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Introduction.
In the rather vague division of mathematics into subordinate topics, “analysis” may be crudely
described as the branch that deals directly or indirectly with limiting processes, like the taking
of limits of infinite sequences of functions or the summation of infinite series, whilst “algebra”
is concerned with “finitary” processes like the addition or multiplication of two (or at most
only finitely many) things at a time. Such descriptions should not be taken too seriously, since,
as one progresses, one finds more and more that the supposedly different branches of
mathematics overlap both conceptually and practically. The questions an “analyst” deals with
may often be expressed in “algebraic” terms, for instance. But it is indisputable that limiting
processes are at the heart of analysis.

[The idea of a limit, when you try to catch it in a definition that may serve for proofs,
depends at the outset on . (I have attached Appendix A, which I sometimesinequalities
provided as a handout—not only in 312—to try to explain the thought that lies behind the
standard definition of a limit.) One might say that analysis largely consists of disguised
applications of inequalities. In particular, you should be careful in what follows to check that
any inequalities I use are in fact true.]

Our first aim, then, is to introduce you to some of the fundamental ideas of rigorous
analysis. The first- and second-year courses in “calculus” hint at many of the ideas we shall
discuss, but their main emphasis was on “methods”—this is how such-and-such is done. This
order of introducing material (methods before proofs) certainly reflects the modern develop-
ment of the subject, and fits the purposes for which most people study it. The great mathe-
maticians of the not-so-recent past did amazing things, but they never clarified the concepts
they were playing with. People like Euler, Gauss, Leibniz, and Newton, and many less famous
names, were stupendously talented, and their arguments remain fruitful today; but they rarely
defined anything with the precision we now expect, partly because there were so many things
that seemed to them obviously and automatically true. Indeed, there were from time to time
squabbles amongst them that seem bizarre to us because we can see they were really about the
meanings of the terms used, which they believed at the time to be uncontentious. A famous
example is the debate about the sum of the series , which Leibniz       
maintained—not without some reason—to be . (The problem, as we now see it, is what you



understand by the sum of a series.) Most theorems in analysis before the nineteenth century
were, indeed, stated without exact and explicit hypotheses. It is a historical curiosity that,
because of Euclid, geometry was far more logically developed, albeit on somewhat shaky
foundations.
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Nevertheless, this casual approach to fundamentals, despite its fitness for students who are
not primarily interested in the subject for its own sake, has the consequence that the ideas of
serious contemporary mathematics (which have important practical consequences) eventually
come as a far greater shock than they should. When mathematics had reached a certain stage, it
became apparent that it was  to have rigorous definitions. Some things that hadnecessary
seemed intuitively plausible were turning out to be false in some circumstances, and some
assertions that people wished to deny could apparently be “proved”. One should not overstate
the case; these people weren’t idiots by any means. But conceptual confusion was only cleared
up slowly, step by step. I am not a historian, and am far from sure whether there was a single
crucial moment, but it is arguable that Dirichlet’s work on Fourier series (1829) was a turning
point. Fourier had stated, and believed, that “every function on the interval  has a   
Fourier series”; some people found this—again, for reasonable reasons—incredible, and every
significant step of one “proof” he offered was false. Like others at the time, he had only a
vague idea what he meant by a “function”, or by “convergence”. Dirichlet gave some fairly
strong conditions and proved that a function satisfying them does have a Fourier series in a
reasonable, albeit limited, sense. Some more subtle versions of the question remain unanswered
to this day.

Another crux was the introduction of non-Euclidean geometry, which suggested that some
statements that had been thought ‘obviously and automatically true’ (the parallels postulate, in
particular) need not necessarily correspond to “reality”, and so raised the question what the
logical foundations of geometry really should be. Putting mathematics on a reasonably firm
basis, by establishing exactly what meanings to attach to various vague ideas and what should
be assumed about them to deduce various familiar theorems, took rather a long time—seventy
years or more—, and progress was not simple because various gaps in the theory were filled in
random order as people became aware of them. When this process was more or less finished,
soon after 1900, other mathematicians began to give a more abstract and general cast to many
of the ideas (and others were already worrying, as they still do, about the logical foundations).

The first aim of the course, then, is to give a necessarily brief but in essence quite rigorous
discussion of the foundations of real analysis as they were standardized around the end of the
nineteenth century. Our treatment is not, however, at all chronological; we take for granted
some of the basic ideas from courses like 151, 161, or 251, such as “set”, “function”, “field”,
“equivalence relation”, or “partial order”. Many of them were first clearly and precisely
formulated in the early twentieth century, but they are nowadays familiar. And our proofs of
many results are, similarly, of a rather more modern type than those originally invented.

The second part of the course deals with  analysis—the theory of suitable complex-complex
valued functions of a complex variable. It has a rather different flavour from the first part.
Firstly, the kind of function it studies is extremely restricted, and secondly, it is in some ways
necessarily less rigorous (at least in a first course). The theorems  are so startling and have
such remarkable consequences that it is undesirable to worry too much whether they are being
presented in the best possible form from a logical standpoint. They are certainly true in the
rather simple cases we present; but it takes a lot of time to expound good general versions.
The whole theory used to be of great importance in many practical contexts: it is the only
reasonably general way of deriving many amazing exact formulæ and of carrying out many
complicated exact calculations. With the development of computers and numerical methods it
has lost some, though by no means most, of its practical value, but it remains indispensable for
many more theoretical applications.

From all this, you will have grasped that in some ways this course is more theoretical and
abstract than you are perhaps used to. It cannot be too much stressed that WE SHALL NOT
DO ANYTHING VERY DEEP OR DIFFICULT IN ITSELF. The novelty is the emphasis on
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concepts proofs and on  in arguments about functions. We try to make, and to justify, precise
and general statements, instead of just introducing rules of thumb. Oddly enough, abstract
statements, once understood, are often a lot easier to prove, because the ideas they use are
adapted to the ends in view and stripped of irrelevancies. Many great results were originally
proved with considerable difficulty in particular circumstances, but turned out to be both more
general and more straightforward once an appropriate conceptual framework had been
discovered. The difficulty was absorbed into the concepts, and the proofs became trifling.
However, this obviously implies that the concepts are fundamental; hence, you must learn the
meanings of many unfamiliar mathematical terms.

We try to mark our definitions carefully, but THEY MUST BE LEARNT. If you do not
learn them, you cannot possibly understand the course. A fairly significant—though not over-
whelming—number of marks in the final examination depends on regurgitating, or at least
presenting good formulations of, definitions. Many first-year students these days seem to think
it unreasonable to learn definitions in a mathematics course; but you would not expect to study
French without learning what large numbers of French words “mean”, even if you had a
French–English dictionary to hand. The analogy with foreign languages is, of course, very
imperfect. A mathematical definition tells you what the concept denoted by a word actually is
(in terms of more elementary concepts, that is), whereas the dictionary of a foreign language
simply lists approximate English equivalents so that you can on the whole use the foreign word
correctly, and perhaps, in the long run, react to it in much the same way as a native speaker.
This is perhaps why some beginning students have problems with definitions in mathematics,
because they believe a definition only attaches a  to a pre-existing concept or group ofword
concepts, as a dictionary does, instead of telling you the exact content of an entirely new one.

The best strategy is to  each definition, so that you can reconstruct it in yourunderstand
own words whenever you want. “Understanding” a definition includes, amongst other things,
grasping what it excludes and what it includes: trying to invent objects that conform to the
definition, or that seem at first glance as though they might but in fact do not. This takes time,
and involves very careful and detailed reading of your notes. A mathematical exposition is not
an airport novel; our notes are not intended to be skipped through, although I hope they are
more accessible, being much shorter, than most books on the subject. In the interim, before the
penny drops as it were, learning a definition by heart is the next best thing to understanding it
and should not be despised, since small changes in wording may make great alterations in
meaning. (Take no notice of the University’s ranting about plagiarism, by the way; its only
comprehensible purpose is to ensure that students caught cheating can be expelled without
legal argument.) Incidentally, my definitions will occasionally differ slightly from Rudin’s—
generally, I hope, on reasonable grounds. Mathematical definitions are not regulated by any
central authority; conventions that were accepted in the 1920s and 1930s in Texas may be odd
by the standards of Russia in the 1950s, and so on. In reading a mathematical text, you should
always take note of the definitions the author uses.

There is a problem with the wording of definitions. A mathematical definition’s purpose, as I said, is to
tell us precisely what something is, so that there is a solid and unambiguous basis for later argument. If you are
asked for the definition of the inverse of a matrix, it is not correct to answer “If  is an inverse of the   
matrix , then ”. This is the wrong way round; instead of saying what an “inverse” is, it     
presents a property the inverse has; formally speaking, the sentence would tell us nothing unless we already
knew that  is indeed an inverse of . The intended thought is better expressed by the sentence “If 
       , then  is called an inverse of ”, which makes it explicit that we are concerned with

introducing the concept attached to the word “inverse” and not with a statement of fact.
[The bald sentence just given, though the core of a possible definition, is inadequate on its own. It

assumes at least another sentence or two explaining what the symbols represent, such as “Let  and  be 
     real matrices.” Although  is a well-known symbol, it would do no harm to add “  and let  denote 
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the  identity matrix”. In general, then, a definition, set out in full, may consist of three parts. There may  
be an introduction, possibly of great length, that, as it were, sets the scene, so far as necessary (“Let  be an
   real matrix”). Then there will be a single sentence that is the substance of the definition (“An inverse of
          is an  matrix  such that ”); ideally, it will be of the form “(thing defined) is ”.

Finally,  there may be an appendix, which might be merely a dependent clause or might be quite long,
explaining anything that might remain unclear (“where  denotes the identity matrix of degree ”). There is 

no absolute distinction between what goes into the introduction and what is left until the appendix;  that is a
matter of style and clarity.]

The main formal difficulty with definitions is the use of ‘if’. When I say “A matrix is said to be real if all
its entries are real numbers”, the word ‘if’ is not being used in a logical or mathematical sense—the statement
clearly means that, when I say a matrix is real, I have in mind no more and no less than that its entries are real
numbers. It would be perverse to suppose that I am allowing a matrix to be “said to be real” under other
circumstances, although the mathematical or logical sense of ‘if’ permits such an interpretation. The phrase “is
said to be” should alert us that this is a definition, and that ‘if’ is to be understood as introducing the meaning
we wish to attach to the previous clause. However, such a clarifying phrase as “is said to be” is often omitted,
because the context and form of the statement normally make it obvious that a definition is intended. Some
people, aware of this inconsistency in the possible meanings of ‘if’, try to overcome it, in my opinion rather
over-zealously, by writing ‘if and only if’ instead of ‘if’ in definitions. I find this objectionable too, because ‘if
and only if’ is also a logical connective; consequently, its use in a definition is still misleading, because it
creates a statement that looks like a theorem but is not one.

I have already suggested that, ideally, one would avoid this “defining” use of ‘if’ altogether, by saying, for
instance, “a real matrix is one all of whose entries are real numbers”, which tells us at once what a real matrix
is. Unfortunately, the slovenly use of ‘if’ is much more the rule than the exception. It would be finicky to shun
it; nor have I tried to. Fortunately, the form (in English at least), and, more unequivocally, the context, of any
statement normally indicate whether ‘if’ has a logical meaning or is part of a definition.

