained from those of a point in  by omitting those indexed byN
members of .T

Definition 11.3.  Suppose  as above; let  and . IfN ³ Ð+ß ,Ó 3 − Ø"ß 8Ù + � Ÿ Ÿ ,3 3α "

0 À N 0 À NÒ ‘ $ Ò ‘, define  by3ßØ"ß8Ù Ö3×
α"

ÐB ß B ß á ß B Ñ È 0ÐB ß B ß á ß B ß ß B ß B ß á ß B Ñ

� 0ÐB ß B ß á ß B ß ß B ß B ß á ß B Ñ
" # 8�" " # 3�" 3 3�" 8�"

" # 3�" 3 3�" 8�"

"

α .

If , define+ � - ³ Ð- ß - ß á ß - Ñ Ÿ . ³ Ð. ß . ß á ß . Ñ Ÿ ," # 8 " # 8

? $ $ $ $-. - . - ß. - ß. - ß.
"ßÖ"× #ßÖ"ß#× 8�"ßØ"ß8�"Ù 8ßØ"ß8Ù

0 ³ â 0
" " # # 8�" 8�" 8 8

. (31)

This is in effect a number, the last step being the subtraction of two values of a function
Ð+ ß , Ó N" "

Ø"ß8ÙÒ ‘ , whether or not you interpret  as a singleton.

The formula (31) is only one of several possible ways of expressing . There are?-.

commutation relations among the s. If  and ,  in ,$ α " # $" � 3 � 4 Ÿ 8 Ÿ Ÿ N
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$ $ $ $α" #$ #$ α"
4ßØ"ß8�"Ù 3ßØ"ß8Ù 3�"ßØ"ß8�"Ù 4ßØ"ß8Ù

œ .

(In fact, the s are coface operators corresponding to the boundary operators for cubical$
homology.) There is, therefore, no need to begin in (31) with the th coordinate.8

Remark 11.4.  The idea behind (31) is this. We think of the space  as occupied by matter‘8

of varying density whose total mass over all space is finite. Then  is the mass of the0Ð-Ñ
matter occupying the set  of all points as it were “below and to the left” ofÖB − À B Ÿ -×‘8

- # 0ÐB Ñ; each  thus selects the mass of a “slice” of the previous set. In dimension , $ $
- ß.# #

#ßÖ"ß#×
"

is the mass of the strip

ÖÐ ß Ñ À - � Ÿ . ß Ÿ B ×0 0 0 0" # # # # " " ,

and  selects the mass of the rectangle  .? 0 0 0 0-. " # # # # " " "0 ÖÐ ß Ñ À - � Ÿ . ß - � Ÿ . ×
Alternatively, one can consider  as a cumulative probability distribution in the same way.0

Definition 11.5.  Let  as above.  is  on  when, for0 À N 0 NÒ ‘ separately right-continuous
any  and any , and for any , there exists - ³ Ð- ß - ß á ß - Ñ − N 3 − Ø"ß 8Ù # ! # !" # 8 % $
such that, whenever  and ,- � B � - � B Ÿ ,3 3 3$

k k0Ð- ß - ß á ß - ß Bß - ß á ß - Ñ � 0Ð- ß - ß á ß - ß - ß - ß á ß - Ñ �" # 3�" 3�" 8 " # 3�" 3 3�" 8 % .

That is, all the functions of one variable (defined on the intervals  for the various )Ð+ ß , Ó 33 3

that are obtained from  by fixing all coordinates but  are right-continuous on . Less0 3 Ð+ ß , Ó3 3

formally,  is right-continuous in any one coordinate when the others are fixed.0

0 - − Ð+ß ,Ó # ! # ! would be  right-continuous if, for any  and , there were jointly % $
such that, for any  for which, for each , , thenB − Ð+ß ,Ó 3 - � B � - �3 3 3 $k k0ÐBÑ � 0Ð-Ñ � . # -% . (An equivalent formulation is that there is some  such that,
whenever , then .)B − N ∩ Ð-ß .Ñ 0ÐBÑ � 0Ð-Ñ �k k %

These are the definitions of separate and of joint right-continuity on the whole of , and itN
is obvious how to define separate and joint right-continuity at an individual point of . ThereN
are also definitions of left and of two-sided continuity. Joint two-sided continuity is, in effect,
just “continuity” on , in the usual sense for functions of several variables.N

It should be emphasized that joint continuity (of any kind) is genuinely a much stronger
condition than separate continuity of the corresponding kind. This is less obvious than it
might be because one usually considers rather simple functions.

Definition 11.6.  Let  as above. The function  is a N ³ Ð+ß ,Ó © 0 À N‘ Ò ‘8 Lebesgue-
Stieltjes distribution function in  N if

(a)
(b)

whenever , , and
 is separately right-continuous on .

+ � - Ÿ . Ÿ , 0 � !
0 N

?-.

Condition  reduces in one dimension to 9.2 . The reason for it is Remark 11.4; it(a) (a)
seems difficult to express the idea in any more direct way. The curious aspect of  is that(b)
only separate right-continuity is required, but it will result from the theory (and can easily be
proved directly) that, in the presence of ,  implies joint right continuity.(a) (b)

If  is a measure defined on the Borel sets in , and finite on bounded intervals, define. ‘8

0Ð+Ñ ³ ÐÐ!ß +ÓÑ + # ! 0 œ ÐÐCß BÓÑ ! � C � B. ? . whenever . It follows that  when ,CB
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which explains . On the other hand,  follows from 8.5. Indeed, even joint right-(a) (b)
continuity would follow from 8.5.

It is not easy to recognize examples of d.f.s in , because of . Nevertheless, they‘8 (a)
abound. Suppose  is a -dimensional d.f. in , for . Then define0 " Ð+ ß , Ó " Ÿ 3 Ÿ 83 3 3

0 À N À B œ ÐB ß B ß á ß B Ñ È 0 ÐB Ñ0 ÐB Ñ â 0 ÐB ÑÒ ‘ " # 8 " " # # 8 8 .

0 N 0 ß á ß 0 will be a d.f. in , the  or the  of the d.f.s .product distribution function product  " 8

The most important example is the -dimensional 8 Lebesgue distribution function

0ÐB ß B ß á ß B Ñ œ B B â B" # 8 " # 8 ,

for which  is just the -dimensional volume of the multi-interval .?-.0 8 Ð-ß .Ó

Definition 11.7.  Let  be a multi-interval in , and let  be aN ³ Ð+ß ,Ó 0 À N‘ Ò ‘8 8

Lebesgue-Stieltjes distribution function. Define

f ‘³ ÖÐ-ß .Ó © À + � - Ÿ . Ÿ ,×8 ,

and, for each , let .Ð-ß .Ó − ÐÐ-ß .ÓÑ ³ 0f 7 ?0 -.

Lemma 11.8.   is a semiring in ;  is countably additive on .f 7 fN 0 �

Neither the finite nor the countable additivity is entirely trivial. One needs the fact that a
bounded closed multi-interval  is compact (a finite covering of it by open multi-Ò-ß .Ó
intervals admits a finite sub-covering). The proof is otherwise much as before, 9.7, except for
non-trivial technical changes.

Definition 11.9.  Given the d.f.  as above,  is the 0 70
† Lebesgue-Stieltjes outer measure in N

induced by 0 ; if the d.f. is the Lebesgue d.f., the outer measure is the Lebesgue outer measure
in . The resulting measure space  is the Lebesgue-Stieltjes (or Lebesgue)N ÐN ß ß ÑD .0 0

measure space on .N

The crucial fact is of course that  for any .7 ? f0 -.ÐÐ-ß .ÓÑ œ 0 Ð-ß .Ó −
We now have a very substantial stock of interesting measure spaces. It is possible to carry

the study of measures a great deal further, but for the moment we shall change tack and
discuss integration. Since we cannot assume our measures are defined on all subsets of the
domain  because of §10, we must first study the class of functions that are in some senseH
adapted to the -algebra on which the measure will be defined.5
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§12. Measurable functions.

Definition 12.1.  Let  be a field in . A function  is Y H H Ò ‘0 À measurable with respect
to measurable measurableY , or - , or (if there is no ambiguity) , if, for every , the setY α ‘−

0 Ò ß ∞Ó œ ÖB − À 0ÐBÑ � ×�" α H α

is a member of .Y

This is not the only definition of a measurable function that you will find in the literature,
but it is convenient for our purposes and consistent with other definitions.

Lemma 12.2.  Let  be a -field in .D 5 H

(a) Let  be -measurable. Then, for any , each of the sets0 À ß −H Ò ‘ D α " ‘
0 Ò ß Óß 0 Ð ß Óß 0 Ò ß Ñß 0 Ð ß Ñ�" �" �" �"α " α " α " α " D belongs to .

(b)  is -measurable if and only if the sets ,  and0 À 0 Ö�∞× 0 Ö∞×H Ò ‘ D �" �"

0 Ð ß ∞Ñ −�" α D α ‘ belong to  for every .

Proof.   If , . If , then(a) " " " D "# �∞ 0 Ð ß ∞Ó œ 0 Ò � ß ∞Ó − œ �∞�" �"
5œ"
∞ "

5
-

0 Ð ß ∞Ó œ 0 Ð�∞ß ∞Ó œ 0 Ò�5ß ∞Ó − 0 Ð ß ∞Ó −�" �" �" �"
5œ"
∞" D " D- . Hence,  whenever

" ‘ α " α " D− 0 Ò ß Ó œ 0 Ò ß ∞Ó Ï 0 Ð ß ∞Ó −. Then . And so on.�" �" �"

(b)  , and so on.0 Ò ß ∞Ó œ 0 Ð � ß ∞Ñ ∪ 0 Ö∞× −�" �" �"
5œ"
∞ "

5α α D+ �

Proposition 12.3.  Let  be a -field in  and let  be -measurableD 5 H H Ò ‘ D0ß 1 À
functions. Then the sets

ÖB − À 0ÐBÑ # 1ÐBÑ× ß ÖB − À 0ÐBÑ � 1ÐBÑ× ß ÖB − À 0ÐBÑ œ 1ÐBÑ×H H H

all belong to .D

Proof.  Any non-empty open interval in  contains a (finite) rational, and  is countable. So‘ �

ÖB − À 0ÐBÑ # 1ÐBÑ× œ ÖB − À 0ÐBÑ � # 1ÐBÑ×

œ ÖB À 0ÐBÑ � × Ï ÖB À 1ÐBÑ � × −

H H α

α α D

.

. � �α �

α �

−

−
.

But then

ÖB − À 0ÐBÑ Ÿ 1ÐBÑ× œ Ï ÖB À 0ÐBÑ # 1ÐBÑ× −

ÖB − À 0ÐBÑ œ 1ÐBÑ× œ ÖB À 0ÐBÑ Ÿ 1ÐBÑ× ∩ ÖB À 1ÐBÑ Ÿ 0ÐBÑ× −

H H D

H D

and
. �

Lemma 12.4.  Any constant function  is -measurable, for any field  in .0 À H Ò ‘ Y Y H

Proof.  Indeed, if  for all , then  when , and also0ÐBÑ œ - B − 0 ÐÒ ß ∞ÓÑ œ g - �H α α�"

0 ÐÒ ß ∞ÓÑ œ - ��" α H α when . �

Remark 12.5. In the next proposition, I have to mention the sum  (and difference0 � 1
0 � 1 0 1) of two -measurable functions  and . In principle this means the pointwise sum:D
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Ð0 � 1ÑÐBÑ ³ 0ÐBÑ � 1ÐBÑ B − 0 1 for all . However, I am allowing  and  to take infiniteH
values, so that , so understood, may be undefined at some points, namely where 0 � 1 0ÐBÑ
and  are opposite infinities. For the sake of a simple statement of the proposition, let us1ÐBÑ
agree that, at such points,  is understood to be , and, likewise, that  isÐ0 � 1ÑÐBÑ ! Ð0 � 1ÑÐBÑ
understood to be  at points where  and  are the same infinity. Similarly, in part! 0ÐBÑ 1ÐBÑ
(d), let us say that  means  when  and , means  whenk k0ÐBÑ �∞ + # ! 0ÐBÑ œ „∞ "+

+ œ ! 0ÐBÑ œ ! ! B (even if ; it is a curious point that   is not usually defined, but  in! !

formulæ is commonly understood as meaning  even when ) and means  when" B œ ! !
+ � ! 0ÐBÑ œ „∞ and . These are merely  conventions, not intended to supersedead hoc

the general rules of 2.1. In the later development they will scarcely be needed.

Proposition 12.6.  Let  be a -field in , and let  be -measurable. ThenD 5 H H Ò ‘ D0ß 1 À
(a) 12.5
(b)
(c)

the pointwise sum , defined as at , is -measurable;
the pointwise maximum  is -measurable,
for any const

0 � 1
Ð0ß 1Ñ

D

Dmax
ant , the function  is -measurable,

for any ,  (defined pointwise as in ) is -measurable,
the pointwis

+ − +0
+ − Ï Ö!× 0

‘ D

‘ D(d) 12.5
(e)

k k+
e product  is -measurable.01 D

Proof.   Take , and consider . There are(a) # ‘ H #− I ³ ÖB − À 0ÐBÑ � 1ÐBÑ � ×#

various cases. Of course . Next,I œ −�∞ H D

I œ ÖB À 0ÐBÑ œ ∞ ß 1ÐBÑ # �∞× ∪ ÖB À 0ÐBÑ # �∞ ß 1ÐBÑ œ ∞×

œ 0 ÐÖ∞×Ñ ∩ 1 ÐÐ�∞ß ∞ÓÑ ∪ 1 ÐÖ∞×Ñ ∩ 0 ÐÐ�∞ß ∞ÓÑ −

∞
�" �" �" �"ˆ ‰ ˆ ‰ D

by 12.2. Now consider the case when  is finite and . Then  is# #positive Ÿ 0ÐBÑ � 1ÐBÑ � ∞
only possible when both  and  are both finite, and, for any ,0ÐBÑ 1ÐBÑ −α ‘

ÖB À � 1ÐBÑ � × œ ÖB À 1ÐBÑ Ÿ � × œ 1 ÐÒ�∞ß � ÓÑ −# α # α # α D�" ,

again by 12.2. Hence, the function  is defined at every point of2 À À B È � 1ÐBÑH Ò ‘ #
H and is also measurable, and

I œ I ∪ ÖB À ! � Ÿ 0ÐBÑ � 1ÐBÑ � ∞×

œ I ∪ ÖB À 0ÐBÑ � 2ÐBÑ× −
# ∞

∞

#

D

,
,

the second set of the union being in  by 12.3.D
If , then the conventions of 12.5 must be taken into consideration, and�∞ � Ÿ !#

I œ I ∪ ÖB À 0ÐBÑ � 2ÐBÑ× ∪ ÐÖB À 0ÐBÑ œ ∞× ∩ ÖB À 1ÐBÑ œ �∞×Ñ

∪ ÐÖB À 0ÐBÑ œ �∞× ∩ ÖB À 1ÐBÑ œ ∞×Ñ
# ∞

.

This shows that, once again, . All cases have now been discussed.I −# D

(b) For any ,α ‘−

ÖB − À Ð0ÐBÑß 1ÐBÑÑ � × œ 0 ÐÒ ß ∞ÓÑ ∪ 1 ÐÒ ß ∞ÓÑ −H α α α Dmax �" �" .

(c) If , then . Likewise, if ,+ # ! ÖB À +0ÐBÑ � × œ ÖB À 0ÐBÑ � + × − + � !α α D�"

ÖB À +0ÐBÑ � +× œ ÖB À 0ÐBÑ Ÿ + × − + œ ! +0�"α D , by 12.2. If , then  is the constant
function “zero”, so is measurable by 12.4.

(d) (c) Examine the cases that arise, much as in .
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(e) (d)  This can be done in more than one way, but after it is perhaps easiest to proceed
as follows. Let , with the conventions of 12.5.2ÐBÑ ³ Ö 0ÐBÑ � 1ÐBÑ � 0ÐBÑ � 1ÐBÑ ×"

%
# #k k k k

Define . If , ; this is defin-H H ‘ D H" "³ ÖB − À 0ÐBÑß 1ÐBÑ − × − B − 0ÐBÑ1ÐBÑ œ 2ÐBÑ
itely untrue at some points off . For instance, if  and ,  byH" 0ÐBÑ œ ∞ 1ÐBÑ œ " 2ÐBÑ œ !
12.5, but .0ÐBÑ1ÐBÑ œ ∞

2 − is measurable by , , and . Thus, given ,(a) (c) (d) α ‘

H H α H H α D" "∩ ÖB − À 0ÐBÑ1ÐBÑ � × œ ∩ ÖB − À 2ÐBÑ � × − .

If , thenα # !

ÖB À 0ÐBÑ1ÐBÑ � × Ï œ ÐÖB À 0ÐBÑ œ ∞× ∩ ÖB À 1ÐBÑ # !×Ñ

∪ ÐÖB À 0ÐBÑ # !× ∩ ÖB À 1ÐBÑ œ ∞×Ñ

∪ ÐÖB À 0ÐBÑ � !× ∩ ÖB À 1ÐBÑ œ �∞×Ñ

∪ ÐÖB À 0ÐBÑ œ �∞× ∩ ÖB À 1ÐBÑ � !×Ñ

α H"

,

which is certainly in . If , change each  to  and each  to . So, forD α�∞ � Ÿ ! � Ÿ # �
any ,α # �∞

ÖB À 0ÐBÑ1ÐBÑ � × œ ÐÖB À 0ÐBÑ1ÐBÑ � × ∩ Ñ ∪ ÐÖB À 0ÐBÑ1ÐBÑ � × Ï Ñ −α α H α H D" " .

Finally, if , .     α Hœ �∞ ÖB À 0ÐBÑ1ÐBÑ � �∞× œ �

The difficulties of this proof arise almost wholly from the presence of infinite values, but
the next Lemma should demonstrate why it is convenient to allow them.

Lemma 12.7.  Let  be a -field in . Suppose that  is a sequence of -measurableD 5 H DÐ0 Ñ8

functions . The functions  are -measurable.H Ò ‘ Dinf sup lim inf lim sup8 8 8 8 8 80 ß 0 ß 0 ß 0

Proof.  Given ,+ − ‘

ÖB − À Ð 0 ÑÐBÑ � × œ ÖB − À Ð0 ÐBÑÑ � × œ ÖB À 0 ÐBÑ � × −H α H α α Dinf inf8 8 88œ"

∞, ,

so  is -measurable; then  is -measurable. The rest follows.inf sup inf0 0 œ � Ð�0 Ñ8 8 8D D �

Recall from 7.15 that the infima or suprema here can be described either as defined point-
wise or in terms of the partial order on the functions . The Lemma then says that theH Ò ‘
induced partial order on the subset of measurable functions is countably order-complete. (It is
not usually order-complete, for a non-Lebesgue-measurable function on , for instance, is the‘
supremum of  many functions that are non-zero except on a singleton, and eachuncountably
such “singleton function” is Lebesgue-measurable.)

In summary: all the usual operations of analysis, when applied to -measurable functions,D
yield -measurable functions.D

Lemma 12.8.  Suppose  is a -field in  and  is continuous andD 5 H 9 ‘ Ò ‘À
0 À ‰ 0H Ò ‘ D 9 D is -measurable. Then  is -measurable.

Proof.  Take . As  is continuous,  is open in . Hence it is a countableα ‘ 9 9 α ‘− ÐÐ ß ∞ÑÑ�"

unsion of open intervals (this was proved in 9.9), say . Then9 α�"
5œ"
∞

5 5ÐÐ ß ∞ÑÑ œ Ð- ß . Ñ-
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Ð ‰ 0Ñ ÐÐ ß ∞ÑÑ œ 0 ÐÐ- ß . ÑÑ −9 α D�" �"

5œ"

∞
5 5. ,

as each  by 12.2 . Since  does not take infinite values,0 ÐÐ- ß . ÑÑ − ‰ 0�"
5 5 D 9(a)

Ð ‰ 0Ñ Ð�∞Ñ œ Ð ‰ 0Ñ Ð∞Ñ œ g9 9 D�" �" , and 12.2 establishes -measurability. (b) �

This result has been stated for finite-valued functions because I have not discussed
continuity for extended-real-valued functions, but it is true more generally. However, it is not
usually true that  is measurable for Lebesgue-measurable . This is9 9 ‘ Ò ‘‰ 0 À
inconvenient for some purposes, and probabilists in particular often restrict attention to Borel-
measurable functions; that is to say, they specify that, for functions  (or indeed‘ Ò ‘
more generally), measurability is understood in terms of the Borel -field . If  is5 U ‘Ð Ñ 0
measurable  and  is Borel-measurable , then  is measurableH Ò ‘ 9 ‘ Ò ‘ 9 ‰ 0
H Ò ‘ . (Exercise.)

Definition 12.9. Let . The of the set  is the functionE − Ð Ñ Ec H indicator function 
"E À H Ò ‘  defined by

"EÐBÑ ³
" B − E
! B Â Eœ when ,

when .

This concept seems quite obvious. It is clear that it is just the adaptation to values in  of‘

Cantor’s idea that we use to show that  has cardinality . However, it is said that itc HÐ Ñ ##Ð ÑH

was first explicitly defined as late as 1915 by de la Vallée Poussin.
Both the name and the notation are disputed. Analysts often called it the characteristic

function of , and denoted it by  or . Unfortunately, probabilists, before their subjectE -;E E

was properly grounded in analysis, grew accustomed to use the phrase “characteristic
function” of something else (the Fourier transform, in fact), and as a consequence preferred
the name “indicator function”. It is sometimes denoted by  or even by . (!)ME E

Lemma 12.10.  Let  be a field in .  is -measurable if and only if .Y H Y Y"E E − �

Definition 12.11.  A function  (where  may be  or ) is called 0 À \ \H Ò ‘ ‘ simple with
respect to the field simple simpleY , or - , or (when there is no ambiguity) , if it is -Y Y
measurable and assumes only finitely many values from .\

0  is called  with respect to the -field , or -elementary, if it is -measurableelementary 5 D D D
and assumes only countably many values.