When the main clause comes first and its meaning has not previously been defined, as in “A matrix is
real if all its entries are real”, where the adjective “real” has not previously been applied to matrices, that is
customarily a definition. When the ‘if’ clause precedes the main clause, as for instance in “If a matrix is real,
all its entries are real”, that suggests strongly that ‘if’ is a logical connective and the statement is not a
definition; a “real matrix” might, in principle, be required to have other properties not mentioned. For a
parallel statement of exactly the same form that cannot possibly be a definition, consider  “If  is a real square
matrix, then ”. In this case, the stated property, namely , is shared by some non-realdet det        

matrices, such as . 
 
 

Much of the material in this course is fundamental in modern pure and applied
mathematics—even in contexts like statistics, logic, number theory, algebra, or geometry
where you might not at first expect it to have any relevance at all. This is worth emphasizing,
because students have been known to complain that the course has no “applications”. If you’re
not interested in what is true and why, then, indeed, much of the course may seem rather
superfluous. We shall spend quite a lot of time proving things we all “know” to be true
(although such “knowledge”, like many things people take for granted, is often just habit, and I
hope there are also surprises from time to time). But the tools we shall acquire are essential in
many contexts. Along the way, we shall remove gaps in earlier courses by  results thatproving
were previously assumed without explanation. Notable examples are Rolle’s theorem, the
fundamental theorem of algebra, and the method of partial fractions.

And now for the disclaimers. In principle, this was a 30-something-lecture, 15-point
course. Even with some handouts, we could not cover all the material we should have liked to,
or even what I believe “anybody with a mathematics major ought to know”. When I was an
undergraduate, the topics we shall be touching on were spread over something like 100
lectures that everyone was supposed to attend. The comparison is unfair; the emphasis of
mathematics has shifted and there is a lot more of it; those 100 lectures also included many
things that we treat, albeit unrigorously, in 243 or elsewhere; moreover, some things were
repeated three times. But it remains true that there is a lot of fairly basic analysis we cannot
even cursorily include. We have had to  what to do. Our choice, although deliberatelychoose
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conventional, must be arbitrary to some extent. I have confessed to some gaps in the later
logical development, and, even for things we do discuss, we have left out some proofs that
seem relatively uninteresting (you can supply them yourselves, although they may be a little
confusing to construct in some cases). Despite this, I have not always tried to take the shortest
routes through the theorems.

The notes below are not exactly those presented in any particular year. Some material that
only appeared in handouts (or only in some years) has been included. There has been a good
deal of tidying-up; I have removed the errors that I have noticed, although I have probably
introduced others; and I have also included appendices, including Appendix B that formed a
fairly early part of the course in some years and became superfluous when a separate course on
topology was introduced. (Its place was taken by §8 and some other matter. I should note that
I have numbered the results of Appendix B in sequence with those of the main text, for the
convenience of occasional cross-reference.) Thus, these notes are rather fuller than in any
given year, and are not, perhaps, in the best logical order.

At first sight, there may seem to be an intimidating quantity of information. So a little
advice may not be amiss. Generally speaking, the best way to learn a lemma or theorem at this
fairly basic level is to study the  carefully; it usually depends on some idea or insight,proof
which, once you have grasped it, will clarify what the theorem is really about. Simply trying to
learn the  of theorems can be confusing, because the precise form of the hypothesesstatements
is often extremely important but is not in itself very memorable; those hypotheses are usually
forced upon us by the proof. This advice does not apply to more advanced theorems, whose
proofs may be very involved and lack a single guiding idea. In such cases the hypotheses are
often chosen because of the applications one has in mind rather than out of logical necessity.
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1. What  the real numbers?are
People do not agree whether  should be accounted a “natural number” or not. My convention
is that it is not: . If , their sum  and their product            
    are defined, and they satisfy the usual rules of arithmetic; we can also   andcompare
      , determining whether  or , and this “total order” on  is related to addition and
multiplication (if  and  too, then  and ). “Subtraction”              
and “division” are not  possible in .  makes sense only if , and always        
makes sense only if  is a multiple of . 

There are, however, : for , if , then , and, ifcancellation laws          
         , likewise .

These properties may be derived either directly from basic set theory (my preference), or
on the basis of the —stated, in essence, by Dedekind in 1888, a year beforePeano axioms
Peano. (I have never seen the point of the Peano axioms myself.) But we don’t have the time
for discussing these niceties, when the conclusions are familiar to us all. In particular, we take
for granted :well-ordering of 

Lemma 1.1. Any non-empty subset  of  has a least element.  

As a “justification”, notice that if we count , the least element of  will be the    
first number we come to that belongs to .  itself has  as least element. 

1.1 is in effect the principle of mathematical induction, which we shall use freely.
 is the set of numbers we use for counting (that is why I think it should start at ). But a

three-metre long line (three times the length of a “standard” line) can be bisected, and the
result is a line whose length is the same as if we had divided a line of length  metres into six
equal sections. Thus we obtain the idea of “fractions”, which are “quotients” of the form
  , where . For the ancient Greeks, numbers  the lengths of lines and no were
logical problem—for the very thorny question of the foundations of geometry itself was only
noticed much later—was apparent here; but for us, there is a difficulty: what  a quotientis
 ? , for instance, is certainly not a natural number. It must be an object of a new kind.
A fraction is  a symbol  that is subject to certain rules; to have a watertightrepresented by 
definition, we can employ a standard trick, more or less saying that the fraction  the symbol.is
For brevity (although at the cost of some technical complication), I shall construct not only
fractions, but all rational numbers, at one go. The idea is that a rational number “ought” to
have the properties we  of the meaningless “quotient”  in which  areexpect     
natural numbers, though no such “quotient” exists . What we define definitely doesa priori
exist, and has all the properties we expect of quotients.

In the set  consisting of all triples  of natural numbers (none of     
    is zero)  introduce a relation  by

                         means .

(  here denote arbitrary natural numbers). This is an equivalence relation (i.e.        

reflexive, symmetric, and transitive), and so it partitions  into equivalence classes.   

Definition 1.2. A  is a -equivalence class of . That is, it is arational number     
non-empty subset of  that contains all the elements -equivalent to any one of its    
elements. We write  to denote the equivalence class which contains the element  
                  ; then equality of equivalence classes, ,  
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means the same as . The class of all rational numbers is denoted by            
(possibly from “quotient”, or rather the German “Quotient”).

Definition 1.3. Let ,  be rational numbers. We  to define         wish

(a)
(b)
(c)

 

 



      

        

       

  if and only if  ,
 ,

.

These “definitions” are, however, illegitimate. They might not be “well-defined”. To con-
struct , for instance, we must  a specific triple  from the equivalence   choose
class  and a specific triple  from , and form the triple           
whose  is to be . It is conceivable that this resulting equivalence classequivalence class  
might depend on our  choices of  and of , and in that case we could not     
justifiably write it as , since the notation would not indicate which choices were used. 

This theoretical difficulty does not, however, arise, because:

Lemma 1.4. If  and , then                       

(a)
(b)
(c)

                 

                      

             

 if and only if ,
,

       

         

                  . 

These statements should be proved by using only addition and multiplication, since one
cannot always subtract or divide natural numbers. However, the cancellation laws can be
invoked. The trick is to perform suitable manipulations so that permissible cancellations will
lead to the required conclusions.

As a consequence of this lemma, we can genuinely add and multiply rational numbers, and
“compare” them (i.e. say  when appropriate). 

In fact  is a  on , as one sees easily. I recall (from 161) what this means. total order 
Some authors omit 1.5  in some contexts, but we have no reason to.(c)

Definition 1.5. A relation  on a set  is a  if, for any ,     partial order   

(a)
(b)
(c)

 
      
      

 
     
     

(  is reflexive),
& (  is transitive), and
& (  is antisymmetric).

(Compare and contrast the idea of an equivalence relation.) Then  is a  on  if, total order
for any , either  or .         

We often write  to mean the same as , and  (or ) to mean that          
          but . Then any total order is subject to the : given , eithertrichotomy
         or  or . In particular,  satisfies the trichotomy.

Lemma 1.6.  is a field. 
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This means that all the field axioms (the ‘laws of arithmetic’) given in MATH 251 are
satisfied. As well as addition and multiplication, subtraction always makes sense, and you can
divide by anything except “zero”. If you are not familiar with the axioms, look them up.

The field zero ‘ ’ of  is  for any , and the field          
multiplicative identity ‘ ’ is  for any . The negative of            
              is . If ‘ ’ , then , and the reciprocal of  is 
either  if , or  if .                 

The natural number  and the rational number I have just written ‘ ’ are conceptually quite 
different. For any , we can introduce a rational number ‘ ’ as  

‘ ’             

and then it is easily checked that

‘ ’ ‘ ’ ‘ ’ ‘ ’‘ ’ ‘ ’ ;          

addition in addition in multiplication in multiplication in    

further, ‘ ’ ‘ ’  when, and only when,  in . In effect, then, there is a copy of        
inside , consisting of the rationals ‘ ’. It has the same addition, multiplication, and order as 
  itself. In practice we draw no distinction of notation between  and this copy, despite the
conceptual difference; that is, we regard natural numbers as just a special kind of rational
number, and treat  as a subset of . It is then convenient to write the rational number 
      as , which we are now allowed to do since subtraction and division
make sense in .

We can go further. The copy of  in  consisted of equivalence classes  for    
         in . The equivalence classes , for , consist of the ‘natural any 

numbers’ in  as just introduced, of their negatives, and of ‘ ’. They form a   commutative ring
with identity (as defined in 311; all we mean here is that the sum, product, or difference of two
such rational numbers is another, and the zero and identity of  are also of this form), which is
called the  (or just ) and is denoted by  (die Zahlen).ring of rational integers of integers 

The total order in  is related to the algebraic structure as follows.

Lemma 1.7. Suppose .     
   If , then .(i)         
   If  and , then .(ii)         

If  already holds,  is equivalent to: if  and , then .(i) (ii)        

Definition 1.8. A field  is said to be  by a partial order relation  if  is in fact a ordered  
total order, and if, for any ,     

(i) (ii) .                   

Remark 1.9. These ideas may be expressed differently by introducing the set of positive
rational numbers . We write  for . Then:                

(1) the trichotomy property becomes the assertion that  is the  union disjoint
      ,

(2) 1.8  above becomes , and(i)               
(3) 1.8  above becomes .(ii)           
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(I use the  sign occasionally to indicate either that something is a definition— “ ”   
is  to be the set & —or to point out that two things aredefined          
equal by definition. Notice, by the way, that the sum and product of two positive numbers must
be , not just non-negative. In any field, .)positive        

In an ordered field, . (This is a very easy exercise, but not quite obvious.)  
An ordered field is necessarily  . This means that adding  to itselfof characteristic  

repeatedly gives an infinite sequence of different elements of the field:

               

and so on. It follows that any ordered field contains a copy of  (in which the  of  is also 
the  of the field), and so a copy of . In this sense,  is the smallest possible ordered field.  

In any totally ordered set, one has the greater  and the lesser  of twomax min   
elements. By induction, one may also determine the greatest or least element of any finite
subset: , for instance. In an ordered field , one has the “absolute value”:max         
      max . (It is common, albeit illogical, to employ parentheses—round brackets—

instead of braces, in connection with  and ).max min
[Jumping ahead: , not yet defined, is  an ordered field; why not? ] not

Lemma 1.10. Let  be an ordered field and . Then  if and only if ,          
and one has the triangle inequality

           

or equivalently .             

The need to extend  to a field  resulted from mensuration: dividing a line into  equal  
parts, as I remarked. However, the Greeks discovered early that, on superficially reasonable
assumptions about the foundations of geometry, you have Pythagoras’s theorem, and, there-
fore, the hypotenuse of a right-angled triangle whose other sides are integer multiples of a
standard length will often not be a rational multiple of that length. For instance, if the adjacent
sides are of unit length, the square on the hypotenuse has area . But:

Lemma 1.11. There is no rational number  such that .     

Proof. Such a  cannot be , and if  we may substitute it by . So we may     
suppose  and  for some . Consider the set  of all natural        
numbers  for which there exists some  such that . By Lemma 1.1, there is a     
least such , with a corresponding . Then  (for, otherwise, either  and         
                     , or  and ). Thus  and  are also

in , and . However,   

                  ,

so ; this is absurd, as  and  was the  element of .       least 

The above proof (which can be modified slightly for other natural numbers than  that are
not perfect squares) is not the well-known one given in MATH 161, which used deeper
properties of  to do with divisibility. There are many other proofs.

Pythagoras’s theorem, as an empirical fact at least, was known in some form outside
Greece before Pythagoras (who seems really to have existed: he was born on Samos around
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570 B.C., moved in middle age to Croton in South Italy and founded his school there, but
probably was not personally responsible for the theorem). However, it was his school that first
understood that it constituted a problem. They believed that natural numbers were somehow
the atoms out of which the universe was built, and so the seeming existence of geometrical
quantities that cannot possibly be described by rational numbers was a shock. Despite this,
Greek mathematics, being fundamentally geometrical, eventually succeeded in assimilating the
idea of irrational  between magnitudes of the same kind. You can see this in theratios
definitions at the beginning of Euclid’s Book V, and in his Book X. From a modern point of
view, however, the question is what sort of  we can use to measure irrational lengths;numbers
what, in other words, ‘is’ a real number?

There are several possible answers. The plain man’s remedy is to use infinite decimal
expansions “with familiar rules for addition, multiplication, subtraction and division”. This
appears snappy, and is probably historically accurate, but there are serious objections.

The first is that the representation of numbers by decimals is not entirely unique
(  is the same as , and so on). The second is that there seems to be no       a
priori reason to prefer  to any other base, or to suppose that the base does not matter; and
translating from one base to another is messy. The third objection is that the rules for addition,
multiplication, and especially division are also not as easy as you might think. I called them
‘familiar’; but one usually operates with decimal expansions, not infinite ones, and it isfinite 
not simple to form a rule for dividing or multiplying one  decimal by another.infinite

An entirely satisfactory definition of real numbers was only achieved in the later 19th
century, and then two equivalent ones were proposed. One was invented by Dedekind in 1858,
but only published in 1872 as a riposte to Cantor; the other was published by Méray in 1869
and then by Cantor in 1872. (Cantor got most of the credit.) Dedekind’s construction is
conceptually simpler, so I shall sketch a version of it. It is based on the order structure of ,
and, consequently, is not well adapted to the algebraic structure. The Méray-Cantor
construction needs much more preparation, but the algebra, at least, becomes easy. Both
constructions have important generalizations, in rather different directions; but both are
founded on the idea that a real number is something “approximated” by rational numbers. The
two constructions differ in the kind of approximation.

Definition 1.12.  of  is a  or  if Dedekind section Dedekind cut




(i)
(ii)
(iii)

 ,
if  and , then ,  and
for any , there exists such that .

(1)
   

     
    


    

   

We say the cut  is  if it does not contain the rational number . In view of non-negative
(ii), this is equivalent to saying .  

Condition says that  has no least member. Thus  in particular is a cut; if  is a(iii)   
positive rational, so is , which is less than .

 

If  is a cut and  (such a  exists, by ), then  for any , by ,           (i) (ii)
and  is a non-negative cut.          

Given a cut , we can try to define

                   & . (2)
(†)



Notice that  is a cut, but its complement , the set of all non-positive rationals,    
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has a largest member ; reversing the sign of all members of  gives the set ,     
which does not satisfy . Thus the definition of  includes the rather unexpected(iii) 
condition (†) to ensure that 1.12 is indeed satisfied by .(iii) 

The  is just . More generally, if , let the corresponding  bezero cut principal cut  

            , (3)

which is also a cut. .Not all cuts are principal
If  and  are both Dedekind cuts, we define 

            & .

It is easily seen that  is also a cut, and that the “addition of cuts” thus defined is 
commutative and associative. Furthermore,  and  for any cut .          
(The last statement requires some argument, because of (2).)

If  and  are  cuts, we define  non-negative

           & , (4)

which is also a cut. (This would certainly be false if  or  had a negative member). If  and  
       are general cuts,  non-positive rationals , and thenchoose    

          

and  are non-negative cuts. Hence,  is a cut, and so is        

                  . (5)

This cut does not depend on the choice of  and , and we can take it as the definition of   
for general cuts. (I omit the proof, which is rather long, and really amounts to showing that (5)
is equivalent to a different and less “natural” definition that was originally given by Dedekind.)
For non-negative cuts we could take , and then (5) reduces to (4). This   
troublesome definition of multiplication is the main defect of Dedekind’s theory.

Finally, for cuts  and , 

“ ” means “ ”. (6)     

With all these definitions, it may be proved, albeit not without effort, that the set of cuts forms
an ordered field, which we agree to be the field of real numbers . In short,

Definition 1.13. A  is a Dedekind cut of the rationals.real number

The principal cuts  form a subfield isomorphic to ; in effect, then,         
includes a copy of  (with the same addition, multiplication, ). We denote these and order
“rational reals” by the names of the corresponding rationals—indeed, we often just call them
“rationals”—and write  for its copy in  (and  and  for their copies in that copy of ).    

The details of this construction can be varied in many ways, but the governing idea, not
unlike Euclid’s, is that a real number should be defined as the set of rational numbers that
“ought to be bigger” than that real number. For instance,  should be thought of as the set of
all positive rational numbers whose squares are greater than . The reason for the condition
1.12 , which at first sight may seem superfluous, is that without it the rational real numbers(iii)
would be represented twice; , for instance, would correspond not only to the genuine cut
     , but also to , which does not satisfy .   (iii)
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The definition of multiplication of cuts is messy because the construction is founded on the
order relation in  without reference to the arithmetical operations. The Méray-Cantor
construction, which I shall briefly mention later, has the opposite difficulty that upper and
lower bounds (introduced below) appear slightly unnatural, although multiplication is easy.

It is clear that one could define Dedekind cuts in any partially ordered set.
Apart from the construction itself, Dedekind pointed out a property of , as thus defined,

which is in some sense the foundation of all analysis. This is the ,Dedekind completeness axiom
which fails for . Again, it really only uses the order structure of . 

Definition 1.14. Let  be a partially ordered set, and let  be a subset of . Suppose     
      and .

(i) least element

(ii) minimal el

       
  



 is a (or the)  of  if .
{  is itself in , and is “below” everything else in .}
 is a ement

(iii) upper bound

 of  if
.

{  is in , and there is nothing “below” it in .}
 is an  (in ) for  if 


        

  
       
 

.
 is  (in ) if it has an upper bound.(iv) bounded above

              can have at most one least element. If  and , , then  by   

1.5 . On the other hand, if  is not a total order on , there may be several minimal(c)  
elements. For instance, let  be given the partial order ,  (and        
           ). Then both  and  are minimal in . But neither of them is a least

element in .
If  is changed to , one has the definitions of a  element of , of a   greatest maximal

element of , of a  bound for  in , and of the phrase “  is bounded below in ”.    lower
A set is  in  if it is bounded in  both above and below.bounded  

If  has a greatest element , then  is an upper bound for , and, conversely, an upper   
bound for  that also belongs to  must be the greatest element of . But, for instance, the  
open interval  has no greatest (or least) element. (Whatever  you take,     
 
       is greater and  is less.) It has many upper bounds in , such as  and .

It is obvious that a greatest element of , if there is one, is also a maximal element, and a
least element is also minimal. In  general, a maximal element need not be greatest (as above for
“least” and “minimal”).

On the other hand, when  is  ordered by , which is the case for any subset of  totally 
(or of ), the distinction between a greatest element and a maximal element of  disappears. If 
             is maximal and , then  is only possible if ; thus, either  or
            (recall from the remark after 1.5 that this means  but ); that is, .

As “maximal” elements and “greatest” elements are the same for subsets of , it is legitimate
to speak of a real-valued function’s “maximum” value rather of its greatest value (if either
exists). But notice that  has no greatest or least value.         

Definition 1.15. A partially ordered set  is  (or  Dedekind-complete boundedly order-
complete nonnull bounded below) if every  subset of  that is  in  has a greatest lower bound 
in . In other words: if  and the set  of lower bounds for  in  is non-null,        
then  has a  element, the “greatest lower bound” for  in . This greatest lower  greatest
bound is commonly called the  of  in  and is usually written . (It is rarelyinfimum   inf
necessary to specify , because the context makes it clear; indeed, for us  is mostly .)  
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In older English-language books  is sometimes denoted g.l.b.  or glb .inf  
Some special nonnull subsets  of  may, of course, have greatest lower bounds (or 

infima) in  even if  is not Dedekind-complete. In any case, the infimum of a nonnull set  in  
   (when it exists) is, as it were, the nearest approach to a least element of  in . For
example, the lower bounds in  of  form the interval , which has the greatest    
element : thus, .       inf

It may seem odd that the definition 1.15 mentions only  bounds for  in .lower  

Lemma 1.16. If the partially ordered set  is boundedly order-complete in the sense of , 1.15
then any non-null subset  of  that is bounded above has a least upper bound. 

Proof. Let  be the set of all upper bounds of . As  is bounded above, ; and  is      
bounded below by any element of , because . Thus  has a greatest lower bound  in     
       , by hypothesis. However, any  is a lower bound for ; thus . This shows that
        is itself a upper bound for , that is, . As  is in  and is a lower bound for , it is
the least element of . 

Definition 1.17. Given a nonnull subset  of , its least upper bound in  (if it exists) is  
called the  of  in .supremum  

If  is clear from the context and  has a least upper bound in , the least upper bound is  
often written as  (or l.u.b. , or lub ).sup  

The argument of 1.16 is easily changed to prove that, if any nonnull subset  of  that is 
bounded above has a least upper bound, then  is Dedekind-complete in the sense of 1.15. The
asymmetry of 1.15 (for sets bounded  and  bounds)—was, therefore, only apparent;below lower
the property holds equally if I use sets bounded above and upper bounds. (In , this
equivalence may be proved by reversing the signs, but it is true in any partially ordered set).

For  to have a  lower bound in , it must be bounded below to begin with. greatest
However,  itself has no lower bound in ; less trivially,  has no lower bound either. There  
are partially ordered sets  in which  non-null subsets have both a least upper bound and a all
greatest lower bound. An example is , with its usual partial order as a subset of .    
A somewhat less banal example is this.

Let  be any set, and let  be the class of all subsets of  (that is, the “power class”      
of ). There is a natural partial order in :  “ ” means “ ”. Then any subset  of       
  (that is,  is some class of subsets of ) has both a supremum and an infimum. Indeed, 
sup inf     

   and .
We can now prove “Dedekind’s axiom” for the real numbers. By this, we mean

Theorem 1.18.  is Dedekind-complete.