Recall that a “linear combination” of a set of functions with values in  is understood‘
pointwise, and is by definition a  linear combination — i.e. it is a sum of finitely manyfinite
terms, each a constant multiple of one of the functions of the set.

Lemma 12.12.  Given a field  in , any real linear combination of real-valued -simpleY H Y
functions is -simple; the pointwise product and the maximum of two real-valued (orY
extended-real-valued) -simple functions are -simple.Y Y

Proof.  In each case, it is easy to see that the new function has only finitely many possible
values, and 12.6 shows that it is measurable. �
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Lemma 12.13.  Any -simple function  may be expressed as a real linearY H Ò ‘0 À
combination of the indicator functions of pairwise disjoint sets of  whose union is .Y H

Proof.  Let the distinct values of  be . Take, for ,0 , ß , ß á ß , − 5 œ "ß #ß á ß <" # < ‘

IÐ<Ñ ³ 0 ÐÖ, ×Ñ −�"
< Y .

Then  if ; if ,  and  simul-IÐ3Ñ ∩ IÐ4Ñ œ g 3 Á 4 B − IÐ3Ñ ∩ IÐ4Ñ 0ÐBÑ œ , 0ÐBÑ œ ,3 4

taneously, which is impossible as . Also, if ,  must be one of the s, so, Á , C − 0ÐCÑ ,3 4 H

that  for some  between  and ; thus . And, finally,C − IÐ5Ñ 5 " < œ IÐ5ÑH -
5œ"
<

0 œ ,�
5œ"

<
5 IÐ5Ñ" , (32)

because, for any , there is exactly one  for which , which means thatD − 6 D − IÐ6ÑH
0ÐDÑ œ , , ÐDÑ6 5 IÐ5Ñ, and that is precisely .� " �

I shall, for convenience, describe a real linear combination of the indicator functions of
pairwise disjoint measurable sets whose union is  as a  of the simple functionH standard form
that is its sum. (Notice that (32) is, in addition, a special kind of standard form, because 0
takes a different value on each of the ).IÐ5Ñ

Simple functions are useful because of the next proposition.

Proposition 12.14.  Let  be a field in , and let  be an -measurableY H H Ò ‘ Y0 À
function taking non-negative values [for brevity, we often speak of a “non-negative
measurable function”]. Then there is a sequence  of non-negative real-valued -Ð1 Ñ8 8œ"

∞ Y

simple functions which is (pointwise) increasing and converges pointwise to .0

Proof.  Define

1 ÐBÑ ³

8 B − 0ÐBÑ # 8
! 0ÐBÑ œ !
3 � " 3 � " 3

# # #
� 0ÐBÑ Ÿ 3 ! � 3 Ÿ # 8

8

8 8 8
8

ÚÝÛÝÜ
for each  such that ,
when , and

when , for integers  such that .

H

The verification that the sequence has the desired properties is routine. (To understand what
is going on, try to think of it in terms of the graph of .)0 �

§13. Integration of simple functions.

As I remarked in §1A, there are many approaches to the integral. The one I shall present has
the advantage of needing little further preparation and being rather “natural”. It has one sticky
point, where we need to appeal to the countable additivity of the measure.

If  is a real-valued -simple function (see 12.11), it has a standard form ,0 +Y �
5œ"
<

5 IÐ5Ñ"

as in 12.13. In principle it may have many standard forms; only one of them will have the
property that all the coefficients  are different. However, it is not really desirable to impose+5

this as a further condition, because it may be destroyed if two simple functions are added.
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Definition 13.1.  Let  be a field in , and let  be a fam on  [or let  be a fasm on ]. LetY H . Y 5 Y

0  be an -simple function with value in  or . It will be convenient to setY ‘ ‘

 .UÐ0Ñ ³ ÖB − À 0ÐBÑ Á !×H

0 ÐUÐ0ÑÑÑ � ∞ �∞ � ÐUÐ0ÑÑ � ∞ is  with respect to  [or ] if  [or if ].integrable . 5 . 5

Lemma 13.2.  Given the field  in , with a fam  and a fasm , let  be an -simpleY H . 5 Y0
function , and let  and  be standard forms for . Then, ifH Ò ‘ � �

3œ" 4œ"
7 8

3 4IÐ3Ñ JÐ4Ñ+ , 0" "

0  is non-negative,

� �
3œ" 4œ"

7 8
3 4+ ÐIÐ3ÑÑ œ , ÐJ Ð4ÑÑ. . ,

where the sums make sense in , whilst, if  is integrable with respect to ,‘ H Ò ‘ 50 À

� �
3œ" 4œ"

7 8
3 4+ ÐIÐ3ÑÑ œ , ÐJ Ð4ÑÑ5 5 ,

where the sums make sense in .‘

Proof.  Set ; the  are pairwise disjoint and belong to . ButLÐ3ß 4Ñ ³ IÐ3Ñ ∩ J Ð4Ñ LÐ3ß 4Ñ Y

IÐ3Ñ œ IÐ3Ñ ∩ œ IÐ3Ñ ∩ J Ð4Ñ œ ÐIÐ3Ñ ∩ J Ð4ÑÑ œ LÐ3ß 4ÑH Š ‹. . .
4œ" 4œ" 4œ"

8 8 8

for each choice of , and similarly  for each . These unions are disjoint,3 J Ð4Ñ œ LÐ3ß 4Ñ 4-
3œ"
7

so that  and . Hence. . . .ÐIÐ3ÑÑ œ ÐLÐ3ß 4ÑÑ ÐJ Ð4ÑÑ œ ÐLÐ3ß 4ÑÑ� �
4œ" 3œ"
8 7

� � � �
� � � �3œ" 3œ" 4œ" 3ß4

7 7 8
3 3 3

4œ" 3œ8 3œ" 3ß4

8 8 7
4 4 4

+ ÐIÐ3ÑÑ œ + ÐLÐ3ß 4ÑÑ œ + ÐLÐ3ß 4ÑÑ

, ÐJ Ð4ÑÑ œ , ÐLÐ3ß 4ÑÑ œ , ÐLÐ3ß 4ÑÑ

. . .

. . .

,

.

If , then . If , certainly. . . .ÐLÐ3ß 4ÑÑ œ ! + ÐLÐ3ß 4ÑÑ œ , ÐLÐ3ß 4ÑÑ œ ! ÐLÐ3ß 4ÑÑ Á !3 4

LÐ3ß 4Ñ Á g B − LÐ3ß 4Ñ + œ 0ÐBÑ œ , + ÐLÐ3ß 4ÑÑ œ , ÐLÐ3ß 4ÑÑ; if , , and so again .3 4 3 4. .

Hence, .� � � �
3œ" 3ß4 3ß4 4œ"
7 8

3 3 4 4+ ÐIÐ3ÑÑ œ + ÐLÐ3ß 4ÑÑ œ , ÐLÐ3ß 4ÑÑ œ , ÐJ Ð4ÑÑ. . . .

The argument for the signed measure  is identical in form. In the previous paragraph, the5
sums considered are defined because all their terms are non-negative (the coefficients + ß ,3 4

are values of , and so non-negative), whereas, in the case of , the sums are defined 0 5 and
finite because all the terms are finite. Specifically, if , then , and, as  is+ Á ! IÐ3Ñ © UÐ0Ñ 03

5 5 ‘ 5-integrable, 5.8 ensures that ; the term  is finite. If , theÐIÐ3ÑÑ − + ÐIÐ3ÑÑ + œ !3 3

convention 2.1  ensures that . Similar arguments apply to the other sums(iv) + ÐIÐ3ÑÑ œ !3 5
that appear. (Compare 5.7.)  �

Definition 13.3. When  is a field in ,  is a non-negative -simple function,Y H H Ò ‘ Y0 À
and  is a fam on , define the  to be the sum. Y pre-integral of  with respect to 0 .

f Y . .Ð0 ß ß Ñ ³ + ÐIÐ3ÑÑ�
3œ"

7
3 , (33)

where  is a standard form for . By 13.2, the sum is defined in  and does not�
3œ"
7

3 IÐ3Ñ+ 0" ‘

depend on the choice of standard form; nor is it necessary to assume  is integrable with0
respect to ..
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Similarly, if  is a fasm on  and  is an -simple function integrable with5 Y H Ò ‘ Y0 À
respect to , the  is the sum5 pre-integral of  with respect to 0 5

f Y 5 5Ð0 ß ß Ñ ³ + ÐIÐ3ÑÑ�
3œ"

7
3 ,

which is defined in  (and independent of the choice of standard form for ) because  is‘ 0 0
integrable with respect to .5

The term “pre-integral” is an  invention. Most authors would call it the “integral”ad hoc
of , with respect to  or  as the case may be; it is the only reasonable value for the0 . 5
“integral” of an -simple function . I shall abbreviate the notation to  when the otherY f0 Ð0Ñ
data have been fixed. The problem lies in extending the idea of the integral to more general
functions, and that is where the -additivity of the measure will come in.5

Lemma 13.4.  Let  be a field in ,  a fam on ,  non-negative finite-Y H . Y H Ò ‘0ß 1 À
valued -simple functions, and  non-negative extended real numbers. ThenY α "ß

(a)
(b)
(c)
(d)

 ;
 if  is finite-valued,  if and only if  is integrable;
 ; in particular, ;
i

f

f

f α " αf "f f

Ð0Ñ � !
0 Ð0Ñ � ∞ 0
Ð 0 � 1Ñ œ Ð0Ñ � Ð1Ñ Ð!Ñ œ !

f  (pointwise), then .0 Ÿ 1 Ð0Ñ Ÿ Ð1Ñf f

Proof.  Each term in (33) is non-negative, so follows. If  is finite, the term (a) + + ÐIÐ3ÑÑ3 3 .
will be finite if and only if   is   the measure . This proves .either or (b)+ ! ÐIÐ3ÑÑ � ∞3 .

Suppose in  that  is a standard form for  and  a standard(c) � �
3œ" 3œ"
7 8

3 4IÐ3Ñ JÐ4Ñ+ 0 ," "

form for . Define , and then  is a1 LÐ3ß 4Ñ ³ IÐ3Ñ ∩ J Ð4Ñ Ð + � , Ñ�
"Ÿ3Ÿ7ß "Ÿ4Ÿ8 3 4 LÐ3ß4Ñα " "

standard form for . It follows (compare 13.2) thatα "0 � 1

f α " α " .

α . " .

α . " . αf "f

Ð 0 � 1Ñ ³ Ð + � , Ñ ÐLÐ3ß 4ÑÑ

œ + ÐLÐ3ß 4ÑÑ � , ÐLÐ3ß 4ÑÑ

œ + ÐIÐ3ÑÑ � , ÐJ Ð4ÑÑ œ Ð0Ñ � Ð1Ñ

�
� � � �Š ‹ Š ‹
� �

3ß4 3 4

3 4 4 33 4

3 43 4 .

If , then, for each pair  such that , . So0 Ÿ 1 Ð3ß 4Ñ LÐ3ß 4Ñ Á ! + Ÿ ,3 4

f . . fÐ0Ñ ³ + ÐLÐ3ß 4ÑÑ Ÿ , ÐLÐ3ß 4ÑÑ œ Ð1Ñ� �
3ß4 3ß43 4 , �

Part  is still true if one considers the pre-integrals with respect to a fasm  on  of -(b) 5 Y Y
simple functions integrable with respect to .5

Corollary 13.5.  Suppose  is a field in ,  a fam on ,  be an increasing sequence ofY H . Y Ð0 Ñ8

non-negative -simple functions . Then  is an increasing sequence inY H Ò ‘ f Y .Ð Ð0 ß ß ÑÑ8

‘ ‘, and so converges in  by . 2.7 �

In view of 12.14, this immediately suggests a way of defining the “integral” of a non-
negative -measurable function, where  is a -field in , that is reasonably consonant withD D D H
our idea of the integral as the “area under the graph”. The only problem is that a non-negative
D-measurable function may be the limit of many different increasing sequences of non-
negative -simple functions. Here, for the first time, we make essential use of -additivity.D 5
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Proposition 13.6. Let  be a measure space, and let  be an increasing sequenceÐ ß ß Ñ Ð0 ÑH D . 8

of non-negative -simple functions . Suppose that  is also a non-negative -D H Ò ‘ D1
simple function, and that . Then .lim lim0 � 1 Ð0 Ñ � Ð1Ñ8 8f f

Proof.  There are two cases: when  is or is not integrable. Suppose firstly that it is not1
integrable. Since  has only finitely many values anyway, there must be some  such1 + # !
that . Define.Ð1 ÐÖ+×ÑÑ œ ∞�"

IÐ8Ñ ³ ÖB − À 0 ÐBÑ � +×H 8
"
# . (34)

Since , clearly  too. As , . By 8.5 ,0 Å IÐ8Ñ Å 0 � 1 IÐ8Ñ ª 1 ÐÖ+×Ñ8 8 8œ"
∞ �"lim - (a)

. . .ÐIÐ8ÑÑ Å IÐ8Ñ � Ð1 ÐÖ+×Ñ œ ∞ 0 � +� �-
8œ"
∞ �"

8
"
# IÐ8Ñ. However, (34) shows that ,"

and so  by 13.4 ; and so .f f . f fÐ0 Ñ � Ð + Ñ œ + ÐIÐ8ÑÑ Ð0 Ñ Å ∞ œ Ð1Ñ8 8
" "
# #IÐ8Ñ" (d)

Now, suppose that  is integrable. (There is a special case when ; then1 ÐUÐ1ÑÑ œ !.
fÐ1Ñ œ ! 1, so the result is immediate; but the following argument still works.) Since  is

simple, it has only finitely many values. Let  be its largest value.Q
Take any . For each , . Define — for this fixed  —- - -− Ð!ß "Ñ B − UÐ1Ñ 1ÐBÑ # 1ÐBÑ

J Ð8Ñ ³ ÖB − UÐ1Ñ À 0 ÐBÑ � 1ÐBÑ× © UÐ1Ñ8 - . (35)

As at (34), , because ; in this case, however, . However,J Ð8Ñ Å 0 Å J Ð8Ñ œ UÐ1Ñ8 lim

1 œ 1Þ � 1Þ" "JÐ8Ñ UÐ1ÑÏJÐ8Ñ ,

and  are both non-negative integrable -simple functions. By 13.4 ,1Þ ß 1Þ" "JÐ8Ñ UÐ1ÑÏJÐ8Ñ D (c)

f f fÐ1Ñ œ Ð1Þ Ñ � Ð1Þ Ñ" "JÐ8Ñ UÐ1ÑÏJÐ8Ñ . (36)

Each of the terms on the right of (36) is finite and non-negative, and from (35)

1Þ Ÿ Q ß Ð1Þ Ñ Ÿ Q ÐUÐ1Ñ Ï J Ð8ÑÑ" " "UÐ1ÑÏJÐ8Ñ UÐ1ÑÏJÐ8Ñ UÐ1ÑÏJÐ8Ñf . .

Putting these facts together with 13.4(c) (d)ß ß

f f -

-f

-f -f

-f - .

Ð0 Ñ � Ð 1Þ Ñ

œ Ð1Þ Ñ

œ Ð1Ñ � Ð1Þ Ñ

œ Ð1Ñ � Q ÐUÐ1Ñ Ï J Ð8ÑÑ

8 JÐ8Ñ

JÐ8Ñ

UÐ1ÑÏJÐ8Ñ

"

"

"

by (35)

.

Now, however,  and , so, by 8.5 , .J Ð8Ñ Å UÐ1Ñ ÐUÐ1ÑÑ � ∞ ÐUÐ1Ñ Ï J Ð8ÑÑ Æ !. .(b)
Hence, . However,  could have been any number in ; we concludelim f -f -Ð0 Ñ � Ð1Ñ Ð!ß "Ñ8

that .lim f fÐ0 Ñ � Ð1Ñ8 �

Theorem 13.7.    be a measure space, and suppose that  and  areP/> Ð ß ß Ñ Ð0 Ñ Ð1 ÑH D . 8 8

increasing sequences of non-negative simple functions  that have the same limit.H Ò ‘

Then the sequences  and  have the same limit in .Ð Ð0 ß ß ÑÑ Ð Ð1 ß ß ÑÑf D . f D . ‘8 8

That is: if, for each ,  and , then the correspondingB − 0 ÐBÑ Å 2ÐBÑ 1 ÐBÑ Å 2ÐBÑH 8 8

pre-integrals have the same limit: .lim limf fÐ0 Ñ œ Ð1 Ñ8 8

Proof.  Fix . Then , and so, by 13.6, . This holds for each5 1 Ÿ 0 Ð1 Ñ Ÿ Ð0 Ñ5 8 5 8lim limf f
5 Ð1 Ñ Ÿ Ð0 Ñ; ergo, . The converse inequality must also hold, by symmetry.lim limf f8 8 �
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§14. The integral in general.

Throughout this section (and, indeed, until further notice)  is a fixed measure space.Ð ß ß ÑH D .

Definition 14.1.  Let  be a non-negative -measurable function . By 12.14, there0 D H Ò ‘
is an increasing sequence  of non-negative -simple functions that converges pointwiseÐ0 Ñ8 D
to . Define the , , by0 0 .integral of  with respect to the measure 0 . ' .

( 0 . ³ Ð0 Ñ. flim8 8 .

The limit exists by 13.5, and, by 13.7, it does not depend on the choice of the sequence
Ð0 Ñ8 . (It would be possible to the integral using the specific sequence given in 12.14,define 
but 13.7 is essential to show that it has useful properties). It will be convenient to write
“isnsf” for “increasing sequence of non-negative simple functions”.

The notation is very variable, according to the data that are fixed. For the time being, we
may write just . But if the space, the -algebra, the measure, or the “variable of integ-' 0 5

ration” are in doubt (for  may involve several parameters), one may see0

( ( ( ( (
H H H D H D

0 ß 0 . ß 0 . ß 0ÐBÑ . ÐBÑ ß 0Ð Ñ . Ð Ñ. . . = . =
ß ß

.

The “ ” in these expressions has no independent meaning — it is a historical survival from.
Leibniz’s notation for the integral, which was itself illogical; but it has the merit of corres-
ponding to the phrase “with respect to”. A slightly less irrational notation that is also in use is' 0ÐBÑ Ð.BÑ Ð.BÑ. ., where “ ” does at least vaguely indicate the idea of assigning “mass” to
“small bits  of the domain ”. Another notation that is occasionally met with is ..B Ð0ÑH .
The probabilistic notation is quite different, and I shall explain it later.

Notice that, for a non-negative measurable function ,  is defined and is in . If  is,0 0 0' ‘

in fact, a non-negative simple function, then , since the chosen sequence may' 0 œ Ð0Ñf

consist of  alone. This is why  is usually called the “integral” of the simple function .0 Ð0Ñ 0f

Lemma 14.2.  Suppose  are non-negative measurable functions and  (that is, for0ß 1 0 Ÿ 1
each , ; see ). Then .B − 0ÐBÑ Ÿ 1ÐBÑ 0 Ÿ 1H  7.15 ' '
Proof.  Take isnsfs . Then, for any fixed , . Apply 13.6;0 Å 0ß 1 Å 1 5 0 Ÿ 1 œ 18 8 5 8lim
f f fÐ0 Ñ Ÿ Ð1 Ñ œ 1 5 Ä ∞ 0 œ Ð0 Ñ Ÿ 15 8 5lim lim' ' ', and so, letting , . �

Definition 14.3.  The non-negative measurable function  is  if .0 0 � ∞integrable '
This is consistent with the terminology for finite-valued simple functions, by 13.4 .(b)

Notice, however, that for a non-negative measurable function the integral is always ;defined
integrability means something else. For this reason, some authors use a different convention.
What we call “integrable”, they call “summable”, both here and later.
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I recall the abbreviation (introduced for simple functions, but useful in general)

UÐ0Ñ ³ ÖB − À 0ÐBÑ Á !×H .

There are, vaguely speaking, two ways in which a non-negative measurable function may be
non-integrable. Its  may be “too large”; or  may be too large. To make this a littlevalues UÐ0Ñ
more precise:

Definition 14.4.  A set  is - with respect to  if there is a sequence E © Ð ß Ñ ÐE ÑH 5 D .finite 3

in  such that  and, for each  .D .E © I 3ß ÐI Ñ � ∞-
3œ"
∞

3 3

(The phrase “ -finite” occurs in several contexts; for instance,  might be substituted by a5 .
signed measure on ).D

Lemma 14.5.  If the non-negative measurable function  is integrable, then0 À H Ò ‘

(a) (b)UÐ0Ñ ÐÖB À 0ÐBÑ œ ∞×Ñ œ ! is -finite,  .5 .

Proof.   Let  be an isnsf tending to . Then, by definition, , and so(a) Ð0 Ñ 0 Ð0 Ñ Å 08 8f '
f .Ð0 Ñ � ∞ 8 ÐUÐ0 ÑÑ � ∞8 8 for each . By 13.4 , . But, clearly,(a)

UÐ0Ñ œ UÐ0 Ñ.
8œ"

∞
8 ,

and, consequently,  is -finite.UÐ0Ñ 5
(b) Let . Then, for any , . By 14.2,E ³ ÖB − À 0ÐBÑ œ ∞× − 8 − 0 � 8H D � "E

∞ # 0 � 8 œ Ð8 Ñ œ 8 ÐEÑ( ( " "E Ef . .