Proof. Let  be a non-empty subset of  that is bounded below, with a lower bound . Now 
    is, by definition, a Dedekind cut of . By the definition of the partial order in ,  for 
any element .  

Let ; thus , and  as each , by 1.12 . Hence,              
  (i)

itself satisfies 1.12 . If , there is some  with , and, if  in , then(i)            
         too; so . This means that  satisfies 1.12 . Similarly, there exists some (ii)

with , and, as ,  satisfies 1.12 . So  is a Dedekind section of ; and, by its       (iii)
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definition,  is the smallest  which includes all . It is, therefore, the greatest lower   set
bound of . 

For any  subset  of , or of , or of any  set, one mayfinite totally ordered          
find the greatest element by comparing elements in pairs, and this greatest element is denoted
max         . It is the supremum of the subset. In a totally ordered set, only infinite
subsets (i.e. subsets that have infinitely many elements) can ever lack suprema. Similarly, the
infimum of  is its least element . On the other hand, a set                  min
with infinitely many elements need not be bounded, and if it is bounded there need not be a
greatest or a least element. (Think of the set .)             

Remark 1.19. To recapitulate: Dedekind’s idea was this. Real numbers have no “simple and
natural” definition. So let us agree that a real number  is  the set of all rational by definition
numbers that “ought to be greater than whatever our intuitive notion of  demands”; for

instance,  will be the set of all positive rationals whose squares exceed . 
This appears strange. We are accustomed to working with real numbers; it seems bizarre to

treat them as complicated “compound” entities. There are two replies to this objection.
Firstly, in truth we never  work directly with real numbers. Either we define themdo

implicitly (as for instance  or “the smallest positive zero of the cosine” or “the largest root

of ”) or we use approximations (instead of  we take ten               
decimal places, , or whatever). We assume, however, that there is ,   something
an “entity”, that is being defined by either of these techniques; what can it be? Dedekind
proposed one possible answer to this question.

Secondly, we believe, for whatever reasons, that real numbers, whatever they may be,
should have certain properties. Until we construct objects with these properties in a logically
defensible way, there is some doubt whether the properties are consistent. In talking about the
real numbers, we might be appealing to something that cannot exist. You have probably seen
those proofs that “all triangles are isosceles” and so on, where absurd conclusions are drawn
from a construction that looks plausible but is in fact impossible. Dedekind’s construction (or,
equally, Cantor’s, or others that are also available) assures us that the existence and standard
properties of  are as consistent as the basic ideas of set theory and of the natural numbers,
which seem essential for mathematics to exist at all.

(I do not claim that the real numbers, on either construction, “really are” the things we
have constructed. That would be a metaphysical, or perhaps psychological, question. As
mathematicians, we want merely to construct entities that are precisely defined, so that we can
prove results about them, and that behave as we expect real numbers to. Why we think there
ought to be such things at all, behaving as we expect, is not our business.)

Granted a good construction of , all one needs thereafter are certain properties assured by
the construction. Logically speaking, Dedekind’s real numbers, Cantor’s real numbers, and
“infinite decimal expansions”, are radically different kinds of object; nevertheless, in everything
that interests us they have identical properties, and any of them could be employed as the basis
of analysis. They are, in fact, “isomorphic” to each other as ordered fields, but I shall not
bother to define this idea precisely or to present isomorphisms.

Lemma 1.20. Let  and . There is a rational real  such that .           

Proof.  To say  is to assert that , as subsets of  (by (6)). Thus, there exists        
some . (I use the slanted minus, as before, to denote set difference, to avoid    
confusion with arithmetical subtraction.) By 1.12 and (3), ; by 1.12 ,(ii) (iii)   
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          , since there is an element of  which is less than . Thus . On the other
hand, . Take any . By trichotomy,  or  or . The first and             
second possibilities are excluded by 1.12 , which would imply that . Thus (ii)       
for any , or , or . Take .                 

This result is usually stated in an apparently stronger form:

Corollary 1.21. If  and , there is a rational real  such that .           

Proof.  As , . Apply 1.20 to  instead of . There is a                
 

rational real number  such that .        
 

This Corollary may be expressed by saying that  (that is, the copy of  inside ) is  
“order-dense” in . I have proved it from our construction of , but it is in fact true for any 
boundedly order-complete ordered field—I shall sketch the proof in a moment.

We have now derived (from Dedekind’s construction) all the properties of  that we shall
ever use, and it is of no subsequent importance what  actually is.

Lemma 1.22. Let . There is a real integer  such that .      

Definition 1.23. The least real integer  such that  (recall 1.1) is called the     
integer part of the real number , frequently denoted . When , ; when         
         , . The name “integer part” can be misleading when , since, for instance,
      

 . (The unwary might think the “integer part” of  should be .)

A stronger version of 1.22 (and my reason for postponing its proof!) is as follows.
Remark 1.24. An ordered field  is said to be if, whenever  are positive  Archimedean 
elements of , there is a natural number  such that .    

[Of course  contains a copy of ; see Remark 1.9. Equivalently, one could think of   
as the result of adding  copies of . The case  implies 1.21; take .]       

Any Dedekind-complete ordered field  is necessarily Archimedean:—

Proof. If not, then  is nonempty and bounded above by , so has a supremum      
         . For any , , and so . This means that  is also          
an upper bound for , which is impossible as  was the  upper bound.       least 

The Archimedean property is popular, because it is true for  but not for some other well-
known ordered fields (such as the hyperreals; but there are others).

Lemma 1.25. In any Archimedean ordered field,  is order-dense. 

Thus, the copy of  inside Dedekind-complete ordered field  is order-dense in , and  any 
this is the crucial step in proving the “uniqueness theorem”, which, roughly, states that

Theorem 1.26. Any Dedekind-complete ordered field is a copy of  (as an ordered field).   

I shall not give the proof. But it means that the particulars of Dedekind’s construction can
be ignored; all that matters is that  is a . boundedly complete ordered field
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Lemma 1.27. Let  be a bounded subset of , and let . Then  is         
also bounded, and

sup inf inf sup          

Although I have already used these names several times, let us have the formal definitions:

Definition 1.28. An in  is a set of  one of the formsopen interval 

             

          

         

 

 

 

, where , or
, where , or
, where .

(Notice that  if and only if . The symbols “ ” and “ ” do not, for our        
present purposes, denote anything; they only appear in certain standard formulæ.)

Similarly, a  in  is a set of one of the formsclosed interval 

             

          

         

 

 

 

, where , or
, where , or
, where .

(Here  if and only if .) These are definitions of the whole phrases “open      
interval” and “closed interval”—“open” and “closed” on their own have other meanings. (See,
for instance, 3.5 and 3.6; more seriously, Appendix B.)

We frequently describe a member of  as a “point” of  [and similarly for , and so on].  

§2. Sequences.

Definition 2.1. A  in a set  is a function . We usually write sequence      

instead of  to denote the value of the function  at the natural number , and often  
describe the sequence by the symbol  or .  is called the th of the       

 term 
sequence, and  is its or . If  is an injective (one-to-one) function, we may term index index
say  is a sequence —that is, its terms are all different.  without repeats

Since parentheses (round brackets) are used in so many senses, some people prefer to
denote sequences in some other way, for instance by angle brackets,  or . But my     

notation is still the usual one.
The index set is taken to be  for simplicity. Other choices (for instance, ) do   

not seriously alter the theory. A sequence may sometimes be informally described by writing
out its first few terms, , especially if they strongly suggest a rule of formation for       

all the later terms. Similarly, the idea of a  can be formulated in various (notsubsequence
entirely equivalent) ways that do not much affect our arguments, so I choose the simplest:

Definition 2.2. A function  is  (and thus is a    strictly increasing strictly
increasing sequence in ; see below) if  whenever . Let  be a         
sequence in . A  of  [occasionally called an  subsequence, to  subsequence infinite

emphasize that infinitely many term indices of the original sequence are also indices of the
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subsequence] is the composition  of the mapping  with a strictly increasing     
function . It may be written .    

Thus a subsequence of  will be of the form . For example, let              

               be a given sequence;  is a subsequence in which the th term is
      

 
 


   for . We might write this subsequence as . In the same   

 


way, there are subsequences  (this is the sequence ) or  (the             

sequence ).       

If  is strictly increasing, then  for all . (This follows from a         
very simple induction.)

Definition 2.3. A sequence  in  is if  for all ; it is  if        increasing decreasing
      for all . It is  if it is either decreasing or increasing [that is, if eithermonotonic
           for all , or  for all ; most sequences will definitely not be

monotonic, for instance  is not]. It is  if             strictly increasing
           for all ,  if  for all , and  if it isstrictly decreasing strictly monotonic

either strictly increasing or strictly decreasing.

These names vary, and, in particular, the phrase “monotonic increasing” is often used
instead of “increasing”, and “monotonic decreasing” instead of “decreasing”, possibly because
“increasing” is at some risk of being interpreted as “strictly increasing”.

Definition 2.4. Let  be any non-null set; suppose . (This is a common way of    
abbreviating “  is a function from  to ”.) We say that  is  if its image   bounded above
        is bounded above in ; and similarly for the statements that  is

bounded below  bounded or that  is , which means that it is bounded both above and below.

Let  be a bounded sequence in . By definition 2.4, this means that the set  
 

              is bounded. Let us suppose it has upper and lower bounds 
and  (they might be its supremum and infimum, for instance):

         .

It follows that the various obviously nonnull subsets of 

                           

                      
    

  

 

 for any ,

are also bounded above with  as an upper bound, and bounded below with  as a lower 
bound. By Dedekind’s axiom, each of them has a supremum; let us write

                  


sup sup sup sup (7)

all the three last notations are in common use. Notice that, for any ,  

        ,

and also that , since  is an upper bound for . In particular,          sup
           is non-null and bounded below (by ), and  is monotonic decreasing.

Definition 2.5. Let  be a bounded sequence in . Its  (or )   upper limit limes superior
limsup lim lim limsup        , also denoted by , , , and so on, is
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inf inf sup          

In a symmetrical way, one defines the  or :lower limit limes inferior

lim inf lim sup inf sup inf                        .

Here  is monotonic increasing.  inf  

To define  and  for bounded sequences in a partially ordered set  we only need alim lim 
weak version of Dedekind-completeness; namely, we need suprema and infima only for
countable bounded subsets of . When, as in , we have the full strength of Dedekind’s 
Axiom, upper and lower limits for more general objects than sequences can be defined. But
this does not concern us at the moment.

These ideas are really rather natural. Think of the graph of , consisting of the points 
       

 in . The line  is the lowest horizontal line that lies above all the sup
points ; as  increases, it descends (in principle)               

towards the line . Examples will make the point clear. But the importance of upper  lim 

and lower limits is that , whetherthey make sense for any bounded sequence of real numbers
or not it converges. One might say vaguely that they are what remains of the notion of limit
when there isn’t one (but the sequence is still bounded).

Lemma 2.6. For any bounded sequence  in ,  

inf lim lim sup


   
 

       

Proof. Let . Then ; the term  belongs        inf sup     max max
to both the sets whose supremum or infimum is being taken. Thus, , for any specific ,inf  
is a lower bound for , and consequently     sup  

inf inf sup lim          .