But this shows that , and so .  . � .ÐEÑ Ÿ Ö 0Î8 À 8 − × œ ! ÐEÑ œ !inf ' �

Lemma 14.6. Let  be a non-negative measurable function. Then  if and only if0 0 œ !'
.ÐUÐ0ÑÑ œ ! .

Proof.  Let  be an isnsf tending to . If , then evidently Ð0 Ñ 0 ÐUÐ0ÑÑ œ ! ÐUÐ0 ÑÑ œ !8 8. .
for each , since , and thus . Hence .8 UÐ0 Ñ © UÐ0Ñ Ð0 Ñ œ ! 0 œ Ð0 Ñ œ !8 8 8f f' lim

Conversely, suppose . Define , for. H DÐUÐ0ÑÑ # ! EÐ8Ñ ³ ÖB − À 0ÐBÑ # "Î8× −
each . Then  for each , and  as  is non-8 − EÐ8Ñ © EÐ8 � "Ñ 8 UÐ0Ñ œ EÐ8Ñ 0� -

8œ"
∞

negative. By 8.5 , , so that, for sufficiently large ,(a) . .ÐUÐ0ÑÑ œ ÐEÐ8ÑÑ 8lim
. .ÐEÐ8ÑÑ # ! 0 � 8 0 � 0 � 8 ÐEÐ8ÑÑ # !. Since , 14.2 shows that then .8 8

�" �"
EÐ8Ñ" ' '

This establishes the desired result. �

Remark 14.7.  The above lemma has a number of consequences. For a start, it is important to
realize that a non-negative measurable function may have zero integral without vanishing
identically. If  is the “Dirichlet function” on  mentioned in §1A,0 Ò!ß "Ó

0Ð>Ñ œ " > − ∩ Ò!ß "Ó 0Ð>Ñ œ !when , otherwise,�

then  is in fact the indicator function of  (and so a simple function).  is0 ∩ Ò!ß "Ó ∩ Ò!ß "Ó� �
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countable, so its Lebesgue measure is , and ,  denoting Lebesgue measure. This! 0 . œ !' - -

is the more surprising in that  is not Riemann-integrable at all.0
In elementary courses, one often meets assumptions of the kind that the (Riemann)

integral of a non-negative function is zero only if the function is zero; generally speaking, this
is because the functions are continuous. Indeed, it is amazingly difficult to prove, on the basis
of the Riemann integral alone, even that the Riemann integral of a function that is Riemann-
integrable and  positive on  must be positive. Any attempt to prove it carrieseverywhere Ò!ß "Ó
you a long way towards the Lebesgue integral. Yet our proof above of a more general fact for
the Lebesgue integral was not hard, and, generally speaking, we shall find that many results
which arise fairly naturally for Lebesgue integration and ought, therefore, to be true for the
Riemann integral (in suitable formulations) are either false or far less easy to prove.

In these remarks I am taking for granted that Lebesgue integration with respect to
Lebesgue measure generalizes Riemann integration, in the sense that a Riemann-integrable
function on a multi-interval is necessarily Lebesgue-integrable with the same value for the
integral. It is rather probable that I shall not give a proof of this — although it is not very
difficult, it is rather time-consuming — but I shall assume it occasionally.

The fact that certain functions are not “detected” by the integral has led to a whole list of
phrases expressing the idea.

Definition 14.8. Let  be a property of points of  [for example, if  is a sequence ofT Ð0 ÑH 8

functions ,  might mean that ; this may be true for someH Ò ‘ T ÐBÑ 0 ÐBÑ Ä 0ÐBÑ8

B − T Ð ß ÑH D . H and false for some others]. We say that  holds -   ifalmost everywhere in
there is a set  such that  and  is true whenever . That is to say,I − ÐIÑ œ ! T ÐBÑ B Â ID .
the set of points  for which  is  is a subset of a measurable set of measure .B T ÐBÑ !false

It is of course “usually” the case that the set of points  for which  is false (oftenB T ÐBÑ
called, especially in informal discussion, the ) is itself measurable; in §10, Iexceptional set
explained that there are reasons why this should be so in , although we cannot assume it,‘8

for all “practical” properties . However, the case may be altered for peculiar spaces orT
measures or properties.

One often says “  holds a.e.” In older books in English, “p.p.” (for ;T presque partout
Lebesgue was French) is sometimes used instead of a.e., and of course corresponding
abbreviations are (sometimes) used in other languages. There are also other forms of words,
such as “  for almost all  in ”.T ÐBÑ B H

Lemma 14.9.  Suppose that  are non-negative measurable functions and0ß 1 À H Ò ‘
α "ß  are non-negative extended real numbers. Then

( ( (Ð 0 � 1Ñ œ 0 � 1α " α " .

Proof.  Suppose . If , then by 14.6 , and sinceα .œ ∞ 0 # ! ÐUÐ0ÑÑ # !'
ÖB − À 0ÐBÑ œ ∞× œ UÐ0ÑH α ,

14.5  shows  is non-integrable. So . If  and , then,(b) α α α α0 0 œ ∞ œ 0 œ ∞ 0 œ !' ' '
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from 14.6, ; hence, ; and 14.6 shows in turn that. . αÐUÐ0ÑÑ œ ! ÐUÐ 0ÑÑ œ !

( (α α0 œ ! œ ∞Þ! œ 0 .

Now suppose , and let  be an isnsf with . Then  is also an! Ÿ � ∞ Ð0 Ñ 0 Å 0 Ð 0 Ñα α8 8 8

isnsf, , and  for each , by 13.4 . Soα α f α αf0 Å 0 Ð 0 Ñ œ Ð0 Ñ 88 8 8 (c)

( (α f α αf α f α0 œ Ð 0 Ñ œ Ð0 Ñ œ Ð0 Ñ œ 0lim lim lim8 8 8 .

It will now suffice to show that . Take isnsfs , ; then' ' 'Ð0 � 1Ñ œ 0 � 1 0 Å 0 1 Å 18 8

Ð0 � 1 Ñ Ð0 � 1 Ñ Å Ð0 � 1Ñ8 8 8 8 is an isnsf and . So, again using 13.4 ,(c)

(
( (

Ð0 � 1Ñ œ Ð0 � 1 Ñ œ Ð Ð0 Ñ � Ð1 ÑÑ

œ Ð0 Ñ � Ð1 Ñ œ 0 � 1

lim lim

lim lim

f f f

f f

8 8 8 8

8 8 . �

Definition 14.10.  Let . Define0 À H Ò ‘

0 ³ Ð0ß !Ñ ß 0 ³ � Ð0ß !Ñ œ Ð�0ß !Ñ� �max min max .

These are, of course, the  maximum and minimum (see 7.15): for each ,pointwise B − H
0 ÐBÑ œ Ð0ÐBÑß !Ñ 0 ÐBÑ œ � Ð0ÐBÑß !Ñ œ Ð�0ÐBÑß !Ñ� �max min max and .

Lemma 14.11.    are non-negative.(a) 0 ß 0� �

(b) If  is -measurable,  both  and  are -measurable.0 À 0 0H Ò ‘ D D� �

(c) .0 œ 0 � 0� �

Proof.  Only  is not obvious, and it follows from 12.6 , . For , notice that  and(b) (b) (c) (c) 0�

0�  cannot take opposite infinite values at the same point. �

Briefly, any function  can be expressed as the difference of two non-negative functions,0
both measurable if  is. However,  can usually be so expressed in many ways. The form0 0
0 � 0 0 0� � � � is the most ‘economical’, because  and  are the smallest possible functions
that can appear in such a decomposition. Another way of putting the same idea is that, for
each point , either  or . In graphical terms,  correspond toB − 0 ÐBÑ œ ! 0 ÐBÑ œ ! 0H � � �

the “part of the graph that is above the axis”, and so on.

Definition 14.12.  Let  be -measurable. The  when0 À H Ò ‘ D integral of  is defined0' ' ' '0 0 0 0 0� � � � and  are not both infinite.  is  if both  and  are finite. Inintegrable
either case, the  is to beintegral of 0

( ( (0 ³ 0 � 0� � .

Thus,  is integrable precisely when its integral  and . Also, notice that,0 is defined is finite
by specifying  and , we are ensuring that the class of integrable functions is as large as0 0� �



76

possible for a definition that depends on expressing  as the difference of two non-negative0
measurable functions. The most important elementary observation is this:

Lemma 14.13.  The measurable function  is integrable if and only if  (which is0 0k k
measurable and non-negative) is integrable.

Proof.   , by considering the cases  and  separately. So,k k0 œ 0 � 0 0ÐBÑ Ÿ ! 0ÐBÑ # !� �

if  and ,  by 14.9. Similarly, from 14.2,' ' ' ' 'k k0 � ∞ 0 � ∞ 0 œ 0 � 0 � ∞� � � �' ' ' 'k k k k k k0 Ÿ 0 0 Ÿ 0 0 0 0� � � � and , so that, if  is integrable,  and  must be too. �

It is unfortunate that Definition 14.12 does not immediately lead to the central properties
of the integral, which I shall postpone to the next section. You pay a price for the simplicity
of the definition. For the moment, it should be observed that we have only defined the
integral over the whole of .H

Lemma 14.14.  Let  be -measurable functions, and suppose that 0ß 1 À 0 œ 1H Ò ‘ D
a.e. Then  exists if and only if  exists, and . (In particular,  is integrable if' ' ' '0 1 0 œ 1 0
and only if  is integrable.)1 �

Lemma 14.15.   Let  be measurable, suppose  a.e. (which(a) 0ß 1 À 0 Ÿ 1H Ò ‘ k k
implies that  is a.e. non-negative), and let  be integrable. Then  is integrable.1 1 0

(b) If the integral of  exists, then  (which is defined, as  is2 À 2 Ÿ 2 2H Ò ‘ k k k k' '
non-negative measurable).

Proof.   follows from 14.2, 14.8, and 14.13. As for , by 14.9(a) (b)

º º º º( ( ( ( ( ( k k2 œ 2 � 2 Ÿ 2 � 2 œ 2� � � � . �

Remark 14.16.  Suppose that . DefineQ − D

D DQ ³ ÖI ∩ Q À I − × .

It is easily seen that  is a -field of subsets of , and, of course, .D 5 D DQ QQ ©
Consequently, the restriction of  to  is a measure on , and our definitions will yield. D DQ Q

the ideas of -measurability or “relative measurability” (both of subsets of  and ofDQ Q
functions ), of -simplicity of functions, and of the integral with respect to Q Ò ‘ D DQ Q

and .. Dl Q

In particular, a -measurable function  restricts to a -measurableD H Ò ‘ D0 À Q

function on , whose integral, when it exists, may be denoted . That is,Q 0'
Q

( (
Q Qß ß l

0 ³ 0lQ
D . DQ Q

.

Then  exists if and only if  exists, in which case they are equal.' '
Q Q0 0

H
"

(a) Furthermore, if  exists, then so does .' '
H

0 0Q

(b) If  exists and is finite (that is, if  is integrable on ), then so is  (  is' '
H

0 0 0 0H Q

integrable on ).Q
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(c) If  exists and  has an infinite value, then  must have the same' ' '
H H

0 0 0Q

infinite value.
(d) If  is non-negative (on ), then .0 0 � 0H ' '

H Q

On the other hand, if  is -measurable, define  by1 À Q 1 ÀsÒ ‘ D H Ò ‘Q

1ÐBÑ ³ 1ÐBÑ B − Q 1ÐBÑ ³ ! B Â Qs swhen , when .

Then  is -measurable, and  is defined if and only if  is defined, and in1 1 1s sD ' '
H D . DQß ß lQ Q

that case they are equal.
These facts explain why I have defined the integral only on the whole of . They areH

straightforward consequences of the definitions, and I leave the proofs as exercises.

§15. Properties of the integral.

It will be easiest to begin with one of the great theorems about the Lebesgue integral, which
on our definition (unlike Lebesgue’s) becomes rather easy. As before, the measure space
Ð ß ß ÑH D .  is fixed. First, a lemma:

Lemma 15.1.  Suppose that, for each , , and that  a.e. for8 − 0 À 0 Ÿ 0� H Ò ‘8 8 8�"

each . Then the sequence  is increasing a.e.8 Ð0 Ñ8

Proof.  By hypothesis, there is, for each , a set  such that  and8 ^ − Ð^ Ñ œ !8 8D .

0 ÐBÑ Ÿ 0 ÐBÑ B Â ^ ^ ³ ^ ^ −8 8�" 8 55œ"
∞ when . Take ; then , and 8.3 shows that- D  

! Ÿ Ð^Ñ Ÿ Ð^ Ñ œ !. .�
5œ"

∞
5 ,

whilst, if , then  for all , so that  for all  simultaneously.B Â ^ B Â ^ 8 0 ÐBÑ Ÿ 0 ÐBÑ 88 8 8�"

That is, the sequence  is increasing a.e.Ð0 Ñ8 �

Remark 15.2.  More generally, the argument shows that the conjunction of any countable
class of properties, each of which holds a.e., also holds a.e. This general fact saves authors the
effort of distinguishing clearly between the various meanings of “a.e.” when applied to
properties of sequences — as, for instance, “increasing a.e.” ought to mean, as I used it above,
that the property “for all , ” holds a.e., but it could easily be8 0 ÐBÑ Ÿ 0 ÐBÑ8 8�"

misunderstood to mean that, for each individual ,  a.e. The Lemma8 0 ÐBÑ Ÿ 0 ÐBÑ8 8�"

reassures us that the distinction is unimportant in practice.
Now the big theorem. Lately it is usually called in English the Monotone Convergence

Theorem; but it is still sometimes known as Beppo Levi’s theorem. (The use of his forename
is, I suppose, because there was another well-known Italian mathematician of the same
surname at the time, E. E. Levi.) Because of our approach to the integral, which was
influenced by  this theorem to begin with, the proof becomes mere “bookkeeping”, albeit not
completely obvious; all the hard work is in 13.6; but deducing it directly from Lebesgue’s
definition as B. Levi did is less easy.

Theorem 15.3. Let  be an a.e. increasing sequence of a.e. non-negative measurableÐ0 Ñ8

functions . Suppose  is measurable and  a.e. ThenH Ò ‘ H Ò ‘0 À 0 Å 08
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( (0 œ 0lim 8 .

Proof.  By 15.2, we may remove an exceptional set  of measure zero. It will suffice, by^
14.14, to prove the result on the assumption that  at every point of , and! Ÿ 0 Ÿ 0 Å 08 8�" H
then consider  (see 14.16) instead of .H HÏ ^

For each , let be an isnsf such that . (The non-standard symbol8 Ð1 Ñ 1 Å 0 Å5 5
Ð8Ñ Ð8Ñ

5œ"
∞

5 5
8

means “tends as ”, with the implication that  is fixed.) Set, for given ,5 Ä ∞ 8 5

2 ³ Ö1 À 8 Ÿ 5×5 5
Ð8Ñmax .

By 12.12,  is also simple. But also,  for each  and , so that2 1 � 1 8 55 5�" 5
Ð8Ñ Ð8Ñ

2 œ Ö1 À 8 Ÿ 5 � "× � Ö1 À 8 Ÿ 5 � "×

� Ö1 À 8 Ÿ 5× œ 2

5�" 5�" 5
Ð8Ñ Ð8Ñ

5
Ð8Ñ

5

max max

max ,

so that  is increasing. Fix . When ,  by definition, so thatÐ2 Ñ 8 5 � 8 2 � 15 5 5
Ð8Ñ

lim lim5 5 5 85
Ð8Ñ

2 � 1 œ 0 .

Since this is true for each , .8 2 � 0 œ 0 œ 0lim sup lim5 5 8 8 8 8

On the other hand, for every  and , , so that  and . The8 6 1 Ÿ 0 2 Ÿ 0 2 Ÿ 06
Ð8Ñ

8 6 6 6 6lim
conclusion must be that . Thus  is an isnsf, , and by 14.1lim5 5 5 52 œ 0 Ð2 Ñ 2 Å 0

( 0 œ Ð2 Ñlim f 5 .

But, from 13.6, as ,  by 14.2. So2 Ÿ 0 œ 1 Ð2 Ñ Ÿ Ð1 Ñ œ 0 Ÿ 05 5 6 5 6 56 6
Ð5Ñ Ð5Ñlim limf f ' '
( ( (0 Ÿ 0 Ÿ 0lim 5 .

This is the result. �

Notice the advantage of allowing infinite values here. The corresponding result for
Riemann integrals would include the hypothesis that , as well as each , is Riemann-0 08

integrable; and it would not be easy to prove by purely “Riemann-integral”  methods.

Corollary 15.4.  If  is a sequence of a.e. non-negative measurable functions on ,Ð0 Ñ8 H

( (Š ‹� � Œ 8œ" 8œ"

∞ ∞
8 80 œ 0 .

Proof.  Apply 15.3 to the sequence of partial sums, recalling 14.9. �

This result is more striking than useful. The next one, however, is different; although
superficially rather unmemorable, it turns out to be by far the easiest method of deducing
some non-obvious facts later on. Because of this, it has a name: .Fatou’s lemma
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Lemma 15.5.   Let  be  sequence of non-negative measurable functions. ThenÐ0 Ñ8 any

( (Ð 0 Ñ Ÿ 0lim inf lim inf8 8 .

Proof.  Set , for each . Then  is also measurable and non-negative,1 ³ 0 5 − 15 8�5 8 5inf �
and . By the monotone convergence theorem 15.3,1 Å 05 8

5
lim

( (lim lim
8

8 5
5

0 œ 1 . (37)

However, for each ,  and so  (by 14.2). This being so for all8 � 5 0 � 1 1 Ÿ 08 5 5 8' '
8 � 5 1 Ÿ 0 5 Ä ∞ 1 Ÿ 0, in fact . Take the limit as : . The result' ' ' '5 8�5 8 5 8

5 8
inf lim lim

follows by putting this together with (37). �

Although we cannot at present fill in the details, Fatou’s lemma may be understood in
terms of an alternative definition of the integral. It is possible to define, from the given
measure space  and from  with Lebesgue measure, a “product measure space”Ð ß ß ÑH D . ‘
consisting of a “product -algebra”  in  and a “product measure”  thereon,5 D H ‘ .Œ Œ‚
satisfying various appropriate properties. A non-negative function  on  is -measurable if0 H D
and only if the ordinate sets of 7.14 are -measurable; in that case the integral of  is theDŒ 0
product measure of either ordinate set. (This is obviously the measure-theoretic interpretation
of Leibniz’s definition of the integral.) Then Fatou’s lemma results from the first assertion of
7.16 and from 8.6. The interest of this way of looking at it is that it reinforces the need to
consider lower limits, which may at first seem rather strange.

We now return to the properties of the integral.
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Proposition 15.6.  Let  be a sequence of measurable sets such that ÐQ Ñ ÐQ ∩ Q Ñ œ !8 3 4.

when ; let , and suppose that  is relatively measurable3 Á 4 Q ³ Q 0 À Q-
8œ"
∞

8 Ò ‘

on  and a.e. non-negative. ThenQ

( (Œ 
Q Q8œ"

∞

0 œ 0�
8

.

Proof.  Let . Then  is relatively measurable and a.e. non-negative on , and0 ³ 0 0 Q8 Q 8"
8

0 œ 0 Q�
8œ"

∞
8 a.e. on 

(the points where equality fails form a subset of , which, as a countable-
3Á4 3 4ÐQ ∩ Q Ñ

union of measurable sets of measure zero, is itself measurable of measure zero). The result
follows from 14.14 and 15.4. �

The above proposition concerns a.e. non-negative functions, integrable or not. The next
one is about general measurable functions.

Lemma 15.7.  Suppose  are measurable sets and ; letQ ß Q ß á ß Q Q ³ Q" # 8 33œ"
8-

0 À Q Q 0 QÒ ‘  be relatively measurable on . Then  is integrable on  if and only if it is
integrable on  for each .  If  whenever , thenQ 3 ÐQ ∩ Q Ñ œ ! 3 Á 43 3 4.

( (Œ 
Q Q3œ"

8

0 œ 0�
3

.

Proof.  In one direction, the result follows from 14.16 . So, suppose that  is integrable on(b) 0
each . ‘Disjunctify’ in the usual way, 4.7, so that  is expressed as a disjoint union ofQ Q3

measurable sets  for which  for each . By 14.16 ,  is integrable on eachQ Q © Q 3 03 3
w w

3 (b)
Q Q œ Q œ â œ g3 8�" 8�#

w w w. Now apply 15.6, taking , to obtain

( ( ( (   
Q Q Q Q

� � � �

3œ" 3œ"

8 8

0 œ 0 0 œ 0� �
3 3
w w

, ,

which are both finite; so  is integrable on .0 Q
If  when , then 15.6 applies without disjunctification:.ÐQ ∩ Q Ñ œ ! 3 Á 43 4

( ( ( (Œ  Œ 
Q Q Q Q

� � � �

3œ" 3œ"

8 8

0 œ 0 0 œ 0� �
3 3

, ,

and the final assertion follows. �

It is a consequence of our definition of the integral that very often statements are true in
two cases: when everything in sight is non-negative (although some values may be infinite),
and when the functions are integrable. This is the reason why some very basic properties have
been postponed until now.

Since an integrable function is finite a.e. by 14.5 and 14.13, one may usually assume,(b)
by omitting an exceptional set of measure , that functions are  finite-valued; this! everywhere



81

avoids the difficulty of 12.5. As a reminder, I state the next result for finite-valued measurable
functions only.

Proposition 15.8. Let  be integrable, and . Then  is also0ß 1 À ß − 0 � 1H Ò ‘ α " ‘ α "
integrable, and

( ( (Ð 0 � 1Ñ œ 0 � 1α " α " .

Proof.  If ,  and ; if ,  andα α α α α α α α� ! Ð 0Ñ œ 0 0 œ 0 Ÿ ! Ð 0Ñ œ � 0� � � � � �

Ð 0Ñ œ Ð� Ñ0α α� � . Applying 14.9, one obtains in the first case

( ( ( (Ð 0Ñ œ 0 ß Ð 0Ñ œ 0α α α α� � � �

(which are both finite), and in the second case

( ( ( (Ð 0Ñ œ Ð� Ñ 0 ß Ð 0Ñ œ Ð� Ñ 0α α α α� � � �

(which again are both finite). So, in either case,  is integrable, and .α α α0 Ð 0Ñ œ 0' '
To complete the proof of the Proposition, it remains to deal with addition. Given the

integrable functions  and , there are in principle eight cases to consider: set0 1

I ³ ÖB − À 0ÐBÑ � !× ß I ³ ÖB − À 0ÐBÑ � !× ß

J ³ ÖB − À 1ÐBÑ � !× ß J ³ ÖB − À 1ÐBÑ � !× ß

K ³ ÖB − À 0ÐBÑ � 1ÐBÑ � !× ß K ³ ÖB − À 0ÐBÑ � 1ÐBÑ � !× ß

LÐ ß ß Ñ ³ I ∩ J ∩ K

� �

� �

� �

H H

H H

H H

% ' ( % ' ) , for % ' )ß ß œ „ .

The eight sets  are measurable, disjoint, and cover . Some of them, specificallyLÐ ß ß Ñ% ' ( H
LÐ�ß �ß �Ñ LÐ�ß �ß �Ñ 0 1 and , are always empty, whatever the functions  and . By 15.7,
it will suffice to prove the result on each  separately, and in each case this isLÐ ß ß Ñ% ' (
straightforward from 14.9. For instance, on ,  and  and  are non-LÐ�ß �ß �Ñ �0 �0 � 1 1
negative and , so that 14.9 gives1 � Ð�0 � 1Ñ œ �0

( ( (1 � Ð�0 � 1Ñ œ Ð�0Ñ ;

as  and  are finite, we deduce that  must also be finite, and so' ' ' '1 Ð�0Ñ œ � 0 Ð�0 � 1Ñ

( ( ( ( ( (Ð0 � 1Ñ œ � Ð�0 � 1Ñ œ 1 � Ð�0Ñ œ 0 � 1 .

The same sort of argument works on any .LÐ ß ß Ñ% ' ( �

The conclusion of the proposition is true in some other cases. It is sufficient, for instance,
for  to be finite (i.e. in ),  to be integrable, and  to exist. I leave this as an exercise.α ‘ 0 1'
Lemma 15.9. Suppose  are measurable and their integrals are defined, and0ß 1 À H Ò ‘
0 Ÿ 1 0 Ÿ 1 0ß 1 0 Ÿ 1 a.e. Then . Furthermore, if one of  is integrable and  a.e., then' '

the integral of the other function exists, and  only if  a.e.' '0 œ 1 0 œ 1
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Proof. If  (so that ) or if  (so that ) then' ' ' '0 œ ∞ 0 œ �∞ 1 œ ∞ 1 œ ∞� �' ' ' '0 Ÿ 1 0 � ∞ 1 � ∞ 0 Ÿ 1 immediately. If  and , then (as, rather trivially, � � � �

and ) both  and  are integrable, and finite a.e., so that 15.8 applies. But1 Ÿ 0 0 1� �

( ( (1 � 0 œ Ð1 � 0Ñ

(to repeat the point of the remark before 15.8:  is defined except on the set of measure1 � 0
zero where  and  have opposite infinite values, so it makes no difference how we define it0 1
there — provided it is measurable). But  is the integral of a a.e. non-negative' Ð1 � 0Ñ

function, so is non-negative. This proves the first assertion.
For the second, suppose  is integrable. Then, as , , and  exists.0 1 Ÿ 0 1 � ∞ 1� � �' '

If , then  is integrable, and by 15.8, . But  a.e.; omitting' ' '0 œ 1 1 Ð1 � 0Ñ œ ! 1 � 0 � !
the exceptional set, we may apply 14.6 to deduce  a.e.1 œ 0 �

We may now generalize the monotone convergence theorem.

Lemma 15.10.  Let  be an a.e. increasing sequence of measurable functions such thatÐ0 Ñ8' ' '0 �∞ 0 œ 0 0 œ 0" 8 8 is defined and is not . If  a.e., then .lim lim

Proof.  Apply the monotone convergence theorem to the sequence .Ð0 � 0 Ñ8 " �

The details of the above proof are left as an exercise.
It is a long time since signed measures were mentioned. They are very common.

Proposition 15.11.  Let  be a disjoint sequence of measurable sets, .ÐJ Ñ J ³ J8 88œ"
∞-

Suppose  is relatively measurable and  is defined. Then0 À J 0Ò ‘ '
J

( (Œ 
J J8œ"

∞
0 œ 0�

8

.

(All these integrals are defined; see ).14.16

Proof.  Apply 15.6 to  and to  separately. 0 0� � �

Notice that the existence of  must be assumed; it is quite possible for'
J 0�

8œ"

∞

J JŠ ‹' '
8

0 0 to be defined, and even to be zero, although  is undefined. (There are

easy examples).
One may interpret this in an interesting way. If  is defined, then the “indefinite'

H
0

integral of ” is the function  defined by0 À5 D Ò ‘

ÐaI − Ñ ÐIÑ ³ 0D 5 (
I

,

and the Proposition states that  is a signed measure on .5 D

Beppo Levi’s theorem is, from our point of view, the first of the great theorems of the
Lebesgue theory. It has the obvious disadvantage that monotone sequences of functions are
rather rare. The second great theorem, which is free from that disadvantage, is the dominated
convergence theorem. Apart from these two theorems, Lebesgue’s extraordinary contributions
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to integration theory had to do with differentiation, and we, like many other recent authors,
shall not discuss them seriously; this is regrettable, for they are profound and illuminating,
and are of great significance in harmonic analysis — but they have had relatively little
influence in wider mathematics, and my aim is to treat the most essential topics.

Theorem 15.12.  Let  be a sequence of measurable functions , and suppose Ð0 Ñ 18 H Ò ‘

is a non-negative integrable function on  such that  a.e. for all . Then  andH k k0 Ÿ 1 8 08 8lim
lim 08  are both integrable, and

( ( ( (lim lim lim lim0 � 0 ß 0 Ÿ 08 8 8 8 .

In particular, if  a.e. (where  is measurable), then  is integrable and0 Ä 0 0 08

( (0 œ 0lim 8 .

Proof.  Evidently  a.e. The first assertion follows from 12.7k k k klim sup lim inf0 Ÿ 1 � 08 8

and 14.15. As  is a.e. finite by 14.12 and 14.5 , we may remove an exceptional set of1 (b)
measure  and assume that all the functions  and  are finite-valued (everywhere) and! 1 08

1 � 0 � �1 1 � 0 1 � 08 8 8 everywhere. As  and  are now non-negative measurable
functions, we can apply Fatou’s lemma 15.5. In view of the linearity of the integral, 15.8, we
find

( ( ( ( ( ( (1 � 0 œ Ð1 � 0 Ñ œ Ð1 � 0 Ñ Ÿ Ð1 � 0 Ñ œ 1 � 0lim lim lim lim lim8 8 8 8 8 ,

and, since all these numbers are finite, it follows that . Similarly,lim lim( (0 Ÿ 08 8

( ( ( ( ( ( (1 � 0 œ Ð1 � 0 Ñ œ Ð1 � 0 Ñ Ÿ Ð1 � 0 Ñ œ 1 � 0lim lim lim lim lim8 8 8 8 8 ,

so that .( (lim lim0 Ÿ 08 8

To complete the proof, notice that, if , then  a.e., and the0 Ä 0 0 œ 0 œ 08 8 8lim lim
chain of inequalities (the middle one comes from 7.6 )(c)

( ( ( (lim lim lim lim0 Ÿ 0 Ÿ 0 Ÿ 08 8 8 8

has ends equal to each other. So all the inequalities must be equalities. �

The name of the theorem arises from the statement that the sequence  is “dominated”Ð0 Ñ8

by the integrable function . A particular case is the : if  is1 0bounded convergence theorem 8

measurable for all , and so is , and  a.e., and , and there exists some8 0 0 Ä 0 Ð Ñ � ∞8 . H
constant  such that  a.e. for all , then  as . (This resultsO 0 Ÿ O 8 0 Ä 0 8 Ä ∞k k ' '8 8

from taking “ ” in 15.0 to be the constant function with value .)1 O
If we assume that the functions , their limit , and the dominating function  are all0 0 18

Riemann-integrable, we obtain a theorem for Riemann integrals. Again, it may be proved
(very painfully) by using the theory of the Riemann integral, but there is no point in doing so.
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The proof above obviously relies on the possibility of integrating such functions as
inf8�5 80 .

It is very tempting to suppose that the two theorems above about interchanging limits and
integrals — the monotone and dominated convergence theorems — altogether supersede the
theorems one meets in undergraduate courses. For the simplest such theorem (uniform
convergence on a bounded domain), of course, we now have a much better result; uniform
convergence has been weakened to  convergence. However, the more advanced anddominated
specialized theorems tend to deal with improper integrals of various sorts, and recall that
Lebesgue integrals must be “absolutely convergent”. Hence, the Lebesgue theorems are
sometimes inapplicable because the Lebesgue integral is unavailable. This is irritating, but if
you define “integrals” in unusual ways for special purposes you cannot also preserve all the
properties of the standard definition and must expect to need special proofs of some results.

Remark 15.13.  The dominated convergence theorem only gives a  condition thatsufficient' 'lim lim0 œ 08 8 . For instance, take

0 ÐBÑ ³
! B Ÿ Ð8 � "Ñ B � 8

8 Ð8 � "Ñ � B � 8
8

�# �#

&Î# �# �#œ when  and when ,
when .

Then  pointwise (indeed, there is at most one  such that ), and0 Ä ! 8 0 ÐBÑ Á !8 8

( 0 œ 8 Ð8 � Ð8 � "Ñ Ñ œ Ä !
Ð#8 � "Ñ8

8 Ð8 � "Ñ
8

&Î# �# �#
&Î#

# #
,

so the limit of the integrals is the integral of the limit. However, if  for all , then0 � 0 88

0ÐBÑ � 8 Ð8 � "Ñ � B � 8

0 � 8 Ð8 � Ð8 � "Ñ Ñ

&Î# �# �#

&Î# �# �#

for , and so

,( �
which diverges by comparison with . Thus  is not dominated.�8 Ð0 Ñ�"Î#

8

It follows that even the dominated convergence theorem is not the last word.
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§16. Introductory remarks on probability theory.

This section could be inserted almost anywhere, but is perhaps most appropriate here.
I commented long ago (in §1A) that the modern approach to probability theory is to say

“probability is a measure on the space of events”. In fact, the question “what  probability?”is
had been a serious philosophical puzzle for a long time, and I imagine we have all felt some
unease when told, for instance, that if you toss a coin randomly (whatever that means), the
proportion of heads will settle down in the long run to some number, near , and that the"

#

limiting proportion is the probability of heads. Why should there be a limiting proportion at
all? To be sure, experiments may be, and have been, carried out, but they can neither establish
the genuine existence of a limit nor be genuinely “random”. I suspect that a good deal of the
training one gets in statistics courses is intended to put this unease to sleep. However, it must
also be admitted that statistical theory was quite highly developed long before the logical
foundations of probability were decently established, and that many famous probabilists did
brilliant work on the basis of what one supposes to be intuition.

To get the philosophical question out of the way first: I don’t think the situation is really
different, except for its complexity, to what one has in other branches of science. We say a
body has a “mass”, which we suppose to be in principle a precise number in whatever units
we are using, even though experiments to measure this mass give imprecise and somewhat
variable results. Similarly, we say that an event has a “probability”, despite the lack of any
direct method of measuring it. In both cases, the assumption that there really is a quantity
called “mass” or “probability” is suggested to us by intuition — possibly supported by
experience — and is justified by later deductions. To be a little more explicit, we construct a
mathematical model of the phenomena that interest us, involving relations between various
quantities (for instance ); experimental observations then tell09<-/ œ 7+== ‚ +--/6/<+>398
us whether these relations are plausible and what values should be assigned to the quantities
that are not directly observable, let us say the mass of the proton. Our intention is that the
“laws of nature” we propose should be exact relations between exact quantities; observed
discrepancies from the laws should be ascribed to “experimental error” unless there is
evidence that it is an inadequate or untenable explanation. The greater unease we often feel
about probability as a quantity is perhaps due to the rather abstract entities (“events”
consisting of “outcomes” of “experiments”) to which it is attached, which means that it has
no immediate appeal to our senses. By contrast, we experience mass or electric charge, say,
rather directly, and are accustomed to regard the phenomena of ordinary life as deterministic.
(One would expect even the spin of a roulette wheel to be completely determined by the
conditions; there is an intellectual problem in assuming that its results are genuinely
“random”.) When we come to theories that do not impinge on everyday perception, such as
the structure of the atom, probabilistic interpretations are perhaps less offensive to our
imagination, partly because we have fewer preconceptions about the laws which should
operate; and they do seem to be validated by the predictions they lead to.

The real philosophical problem, although it is hard to pose it exactly and it could be
described as “psychological”, seems to me to be with our intuition. Where do we get the idea
that events  probabilities, or that successive throws of the die are “independent”? No-onehave
who considers the questions doubts the answers, whatever bizarre misconceptions may also
be common. The same applies to many other mathematical (and not only mathematical)
concepts. But this is a digression.
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The modern approach to probability, therefore, is to set up a model without worrying
overmuch about the values of the quantities that appear. Putting it very crudely, it is the
domain of statistics to discuss the values that should be inserted. The reason for taking a
model based on measure theory is that  (and inyou want probabilities to be countably additive
general to behave well under “countable” operations). Without this, one could not discuss the
probabilities associated with a sequence of experiments.

Definition 16.1. A is a triple , where  is a set (the ),probability space event spaceÐ ß ß T ÑH Y H
Y 5 H Y H . is a -field in , and  is a measure on  such that . In general, a measure T T Ð Ñ œ "
on a measurable space  is called a , or a , if .Ð ß Ñ Ð Ñ œ "H D . Hprobability measure probability

My impression is that probabilists prefer to call their -algebras , although analysts tend5 Y
to use . Where analysts say “almost everywhere”, or “for almost all ”, probabilistsD HB −
say “almost surely” (a.s.), or “almost always”.

One should think of  as the set of possible outcomes of an experiment. An idealizedH
example might be the following. A gun at the centre  of a sphere  shoots bullets in randomS W
directions; then  might be the set of all points of , an “outcome” being the point you hit. H YW
would be the class of subsets of  to which a probability might be assigned, which we callW
“events”. We expect, this being roughly what we mean by “random”, that the probability of
hitting a point in a set  — of the “event”  — will be proportional to the solid angle E E E
subtends at ; more precisely, it ought to be ,  being Lebesgue measure (I slideS ÐEÑÎ ÐWÑ- - -
discreetly over the question of defining “Lebesgue measure” on a sphere; it is possible, of
course.) There are three aspects to this.

In the first place, we or  the values of the probability. They are  basedassume postulate not
on experiment. A probability is in most cases a very complicated entity, which could not be
found even approximately by purely experimental results without assumptions on its general
character. Our postulated values may need subsequent modification if experiments suggest
they are wrong; that is the province of so-called Bayesian statistics.

When, as so often, people say that some observations have only a 1 in 10,000 probability
of having arisen by pure chance, the “pure chance” refers, at root, to a probability they have
themselves defined. I am not suggesting dishonesty or stupidity here, but only that, very often,
entirely credible assumptions are involved that cannot be seriously or even superficially
tested. An example is when expert witnesses give odds on DNA matches. It is obvious that
these odds are  based on convincing statistical sampling — the odds quoted are usuallynot
such that no large enough sample could ever have been tested —, but on  assumptionsa priori
about the random behaviour of DNA sequences. A rather similar but older example is the
crude assertion that “no two people have the same fingerprints”, which I heard in primary
school; it must have meant that the standard characteristics used to analyze fingerprints are in
principle sufficient to distinguish any two people in the world, and was based on the
unspoken assumptions that these characteristics vary independently and so on. It is
inconceivable that the assertion has ever been checked by any scrupulous survey of
fingerprints. (A final “proof” would require fingerprinting everybody without exception, and
analyzing all the fingerprints.)

To put much the same idea another way, what constitutes “random behaviour” depends on
your point of view and the information you have available. If the gun in my example were
known to be able only to fire in a plane, we should want to take the probability in this case to
be proportional to Lebesgue measure on the  of possible hits; “random” behaviourcircle
would be random relative to the added information. (Conversely, if we found in practice that
it seemed over many firings to hit points near to a fixed plane more often than others, we
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should be inclined to suspect some asymmetry in the mounting and to modify our
assumptions about the probability accordingly; this is the Bayesian idea.)

Secondly, the event space  is not, in real life, as obvious as all that. Each firing of theH
gun is associated with many phenomena, not just with a bullet-hole in the sphere, and so it
might be more realistic to consider an  far “larger” than . We might, for example, haveH W
reason to expect that the bullets’ trajectories will for some reason be very irregular. In that
case we might want to take  to be the whole “space of possible trajectories” starting at theH
gun and ending on the sphere. Then the position of the hits, which was all we looked at
before, would give the function  that assigns to each trajectory its end-point on theH Ò W
sphere. Similarly, there might be other “random” phenomena (the mass of the bullets or their
initial speed or whatever) that we want to take into account, and the space  may be givenH
more structure, more dimensions as it were, to allow for that.

This being so, probabilists tend to avoid explicit mention of . Where an analyst might H
write , for instance, a probabilist might write instead . In. HÐÖB − À 0ÐBÑ # $×Ñ T Ð0 # $Ñ
general, probabilists use rather abbreviated notation, because of the intuitive approach that
was typical of the subject. It is usually easy enough to see what is meant, and I may on
occasion be similarly casual; but it is important to appreciate that an argument in which an
analyst might mention  on every line may be phrased by a probabilist in such a way that  isH H
neither named nor mentioned, although the mathematical substance is identical.

The third remark is the oddest. We have seen that, on the Axiom of Choice, there must be
subsets of the sphere (actually, we argued for the interval , and some slightÐ!ß "Ó
modifications are needed for the sphere) that are  Lebesgue-measurable. So there arenot
possible events — that the bullet should hit such a non-measurable set — to which no
probability can be assigned. This is a little disquieting. The idea of probability arose from
gambling, and we might expect that you can lay a bet on anything. The suggestion that some
events are unavailable for wagers is at first surprising; but, of course, the events in question
(the non-measurable sets) , and laying a bet on an eventcannot even be described explicitly
that you cannot specify in any realistic way is unimaginable; you would never know whether
you have won. In short, our intuitive feeling that all events have probabilities should not be
interpreted too generously — it is only “specifiable” events that it can apply to, and other
events may  by logical necessity.exist

Several other probabilistic notations may be mentioned here.
A measurable function is called a , and commonly denoted by upper-caserandom variable

italics like , without mention of  or . The integral is called the or^ß ] ß \ß á H D expectation 
expected value (on the “frequency” interpretation of probability, it would be the average value
of the random variable over an infinite sequence of repetitions of the experiment, if such a
thing were possible):

I\ œ IÐ\Ñ ³ \Ð Ñ .T Ð Ñ(
H

= = .

In cases where , or  or , is in doubt, they may be incorporated in the notation: T IÐ\à T ÑD H
or , and so on.IÐ\à ÑH

The standard joke is that probability theory is measure theory plus the notion of inde-
pendence. It should not be taken too seriously, but there is no doubt that a theorem in
probability theory in which the idea of independence has no part at all is likely to be a
theorem (though possibly an uninteresting one) in pure analysis.

Definition 16.2.  Let  be a probability space. The events  are Ð ß ß T Ñ Eß F −H D D independ-
ent if .T ÐE ∩ FÑ œ T ÐEÑT ÐFÑ
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Once again, the mathematical theory of probability is not interested in the practical
question when the “actual probabilities” of events in the real world make them “indepen-
dent”; that, in two successive throws of a die, the outcome of the first and the outcome of the
second exactly satisfy the law just stated is, in the first instance, a  rather than an experi-belief
mental observation. To be specific, in this case

H ³ Ö"ß #ß $ß %ß &ß '× ‚ Ö"ß #ß $ß %ß &ß '× œ Q ‚ Q ,  say,

and we have an event  which consists all of the outcomes for which the firstE ³ O ‚ Q
throw is in , and an event  of the outcomes for which the second throwO © Q F ³ Q ‚ P
is in . Then we  P T ÐE ∩ FÑ œ T ÐO ‚ PÑ œ T ÐO ‚ QÑT ÐQ ‚ PÑ œ T ÐEÑT ÐFÑexpect
by our intuitive feeling that the first and second throws are “independent” in some real-world
sense. Of course, our belief would have to be abandoned if it appeared to be substantially
contrary to experience, which it isn’t; and, equally, the theoretical concept is introduced to
model similar situations to this one. But, from the theoretical point of view,  is given, andT
independence is defined relative to . The physical circumstances in which we suppose theT
concept of independence to be instantiated are irrelevant to the theory.

Definition 16.2 has various extensions, which I omit here.
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§17. Types of convergence.