This holds for any ; so  is an upper bound for . It follows that       lim inf   

lim sup inf lim         . 

Definition 2.7. The bounded sequence  in  is said to be  when its   order-convergent
upper limit and its lower limit are equal; their common value may be called the  oforder-limit
the sequence.

This notion of convergence applies to sequences in any Dedekind-complete (or even
“boundedly  order-complete”) partially ordered set. The definitions you have metcountably
previously involved real-valued sequences and positive numbers ; so far we have not seen a
single . It is high time to introduce one, and so to return to the real numbers exclusively.

Lemma 2.8. Let  be a non-null subset of , and let . Then  is the supremum of      
if and only if the two following conditions are satisfied:
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(i) [that is,  is an upper bound for  in ]
(ii)

for every ,  , and
for every , there exists some  such that .

     
        

  
 

Dually,  is the infimum of  if and only if it is a lower bound for  and, for every   
         , there is some  such that .

(When I write “for every ”, I always mean “for every   ”.)   positive real number

Proof. If  is the supremum of , it is  upper bound for ; that is . If it is the  upper   an (i) least
bound, then, for any ,  (being strictly than ) is  an upper bound for —so      less not
there must be some  with . This is         (ii).

Conversely, suppose  and  are satisfied. By ,  is an upper bound for . If it is not(i) (ii) (i)  
the least upper bound, there is an upper bound  for  with . Take ;          
then, by , there is some  with , and this contradicts the assumption(ii)         
that  is an upper bound. Consequently  is indeed the least upper bound.  

Definition 2.9. Let  be a sequence in . It  or  or to a   converges tends is convergent 
number , and one writes  (or, if necessary,  as ), if            

                   . (8)

If (8) is satisfied, one also says that  is the  of the sequence  (as ).     limit 

For some motivation of this definition, see Appendix A.
The sequence  in  is said to  or to be  (without mention of a   converge convergent

limit) if there is  number  in  such that . To emphasize that this is  order-some not    

convergence, I might sometimes call it “metric convergence”.
If  (for all ) and  are complex numbers (that is, if “  is a sequence in ” and       

        ),  and  is understood as the modulus of the complex number , then (8)  

is the definition of convergence of the  sequence  to the  limit . See §10complex complex  

(and later sections) for this.

Example 2.10. Let  be a sequence in and  be such that, for each ,      
          . Then .

Suppose . Then  is also a positive number; let  be the least integer      exceeding
      , which is  and so is positive. (  denotes the “integer part”, 1.23.) Then

          
  

  
 


 

thus, . The definition of convergence to  is satisfied.      

Lemma 2.11. Let  be a bounded nonempty subset of . There are sequences  in      

 such that
    is nondecreasing and , and(a)       sup
    is nonincreasing and .(b)       inf

Proof. I prove ; follows by reversing signs. Let . By 2.8 , there is some(a) (b) (ii)  sup
                   such that . Suppose  has been defined. If , let
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           ; if , then, by 2.8 , there is some  such that(ii)

max            

Then  and , so that the inductive procedure constructs a           

nondecreasing sequence , and  by 2.10.      

Remark 2.12.  if and only if .         

Lemma 2.13. If  is a sequence in , it can have at most one limit. That is, if      
and , where , then necessarily .         

Proof.  Let ; take . Then there exist  such that          
   

                        .

Take , and then, if , both  and ,                max         
so that, from the triangle inequality 1.10,

 .                                      

This is absurd, and we must conclude that .   

Remark 2.14.  Thus, if  does converge to a limit, the symbol  can be(a)     lim
employed to denote that limit unambiguously. It is rather undesirable (though some authors do
it) to treat  as entirely equivalent to , because, in general, the symbol     lim  

“ ” is MEANINGLESS. That is, most sequences do not have limits. For instancelim 
      does not. Similarly, in ordinary language a phrase may make perfect
grammatical sense, but not denote anything—for example, the phrase “the reigning King of
France” has no denotation at this moment.

  To prove that a sequence  does converge to a given limit , you have to show(b)   

that for ANY positive number  there is some value of  such that .          

Usually one gives a “formula” for a possible  in terms of ; however, the definition doesn’t 
require a formula, or even any explicit value for , provided you can show that some  exists 
whatever the choice of positive . If  is altered, the value of  you take will often also need to  
be changed; in this weak sense,  “depends on ”, and people write  to indicate “an     
which works in (8) for the given ”. 1

  The conditions ‘ ’, ‘ ’ in the definition may be changed (either or both)(c)   
to ‘ ’ or ‘ ’ without altering the class of convergent sequences or their limits (though  
the  required for a given  might have to be changed). Likewise, one could without affecting 
the sense of the definition restrict  to positive rational values or even, for instance, to numbers
of the form  for . You should try to convince yourself of these facts.   

   should be thought of as the “distance” of  from . Thus, (8) asserts(d)       

that, whatever measure  of “closeness to ” you take, the sequence eventually (at stage  and  

1 Some authors state 2.9 as “   if there is a   such that, for any ,        function  
               ”. If, for each , there is  satisfying (8), there will be by 1.1 a some least

possible such , which one could take to be the function value . However, there are analogous definitions  
where the indices do not form a well-ordered set like . There may then be no least possible , and one might 
need the Axiom of Choice to choose a specific  for each . It is simpler in all cases to accept that the notation 
    here is just an informal reminder: “an  that could be used in (8) for the given ”.
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later) settles down to be “close to ” in the sense described by . This is   metric convergence
(to do with distances), as distinct from the order-convergence of 2.7.

  If , then  is bounded (that is, the set  of terms of the(e)             
sequence is bounded). For , so that             

                               max

In the real case,  for all ; in the complex case,  for all .           

Lemma 2.15. If , and  is a subsequence of , then  is bounded, and           

     . In particular, .

Proof. For any , there is  such that . As                   

for all , it follows that .           ( ) 

Lemma 2.16. If  and  is a real constant, then .       

Proof. If , then trivially a sequence of zeros tends to . But, if , then, for any      
         ,  too, and we are told there is some  such that 

      



   

(in terms of the original sequence , we might call this “ ”). But then        
                  

Hence, definition 2.9 is satisfied for the sequence  and limit .      

Theorem 2.17. Suppose the sequence  in  is bounded and order-convergent with  
order-limit . Then . Conversely, if , then  is bounded and order-          

convergent with order-limit .

Proof.  Take any . As , 2.8 tells us that there must beA.           inf sup 

some value of —call it — with . This implies that     sup 

          sup 

(as the supremum is an upper bound). Dually, from the fact that  is the lower limit we deduce
there is a value of , which we may call , such that , or     inf 

                 . Let us now define  to be . Then, if , it is truemax
that both  and , and so    

            ,(9)

which is the same as  or . In other words: given , we                
have proved the existence of an  such that (8) is true.

  Conversely, if , then, for any  there exists some  such that (9)B.         
holds, and then
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          inf sup       (10)

Hence, in the first place,  is bounded. For ,   all 

min max                              (11)

For , , from (10), and in the same way                 min   

          . For , on the other hand,

min max                        

This proves (11) in all cases, and (11) shows that  is bounded, and has upper and lower 
limits. Now, taking any , (10) also tells us that  

            sup inf liminf limsup inf sup       (12)

(recall 2.6). (For the first inequality, ; for the last, ).       inf sup     

this can only be true if the middle terms are equal. Indeed, (12) implies that

lim lim                  (13)

an inequality not depending on , which must, therefore, be true for  positive . If  any
lim lim lim lim lim lim                  


, take , and (13) is false. So , and

2.6 shows that they must in fact be equal. 

Briefly, a  sequence is convergent to a limit if and only if it is bounded and order-real
convergent with the same limit. To prove this, we have exploited the special properties of .

One frequently used corollary (which can also be proved directly without difficulty) is

Corollary 2.18. A bounded increasing sequence in  converges to its supremum. A bounded
decreasing sequence converges to its infimum.

Proof. Let  be increasing; then  for all , and it follows that         inf 
sup inf sup sup sup sup                . On the other hand,  (the

earliest terms are no greater than the later ones) and . Soinf sup sup      
lim inf limsup sup       , and the result follows from Theorem 2.17. The result for a

decreasing sequence  may be proved similarly, or by considering  instead.     

Lemma 2.19. Let  in . Then  as .          

Proof. Clearly  for all  (simply multiply the inequalities of the       

hypothesis by ). So  is a decreasing sequence bounded below by ; by 2.18, it has      
a limit , which is its greatest lower bound and so must be non-negative. On the one hand, as
         , then  by 2.16; on the other,  by 2.15. By 20.4, these two

limits must be the same: . As , it follows that .        

There are more informative and explicit proofs of this Lemma, but they require rather more
discussion, and it is useful to see how one can exploit the “abstract nonsense” we have
developed. The result itself is a minor obsession of mine. If you pick up some recent
introductory texts on analysis, you will find that they “prove” the result by assuming the
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existence and properties of the logarithmic function, long before they have defined it. I am
not saying their arguments would necessarily be circular if they wrote them down in full; for
there are ways of defining the logarithm, and proving its properties, that do not assume the
Lemma at any step. But they all require a lot of preparation (quite possibly some theory of
integration), which the authors in question have certainly not presented. I suppose their excuse
is to give an easily grasped example of the definition (8) for students too incurious to care
what a logarithm is.

There is a reason for someone sometime to have worried about this sort of thing. I
commented at the outset that some important statements that had seemed obviously true were
discovered to depend on unspoken assumptions. It is therefore important to be clear about
your assumptions; and the logarithmic function is a whopping thing to take for granted.

Let me also insert here a conventional warning. The words “convergent” and “conver-
gence” are used in many contexts, and their meaning depends on the context. Here, we are
discussing convergence of . This concept differs, for example,  fromsequences of real numbers
convergence of series convergence of integrals (which we shall discuss later) or .

Another way of relating upper and lower limits (defined by the order on ) to metric
convergence (defined from the distance in ) is as follows.

Proposition 2.20. Let  be a bounded sequence in . Then  has a convergent    
subsequence; and  is the greatest number that is the limit of a convergentlimsup

subsequence of . Similarly,  is the least number that is the limit of a convergent   lim inf
subsequence.

[A number that is the limit of a convergent subsequence of  is sometimes called a 
“subsequential limit” of . Thus, the set of subsequential limits of a bounded sequence is 
nonempty, and has both a greatest and a least member.]

Proof. Let . Construct a subsequence  by choosing the indices      lim   


inductively. Take (for instance) , just to get started; and suppose  has been   
chosen. Now , by definition 2.5 (the sequence  is     sup inf inf     



increasing, as at 2.4). Thus,

       inf 




by 2.8 . It follows that  for all .(ii)       




Let . Then, . However, by           max  




2.5 (or 2.8 ), , and, by (the dual of) 2.8 , there is some  such(i) (ii)     inf 

that . So,  and . Choose  to be                   
  

  

this . By the definition of , .        
This inductive procedure ensures that the sequence  is indeed a subsequence of  



            
 
  and that  for every ,  which is sufficient to ensure that

   .
A similar argument shows that  is also a subsequential limit; or, alternatively,lim

observe that , which is the negative of a limit of a subsequence oflim lim     

     and so is the limit of a subsequence of .
Suppose now that  is  subsequence of . Then, for any ,     any
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(as  for every ); so  for every , and on taking suprema       inf inf   

lim lim lim        . If  converges, its limit is , by 2.17. Thus, a subsequential
limit is not less than , and similarly cannot be greater than .lim lim   

Remark 2.21.  Any definition of  that has the properties we desire must be complicated,(a) 
as I have remarked. As  is uncountable, irrational numbers cannot all be “named” in the way
that all rational numbers may be; and the definition 2.9 of convergence often cannot be applied
directly, because the putative limit  must be specified before (8) can be checked. The upper
and lower limits of the sequence, which we know to  if the sequence is bounded, areexist
frequently difficult to describe explicitly (i.e. other than as those upper or lower limits).

This is a serious matter. One commonly wants to  a previously unknown number asdefine
the limit of a sequence (in effect by “successive approximation”). So the best information we
have so far is 2.18: if the sequence is monotonic and bounded, it is order-convergent.

(b) 2.18 is, indeed, precisely how an infinite decimal expansion defines a positive real
number; its successive truncations form an increasing sequence of rationals that is bounded
above. Similarly for negative real numbers, where the truncations form a decreasing sequence
that is bounded below.

(c) However, for non-monotonic sequences, there is no corresponding way of seeing at a
glance whether they converge or not. We can, nevertheless, characterize convergent sequences
in  in a way that does not require knowledge of their limits. This was pointed out by Cauchy.

Definition 2.22. Let  be a sequence in . It is described as a  if   Cauchy sequence

                 . (14)

Nowadays “Cauchy” has become an adjective—‘the sequence is Cauchy’. (To avoid this
slightly absurd statement, Cauchy sequences were previously called “fundamental”.) The terms
of a sequence convergent to  get “closer and closer to ”; those of a  get  Cauchy sequence
“closer and  closer to ”.one another

“ ” in (14) means “ & ”. This is fairly           
standard usage; and (14) is also often expressed by

          as

It is important to realise that “as ” means that, for a given , there is an  for   
which  if   and  are greater than .          both

Lemma 2.23. A convergent sequence in  is Cauchy.

Proof. Let . Given any , there is an  such that      

        



(taking  for  in (8)). If ,  and , and consequently  
                   

                      
  
     . Thus the  which serves for  in (8) will

serve for  in (14). 

Lemma 2.24. A Cauchy sequence in  is bounded.
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Proof. Let  be Cauchy. In (14), take ; thus there is some  such that     
                      whenever . Hence,  when , that is,

           

Let . Then   when , and                     max      

          by definition; so  is an upper bound for the whole sequence. Similarly,
             min      is a lower bound for . 

2.23 and 2.24 tell us that a convergent sequence is bounded—which we already know (it
was much the same proof) from 2.17 (see  in the proof).B

We now come to the big theorem of this section, sometimes called the (or Cauchy’s)
General Principle of Convergence. Our proof is very like 2.17 .B

Theorem 2.25. A sequence  in  is convergent if and only if it is Cauchy.  

Proof. One direction, convergent Cauchy, we have already seen in 2.23. So suppose   
is Cauchy. Then, by 2.24,  is bounded; so it has an upper and a lower limit (see 2.5), and, 
by 2.6, .lim inf limsup   

If , set . As  is Cauchy,liminf limsup limsup liminf                



there is  such that , and so          

         

       

       

  





  

      

      

. Hence,
and

,
lim sup inf inf
lim inf sup sup

and it follows that

                 limsup liminf    ,

which is absurd, as . Thus,  is impossible.     limsup liminf 

Consequently, . But 2.17 now proves thatliminf limsup   

       lim inf limsup

as desired. 

That every Cauchy sequence in  is convergent is often expressed by saying that  is 
metrically complete complete, or even just  (although “complete” is an overused word; that is
why I previously used “order-complete” at 1.15).

There are several possible properties an ordered field may possess that are “equivalent”, in
the sense that an ordered field satisfying any one of them may be proved to have all the others.
We have taken Dedekind-completeness, which holds for  by Dedekind’s construction, as our
basic property. Cantor’s (or Méray’s) construction of  defined a “real number” to be an
equivalence class of Cauchy sequences of rational numbers under an equivalence relation that
“ought to ensure they have the same limit” if the limits existed; this definition ensured the
metric completeness of  (and made it easy to prove its algebraic properties); Dedekind-
completeness could be deduced as a somewhat non-trivial consequence. A third equivalent
property is sequential compactness of bounded closed intervals, which we shall discuss soon.

For spaces other than , metric completeness tends to be more useful and general than
order-completeness, partly because the idea of a distance seems to apply more often than the
idea of a partial order with suitable properties.
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The peculiar advantage of the proof I have given for 2.25 is that the concepts of upper and
lower limits are of independent importance, for instance in the theory of stochastic processes.

We can now prove fairly painlessly (exactly as in 161)

Lemma 2.26.  is uncountable.  

§3. Sets of points in  and . 

In earlier years I had here a long digression about metric spaces and topologies; that material
has mostly been moved to MATH 313. (For the benefit of anyone who took the earlier course,
I have added the “old” §§3–6 as Appendix B; but I have not attempted to sew them into a fully
coherent exposition; there are repetitions.) Almost everything I do below will be stated in
terms of convergence of sequences, which is enough for our purposes and is also historically
accurate. It will, nevertheless, be obvious that some of the arguments ought to generalize—
and, if you take 313, you will discover that sequences often give unnecessarily clumsy proofs.

I recall that  is the set of column vectors  where , but I shall mostly    



     write

these vectors as ordered pairs  for convenience.   

Definition 3.1. Suppose that  is a sequence in  [the outer parentheses      




indicate a sequence; the  parentheses signify the ordered pair , where inner         

and ], and . We say that  as  if  and             
               

   . (This is equivalent to the definition in terms of the standard Euclidean distance in
 , which you have seen in MATH 211; and to convergence in .) It is easy to check that
analogues of 2.13 and 2.15 hold for this notion of convergence.

For convenience, let us write  for a subset of  or of  (or ) as the case may be.   

Indeed, we could also consider subsets of  for any .   

Definition 3.2. Let  be a subset of . 
  By a sequence in , we mean a sequence in  all of whose terms belong to . (It(a)  

is then automatically a sequence in  itself.)
  A point  of  is a  of  in  if there is a sequence  in  that (as a(b) limit point      

sequence in ) converges to . 
  The set of all limit points of  in  is called the  of  in .(c) closure  

(b) is perhaps the original meaning of the phrase “limit point”, and will cause us no
difficulty in this course. In general topological spaces, there are various other phrases that are
in use for related ideas, with subtle shades of meaning that need not trouble us here. (To
reduce confusion I avoided “limit point” altogether in earlier versions of 312; see Appendix B.)
You should always check the definitions an author has in mind, because the same words may
not carry quite the same sense in two different books.

Lemma 3.3. If , then  is a limit point of  if and only if, for any ,          
there is a point  such that .          [Of course  usually “depends on” , in the 
same weak sense as at 2.12 — if you change , you will commonly need to choose a(b) 
different .]
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Proof. “Only if”: suppose there is a sequence  in  that tends to . Then, by the   

definition 2.9, there is, for any , some  such that . So, for            

this , one may take .   

“If”: suppose that, for each , there is some  such that .            
Then the sequence  in  converges (in ) to , which is, therefore, a limit point of .      

As on other occasions, the “countable axiom of choice” is implicitly invoked here.

Example 3.4. (a) Any point  of  is also a limit point of  in , since it is the limit    
of the sequence  with all terms equal to .   

  If  in , the open interval  has  and  as limit points in . Thus a set(b)        
  may, indeed, have limit points in  that are not in .

  If  in , any limit point in  of the closed interval  must belong to(c)      
         . Indeed, if  is a sequence in  and , then, by2.6 and 2.17,  

             inf liminf limsup sup   

so that  too. (It is also easy, and perhaps simpler, to give a proof directly from the   
definition 2.9.)

  If the set  is finite (i.e. has only finitely many points), any limit point of  in (d)   
must belong to . (Why? You should be able to give a simple proof.)

Definition 3.5. A subset  of  is  in  if every limit point of  in  is a point of .    closed

Thus, a closed  in  is a closed  in , by 3.4 , and any finite subset of  isinterval set (c)  
closed in , by 3.4 . Also, if , the closure of  in  (cf. 3.2 ) is itself closed in    (d) (c)  
and, therefore, is the smallest closed set in  that includes ; for a limit point in  of the set of 
limit points of  in  is itself a limit point of  in . This follows from 3.3 above (you should  
try to see why).

Definition 3.6.  A subset  of  is  in  if its complement in  is closed in .(a) open    
  The  in  of the subset  of  is the complement in  of the closure of (b) interior    

in .

“Open” and “closed” sets are of great importance. For historical reasons, they have been
defined in various ways in various contexts. (In MATH 313, it is likely that open sets will be
taken as fundamental; that is, certain sets will be  to be open in .) However, it isdecreed 
important to grasp that, whatever you treat as the most basic idea, an open set is the COM-
PLEMENT of a closed set, and that, generally speaking, “most” sets in  will be neither
themselves closed nor have closed complements. For instance, if  in    

          

is not  in , because  is a limit point of the set but not an element thereof, and is notclosed  
open in , because  is a limit point of the complement but not a point of the complement. 
(There are also situations—not in —in which sets may be  open and closed.) both

From 3.4, a “closed interval” is closed in ; similarly, though slightly less obviously, an
“open interval” in  is open in . So our vocabulary is consistent. 

The next definition has in effect already been given (at 1.14) for subsets of .
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Definition 3.7.  A subset  of  is  if there are numbers  such that(a) bounded   

        

(  is a  for  and  an .) Equivalently, .      lower bound upper bound
    is  if there are  such that(b) bounded       

   

                        &

Equivalently, .           

A sequence  is bounded if the set  is bounded.        

Lemma 3.8. If a nonempty subset  of  is closed and bounded above, then .    sup

Proof. If , there is for each  some  such that       sup  

      





Check that .   

[I have again used a form of the (countable) Axiom of Choice, assuming we may select 
for every  simultaneously. This is difficult to avoid, or to disbelieve, when one is using
sequences.]

There is a dual lemma to the above for “bounded below” and .inf

Lemma 3.9. Any bounded sequence  in  has a convergent subsequence.  

Proof. If , 2.20 shows that there is a subsequence convergent to    lim 

Suppose , and that , where . Then  is a bounded              
     

sequence in  (see 3.7 ), and so has a convergent subsequence . However, the (b)   


corresponding subsequence  of  is also a bounded sequence in , and so has a    
 

further subsequence  that converges in . Then  is a       





  

subsequence of  that converges in .   
 

Definition 3.10. A subset  of  is said to be  if every sequence in   sequentially compact
has a subsequence that converges  [Cf. 23.3.]to a point of .

The idea of “compactness” appears in various guises. In its most general formulations, it is
one of the most important and far-reaching concepts in mathematics: a version of “finiteness”
that applies to “continuous” mathematics. It will be discussed more seriously in MATH 313.
(See also §22 of Appendix B.) For our purposes, sequential compactness will be sufficient;
and, , sequential compactness is equivalent to the other versions (cf. 23.10).in metric spaces
Notice the essential point that the limit of the convergent subsequence has itself to be in ;
sequential compactness is—vaguely speaking—intended to be a property of the set  alone,
not of the way it lies in .