To simplify the statements of this section, let us establish the conventions that  is aÐ ß ß ÑH D .
fixed measure space; that ; and that the functions  are -measurable8 − 0ß 1ß 2ß 0 ß 1 ß 2� D8 8 8

functions .  will be real numbers. Several of the definitions and results doH Ò ‘ α " #ß ß
not require these conventions (for instance, the definitions 17.1 do not require the functions to
be measurable or the existence of a measure). The restriction to finite-valued functions is not
in practice very significant — see the remark after 15.7; but it avoids irrelevancies.

Definition 17.1.     (or just , when there is no(a) pointwise on pointwise0 Ä 08 H
ambiguity) means that, for each , the numerical sequence  converges to :B − Ð0 ÐBÑÑ 0ÐBÑH 8

ÐaB − ÑÐa # !ÑÐbRÑ 8 � R 0 ÐBÑ � 0ÐBÑ �H % Ö %k k8 ,

where  is specific to the particular  and  under consideration.R B %
We have already used this idea many times, writing just  or .0 Ä 0 0 Å 08 8

(b) is pointwise Cauchy on     means that, for each , the numericalÐ0 Ñ B −8 H H
sequence  is Cauchy:Ð0 ÐBÑÑ8

ÐaB − ÑÐa # !ÑÐbRÑ 8ß 7 � R 0 ÐBÑ � 0 ÐBÑ � ÞH % Ö %k k8 7

Lemma 17.2.  If  pointwise, then  is pointwise Cauchy. If  is pointwise0 Ä 0 Ð0 Ñ Ð0 Ñ8 8 8

Cauchy, then there exists  such that  pointwise.0 0 Ä 08 �

Definition 17.3.      means that(a) uniformly on 0 Ä 08 H

Ða # !ÑÐbRÑÐaB − Ñ 8 � R 0 ÐBÑ � 0ÐBÑ � Þ% H Ö %k k8 (38)

In other words,  is now no longer specific to a single ; for the given ,  has to ‘work’ forR B R%
all . (38) implies thatB

Ða # !ÑÐbRÑ 8 � R Ö 0 ÐBÑ � 0ÐBÑ À B − × Ÿ% Ö H %sup k k8 , (39)

which could be taken as an alternative definition. A still more abstract version is

supÖ 0 ÐBÑ � 0ÐBÑ À B − × Ä ! 8 Ä ∞k k8 H as . (40)

The equivalence of (38), (39), and (40) is a trivial exercise, but notice that the passage from
(38) to (39) involves a change, for the chosen , from  to ; to return from (39) to (38) it% � Ÿ
is necessary to consider different values for .%

     means that(b) is uniformly Cauchy on Ð0 Ñ8 H

Ða # !ÑÐbRÑÐaB − Ñ 8ß 7 � R 0 ÐBÑ � 0 ÐBÑ �% H Ö %k k8 7 . (41)

This condition also may be formulated in other ways, which I leave to you.

Lemma 17.4.  If  uniformly, then  is uniformly Cauchy. If  is uniformly0 Ä 0 Ð0 Ñ Ð0 Ñ8 8 8

Cauchy, then there exists  such that  uniformly.0 0 Ä 08 �
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In this lemma, as in the previous one and others to come, the assertion is of a kind of
“completeness”; it is not always the case that there is a metric involved, so Definition 0.14
may not apply in the form I gave, but, nevertheless, the main statement is that a Cauchy
sequence must necessarily converge (the converse is usually trifling). The method is always
the same. To find the putative limit of the sequence, you consider some other kind of conver-
gence — in spaces of functions often pointwise convergence. Having found a candidate for
the limit in this weaker sense, you must check, firstly, that it, too, belongs to the space under
consideration, and then that it is the limit in the sense desired, not just in the sense used to
construct it. (My usual joke here is that it is like the procedure for electing an American
president. The parties look, by any means available, for suitable . Having foundcandidates
one, they must check that he or she supports the right . There have been instances inparty
living memory where both parties wanted to field the same candidate, having no idea which
he favoured. And finally, he must be elected.) One or more of these steps may be redundant.
In the lemma above, “uniformly Cauchy” implies “pointwise Cauchy”, which implies
“pointwise convergent” by 17.2; the ‘hard’ part, not very hard in this case, is to show that
convergence pointwise to the pointwise limit is also uniform convergence. Indeed, given
% Ö H %# ! R 7ß 8 � R ÐaB − Ñ 0 ÐBÑ � 0 ÐBÑ �, there exists  such that ; as this is sok k8 7

for any  (when  is kept fixed), one has in the limit .7 � R 8 � R 0 ÐBÑ � 0ÐBÑ Ÿk k8 %
This is so for any  and any , so  uniformly on .8 � R B − 0 Ä 0H H8

So far  might have been any set.H

Definition 17.5.  0 Ä 08  a.e. on  H if the set , which must belongÖB − À 0 ÐBÑ Äy 0ÐBÑ×H 8

to , is of -measure zero.D .

(If I had not demanded at the start that  were measurable, I could still have defined0 ß 08

“  a.e.” to mean that there is a measurable set  of measure  such that, for any0 Ä 0 E !8

B Â E 0 ÐBÑ Ä 0ÐBÑ, . See 14.8. That, on our assumptions, the “exceptional set” is in ,8 D
follows from the equality

ÖB − À 0 ÐBÑ Äy 0ÐBÑ× œ ÖB − À 0 ÐBÑ � 0ÐBÑ � 7 ×H H8 87œ" Rœ" 8�R

∞ ∞ ∞ �". , .Š ‹Š ‹k k ,

which it is an amusing exercise to prove.)

Definition 17.6.   means that  is not Cauchy ,  is a.e. Cauchy on Ð0 Ñ8 H ÖB − À Ð0 ÐBÑÑ ×H 8

which must belong to , is of measure .D !

A similar remark applies to this definition. Notice that

ÖB − À Ð0 ÐBÑÑ × œ ÖB À 0 ÐBÑ � 0 ÐBÑ � 7 ×H 8 5 67œ" Rœ" 5ß6�R

∞ ∞ ∞ �" not Cauchy .. , .Š ‹Š ‹k k
Lemma 17.7.  If  converges a.e. to , then  is a.e. Cauchy. If  is a.e. CauchyÐ0 Ñ 0 Ð0 Ñ Ð0 Ñ8 8 8

on , then there is some  such that  a.e.H 0 0 Ä 08

Proof.  Remove the exceptional sets and apply 17.2. �

Definition 17.8.   (or ) if there exists a set  such0 Ä 0 ^ −8 a.e. uniformly uniformly a.e. D
that  and  uniformly on .. HÐ^Ñ œ ! 0 Ä 0 Ï ^8
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Definition 17.9.   is , or , if thereÐ0 Ñ8 a.e. uniformly Cauchy on uniformly Cauchy a.e.H
exists  such that  and  is uniformly Cauchy on .] − Ð] Ñ œ ! Ð0 Ñ Ï ]D . H8

Lemma 17.10.  If  is a.e. uniformly Cauchy, then there exists  such that Ð0 Ñ 0 0 Ä 08 8

uniformly a.e. �

Although the definitions 17.8 and 17.9 are natural ones to make, there is something odd
about them. It may be seen from the alternative formulation of 17.8:

Ða7 − ÑÐbR − Ñ ÖB − À 0 ÐBÑ � 0ÐBÑ � 7 × œ !� � . HŠ ‹. k k
8�R 8

�" .

It is rather strange to demand that, for some  that need not be chosen independently of ,R 7
the measure of the set in question be  . (To deduce 17.8, take the union of these setsexactly!
over all .) Indeed, all the definitions so far given rely only on the structure of the sets of7
measure zero — the non-zero values of  have no influence on them..

This remark brings us to the first kind of convergence that is strikingly new and really
exploits the measure. Although I state it for measure spaces, its simplest interpretation is in
terms of probabilities.

Definition 17.11.  0 Ä 08  (or, when  is a probability, in measure on   inH . 0 Ä 08

probability) if, for each ,  as . That is,% . H %# ! ÐÖB − À 0 ÐBÑ � 0ÐBÑ � ×Ñ Ä ! 8 Ä ∞k k8

Ða # !ÑÐa # !ÑÐbR − ÑÐa8 � RÑ ÐÖB − À 0 ÐBÑ � 0ÐBÑ � ×Ñ �% ( � . H % (k k8 . (42)

The general idea behind this definition is, obviously enough, that the  that probability 08

and  will differ by more than  becomes very small for large ; in probabilist-speak,0 8%

T Ð 0 � 0 � Ñ Ä !k k8 % .

However, the definition is quite different from the previous ones, since there is no fixed
exceptional set off which the convergence occurs; rather, there is an exceptional set that
depends on  and , and  is used to measure the “size” of this set, so that, at least in% .8
principle, the whole structure of  may be called on. (It turns out that this is not entirely true.
in practice, at least in many useful cases.)

The statement (42) is often cast in a different form:

Ða # !ÑÐbR − ÑÐa8 � RÑ ÐÖB − À 0 ÐBÑ � 0ÐBÑ � ×Ñ �% � . H % %k k8 .

It is easy and instructive to show that this implies (42); the converse implication is trivial.

Example 17.12.  Let  be  or , with Lebesgue measure . Define a sequence  ofH ‘ -Ò!ß "Ó ÐI Ñ8

sets in  as follows. , , , , ,H I ³ Ò!ß "Ó I ³ Ò!ß Ñ I ³ Ò ß "Ó I ³ Ò!ß Ñ I ³ Ò ß Ñ" # $ % &
" " " " #
# # $ $ $

I ³ Ò ß "Ó I ³ Ò!ß Ñ á <Ð< � "Ñ � 8 � Ð< � "ÑÐ< � #Ñ' (
# " " "
$ % # #, , . The rule is that, if  and

3 ³ 8 � <Ð< � "Ñ I ³ Ò ß Ñ I ³ Ò ß "Ó 8 œ Ð< � "ÑÐ< � #Ñ" 3�" 3 < "
# <�" <�" <�" #8 8, , whilst  when .

Take . Then, if , , whilst, if ,0 ³ " # " ÖB − À 0 ÐBÑ � × œ g ! � Ÿ "8 I 88
% H % %k k

ÖB − À 0 ÐBÑ � × œ IH %k k8 8 .

However, , where  is the largest non-negative integer such that-ÐI Ñ œ "ÎÐ< � "Ñ <8

<Ð< � "Ñ � #8 ÐI Ñ Ä ! 8 Ä ∞ 0 Ä !. It follows that  as , and, therefore, that  in- 8 8

measure (or in probability).
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On the other hand, if ,  for infinitely many indices  (exactly once inB − Ò!ß "Ó B − I 88

the range  for each ). So the numerical sequence" "
# #<Ð< � "Ñ � 8 Ÿ Ð< � "ÑÐ< � #Ñ <

Ð0 ÐBÑÑ ! "8  consists of s and s, and there are infinitely many of both; the relative frequency of
" 8 B − Ò!ß "Ós diminishes as  increases, but they never die out. Thus, for any fixed , the
numerical sequence  does not converge. One might say that the “exceptional set”Ð0 ÐBÑÑ8

wanders across the whole of  again and again, and that it is only “on the whole” (that is,Ò!ß "Ó
in probability!) that  tends to . This example, and similar examples, should be kept in0 !8

mind as the theory is developed.

For the previous kinds of convergence (pointwise, uniform, a.e. pointwise, a.e. uniform)
we had a corresponding Cauchy condition and “completeness theorem”, and it was obvious
that the limit was “linear”: that is, if  and , then  for0 Ä 0 1 Ä 1 0 � 1 Ä 0 � 18 8 8 8α " α "
any . None of these ideas is so straightforward for convergence in measure.α " ‘ß −
However, the clauses that  ensure the following Lemma is true.â ÐbR − ÑÐa8 � RÑ â�

Lemma 17.13.  Let  in any of the senses listed above (pointwise, uniform, a.e.0 Ä 08

pointwise, a.e. uniform, in measure). Then any subsequence of  also converges to  inÐ0 Ñ 08

the same sense. �

Definition 17.14.  The sequence  is (or ) if, for eachÐ0 Ñ8 Cauchy in measure in probability
% . H %# ! ÐÖB − À 0 ÐBÑ � 0 ÐBÑ � ×Ñ Ä ! 7ß 8 Ä ∞,  as ; that is,k k8 7

Ða # !ÑÐa # !ÑÐbR − ÑÐa7ß 8 � RÑ ÐÖB − À 0 ÐBÑ � 0 ÐBÑ � ×Ñ �% ( � . H % (k k8 7 .(43)

As before, (43) is equivalent to the somewhat simpler condition

Ða # !ÑÐbR − ÑÐa7ß 8 � RÑ ÐÖB − À 0 ÐBÑ � 0 ÐBÑ � ×Ñ �% � . H % %k k8 7 . (44)

Lemma 17.15.  If  in measure, then  is Cauchy in measure.0 Ä 0 Ð0 Ñ8 8

Proof.  Given , take  such that% ( �ß # ! R −

Ða8 � RÑ ÐÖB − À 0 ÐBÑ � 0ÐBÑ � × �. H % (k k8
" "
# # .

Then, if ,7ß 8 � R

ÖB À 0 ÐBÑ � 0 ÐBÑ � × © ÖB À 0 ÐBÑ � 0ÐBÑ � × ∪ ÖB À 0 ÐBÑ � 0ÐBÑ � ×k k k k k k8 7 8 7
" "
# #% % % .

To prove this, suppose  is not in the right-hand side; then  andB 0 ÐBÑ � 0ÐBÑ �k k8
"
#%k k k k0 ÐBÑ � 0ÐBÑ � 0 ÐBÑ � 0 ÐBÑ � B7 8 7

"
#% %, so that  and  is not in the left-hand side. Now

. %

. % . %

( ( (

ÐÖB À 0 ÐBÑ � 0 ÐBÑ � ×Ñ

Ÿ ÐÖB À 0 ÐBÑ � 0ÐBÑ � ×Ñ � ÐÖB À 0 ÐBÑ � 0ÐBÑ � ×Ñ

� � œ

k kk k k k8 7

8 7
" "
# #

" "
# #

 

 . �

Lemma 17.16.  Suppose  in measure and  in measure, and . Then0 Ä 0 1 Ä 1 ß −8 8 α " ‘
α " α "0 � 1 Ä 0 � 18 8  in measure. �
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It is clear that if  and  pointwise or pointwise a.e., then 0 Ä 0 1 Ä 1 0 1 Ä 018 8 8 8

pointwise or pointwise a.e. The analogous statements for uniform or a.e. uniform
convergence are not true without additional hypotheses to do with the boundedness of the
functions considered. For instance, let  for all  and , and let0 ÐBÑ œ B 8 − B −8 � ‘
1 ÐBÑ œ 8 B 0 1 !8 8 8

�"  for all . Then  does  converge uniformly to . For convergence innot
measure, the situation is discussed later, at.

I shall now introduce an idea which constitutes a sort of amalgam of convergence a.e. and
convergence in measure. As far as I know, it was first named by Munroe, although the
concept had been used before.

Definition 17.17.  0 Ä 0 # ! I −8   if, for any , there is a set almost uniformly on H ( D
such that  and  uniformly on .. ( HÐIÑ � 0 Ä 0 Ï I8

It is important to grasp that the  of uniform convergence on  will (in principle)rate H Ï I
depend on . By this I mean that, for a given , different s may require different s toI I R%
validate (39). A very simple and familiar example, which should be kept in mind as the
theory proceeds, is when  with Lebesgue measure and . ThenH ³ Ò!ß "Ñ 0 Ð>Ñ œ >8

8

0 Ä ! − Ð!ß "Ñ 0 Ä ! Ò!ß " � Ó8 8 pointwise on , and, for any ,  uniformly on .H ( (
However,  in (39) must be taken to be greater than , which (if )R Î Ð" � Ñ − Ð!ß "Ñlog log% ( %
may be made as large as you wish by taking  sufficiently small.(

Definition 17.18.   is if, for any , there is a setÐ0 Ñ # !8 almost uniformly Cauchy on  H (
I − ÐIÑ � Ð0 Ñ Ï ID . ( H such that  and  is uniformly Cauchy on .8

Lemma 17.19.   Suppose that  almost uniformly. Then  a.e. and(a) 0 Ä 0 0 Ä 08 8

0 Ä 08  in measure.
(b) If  is almost uniformly Cauchy, then  is a.e. Cauchy and Cauchy inÐ0 Ñ Ð0 Ñ8 8

measure.

Proof.   Given , let  be such that  and (a) 7 − I − ÐI Ñ � "Î7 0 Ä 0� D .7 7 8

uniformly on . Then  pointwise on . As  for eachH HÏ I 0 Ä 0 Ï I 0 ÐBÑ Ä 0ÐBÑ7 8 7 8

B Â I 7 0 Ä 0 B Â I I œ ! 0 Ä 07 8 7 7 87œ" 7œ"
∞ ∞ for each ,  for ; but . So  a.e.+ +� �.

on . Similarly, given , there exists some  with  such thatH % ( D . (ß # ! I − ÐIÑ �
0 Ä 0 Ï I R −8  uniformly on ; in particular, there is some  such thatH �k k0 ÐBÑ � 0ÐBÑ � B Â I 8 � R8 %  whenever  and . This proves convergence in measure.

The argument for  is analogous.(b) �

Lemma 17.20.   is almost uniformly Cauchy if and only if there exists  such thatÐ0 Ñ 08

0 Ä 08  almost uniformly.

Proof.  “If” is easy. Suppose that  is almost uniformly Cauchy. Then, by 17.19 , it isÐ0 Ñ8 (b)
a.e. Cauchy; by 17.7, it converges a.e. to some function . Take . By hypothesis, there0 # !(
is some  such that  and  is uniformly Cauchy on . HenceI − ÐIÑ � Ð0 Ñ Ï ID . ( H8

0 Ä 1 Ï I 1 I8 I I uniformly on , by 17.4, where the limit function  may depend on .H
Since  pointwise, necessarily  a.e. on . Letting  be the exceptional0 Ä 1 1 œ 0 Ï I ^8 I I H
set, we deduce that  uniformly on , and . Thus0 Ä 0 Ï ÐI ∪ ^Ñ ÐI ∪ ^Ñ œ ÐIÑ �8 H . . (
0 Ä 08  almost uniformly on .H �
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Before we begin to discuss the major theorems, it should be noted that the definitions
given above are sometimes stated in different forms. A rather striking instance is the
following.

Lemma 17.21.  Let . Then  a.e. if and only if either. HÐ Ñ � ∞ 0 Ä 08

(a)
(b)

Ða ß # !ÑÐbR − Ñ ÐÖB − À Ðb8 � RÑ 0 ÐBÑ � 0ÐBÑ � ×Ñ �

1 Ä ! 1 ³ Ö 0 � 0 À 7 � 8×

% ( � . H % (k kk k 8

8 8 7

or
  in measure, where .sup

Proof.  Let  a.e., . Set .0 Ä 0 ß # ! I ³ ÖB − À Ða8 � RÑ 0 ÐBÑ � 0ÐBÑ � ×8 8R% ( H %% k k
Evidently  with , andI Å RR

%

lim
R R RRœ"

∞
8Ð Ï I Ñ œ Ï I œ ÖB À 0 ÐBÑ � 0ÐBÑ � ×H H %% %Š ‹. k k i.o.

(where “i.o.” denotes “infinitely often”, i.e. for infinitely many values of ) must be of8
measure  as it is a set of points at which  does not tend to . However, since! Ð0 Ñ 08

. H . H % (Ð Ñ � ∞ Ð Ï I Ñ Æ !, 8.5  implies that . Consequently, given  and , there must(b) R
%

exist some  such that . This is the assertion of .R Ð Ï I Ñ �. H (R
% (a)

For the reverse implication, it is unnecessary to assume . Indeed, define. HÐ Ñ � ∞

I ³ I% %.
Rœ"

∞

R ,

and then  for each ; therefore, by , . Ergo,. H . H . H (Ð Ï I Ñ Ÿ Ð Ï I Ñ R Ð Ï I Ñ �% % %
R (a)

. H HÐ Ï I Ñ œ ! ^ ³ Ï I% . Now take . Certainlyˆ ‰+
7œ"
∞ "Î7

. . HÐ^Ñ Ÿ Ð Ï I Ñ œ ! ,�
7œ"

∞ "Î7

and if  and , then . Hence, for some , B Â ^ 7 − B − I R 0 ÐBÑ � 0ÐBÑ �� %"Î7
8k k

whenever . That is,  except on .8 � R 0 Ä 0 ^8

Now consider . The condition that  in measure is(b) 1 Ä !8

Ða ß # !ÑÐbR − Ñ 8 � R ÐÖB − À 1 ÐBÑ � ×Ñ �% ( � Ö . H % (k k8 . (45)

As , the conclusion says merely that . On the other hand,1 Æ ÐÖB À 1 ÐBÑ � ×Ñ �8 R. % (

ÖB À Ðb8 � RÑ 0 ÐBÑ � 0ÐBÑ � × © ÖB À 1 ÐBÑ � ×k k8 R% % ,

so that  holds if  in measure. Conversely, for ,(a) 1 Ä ! 8 � R8

ÖB À 1 ÐBÑ � × © ÖB À 1 ÐBÑ � × © ÖB À Ðb8 � RÑ 0 ÐBÑ � 0ÐBÑ � ×k k k k8 R 8
"
#% % % ,

so that, if  holds, and  is chosen to correspond to  and , (45) follows. This proves(a) R "
#% (

that  implies .(a) (b) �

Corollary 17.22.  A monotone sequence of functions on a space of finite measure converges
in measure to a given limit if and only if it converges a.e. to the same limit. �

The next theorem can be used as a step in the proofs of many other results, but in my
exposition it seems to have few consequences.
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Theorem 17.23. . (Egorov ’s theorem)4 Suppose that  and  a.e. Then. HÐ Ñ � ∞ 0 Ä 08

0 Ä 08  almost uniformly.