Theorem 3.11. A subset  of  is sequentially compact if and only if it is closed and 
bounded in .
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Proof. Suppose  is not closed. Then there is some limit point of  that is not in ; that is,  
there is a sequence  in  such that . But then any subsequence of  also           

tends to  (and so does  tend to any point of , by 93 not

the analogues of 2.13 and 2.15).
Suppose  is not bounded; for instance, suppose that there is no number  in 3.7  (b).

Then, for each , there is some  with . But then every                

subsequence of  is unbounded, and cannot converge (by 2.15); thus,  does not have    

any convergent subsequence, and  is not sequentially compact. A similar argument applies to
each of the other boundedness conditions ( ) of 3.7 .     (b)

So, conversely, suppose  is closed and bounded. Let  be any sequence in . It is   

certainly a bounded sequence in . By 3.9, it has a convergent subsequence (with limit ) in . 
But, as  is closed, 3.5 assures us that . Thus  is sequentially compact.     

Sequential compactness may be defined for subsets of an arbitrary metric space (cf.
Appendix B). But this Theorem does  extend to general metric spaces; it is a specialnot
property of .

I remarked after 2.25 that Dedekind-completeness, as a property of an ordered field, is
equivalent to metric completeness. The sequential compactness of bounded closed intervals
(or, indeed, of the interval , from which the others may be deduced) is another equivalent 
property. But sequential compactness is a property that may be enjoyed by some sets in a
general metric space, and is useful in many ways, whereas Dedekind-completeness refers to a
partial order, and partial orders are not as useful as metrics.
Remark 3.12. If a subset  of  is sequentially compact and nonempty, then it is bounded 
and nonempty, so it has a supremum and infimum. Being closed, it must by 3.8 contain both of
them. They are, therefore, its greatest and least elements. People sometimes say the supremum
or infimum is , i.e. it is itself an element of .attained 

§4. Series.
In ordinary language the words “series” and “sequence” are more or less interchangeable. In
mathematical analysis, there is a distinction, which, however, has to do rather with the
properties we are interested in than with the things themselves. We describe a sequence  
in  (or in  or ) as a  when our focus is on the convergence not of the original   series
sequence itself, but of the associated , wheresequence of partial sums  

       

 .

Despite frequent use of the word “series”, then, I shall not give a formal definition of a series
as such. It is just a sequence in which our primary interest is the partial sums. Hence, we often
write “the series ”, the  being the terms of the sequence and the summation sign   

suggesting the partial sums. (Recall our tacit assumption that the indices go through .)
[It’s worth noting that this distinction between “series” and “sequence” is not preserved in

all other mathematical contexts: a “time series” may often be just a sequence of observations.]

Definition 4.1. The SERIES  is said to  or to be  when its  converge convergent
sequence of partial sums , where  for each , converges to a limit .  is         


then called the  (or the ) of the series, and we writesum sum to infinity
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  ,

or less formally .         

Remark 4.2.  This definition is the same whether  takes values in , in , in , or(a)  
  

in other cases where “addition” and “convergence” may be defined. “Convergence” of a series
is in principle different from “convergence” of a .sequence

  A series that does not converge is said to .(b) diverge
  I shall try to preserve a distinction between  (the  is just a reminder that(c)  

we are dealing with a series) and  (which denotes the sum to infinity of the series, if it




exists); but many authors confuse the notations or use only one in both senses.

  For real series one can distinguish several types of divergence of sequences and(d)
consequently of series (via the sequence of partial sums): divergence “to ” or “to ”, 
“finite oscillation”, “infinite oscillation”, etc. I shall not go into this—the ideas are pretty
obvious; but please note that “ ”  and “ ” are merely symbols that occur in certain 
abbreviated expressions, and have not been defined as genuine mathematical objects. They are,
as it were, metaphorical, at least for our purposes.

  The algebraic operation of addition of real or complex numbers, or of vectors in(e)
, only adds two numbers or vectors at a time. The operation may be extended by induction
to sum any  set of numbers; but no algebraic meaning can be attached to an expressionfinite
like . Our definition is that the sum to infinity, denoted  (the symbol may 

 
 

  
denote a number or vector), will  only when the series  converges, and then it willexist  
denote the limit of the sequence of partial sums. It is not a  in the algebraic sense at all. Assum
with  , the expressions  or  often have no denotation (dolim


    

       
not refer to anything), just like the phrases “the current Emperor of China” or “the navy of
Luxemburg” or “the greatest prime number”.  For instance, the sum to infinity 

 
(or ) has no meaning, since the partial sums of the series ,            

                , , , and so on; they form the sequence , which does
not converge to a limit. (Why not?)

It is interesting to note that the set operations of union and intersection are not “algebraic”
in the sense I have described. For  of sets (possibly countably or even uncountablyany number
infinitely many) there is no difficulty in defining their union or their intersection.

Lemma 4.3. Let  be  in   , and  . If      
sequences [or or ] [or ]      

                and , then .     [In effect done in Tut. Ex. 3.]

Proof. Take any . Then there exist  such that   





     
     

      
  

      
  




 




 





and

.
(*)

Let . Then, if ,     max
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, (**)

and this proves the result. 

I have set out this proof in the customary way. Given , we want an , and therefore we 
arrange the right-hand sides at (*) so that  itself appears on the right of (**). We could, if we
wished, use  in the denominator instead of , but then we should have to             
deal separately with the (admittedly trivial) case , for which we cannot divide by   
     . Until you are accustomed to it, this sort of fiddling may seem odd, but it is quite
usual in textbooks and elsewhere and not entirely pointless.

Proposition 4.4. Let  be convergent real or complex , and let  be      series  
real or complex numbers. Then  is also convergent, and       

     
  

  
               .

Proof. Let  be the th partial sums of  respectively. Then  is              
   

the th partial sum of , since that is a  sum which may be rearranged at         finite
will, and the result then follows from the preceding Lemma. 

Lemma 4.5.  Suppose that  is obtained from  by omitting finitely many terms(a)    

at the beginning (and renumbering). Then each series converges if and only if the other does.
  Similarly, suppose that  is obtained from  by omitting certain terms(b)    

   (possibly infinitely many) whose value is , and renumbering.  Each series converges if
and only if the other does.

Proof. Let ; this means that the terms  are omitted at the beginning            

of . If  say, then for any        
 

  
 

 
      

so that the partial sums of  converge if and only if the partial sums of  do. This   

proves , and the proof of  is similar (though the bookkeeping is a little worse).   (a) (b) 

Many criteria have been given to ensure series of certain types converge, and some of them
are very ingenious. The question was a very attractive one. There can be no decisive method to
determine whether an arbitrary series converges, and all the tests for convergence that mathe-
maticians have found must apply only to restricted (but presumably useful) classes of series. I
shall prove here only the most straightforward and most memorable criteria.

Theorem 4.6. Let  be a series of non-negative real terms. It converges if and only if 
the sequence  of its partial sums is bounded above. 
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Proof. Clearly  for all . The sequence of partial sums is            

increasing and bounded below by ; by 2.15 and 2.18, it converges (to its supremum) if and
only if it is bounded above. 

Of course 4.5  implies that it would suffice to suppose the terms are nonnegative “from(a)
some stage onwards”, that is,  .          

Corollary 4.7. ( ).The comparison test  Let  be series of real non-negative    

terms, , and  for each . If  converges, then so does , and             
 

      
 

 
  . (15)

Proof. Letting  be the partial sums as before, we know by 4.6 that   is bounded      

and converges to its supremum . Hence, for any , 

              

   ,

so that  is bounded above by , and so convergent to its supremum, which cannot  

exceed the upper bound . This proves (15). 

The contrapositive is also useful: if  diverges, then so does .   

Example 4.8. If ,  converges. If , it does not.         

Proof. Write  for the th partial sum, as before. Then 

       

   

   

  

  

 

  



    

    

,

as all the intermediate terms  cancel. As , we deduce that          

 
   

  




.

(This is the familiar formula for the sum of a geometrical progression.) If ,    
                

  as , by 2.19, and so by 4.3 . If , then 
trivially, so it is unbounded and has no limit as .    

Notice that this is a rare case where the “sum to infinity” of a series can be given by a
simple formula without a “limit” sign—“in closed form” is the jargon you sometimes see.

Now for an extremely important example.

Example 4.9. The series  does  converge. 
 not

Proof. Some of the partial sums  can be estimated as follows:

                

          
  

    

    
   
   

     





    .
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The obvious induction gives  for all  (indeed, if  the inequality is          





strict). But this shows the partial sums are not bounded. 

This proof is said to have been given by Oresme around 1360 (before Gutenberg was
born), but to have been ‘lost’ (presumably this means that the book containing it was not
“published” in the modern sense, and, therefore, not read by competent readers, until much
later). The method of proof, when it is formalized and strengthened as follows, is sometimes
called .Cauchy’s condensation test

Lemma 4.10. Let  be a series of non-negative terms, such that the   is    sequence
decreasing. The series converges if and only if  converges.   

The idea is that the behaviour of the original series is “condensed” to the series consisting
of the terms whose indices are the powers of .

Proof. If  is the th partial sum of the original series and  the th partial sum of the    

condensed series, with , then, for ,      

              

           

              

       

         

    


       

  


   



  

whilst

      



 .

If  converges, then, from 4.6,  is bounded above, say by , and for any        
  

          ,

so that  is bounded and  converges; conversely, if  converges,  for all         
 

 , and for any 

             ,

which ensures  converges   
 

Example 4.11. Let us cheat and assume that we know what  means, and its basic

properties, for any  and . (The problem is with the meaning of  when  is      

irrational; it would require a considerable digression to give a watertight definition at this
point.) Then, if ,  decreases as  increases, and by the Lemma  converges       
if and only if  does. This is a geometric series; by 4.8, it converges          

when  and diverges when .    
This fact makes it tempting to suppose that, in some sense, the “harmonic series”  



constitutes a “boundary” between convergent and divergent series. However, there are series
whose terms diminish more rapidly than  and which are still divergent.

Consider , where  and, for , . (More cheating, for the         


 
   log

logarithm has not yet been defined.) Again,  decreases as  increases; so the condensation 

test applies, and the given series converges if and only if

  

    




 log log

converges. But it diverges, as we have seen.
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WARNING. The condensation test is only occasionally useful, because the terms of the
series  are often very messy. Its main value is in settling the convergence or   

divergence of a few standard series such as those above.

All so-called “convergence tests” apply to special classes of series, and their importance
usually lies in the frequent occurrence of these classes. The test that “every schoolchild
knows”, sometimes called “d’Alembert’s test”, may be more precisely stated as follows.

Lemma 4.12. ( .) The ratio test Suppose  is a series of  terms.  positive
(a) If , then  converges.limsup











  

(b) If  , then  diverges.lim inf










  

The ratios all make sense, because every term  is positive.
The form in which the test is usually applied is more demanding. If the ratio     has

a limit as  (which need not be the case!) then the series converges when that limit is  
less than  and diverges when the limit is greater than . If the limit exists but is equal to , the  
series may diverge or may converge.

Proof. If , choose a number  such thatlimsup









  

limsup inf sup


 

 
 

 

 
     .

There is a  such that , by  2.8 . Therefore, if        
 

 


 

 
sup (ii)

   ,

      


(by a simple induction on ). The truncated series  converges by comparison     

with the geometric series  of common ratio .          