Proof.  Let  for . This set isI ³ ÖB − À Ðb6 � 8Ñ 0 ÐBÑ � 0ÐBÑ # "Î5× 8ß 5 −85 6H �k k
measurable for each choice of  and . For fixed ,  decreases as  increases, and, if8 5 5 I 885

0 ÐBÑ Ä 0ÐBÑ B Â I I œ ! 5 0 Ä 08 85 85 88œ" 8œ"
∞ ∞, ; that means  for each , as  a.e.+ +� �.

By 8.5 , . Given , there exists  such that(b) . % %ÐI Ñ Æ ! # ! 8Ð5ß Ñ85
8

. %ÐI Ñ � #8Ð5ß Ñß5
�5

% .

Set . ThenE ³ I-
5œ"
∞

8Ð5ß Ñß5%

. . % %ÐEÑ œ I Ÿ # œŠ ‹. �
5œ" 5œ"

∞ ∞
8Ð5ß Ñß5

�5
% .

If , then, for any given , , so that, by the definition of ,B Â E 5 − B Â I I� 8Ð5ß Ñß5 8Ð5ß Ñß5% %

Ða6 � 8Ð5ß ÑÑ 0 ÐBÑ � 0ÐBÑ Ÿ "Î5% k k6 .

As a consequence,  uniformly on .0 Ä 0 Ï E8 H �

The “rate of uniform convergence”, represented by the sequence , dependsÐ8Ð5ß ÑÑ% 5œ"
∞

on  (cf. the remark after 17.17). There is a similar result that a sequence Cauchy a.e. on a%
space of finite measure is almost uniformly Cauchy, but it is unnecessary to prove it separ-
ately, in view of 17.7, 17.23, and 17.20. The moral is that convergence a.e. on a space of
finite measure is  to almost uniform convergence, which at first glance is moreequivalent
demanding (and also implies convergence in measure). For a probability space, almost sure
convergence of random variables implies convergence in probability.

The question arises whether Egorov’s theorem can be extended to spaces of infinite
measure. The example of , with Lebesgue measure, and , which tendsH ‘³ 0 ³8 Ò8ß8�"Ñ"

everywhere to  but is not almost uniformly convergent, shows that the theorem definitely!
fails unless extra restrictions are imposed. One possibility is the following.

Theorem 17.24. Let  be an increasing function such that9 ÒÀ Ò!ß ∞Ñ Ò!ß ∞Ñ
9 H�"

8ÐÖ!×Ñ œ Ö!× 0 Ä 0. Suppose that  a.e. on , and that there exists an integrable
function  on  such that, for all  and all , . Then1 B − 8 Ð 0ÐBÑ Ñ Ÿ 1ÐBÑ � Ð 0 ÐBÑ ÑH H 9 9k k k k8

0 Ä 08  almost uniformly.

Proof. Define  for , exactlyI ³ ÖB − À Ðb6 � 8Ñ 0 ÐBÑ � 0ÐBÑ # "Î5× 8ß 5 −85 6H �k k
as in 17.23. Then , and, as  a.e.,  for any . NowI Æ 0 Ä 0 I œ ! 585 8 85

8 8œ"
∞.� �+

I © ÖB − À 0ÐBÑ # "ÎÐ#5Ñ× ∪ ÖB − À 0 ÐBÑ # "ÎÐ#5Ñ×

© J ³ ÖB − À 1ÐBÑ � Ð"ÎÐ#5ÑÑ×

85 66�8

5

H H

H 9

k k k kŠ ‹.
,

and, as  and  is integrable, it follows that . By 8.5  there9 .Ð"ÎÐ#5ÑÑ # ! 1 ÐJ Ñ � ∞5 (b),
exists  such that , and the argument proceeds as before.8Ð5ß Ñ ÐI Ñ � #% . %8Ð5ß Ñß5

�5
% �

4 The name is transliterated from Cyrillics, so, as usual, appears in several forms. You may see Egoroff,
Jegorow, Yegorov, and presumably mixtures of all three.
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This result implies Egorov’s theorem; take ,  for all . It may9 9 0 0Ð!Ñ ³ ! Ð Ñ ³ " # !
also be used to prove the dominated convergence theorem (and some related results to be
mentioned later).

Theorem 17.25. Suppose  is Cauchy in measure. There exists a subsequence Ð0 Ñ Ð0 Ñ8 8Ð5Ñ

which is almost uniformly Cauchy.

Proof. Take  by convention. Now, if , suppose  has been8Ð!Ñ ³ ! 5 � " 8Ð5 � "Ñ
chosen. By hypothesis (see (44)), there exists some  such thatR − �

Ða7ß 8 � RÑ ÐÖB − À 0 ÐBÑ � 0 ÐBÑ � # ×Ñ � #. H k k7 8
�5�" �5�" .

Choose  be the least such natural number which exceeds . Thus  for8Ð5Ñ 8Ð5 � "Ñ 5 Ÿ 8Ð5Ñ
all , so that  is an infinite subsequence of .5 Ð0 Ñ Ð0 Ñ8Ð5Ñ 8

Given , take  so that , and let% %# ! : # ��:

I ³ ÖB − À 0 ÐBÑ � 0 ÐBÑ � # ×. ¸ ¸
5œ:

∞
8Ð5Ñ 8Ð5�"Ñ

�5�"H .

Then , and, if  and ,. %ÐIÑ Ÿ # œ # � B Â I 4 # 3 � ; � :�
5œ:
∞ �5�" �:

¸ ¸ ¸ ¸� �0 ÐBÑ � 0 ÐBÑ Ÿ 0 ÐBÑ � 0 ÐBÑ � # � #8Ð3Ñ 8Ð4Ñ 8Ð5Ñ 8Ð5�"Ñ5œ3 5œ3

4�" 4�" �5�" �; .

This shows that  is uniformly Cauchy on , and so is almost uniformly CauchyÐ0 Ñ Ï I8Ð5Ñ H

on the whole space .H �

We can now fill the obvious gap in the story so far.

Proposition 17.26.  If  is Cauchy in measure, then there exists  such that  inÐ0 Ñ 0 0 Ä 08 8

measure.

Proof.  By 17.25, there is a subsequence  which is almost uniformly Cauchy. ByÐ0 Ñ8Ð5Ñ

17.20, there is  such that  almost uniformly. By 17.19 ,  in measure.0 0 Ä 0 0 Ä 08Ð5Ñ 8Ð5Ñ(a)
This is sufficient to ensure that  in measure. Indeed, given ,0 Ä 0 # !8 %

ÐbR − ÑÐa7ß 8 � R Ñ ÐÖB − À 0 ÐBÑ � 0 ÐBÑ � ×Ñ �

ÐbR − ÑÐa5 − Ñ 8Ð5Ñ � R ÐÖB − À 0 ÐBÑ � 0ÐBÑ � ×Ñ �

" " 7 8
" "
# #

# # 8Ð5Ñ
" "
# #

� . H % %

� � Ö . H % %

k k¸ ¸ and

.

Take . Then, if , as in the proof of 17.15R ³ ÐR ß R Ñ 8 � Rmax " #

. H % . H %

. H %

% % %

ÐÖB − À 0 ÐBÑ � 0ÐBÑ � ×Ñ Ÿ ÐÖB − À 0 ÐBÑ � 0 ÐBÑ � ×Ñ

� ÐÖB − À 0 ÐBÑ � 0ÐBÑ � ×Ñ

Ÿ � œ

k k ¸ ¸
¸ ¸8 88ÐRÑ

"
#

8ÐRÑ
"
#

" "
# # . �

Behind the above result lies the idea formulated after 7.13, that a Cauchy sequence must
converge if it has a convergent subsequence. I cannot state this as a theorem, because I have
not given a general definition of a Cauchy sequence except in a metric space.

I insert here a result which is often quoted; its proof is essentially the same as in 17.25.
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Proposition 17.27.  Let  be a measure space. If the sequence  converges inÐ ß ß Ñ Ð0 ÑH D . 8

measure to  on , it has a subsequence which converges a.e. to .0 0H �

The restriction  is not needed. But here is a probabilist’s proof:. HÐ Ñ � ∞

Proposition 17.28.  Let  be a probability space. Let a sequence  of randomÐ ß ß T Ñ Ð\ ÑH D 8

variables converge in probability to .  Then there is a subsequence  which\ Ð\ Ñ8Ð5Ñ

converges to  almost surely.\

Proof.  Take any sequence ; choose  such that .% %5 58Ð5Ñ
�5Æ ! 8Ð5Ñ T Ð \ � \ � Ñ � #¸ ¸

Thus , and by the first Borel-Cantelli lemma 8.9� ¸ ¸
5œ"
∞

8Ð5Ñ 5T Ð \ � \ � Ñ � "%

T Ð \ � \ � Ñ œ !¸ ¸8Ð5Ñ 5% i.o.

(recall that “i.o.” means “infinitely often”). Thus, in fact,  almost surely. (For any\ Ä \8Ð5Ñ

point not in the exceptional set, there are only finitely many indices  for which5¸ ¸\ � \ �8Ð5Ñ 5% .) �

If you study this proof carefully, you will see that it remains fundamentally the same as
17.25, although 17.25 gets more out of the ideas because it assumes less.

Definition 17.29.  Let  denote the set of measurable functions on  such thata H

. HÐÖB − À 0ÐBÑ � O×Ñ Ä ! O Ä ∞k k as .

If , all measurable functions that are a.e. finite belong to , by 8.5 . It is. H aÐ Ñ � ∞ (b)
easily checked that  is a vector space of measurable functions on .a H

Lemma 17.30.  Suppose that  and  in measure, where . Then0 Ä 0 1 Ä 1 0ß 1 −8 8 a
0 1 Ä 018 8  in measure. A similar statement holds for almost uniform convergence.

Proof.  Suppose first that  and  in measure. Then, for any ,0 Ä ! 1 Ä ! # !8 8 %

ÖB À 0 ÐBÑ1 ÐBÑ � × © ÖB À 0 ÐBÑ � × ∪ ÖB À 1 ÐBÑ � ×

ÐÖB À 0 ÐBÑ1 ÐBÑ � ×Ñ Ÿ ÐÖB À 0 ÐBÑ � ×Ñ � ÐÖB À 0 ÐBÑ � ×Ñ

k k k k k kÈ È
k k k k k kÈ È8 8 8 8

8 8 8 8

% % %

. % . % . %

, so

,

and it follows that  in measure.0 1 Ä !8 8

Suppose now that  in measure. Take . As , there exists 0 Ä ! # ! 1 − ; −8 % a �
such that . Next, there exists  such that. H % �ÐÖB − À 1ÐBÑ � ;×Ñ � R −k k "

#

Ða8 � RÑ ÐÖB − À 0 ÐBÑ � Î;×Ñ �. H % %k k8
"
# .

Consequently, if 8 � R

. % . % . %ÐÖB À 0 ÐBÑ1ÐBÑ � ×Ñ Ÿ ÐÖB À 0 ÐBÑ � Î;×Ñ � ÐÖB À 1ÐBÑ � ;×Ñ �k k k k k k8 8 .

This shows that  in measure.0 1 Ä !8

Finally, suppose  and  in measure, where . Then, by 17.16,0 Ä 0 1 Ä 1 0ß 1 −8 8 a
0 � 0 Ä ! 1 � 1 Ä !8 8 and  in measure, and so, by the results just proved and 17.16,
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0 1 � 01 œ Ð0 � 0ÑÐ1 � 1Ñ � Ð0 � 0Ñ1 � 0Ð1 � 1Ñ Ä !8 8 8 8 8 8

and .0 1 Ä 018 8

The argument for almost uniform convergence is very similar. �

By the remark after 17.29, the Lemma holds if  without the restriction on . HÐ Ñ � ∞ 0
and  (provided they are a.e. finite).1

Remark 17.31. In this section several notions of convergence or of “Cauchyness” of a
sequence of measurable functions have been introduced. All the definitions and results after
17.5 really concern only equivalence classes of functions under equality a.e. (for instance, if
0 Ä 0 1 œ 0 8 0 œ 1 1 Ä 18 8 8 8 in measure and  a.e. for each  and  a.e., then  in

measure). In the first place, then, our assumption at the beginning that all functions were
finite-valued could have been relaxed later to finiteness a.e. But, in the second place, one
could formulate the theory in terms of equivalence classes; take  to be the vector space of`
all measurable a.e. finite functions on , let  be the vector subspace of functions that areH m
a.e. zero, and define a.e. convergence, a.e. uniform convergence, almost uniform
convergence, and convergence in measure, and the corresponding Cauchy properties, for
sequences in the quotient space . This will be equally possible for the kinds of` mÎ
convergence introduced later. However, to avoid notational difficulties it is customary in
some of these contexts to blur the distinction between functions and their equivalence classes.

It is a curiosity of these definitions that they concern . Certain sequences aresequences
described as having limits, which satisfy various desirable properties. It does not necessarily
follow that there is a topology that determines which sequences converge and to what limits,
or that, if there is a topology, that it is unique.

Pointwise convergence (everywhere) can be described by treating  as a subset (with the`
subspace topology) of  with the product topology. Uniform convergence (everywhere) is‘H

derivable from a metric, , provided that one restricts.Ð0ß 1Ñ ³ Ö 0ÐBÑ � 1ÐBÑ À B − ×sup k k H
attention to bounded functions. Convergence a.e. and uniform convergence a.e. are con-
vergence in the corresponding quotient topologies. Almost uniform and a.e. convergence
coincide in spaces of finite measure (or if the functions are suitably restricted).

The really interesting case from this point of view is convergence in measure. There is a
topology of convergence in measure on the space  of 17.29, in which a base of neighbour-a
hoods at  is furnished by the sets!

Ö0 − À ÐÖB − À 0ÐBÑ � ×Ñ � ×a . H % %k k .

This topology is metrizable; when  is of finite measure (so that ) one can exhibitH a `œ
simple formulæ for suitable metrics.

Theorem 17.32.  Let . Define, for  a.e. finite measurable functions  on ,. H HÐ Ñ � ∞ 0ß 1

. Ð0 ß 1Ñ ³ Ð.BÑ
0ÐBÑ � 1ÐBÑ

" � 0ÐBÑ � 1ÐBÑ

. Ð0 ß 1Ñ ³ Ð0ÐBÑß "Ñ Ð.BÑ

"

#

( k kk k
(

.

.

and

.min

Then  are metrics on the space  of measurable functions modulo a.e. equality. ß . Î" # ` m
such that the sequences that are metrically convergent or metrically Cauchy are precisely the
sequences that are convergent or Cauchy in measure.
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Proof.  This is a straightforward exercise. �

§18. Some inequalities.

We need to know some standard inequalities for real numbers; like § , these are matters that!
really come  the course, and these notes are intended to give appropriate “revision”, inbefore
a setting that is as general as is reasonable. The principal inequality that is already familiar,
and could in fact be treated as the basic result, is the relation between arithmetic and
geometric means:

Èα" α " α "Ÿ Ð � Ñ ß"
# for non-negative . (46)

Definition 18.1.  Let  be a real vector space. A subset  of  is  ifI E I convex

Ða+ß , − EÑÐa − Ò!ß "ÓÑ + � Ð" � Ñ, − Eα α α . (47)

If  is such a convex set, and , we say that the  is  ifE 0 À E 0Ò ‘ function convex

Ða+ß , − EÑÐa − Ò!ß "ÓÑ 0Ð + � Ð" � Ñ,Ñ Ÿ 0Ð+Ñ � Ð" � Ñ0Ð,Ñα α α α α . (48)

A set  is convex if, for any two points  and  of ,  also includes the whole straight-E + , E E
line segment joining  and . In intuitive geometrical terms this means that  does not have+ , E
“gaps, holes or slits” in its “interior”, or “bays, bights, or re-entrants” on its “boundary” — I
shall not attempt to clarify these vague expressions. In the case we shall be dealing with,
where , the convex sets are precisely the intervals. It is necessary to assume that theI œ ‘
set  is convex for the definition (48) to make sense.E

If the inequality in (48) went the other way, we should say  is concave. Obviously  is0 0
concave if and only if  is convex, so concave functions are of little independent interest.�0

Should one know in advance that  is continuous (where , for instance; more0 I œ ‘
generally, if  is a topological vector space), the condition (48) might be weakened. For aI
continuous function , convexity is ensured if0

Ða+ß , − EÑ 0 Ÿ Ð0Ð+Ñ � 0Ð,ÑÑ
+ � ,

#
Œ  "

# .

From this it may be deduced by induction that (48) holds whenever  is of the form ,α # 5�8

for , and it therefore holds in general by continuity.! Ÿ 5 Ÿ #8

Lemma 18.2.  Let  be an interval in , and . Then  is convex if and only ifN 0 À N 0‘ Ò ‘
any one of the following equivalent conditions holds:

(i)

(ii)

(iii)

for any c  with , ,

for any c  with ,  ,

for any

+ß ,ß − N + � , � -

+ß ,ß − N + � , � -

0Ð,Ñ�0Ð+Ñ 0Ð-Ñ�0Ð,Ñ
,�+ -�,

0Ð,Ñ�0Ð+Ñ 0Ð-Ñ�0Ð+Ñ
,�+ -�+

Ÿ

Ÿ

 c  with ,  ,

if c  and ,  .

+ß ,ß − N + � , � -

+ß ,ß ß . − N + � , Ÿ - � .

0Ð Ñ�0Ð+Ñ 0Ð-Ñ�0Ð Ñ
�+ -�,

0Ð-Ñ�0Ð+Ñ 0Ð.Ñ�0Ð,Ñ
-�+ .�,

c b
c Ÿ

Ÿ(iv)
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Proof. If  are given, write , and then . Convexity of +ß ,ß - œ , œ + � Ð" � Ñ- 0α α α-�,
-�+

implies that , or, on rearrangement,0Ð,Ñ Ÿ 0Ð+Ñ � Ð" � Ñ0Ð-Ñα α

α αÐ0Ð,Ñ � 0Ð+ÑÑ Ÿ Ð" � ÑÐ0Ð-Ñ � 0Ð,ÑÑ ,

which (after multiplying by ) is the required conclusion for (i).Ð- � +ÑÎÖÐ- � ,ÑÐ, � +Ñ×
Conversely, if  and  are given, set , and the argument reverses to+ß - , œ + � Ð" � Ñ-α α α
give the inequality (48). The equivalence of  with  and with  is simple algebra; (i) (ii) (iii) (iv)
follows (if , it is just ; otherwise it results from combining  and )., œ - (i) (ii) (iii) �

Geometrically, this result may be vaguely paraphrased as saying that the chords of the
graph of  have increasing slope as one moves to the right. (Since a chord has two ends, some0
care is needed to explain what is included in “moving to the right”).

Lemma 18.3.  Suppose  is convex, , and  are0 À N + ß + ß á ß + − N ß ß á ßÒ ‘ α α α" # 8 " # 8

nonnegative numbers for which . Thenα α α" # 8� � á � œ "

0Ð + � + � á � + Ñ Ÿ 0Ð+ Ñ � 0Ð+ Ñ � á � 0Ð+ Ñα α α α α α" " # # 8 8 " " # # 8 8 . (49)

Proof.  Assume . For , it is obvious; when , the result is+ Ÿ + Ÿ â Ÿ + 8 œ " 8 œ #" # 8

just (48). Proceed by induction on . Let . If , all other ’s vanish, and there is8 8 # # œ "α α8

nothing to prove. If , let  andα α α α α8 " " " # # 8�" 8�" 8 8�"� " , œ Ð + � + � á + ÑÎÐ" � Ñ Ÿ +
, œ +# 8 . Then

0Ð + � + � á � + Ñ œ 0ÐÐ" � Ñ, � , Ñ

Ÿ Ð" � Ñ0Ð, Ñ � 0Ð, Ñ

α α α α α

α α
" " # # 8 8 8 " 8 #

8 " 8 # by virtue of (48); (50)

however, since , one has by the previous stepα α α α" 8 8�" 8
�" �"Ð" � Ñ � á � Ð" � Ñ œ "

0Ð, Ñ Ÿ
0Ð+ Ñ � 0Ð+ Ñ � á � 0Ð+ Ñ

" �
"

" " # 8 8�" 8�"

8

α α α

α
.

Substituting this in (50), we obtain the result. �

This result is sometimes called Jensen’s theorem, and should not be confused with the
“Jensen’s formula” which is important in complex analysis, or with the theorem probabilists
perversely call Jensen’s inequality (presented below as 19.1).

Lemma 18.4.  A nonnegative multiple of a convex function is convex; the sum of convex
functions is convex; linear functions of the form  are convex.0ÐBÑ œ B �" # �

Although I shall not present the proofs (which depend on 18.2), it is worth noting that a
convex function must be continuous, differentiable except at countably many points, and
twice differentiable almost everywhere. Thus, the arguments which follow are not based on
grossly excessive hypotheses; and, whilst they are not the best possible, they suffice in nearly
all applications. We start with a weak version of Lagrange’s form of Taylor’s theorem (you
have probably seen a much fuller form of the same argument before, since it can be used to
obtain several forms of the remainder after  terms of the Taylor series). Notice that a8
function  is said to be differentiable on  if it has a right derivative0 À Ò+ß ,Ó Ò+ß ,ÓÒ ‘
(written ) at , a left derivative  at , and a two-sided derivative  at every0 Ð+Ñ + 0 Ð,Ñ , 0 ÐBÑw w w
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point . It is said to be C  on  if it is differentiable on  and , definedB − Ð+ß ,Ñ Ò+ß ,Ó Ò+ß ,Ó 0" w

as just described, is continuous on .Ò+ß ,Ó

Lemma 18.5.  Suppose  is , and  is defined at each point of .0 À Ò+ß ,Ó 0 Ð+ß ,ÑÒ ‘ C" ww

Then there exists  such that- − Ð+ß ,Ñ

0Ð,Ñ œ 0Ð+Ñ � Ð, � +Ñ0 Ð+Ñ � Ð, � +Ñ 0 Ð-Ñw "
#

# ww . (51)

If , then, on corresponding hypotheses, there again exists  satisfying ., � + - − Ð,ß +Ñ (51)

Proof. Set, for ,B − Ò+ß ,Ó

J ÐBÑ ³ 0ÐBÑ � Ð, � BÑ0 ÐBÑ � UÐ, � BÑw # , (52)

where , so that . Now U ³ Ð, � +Ñ Ð0Ð,Ñ � 0Ð+Ñ � Ð, � +Ñ0 Ð+ÑÑ J Ð,Ñ œ 0Ð,Ñ œ J Ð+Ñ J�# w

is continuous on , and differentiable on , so that the hypotheses of Rolle’sÒ+ß ,Ó Ð+ß ,Ñ
theorem are fulfilled, and there exists  such that . However,- − Ð+ß ,Ñ J Ð-Ñ œ !w

J ÐBÑ œ 0 ÐBÑ � 0 ÐBÑ � Ð, � BÑ0 ÐBÑ � #UÐ, � BÑw w w ww ,

so that  or . Substitute this in (52).#UÐ, � -Ñ œ Ð, � -Ñ0 Ð-Ñ U œ 0 Ð-Ñww ww"
# �

Theorem 18.6.  Suppose in  that  is nonnegative on . Then  is convex on18.5 0 Ð+ß ,Ñ 0ww

Ò+ß ,Ó .

Proof. Take  in , and , such that . Apply 18.5+ � + Ò+ß ,Ó � ! ß � ! � œ "" # " # " #α α α α
to the intervals  and  separately, where . Thus thereÒ+ ß ;Ó Ò;ß + Ó ; œ + � + − Ò+ ß + Ó" # " " # # " #α α
exist points  and  such that= − Ò;ß + Ó < − Ò+ ß ;Ó# "

0Ð+ Ñ œ 0Ð;Ñ � Ð+ � ;Ñ0 Ð;Ñ � Ð+ � ;Ñ 0 Ð=Ñ

0Ð+ Ñ œ 0Ð;Ñ � Ð+ � ;Ñ0 Ð;Ñ � Ð+ � ;Ñ 0 Ð<Ñ

# # #
w "

#
# ww

" " "
w "

#
# ww

,

.

Combining these equalities,

α α α α

α α

" " # # " " # #
w

"
# " " # #

# ww # ww

0Ð+ Ñ � 0Ð+ Ñ œ 0Ð;Ñ � Ð + � + � ;Ñ0 Ð;Ñ

� Ö Ð+ � ;Ñ 0 Ð<Ñ � Ð+ � ;Ñ 0 Ð=Ñ× .

The expression in braces is nonnegative; the previous term vanishes by the definition of .;
Hence , as required.α α α α" " # # " " # #0Ð+ Ñ � 0Ð+ Ñ � 0Ð;Ñ œ 0Ð + � + Ñ �

Definition 18.7.   is  on  if the inequality0 Ò+ß ,Óstrictly convex

� 0Ð+ Ñ � 0Ð+ Ñ0Ð + � + Ñα α α α" " # # " " # #

holds whenever , , , , and .+ ß + − Ò+ß ,Ó + Á + # ! # ! � œ "" # " # " # " #α α α α

That is, strict convexity means that the inequality (48) is an equality only if the “point in
the middle” is in fact an end-point. The proofs of 18.6 and of 18.3, with slight modifications,
show in addition that
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Corollary 18.8.  If  in  is strictly positive on , then  is strictly convex on0 Ð+ß ,Ñ 0ww  18.5
Ð+ß ,Ñ + Ÿ + Ÿ â Ÿ + 5. If , equality in  occurs only if, for any index  such that" # 8 (49)
+ � + � â � œ ! � â � œ "5 5�" " 5 " 5, either  or . α α α α �

These results can be used to deduce most of the standard elementary inequalities of
mathematics, a fact first pointed out by Jensen  in 1906 when he introduced the notion of5

convex functions. Here are two examples.

Lemma 18.9.  If , then , with equality only when .! Ÿ B Ÿ B � #BÎ B œ !ß" "
# #1 1 1sin

Proof.  Let . Then  for . Hence, by 18.3,0ÐBÑ ³ � B 0 ÐBÑ œ B # ! ! � B �sin sinww "
#1

� ÐÐ" � Ñ! � Î#Ñ Ÿ �Ð" � Ñ ! � Ð Î#Ñsin sin sin" "1 " " 1

for any , with equality only when . The result follows by taking" "− Ò!ß "Ó œ !ß "
" 1³ #BÎ . �

Lemma 18.10.  For any  and positive numbers ,8 − , ß , ß á ß ,� " # 8

Ð, , á , Ñ Ÿ
, � , � â � ,

8
" # 8

"Î8 " # 8 , (53)

with equality only when ., œ , œ â œ ," # 8

Proof.  Take , and then  for all . Let  and0ÐBÑ ³ B 0 ÐBÑ œ B # ! B + ³ ,exp exp logww
3 3

α3 ³ "Î8 8 for all , and then (49) gives

exp
log log log exp log exp logŒ , � , � â � , Ð , Ñ � â � Ð , Ñ

8 8
Ÿ

" # 8 " 8 ,

exactly as required. Furthermore, equality occurs only if ., œ , œ â œ ," # 8 �

This is perhaps the easiest proof of the  arithmetic-geometric mean inequality.general
(The “harmonic mean inequality” results by taking  instead of ). However, it is not+ +3

�"
3

purely algebraic, and some authors expend considerable ingenuity on more “elementary”
proofs which begin with  and work up to (53). The inequality we shallÈ+ + Ÿ Ð+ � + Ñ" # " #

"
#

need later, which follows, is obtainable from (53) by taking limits, but it is simpler to prove it
directly. The case  is just (46).α œ "

#

Lemma 18.11.  Suppose , , . Then+ # ! , # ! ! Ÿ Ÿ "α

+ , Ÿ + � Ð" � Ñ,α α"� α α ,

with equality only if  or if .+ œ , œ !ß "α

5 Acta Math. 30 (1906), 175-193.
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Proof. Take log , for . Then . By 18.8,0ÐBÑ œ � B B # ! 0 ÐBÑ œ B # !ww �#

0Ð + � Ð" � Ñ,Ñ Ÿ 0Ð+Ñ � Ð" � Ñ0Ð,Ñ

+ � Ð" � Ñ , Ÿ Ð + � Ð" � Ñ,Ñ

α α α α

α α α α

, or
log log log ,

with equality in the cases stated. Exponentiate to obtain the stated result. �

Our use for this inequality will be as a step in proving the Hölder and Minkowski
inequalities, which lead to the “Lebesgue spaces”  we shall be discussing. The argumentP:

involves some rather puzzling manipulations with ‘conjugate indices’, and there is a more
general inequality due to W. H. Young (only one of several famous inequalities he
discovered) in which more general functions are substituted for exponentiations and the
manipulations appear more naturally. This leads to “Orlicz spaces” instead of “Lebesgue
spaces”.  However, the Lebesgue spaces are vastly more important.
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§19. “Jensen’s inequality”.

The quotation marks indicate that this is what the probabilists call it, rather confusingly for
the rest of us. In complex analysis, a quite different result bears much the same name.

Theorem 19.1.  Let  be a probability space, and  an integrable ran-Ð ß ß T Ñ 0 ÀH D H Ò ‘

dom variable. Suppose  is convex and continuous. Then  exists (though9 ‘ Ò ‘ 9À ‰ 0(
9 ‰ 0  need not be integrable), and

9 9Œ ( (0 Ÿ ‰ 0 .

The assumption that  be continuous is redundant; see the remark after 18.4. The proof9
that follows is complicated by some cases that are not particularly useful in practice — the
fundamental idea is rather simple.

Proof.  Since  is continuous,  is measurable (by 12.8).9 9 ‰ 0
Let , . According to 18.4, the function9 α 9 9 "Ð!Ñ œ Ð!Ñ � Ð�"Ñ œ

< 0 9 0 "0 αÐ Ñ ³ Ð Ñ � � (54)

is also convex, and . Now, by 18.2,< <Ð!Ñ œ Ð�"Ñ œ !

if , ,  so    (55)
if , , so . (56)

0 < 0 < 0 < 0

0 < < 0 0 < 0

# ! Ð Ð Ñ � Ð!ÑÑÎÐ � !Ñ � ! Ð Ñ � ! à
� �" Ð Ð�"Ñ � Ð ÑÑÎÐ�" � Ñ Ÿ ! Ð Ñ � !

Of course  when , by convexity. Since  is continuous, however, it is< 0 0 <Ð Ñ Ÿ ! �" Ÿ Ÿ !
bounded below on  . Hence,  is bounded below for all , say by ;  is alsoÒ�"ß !Ó ‰ 0< 0 # <
bounded below by , and  exists (for , and so ). I shall# < H <' '‰ 0 T Ð Ñ œ " Ð ‰ 0Ñ � ∞�

first prove the theorem for  instead of .< 9
Construct a sequence  of simple functions such thatÐ= Ñ8

when ,  when , , (57)0ÐBÑ � ! = ÐBÑ Å 0ÐBÑ à 0ÐBÑ � ! = ÐBÑ Æ 0ÐBÑ8 8

and, in addition,  when . (One may take , where= ÐBÑ œ �" 0ÐBÑ Ÿ �" = œ = � =" 8 8 8
� �

Ð= Ñ 0 Ð= Ñ 0 =8 8
� � � �

"
� is a misnsf tending pointwise to , and  is a misnsf tending to ;  may be

chosen to be , and  to be the characteristic function of ). Let! = ÖB À 0ÐBÑ Ÿ �"×"
�

= œ +8 83 I3œ"

7Ð8Ñ� "
83

be a standard form for  (see 12.13 et seqq.). Then=8

< <

< < f < < <

‰ = œ Ð+ Ñ "

= œ Ð Ð= ÑÑ œ + T ÐI Ñ Ÿ Ð+ Ñ T ÐI Ñ œ ‰ =

8 83 I3œ"

7Ð8Ñ

8 8 83 83 83 83 83 3

�
Œ ( (Š ‹� �

83
and, applying 18.3,

, (58)

since, for each ,  and .3 T ÐI Ñ � ! T ÐI Ñ œ T Ð Ñ œ "83 833œ"
7Ð8Ñ� H
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Now,  (by the definition 14.1), so that . But  is continuous,' ' ' '= 0 = 08
„ „

8Ò Ò <

and so . Thus, the theorem for  will follow from (58) as , if< Ò < < Ò� � � �' '= 0 8 ∞8

we can prove that .' '< Ò <‰ = ‰ 08

Partition  into three disjoint measurable subsets:H

H H H" # $³ ÖB À 0ÐBÑ Ÿ �"× ³ ÖB À �" � 0ÐBÑ � !× ³ ÖB À 0ÐBÑ � !×,  ,  .

On , (57) ensures that . However, if , by 18.2H ( 0" 8�" � = Æ 0 � Ÿ �"

< 0 < ( < <

0 (
< 0 < (

Ð Ñ � Ð Ñ Ð!Ñ � Ð�"Ñ

� ! � Ð�"Ñ
Ÿ œ ! Ð Ñ Ÿ Ð Ñ, or . (59)

That is,  is decreasing on . Consequently,  is increasing on . By mono-< < HÐ�∞ß �"Ó ‰ =8 "

tone convergence, lim  (by continuity of ; the value of' ' '
H H" "
< < < <‰ = Å Ð ‰ = Ñ œ ‰ 08 8

the integral may be ).∞
On , , and, as at (59), 18.2 shows that  is increasing on . Hence,H <$ 8! Ÿ = Å 0 Ò!ß ∞Ñ

on , , and, by monotone convergence,  (which may beH < < < <$ 8 8‰ = Å ‰ 0 ‰ = Å ‰ 0' '
H$

∞).
On , we have  for all . Recall that  is bounded below by ; hence, forH < ## 8�" � = Ÿ ! 8

all ,  , and  . Thus  by bounded8 Ÿ ‰ = Ÿ ! T Ð Ñ œ " ‰ = ‰ 0# < H < Ò <8 8' '
H H# #

convergence (in this case the limit is finite, though it may be negative).
Adding the three integrals, we deduce that , and, as already' '

H H
< Ò <‰ = ‰ 08

remarked, this suffices, with (58), to establish the theorem for . But, by (54),<

9 < " α

< " α H

9

Œ  Œ ( ( ( (
(
(

0 œ 0 � 0 � 0

Ÿ Ð ‰ 0 � 0 � Ñ T Ð Ñ œ "

œ ‰ 0

(by hypothesis,  is finite)

(as )

as required. �

Notice how often I had to invoke the fact that  is a probability measure.H
The most obvious example of Jensen’s inequality is obtained by taking . This9 0 0Ð Ñ œ l l

is a convex function of . The result is that , which of course we already knew0 º º( (0 Ÿ l0l

(and without restricting ourselves to probability spaces). But there are easy non-trivial
examples; for instance, it is far from clear at first glance that, for any function  integrable on0
Ð!ß "Ñ .> with Lebesgue measure ,

exp exp   ( (
Ð!ß"Ñ Ð!ß"Ñ

0Ð>Ñ .> Ÿ Ð0Ð>ÑÑ .> ,

which follows from taking  in Jensen’s theorem.9 0Ð Ñ œ /0
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§20. The Hölder and Minkowski inequalities.

Definition 20.1.  Let  and  be positive real numbers. They are described as  or as: ; conjugate
conjugate indices conjugate exponents or  (  is conjugate to ,  is conjugate to ) if: ; ; :

" "

: ;
� œ " . (60)

The symbolic exponent  is also considered as conjugate to , and vice versa.∞ "

Note 20.2.  If  and  are conjugate indices, then . If: ; " Ÿ Ð:ß ;Ñ Ÿ # Ÿ Ð:ß ;Ñ Ÿ ∞min max
both are finite, then both are greater than .  is the only exponent conjugate to itself, and the" #
only natural number whose conjugate is also an integer; and the relation (60) (for finite ):ß ;
is equivalent to each of the equalities

: � ; œ :; ß Ð: � "Ñ; œ : ß œ ; � "
"

: � "
, (61)

all of which are used from time to time.
In what follows,  is a fixed measure space.Ð ß ß ÑH D .

Theorem 20.3.  (Hölder’s inequality for integrals).  Let  be finite conjugate indices,:ß ;
and let  be measurable functions such that  and  are integrable.0ß 1 À 0 1H Ò ‘ k k k k: ;

Then  is integrable, and01

( ( (k k k k k kŒ  Œ 01 Ÿ 0 1: ;
"Î: "Î;

.

Proof.  Let . If , , so there isQ ³ ÖB − À 0ÐBÑ1ÐBÑ Á !× − ÐQÑ œ ! 01 œ !H D . ( k k
nothing to prove; assume , and then  and . For.ÐQÑ # ! ! � 0 � ∞ ! � 1 � ∞( (k k k k: ;

any , take in 18.11 , , and , :B − Q ³ "Î: " � ³ "Î; + ³ , ³
0ÐBÑ 1ÐBÑ

0 1ÐBÑ
α α

k k k k' 'k k k k
: ;

Q Q
: ;

k k k k k k
ˆ ‰ ˆ ‰' 'k k k k ' 'k k k k0ÐBÑ1ÐBÑ 0ÐBÑ 1ÐBÑ

0 1
Ÿ �

: 0 ; 1
Q Q

: ;"Î: "Î;

: ;

Q Q
: ; .

Integrate this inequality over :Q

' k k
ˆ ‰ ˆ ‰' 'k k k k

( ( ( (k k k k k k k kŒ  Œ 
Œ  Œ ( (k k k k

Q

Q Q
: ;"Î: "Î;

Q Q Q

: ;
"Î: "Î;

: ;
"Î: "Î;

01

0 1
Ÿ � œ "

" "

: ;

01 œ 01 Ÿ 0 1

Ÿ 0 1

.

Thus  

.

H

H H

�
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As so often in mathematics, the proof renders prosaic what at first sight might seem rather
unexpected; one might initially suppose, although for no good reason, that  is not01
constrained by the integrals of  and . The case  is the familiar Cauchy-k k k k0 1 : œ ; œ #: ;

Schwarz inequality, to which the same comment applies.
Hölder’s inequality was originally stated — by Rogers in 1888, a year before Hölder —

for finite sums of numbers, more or less in the form:

¹ ¹ Š ‹ Š ‹� � �k k k k
5œ" 5œ" 5œ"

8 8 8
5 5 5 5

: ;
"Î: "Î;

+ , Ÿ + , . (62)

This is an easy corollary of the Theorem; simply take , and defineH ³ Ö"ß #ß á ß 8×
D c H . Hœ Ð Ñ ÐIÑ œ ÐIÑ, #  (“counting measure in ”). It is possible to prove the Theorem

itself by gradually working up from this algebraic version, but there is no advantage in doing
so. Hardy and his students and collaborators  tended to avoid 18.11 in expositions of6

Hölder’s and similar inequalities, because they felt that it was a disproportionately advanced
result for the purpose. There are interesting proofs both of 18.11 and of (62) which are
“elementary” in the sense of avoiding calculus entirely . They deal directly, by algebraic7

methods, with the case when  and  are both rational, and then pass to a limit. However,: ;
there is no circularity involved in our proof, which is far shorter.

Lemma 20.4.  Let . Let  and  be measurable functions such that  and  are: # ! 0 1 0 1k k k k: :

integrable. Then  is integrable, and in factk k0 � 1 :

( ( (k k k k k k0 � 1 Ÿ # 0 � # 1: : :: : .

Proof.  Let , . These are measurable subsetsE ³ ÖB − À 0ÐBÑ � 1ÐBÑ × E ³ Ï E" # "H Hk k k k
of . If , then , whilst, if ,H B − E 0ÐBÑ � 1ÐBÑ Ÿ 0ÐBÑ � 1ÐBÑ Ÿ # 0ÐBÑ B − E" #k k k k k k k k
similarly . Thus, for all ,k k k k k k k k0ÐBÑ � 1ÐBÑ Ÿ 0ÐBÑ � 1ÐBÑ � # 1ÐBÑ B − H

k k k k k k0ÐBÑ � 1ÐBÑ Ÿ # 0ÐBÑ � # 1ÐBÑ: : :: : ,

and the result follows by integration over .H �

Theorem 20.5. (Minkowski’s inequality for integrals.)  Let  be any measureÐ ß ß ÑH D .
space, and suppose that . Let  and  be measurable functions such that " � : � ∞ 0 1 0k k:
and  are integrable. Then  is integrable, andk k k k1 0 � 1: :

Œ  Œ  Œ ( ( (k k k k k k
H H H

0 � 1 Ÿ 0 � 1: : :
"Î: "Î: "Î:

.

Proof.  20.4 proves integrability. Now let  be the index conjugate to . Recall from (61) that; :

: œ Ð: � "Ñ; 0 ß 1 0 � 1. Ergo,  and  are integrable, and by Hölder’s inequalityk k k k k k: : Ð:�"Ñ;

6  See for instance Hardy, Littlewood and Pólya, , O.U.P. 1934 and 1952; the relevant section isInequalities
2.7, although 2.5 and 2.6 may clarify what is going on. A similar eccentricity is found in books by Phillips and
Titchmarsh, who were also under Hardy’s influence.

7  Hardy, Littlewood, and Pólya, .loc. cit
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( ( (k kk k k k k kŒ  Œ 
( ( (k kk k k k k kŒ  Œ 

0 0 � 1 Ÿ 0 0 � 1

1 0 � 1 Ÿ 1 0 � 1

:�" : Ð:�"Ñ;
"Î: "Î;

:�" : Ð:�"Ñ;
"Î: "Î;

,

,

and, therefore,

( ( (k k k kk k k kk k
Œ  Œ  Œ  Œ ( ( ( (k k k k k k k k
 ŸŒ  Œ  Œ ( ( (k k k k k k

0 � 1 Ÿ 0 0 � 1 � 1 0 � 1

Ÿ 0 0 � 1 � 1 0 � 1

Ÿ 0 � 1 0 � 1

: :�" :�"

: Ð:�"Ñ; : Ð:�"Ñ;
"Î: "Î; "Î: "Î;

: : :
"Î: "Î: "Î;

.

If , there is nothing to prove. But, if , the last inequality( (k k k k0 � 1 œ ! 0 � 1 # !: :

may be divided by  on both sides:Œ ( k k0 � 1 :
"Î;

Œ  Œ  Œ  Œ ( ( ( (k k k k k k k k0 � 1 œ 0 � 1 Ÿ 0 � 1: : : :
"Î: "� "Î: "Î:"

;

. �

Lemma 20.6.  Suppose that  and  are integrable functions . Then  is also0 1 0 � 1H Ò ‘

integrable, and .( ( (k k k k k k0 � 1 Ÿ 0 � 1

Proof.  Indeed, the inequality  holds for every .k k k k k k0ÐBÑ � 1ÐBÑ Ÿ 0ÐBÑ � 1ÐBÑ B �

This is Minkowski’s inequality when . It remains to consider its extension to the: œ "
case where , and “Hölder’s inequality” when .: œ ∞ : œ "ß ; œ ∞

Definition 20.7.  A function  is , or “a.e. bounded”, if there0 À H Ò ‘ essentially bounded
are a measurable set  of zero measure and a number  such that^ O � !^

ÐaB − Ï ^Ñ 0ÐBÑ Ÿ OH k k ^ .