If , there exists  such that ; it follows that, forliminf


 

 

 

 
       

         , . The truncated series  diverges by comparison with   

     .
In both cases, the conclusion now results from 4.5 .(a) 

The frequent usefulness of the ratio test in many practical situations should not mislead you
into believing it is always helpful. A silly but convincing example is , where 

       
 when  is a prime, otherwise.

It is quite easy (use 4.4 and 4.5 , and of course the fact that there are infinitely many primes)(b)
to see that the series converges, but the ratio test by itself tells us nothing.

In principle, the ratio test, the comparison test, or the condensation test apply only to series
of nonnegative real terms. But they can be helpful more generally, because 

Proposition 4.13. Let  be a series of  terms. If  converges, then      complex   
converges; furthermore, .    

 
 

   



35

Proof. Let  and . Thus the hypothesis says  as             
    

      . By 2.23,  is Cauchy. I assert that, as a consequence,  must also be Cauchy; 

for, given , there exists  such that , so             

                           

 

min min

max max
 (16)

by the triangle inequality for . In other words, the same  that works for  and  also     
works for  and . Thus, by 2.25,  also converges.    

Finally,  for all . Hence,                 
 

      
 

 
         lim lim . 

Thus, for instance,  converges, because  does.     

Definition 4.14. A series  of complex (or real) terms is described as   absolutely
convergent   if the series  is convergent.  

Lemma 4.15. A complex series  is absolutely convergent if and only if the series of 
real parts  and of imaginary parts  are both absolutely convergent.   

Proof.   and .                             

Notice that absolute convergence implies convergence only because of the metric
completeness of  or . Non-mathematicians sometimes treat it as obvious (certainly when I 
was first told about it there was no hint that it was not), but there are analogous situations
where a similar statement is false.

Definition 4.16. A series that is convergent but is not absolutely convergent is called
conditionally convergent.

The method of proof of 4.13 yields another easy and important fact, which could have been
pointed out much earlier, but is perhaps less confusing now.

Lemma 4.17. If the   (of real or complex terms) converges, then the series sequence 
    of its terms tends to .

Proof. Let  as before. The hypothesis means that  as  for          


some . But then  as .                  

This lemma shows at a glance that some series do not converge. For instance, there can be
no possible choice of terms  that will make   converge, because  does not      
converge to . (This settles the divergence of  at a glance.)        

IMPORTANT. Politicians, journalists, and managers of all kinds tend (with rare excep-
tions) to believe that the Lemma is the other way round, i.e. that a series does converge if its
terms tend to , but this is  false on the basis of our arguments. The harmonic OBVIOUSLY
series  does not converge, by 4.9, although its terms tend to  by 2.10.  
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Lemma 4.18. If the series  (of real or complex terms) converges, then the   sequence of
partial sums       

, where , must be Cauchy. 

In the real case this follows instantly from 2.23, but exactly the same proof as I gave there
still works in . The fact has significant consequences.

The last of the elementary tests is the  (sometimes called alternating series test Leibniz’s
test), the only easy standard result that enables us to detect conditionally convergent series.

Proposition 4.19. Let  be a sequence of non-negative real terms, and suppose that it is 
a decreasing sequence with limit  (that is,  as ). Then the series      

                
, or , is convergent. If  is its th partial sum, and

                   lim        the sum to infinity, then .

Proof. Firstly, notice that an odd partial sum

             

(since  by hypothesis), so that the sequence  of  partial sums is       odd
decreasing. Similarly,

             ,

so that the sequence  of  partial sums is increasing. From these two facts, we see  even
that, for any choice of  and , so that  and ,             max max

                   max max max max .

The sequence  of odd partial sums is decreasing and bounded below by  even  any
partial sum. By 2.18, it converges to its greatest lower bound,  say, and       

for any  and . Likewise, the sequence of even partial sums is increasing and bounded above 
by ; so it converges to its supremum , and  for any  and . It           

follows that  for any . However, as  by                 

hypothesis, this is only possible if . The even partial sums and the odd partial sums  
converge to the same limit; hence,  partial sums converge to the common limit of  andall  

  . [Why?] 

Example 4.20. The harmonic series  diverges by  by 4.9, but the superficially similar 
series   by 4.19. It is, therefore, a           

   converges
“conditionally convergent” series. It converges, but not absolutely.

A more extreme example, since its terms tend only very slowly to , is

 

  



logloglog
.

(The ‘ ’ ensures that the  makes sense for . Perhaps I should add here that I   logloglog
use ‘ ’ to denote  logarithms. This is fairly usual in serious mathematics, because onlylog natural
natural logarithms are mathematically interesting. In lower-level courses we often use ‘ ’ toln
avoid confusing people like engineers who may use “common” logarithms to base ; there’s
nothing wrong in this, but it isn’t what mathematicians customarily do.) This series is con-
vergent by 4.19, but the series of absolute values is “very divergent”.
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Remark 4.21. It is tempting to suppose that the sum to infinity of an infinite series should not
depend on the order in which the terms appear, for instance to assume

                       
          , (17)

since every term of either series appears once and once only in the other. This is certainly true
for  sums. But, as I pointed out at 4.2 , a sum to infinity is not really a sum at all in anfinite (e)
algebraic sense; it is only a limit of partial sums. The partial sums depend on the order of the
terms, so we have no right to expect their limit always to be the same. Every partial sum after
the second for the right-hand series of (17) is significantly less than the corresponding sum for
the left-hand series, as it takes into account more negative and fewer positive terms. Let us
make this question more precise.

Definition 4.22. Let  be a (real or complex) series. A  of  is a   rearrangement
series , where  is a bijection. [Thus, every number that appears as a term     

of the original series appears in the rearranged series exactly the same number of times.]

The big theorem on this topic, customarily attributed to Riemann, is

Theorem 4.23.  If a real or complex series  is absolutely convergent, then any(a)  
rearrangement of it is also convergent with the same sum.

  If a real series  is conditionally convergent, then, for any , there is a(b)     
rearrangement of  that converges to the sum .  

[In , you can also find a rearrangement that will diverge in any desired fashion; see(b)
4.2 . But I shan’t talk about that, although my proof will more or less make the point.](d)

Proof.  Suppose  is convergent. By 4.13,  is convergent; call its sum . LetA.      
     be a rearrangement of the series, and let .

There exists  such that , and there exists  such that         







               


 

  (as  converges; cf. (16)). Let .max

The indices  appear in the rearranged series as indices ;             

that is,  for . Let       


        max     .

If , then  is the sum, in some order, of all the terms ,         



   

together with some other terms (probably not consecutive) , where the indices , all greater 

than , form a finite set  (depending on ). If  is the least element of   and  the     
greatest, then by the triangle inequality

       
      

 
      

since . It follows that, when ,         

     

    
   

 
  

  


 

 
 

        

         



  

This proves .(a)
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  For , let , 0 , for each . ThenB. (b)              
 

 max min
                   

      (one or other of  is ), . I show that both the series of 
nonnegative terms ,  must diverge.   

 

If  converges, then   also converges (by 4.4, as  con-            
  

 

verges by hypothesis); similarly, if  converges, so does . But if converge, so   
  both 

does , and this is contrary to hypothesis. So neither can converge.         
 

On the other hand,  as , since  converges. (Recall 4.17.)       


For clarity I shall describe the construction of a rearrangement whose sum is  in ordinary
language, to avoid complicated notation. Let me call an index  “nonnegative” if , and   

“negative” if . Proceed as follows to choose  inductively.      
Let  be the first nonnegative index, and choose  as successive    

nonnegative indices, UNTIL the sum of the corresponding terms exceeds  (this may of course
already be true at , but we have seen it must happen sooner or later, as  diverges). 




Then take the next term of the rearranged series to be the first negative index, and take a run
of successive negative indices until the partial sum falls below  (which must happen, as  




diverges); after which, take the least nonnegative index not already used, and successive
nonnegative indices until the sum again exceeds ; and so on. It is left as an exercise that the
result is a rearrangement of  with partial sums tending to .   

Note 4.24.  In 4.23 , one could take a run of nonnegative indices until the sum is more(a) B
than , then a negative index, then a run of nonnegative indices until the sum exceeds , and so 
on; then the rearrangement that is obtained “diverges to ”. And so on.

  The property that every rearrangement of a series converges is sometimes called(b)
“unconditional convergence” of the series. 4.23  shows that absolute convergence of a real(a)
or complex series implies unconditional convergence; the proof works without much alteration
in  or in , and indeed in any Banach space.  

Conversely, 4.23 above shows that a series in  that is not absolutely convergent is notA 
unconditionally convergent. The proof depends on the order structure of ; but the statement
that an unconditionally convergent series must be absolutely convergent will follow for series
in  or  by considering individual coordinates. However, the statement is false in any  

infinite-dimensional Banach space (Dvoretsky-Rogers, 1950), and is quite trivially false in any
infinite-dimensional Hilbert space.

§5. Continuity.
I shall write  and  to mean “either  or  as the case may be”. Many of the same ideas   
apply to metric spaces in general: see §24.

Definition 5.1. Let  be a subset of , and .  is said to be        continuous at
         (or, equivalently,  is a point of continuity of ) if, for any , there exists  

such that, for all  for which , : symbolically,              

                       (18)

Let me stress here that  is the domain of . 

There is an analogy with the definition 2.9 (formula (8)) of convergence of a sequence. We
can make the analogy a little clearer.
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Definition 5.2. Suppose  as in 5.1, and let  be a limit point of  and .       
Then one says “  has limit  at ” or “  tends to  as  tends to ”, and one writes      
             as  or , when, for any , there is a  such thatlim  
                 for any  such that .

Of course, if , the condition that  reduces to . But, in all          
cases, the condition could be rephrased

                        

If , the value of  at ,  itself, does not appear in this definition.     

Lemma 5.3.  is continuous at  if and only if  has limit  at ,        
that is, if and only if  as .      

It does not make sense to speak of continuity of  at  unless  is already defined; that  
is why I require . I recall here a general definition from MATH 161:  

Definition 5.4. Suppose that  as above, and that . The restriction of       
to , , is the function  whose value at each point  is ; that is,        
has the same value as  at each point where it is defined, but its domain (the set of points
where it is defined) has been cut down to .

Formally, a function  is a subset of  satisfying certain properties, and     

      

(where  is a subset of ).  is the set of “first coordinates” of , and  is the set       
of “first coordinates” of .

Lemma 5.5. Let  as in . Then  is continuous at  if and only if, for        5.1
any sequence  in  that converges to , the sequence  in  converges to .        

Proof. The condition is . Suppose that  is continuous at  and that . Letnecessary     

       . There exists  such that, for any ,

             

As , there is some  such that . Hence             
          

We have found an  which “works” for the chosen  in (8). 
The condition is . We prove this by contrapositive. Suppose, in fact, that  is sufficient not

continuous at . Then

                    &

(simply by the rules for negation, applied to (18)). So, if we take , there is      

such that  and ; if we take , there is  with                  
                  and . But now, the sequence  tends to , even

though  does not tend to . So the condition is not fulfilled.   
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Remark 5.6. The condition of 5.5 is  at . It is equivalent to continuitysequential continuity 
in metric spaces,  (for which see 24.6). We shall use itbut not in general topological spaces
here to avoid the more general definition.

Those of you who have done or are doing MATH 309 will recognize that in 5.5 and in 3