This definition is quite consistent with 14.8, but it has a peculiarity: the exceptional set ^
may depend on the choice of (or vice versa). For instance, the function O 1 À^ ‘ Ò ‘
which is  except at the non-zero rationals, and takes value  at the rational which is ! ; :Î;
(where ) in lowest terms, is essentially bounded; if  consists of all the rationals, ; − ^ O� ^

may be , but if  consists of the rationals with denominators exceeding  in lowest terms,! ^ "!
then  must be at least , and so on. There is no possible concept of “a.e. supremum”,O *^

although I have come across authors who carelessly adopt the phrase.
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Definition 20.8.  Let  be measurable. Define the  and0 À H Ò ‘ essential supremum
essential infimum of , es  and ess , by0 0 0sup inf

es ,

ess .

sup sup

inf inf

0 œ Ö − À ÖB − À 0ÐBÑ � × # !×

0 œ Ö − À ÖB À 0ÐBÑ Ÿ × # !×

α ‘ . H α

α ‘ . α

There are several definitions of the essential supremum and the essential infimum that are
for practical purposes equivalent. It is easily proved from the above definition that  is0
essentially bounded if and only if es  and ess . (If , thensup inf0 � ∞ 0 # �∞ Ð Ñ œ !. H
es , ess , and  is still essentially bounded.)sup inf0 œ �∞ 0 œ ∞ 0

Lemma 20.9.    a.e. on .ess esinf 0 Ÿ 0 Ÿ 0sup H

Proof.  Suppose that es . Then, for any ," �³ 0 � ∞ 8 −sup

I ³ ÖB − À 0ÐBÑ � � ×8
"
8H "

is measurable of measure . Hence  is also! I ³ ÖB − À 0ÐBÑ # × œ IH " -
8œ"
∞

8

measurable of measure , and es  for . If es , there is nothing! 0ÐBÑ Ÿ 0 B Â I 0 œ ∞sup sup
to prove. There is a similar argument for the essential infimum. �

It follows that if , then ess es .. HÐ Ñ # ! 0 Ÿ 0inf sup

Theorem 20.10.  Let  be measurable, and suppose that both  and  are0ß 1 À 0 1H Ò ‘ k k k k
essentially bounded. Then so is , andk k0 � 1

es es es .sup sup supk k k k k k0 � 1 0 � 1Ÿ �

This result is the analogue of Minkowski’s inequality for the case , in which: œ ∞

es  takes the place of .supk k � �' k k0 0 : "Î:

Theorem 20.11.  Suppose that  and  are measurable functions , and let  be0 1 0H Ò ‘
integrable and  be essentially bounded. Then  is integrable, andk k k k1 01

( k k
H

01 Ÿ Ðes .supk k k k(1 Ñ 0
H

Proof.  By 20.9, there is a measurable set  of zero measure such that es  onI 1 Ÿ 1k k k ksup
H Ï I . Thus

( ( ( (k k k k k k k k k k k k
H H H H

01 œ 01 Ÿ Ð 1 Ñ 0 œ Ð 1 Ñ 0
ÏI ÏI

es es .sup sup �
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When , Minkowski’s inequality definitely fails. For instance, let ,! � : � " ³ Ö"ß #×H

with counting measure; then , butŒ  Œ ( (" "
Ö"× Ö#×
: :

"Î: "Î:

œ œ "

Œ ( Ð Ñ œ # # #" � "Ö"× Ö#×
: "Î:

"Î:

.

Theorem 20.12.  Let  be measurable. If , then0ß 1 À ! � : � "H Ò ‘

( ( (k k k k k k0 � 1 Ÿ 0 � 1: : : .

Proof.  It is easily seen that, if , then . The result follows by0 ( 0 ( 0 (ß � ! Ð � Ñ Ÿ �: : :

integration of this pointwise inequality. �

§21. Complexification.

My definition of the integral assumed that the functions we consider are all real-valued (or
extended-real-valued; although I have, for simplicity, stated most of the theorems on the
assumption that all values are finite, it is just a matter of excluding a set of measure zero to
obtain the more general versions). However, one often wishes to have a theory of integration
for complex-valued functions, and even for complex-valued measures. This is easily
accomplished.

As usual, let  be a measure space. A function  is defined to be -Ð ß ß Ñ 0 ÀH D . H Ò ‚ D
measurable if both its real part and its imaginary part are -measurable; in that case  isD k k0
measurable as a real-valued function.  is defined to be integrable with respect to  and  if0 D .
both its real and imaginary parts are integrable with respect to  and . SinceD .

maxÐ d0 ß e0 Ñ Ÿ 0 Ÿ d0 � e0k k k k k k k k k k ,
it follows that a measurable complex-valued function  is integrable in the complex sense if0
and only if  is integrable in the real sense. The analogues of the results of §17 are readilyk k0
proved by looking at real and imaginary parts.

Hölder’s inequality involves only the integrals of moduli, and so remains true in the
complex case without any change in the proof. The same applies to Minkowski’s inequality
(with some use of the triangle inequality for moduli of complex numbers) and to the extended
inequalities 20.10 (only the essential supremum of the modulus is taken), 20.11, and 20.12.

It is natural to wonder whether the integral of a complex-valued function — or, more
generally still, of a vector-valued function — might be defined directly, and indeed it is
possible. However, such definitions are less straightforward and natural than ours.
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§22. The Lebesgue spaces.

I am not sure exactly why they are called Lebesgue spaces. As before,  is a fixedÐ ß ß ÑH D .
measure space.

Definition 22.1.  Let . The class of real or complex measurable functions  on ! � : � ∞ 0 H
such that  is integrable on  is described as the k k0 : H space of th power integrable functions:
on , and is denoted by . The class of all real or complex measurable functionsH _ H D .:Ð ß ß Ñ
on  is denoted by . The class of all essentially bounded real or complexH ` H D .Ð ß ß Ñ
measurable functions on  is denoted by .H _ H D .∞Ð ß ß Ñ

The notation varies according to the context; for instance, it may be desirable to indicate
whether the values are to be real or complex, and there may be no need to mention , , or H D .
explicitly. The affix  may be superscript or subscript. My impression is that subscripts are:
commoner nowadays, but superscripts are preferred by the better mathematicians.

These classes of functions are vector spaces (over the field , which is  or  as the caseŠ ‘ ‚
may be) under pointwise operations. For , where , it is trivial that_: ! � : � ∞
0 − • − 0 − 0ß 1 − 0 � 1 −_ - Š Ö - _ _ Ö _ _: : : : ∞, and 20.4 shows that . For ,

20.10 takes the place of 20.4. For , 12.6 and settle the matter at once.` (a) (c) 

Definition 22.2.   For , where , .(a) 0 − " Ÿ : � ∞ 0 ³ 0_:
:
s :

"Î:l l k kŒ (
(b) If , es .: œ ∞ 0 ³ 0l l k k∞

s sup

It follows that, if , then, for all  and ," Ÿ : Ÿ ∞ − 0ß 1 −- Š _:

l l k kl l l l l l l l- -0 œ 0 0 � 1 Ÿ 0 � 1: : : : :
s s s s s, .

(The first statement is trivial; the second is 20.5, 20.6, or 20.10.) These are two of the
requirements for  to be a  in . It is clear that  for any . Thell l l: :

s s: :norm _ _0 � ! 0 −

remaining axiom of a norm  in a real or complex vector space  is that  onlyll l lZ B œ !
when  in ; for each of the functions , this would clearly amount to saying that aB œ ! Z ll:

s

measurable function that is zero a.e. is zero everywhere. This is definitely false in
_ H D .:

:
sÐ ß ß Ñ g unless the only set of measure zero is . Thus,  is usually a  (orll seminorm

pseudonorm) in , rather than a norm._:

However, we may introduce an equivalence relation  in , setting  wheneverµ 0 µ 1_:

0 1 and  are equal a.e.

Definition 22.3.  The set of equivalence classes of elements of , for_ H D .:Ð ß ß Ñ
! � : Ÿ ∞ µ, under the relation  of almost everywhere equality constitutes the Lebesgue

space of exponent  on the measure space  : Ð ß ß Ñ P Ð ß ß ÑH D . H D ., denoted .:

If  denotes the -equivalence class in  of the function , one defines the vectorÒ0 Ó µ 0_:

space operations in , for , byP ! � : Ÿ ∞:

Ða ß − ÑÐa0ß 1 − Ñ Ò0 Ó � Ò1Ó ³ Ò 0 � 1Óα " Š _ α " α ": ,

and, for , one defines a norm in  by" Ÿ : Ÿ ∞ P:

Ða0 − Ñ Ò0 Ó ³ 0_:
: :

sl l l l .
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It is easily checked that the left-hand sides are well-defined by these prescriptions (that is: if
0 µ 0 1 µ 1 0 � 1 µ 0 � 1 0 œ 0 Pw w w w w :

: :
s s and , then  and ), and that α " α " l l l l

becomes a vector space over  and  a norm in .Š ll:
:P

In this way, the Lebesgue spaces  for  become normed vector spaces overP " Ÿ : Ÿ ∞:

Š _. In practice, the conceptual distinction between  and  tends to be blurred; peopleP: :

write of a   that , rather than . This does occasionally involve somefunction0 0 − P 0 −: :_
confusion, but it is rarely serious.

The procedure which constructs  from  is quite general. If  is a seminorm in aP: : s_ ll
vector space , let . Then  is a vector subspace of , and Z ^ ³ Ö@ − Z À @ œ !× ^ Zl l lls s

induces a norm  on the quotient vector space . In our construction,  is the set of -ll Z Î^ ^ Š
valued measurable functions that are a.e. equal to , and . It is worth noting,! P ³ Î^: :_
however, that  is the same for all .^ : � "

Definition 22.4.  In the vector space  for , define a metric  byP ! � : � " .:
:

Ða0ß 1 − Ñ . ÐÒ0 Óß Ò1ÓÑ ³ 0 � 1_:
:

:( k k
H

.

It is easily checked that  is well-defined; that it is a metric follows from 20.12. (The.:

right-hand integral defines a or  on .) This metric cannot bepseudometric semimetric _:

derived from a norm (except in a trivial case!), since , and if. Ð Ò0 Óß Ò1ÓÑ œ . ÐÒ0 Óß Ò1ÓÑ: :
:α α αk k

it came from a norm we should have  rather than . In fact the spaces  (withk k k kα α : :P ÐÒ!ß "ÓÑ
respect to Lebesgue measure, for ) are standard examples of topological vector! � : � "
spaces that are not locally convex.

Definition 22.5. Let  be any set, and take  to be counting measure on . In thisH . D c H³ Ð Ñ
case,  is naturally identified with  (the -equivalence classes areP Ð ß ß Ñ Ð ß ß Ñ µ: :H D . _ H D .
singletons); each element is a function  which is “countably non-zero”, which0 À H Ò Š
means that it takes the value  except on a countable set (see 14.5), and such that!

� k k k k
B−

:
B−

H
H0ÐBÑ � ∞ ! � : � ∞ 0ÐBÑ � ∞ : œ ∞(when ), (for ).sup

The space  is customarily denoted .P Ð ß ß Ñ 6 Ð Ñ: :H D . H
When , one customarily writes , and describes it as “the sequence space ”;H �³ 6 6: :

its elements are usually written as sequences  with terms . There is also aÐB Ñ B −8 88œ"
∞ Š

“bilateral sequence space”  when .6 Ð Ñ œ: ™ H ™

Definition 22.6.  The sequence space  consists of those sequences , with terms in- ÐB Ñ! 8 8œ"
∞

Š, such that  as . It is a vector space under termwise operations, and isB Ä ! 8 Ä ∞8

normed by .l l k kÐB Ñ ³ B8 8
8

sup

In fact,  is a subset of , it is a vector subspace of , and the norm on  is the- 6 6 -! !
∞ ∞

restriction of . It is a worthwhile exercise to prove the completeness of these variousll∞

sequence spaces directly, i.e. without using any facts from the theory of the integral.

Definition 22.7.  Let  be any measure space, . A sequence  in Ð ß ß Ñ ! � : � ∞ Ð0 ÑH D . _8
:

is , or , if  as . I recall thatCauchy in -mean Cauchy in : _:
7 8

:( k k0 � 0 Ä ! 7ß 8 Ä ∞

this means (cf. 0.11)
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Ða # !ÑÐbR − Ñ 7ß 8 � R 0 � 0 �% � Ö %( k k7 8
: .

Similarly, if ,  , or , if  as .0 − 0 Ä 0 0 � 0 Ä ! 8 Ä ∞_ _: :
8 8

:in -mean in : ( k k
When , the phrases  and  are sometimes used;: œ " Cauchy in mean convergent in mean

for ,  or . The definition above has the advantage of: œ # Cauchy convergent in mean square
covering both the case , when the concepts are those appropriate to the seminorm : � " ll:

on , and the case , when they may be derived from the pseudometric . As_:
:! � : � " .

before,  is often written for ; one has Cauchy and convergent sequences in .P P: : :_

Lemma 22.8.  If  is Cauchy in , where , it is Cauchy in measure. IfÐ0 Ñ ! � : � ∞8
:_

0 Ä 0 0 Ä 08 8
: in , then  in measure._

Proof.  Given , choose  so that . Then, for% Ö %# ! R 7ß 8 � R 0 � 0 �' k k7 8
: :�"

7ß 8 � R ÐÖB − À 0 ÐBÑ � 0 ÐBÑ � ×Ñ �, . Similarly for the second assertion.. H % %k k7 8 �

Theorem 22.9.  Let  is a Cauchy sequence in , where , then there is aÐ0 Ñ ! � : � ∞8
:_

function  such that  in .0 − 0 Ä 0_ _: :
8

Proof.  As  is Cauchy in , there exists  such that .Ð0 Ñ R 8 � R 0 � 0 Ÿ "8 8 R
: :_ Ö ' k k

By 20.4, , and so8 � R 0 Ÿ # 0 � # 0 � 0 Ÿ # 0 � #Ö ' ' ' 'k k k k k k k k8 R 8 R R
: : : :: : : :

Ða8 − Ñ 0 Ÿ O ³ 0 ß 0 ß á ß 0 ß # 0 � #� ( ( ( ( (k k k k k k k k k kœ 8 " # R�" R
: : : : :: :max  .

(Using 20.4, we need not distinguish the cases  and . But the bound! � : � " " Ÿ : � ∞
O could be improved by treating them separately and using 20.5 or 20.12 as appropriate.)

By 22.8,  is Cauchy in measure. By 17.25, there is a subsequence  whichÐ0 Ñ Ð0 Ñ8 8Ð5Ñ 5œ"
∞

is almost uniformly Cauchy. By 17.20, there is a measurable function  such that 0 0 Ä 08Ð5Ñ

as . By Fatou’s lemma, 15.5,8 Ä ∞

( ( (k k ¸ ¸ ¸ ¸0 œ 0 Ÿ 0 Ÿ O:

5Ä∞ 5Ä∞
8Ð5Ñ 8Ð5Ñ

: :
lim inf lim inf .

Hence . If , there exists  such that , and,0 − # ! R 7ß 8 � R 0 � 0 � ∞_ % Ö:
7 8

:' k k
if , it follows that8 � R

( ( (k k ¸ ¸ ¸ ¸0 � 0 œ 0 � 0 Ÿ 0 � 0 Ÿ8 8 8
:

5Ä∞ 5Ä∞
8Ð5Ñ 8Ð5Ñ

: :
lim inf lim inf % .

So  in .0 Ä 08
:_ �

Remark 22.10.  The general form of the above proof follows the lines suggested in 17.4; we
construct  as a weaker kind of limit (an almost uniform limit), and only subsequently show0
that it is both in the right space and a limit in the right sense. It is not necessary to use almost
uniform convergence, and most authors prefer a.e. convergence, which is weaker still. Of
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course, in the complex case one must establish the almost uniform convergence 0 Ä 08Ð5Ñ

by considering the real and imaginary parts separately.
Fatou’s lemma appears here as a sort of deus ex machina, descending suddenly from the

heavens to resolve an otherwise refractory problem (the estimate of the integral of the limit). I
know at least one book, by Lusternik and Sobolev, in which — for no very clear reason —
they avoid Fatou’s lemma at this point. It is possible, but the result is a much more
complicated proof.

It is clear that 22.9 amounts to a proof that  is a complete normed space, i.e. a BanachP:

space, when , and a complete metric space when . These complete-" Ÿ : � ∞ ! � : � "
ness assertions are sometimes called the Riesz-Fischer theorem, but the name is also applied
to some equivalent results, more particularly in , which they show to be a Hilbert space.P#

Theorem 22.11.  The normed space  is complete.P∞

Proof.  Let  be a Cauchy sequence in . It is a.e. uniformly Cauchy, by definition, andÐ0 Ñ8
∞_

thus converges uniformly a.e. to some , which must be in  too. (See 17.10; but, of0 _∞

course, one must consider real and imaginary parts separately in the complex case.) �

These results on completeness of the Lebesgue spaces are the beginning of functional
analysis, the idea of which is to establish theorems about, for instance, the solutions of
differential equations by considering properties of functions in the mass, rather than by
constructing them individually. They are the most substantial practical justification for the
Lebesgue integral. The completeness of  (and, especially, of ) is fundamental for manyP P: #

purposes of applied mathematics, for instance for Fourier series or least-squares regression,
and . An -Cauchy sequence ofis definitely false if only the Riemann theory is assumed P:

Riemann-integrable functions need not converge to a Riemann-integrable function.

Theorem 22.12.  Suppose , , and  is a sequence of measurable! � : � ∞ 1 − Ð0 Ñ_:
8

functions converging  a.e.  in measure to the measurable function , such thateither or 0k k0 Ÿ 1 8 0 ß 0 − 8 0 Ä 08 8 8
: : a.e. for all . Then  for all , and  in ._ _

Proof.  That  for all  is obvious, and clearly  a.e., so  too (why?)0 − 8 0 Ÿ 1 0 −8
: :_ _k k

Suppose that  does  tend to . Then there exists  and a subsequence' k k0 � 0 ! # !8
: not %

Ð0 Ñ 0 � 0 � 5 0 Ä 08Ð5Ñ 8Ð5Ñ 8Ð5Ñ5œ"
∞ :

 such that  for all . As  a.e. or in measure, there is a' ¸ ¸ %

further subsequence  such that  a.e., by 17.25 and 17.19.Ð2 Ñ 2 Ä 03 3

Now, however,  a.e. and , which is integrable. By thek k k k2 � 0 Ä ! 2 � 0 Ÿ # 13 3
: : : :

dominated convergence theorem 15.12, ; but this is a contradiction, since, by' k k2 � 0 Ä !3
:

construction,  for all . The result follows.' k k2 � 0 � 33
: % �

The Theorem is an extension to  of the dominated convergence theorem, to which it_:

reduces when .: œ "
To conclude, I give a Lemma which was used by Halmos as his definition of the integral.

Its  is that it can be put in a form equally applicable to functions with values in  oradvantage ‚
even in a Banach space; but it has several evident disadvantages, perhaps principally that the
definition of the integral must be postponed until the “kinds of convergence” have been
sorted out. As I commented at the start, there are many possible ways of defining the integral,
and my aim was to present the one that seemed most “natural” in a certain elementary sense,
whilst also introducing the idea of “measure”.
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Lemma 22.13.  Let  be a -measurable function. Then  is integrable0 À 0H Ò ‘ D
(a) if and only if there is a sequence  of integrable simple functions such thatÐ0 Ñ8

0 Ä 0 Ð0 Ñ8 8 in measure and  is Cauchy in mean, or
(b) if and only if there is a sequence  of integrable simple functions such thatÐ0 Ñ8

0 Ä 0 Ð0 Ñ8 8 a.e. and  is Cauchy in mean.
If either  or  is satisfied, then .(a) (b) ' '0 œ 0lim 8

Proof.  By definition (14.1 and 14.12),  is integrable if and only if there are misnsfs 0 Ð0 Ñ8
�

and  such that ,  a.e., and ,  are finite. ThenÐ0 Ñ 0 Å 0 0 Å 0 0 08 8 8 8 8
� � � � � � �lim lim' '

0 Å 0 0 Å 08 8
� � � �,  in measure (I leave this as an exercise, but compare 17.22), so that, by

17.16,  both a.e. and in measure. Certainly0 ³ 0 � 0 Ä 08 8 8
� �

( ( (k k0 � 0 Ÿ Ð0 � 0 Ñ � Ð0 � 0 Ñ 7 � 87 8 7 8 7 8
� � � � for ,

which tends to  as , since  and so on. So  is Cauchy in mean.! 7ß 8 Ä ∞ 0 Ä 0 Ð0 Ñ' '
7
� �

7

Conversely, if  is Cauchy in and  a.e. or in measure, by 22.9 there existsÐ0 Ñ 0 Ä 08 8
"_

1 − 0 � 1 Ä ! 0 Ä 1_"
8 8 with . Hence  in measure (by 22.8), and some subsequence' k k

tends to  a.e., by 17.25 and 17.19. Thus  a.e., and  in mean. Since1 0 œ 1 0 Ä 08

º º( ( ( k k0 � 0 Ÿ 0 � 08 8 ,

the final assertion follows. �


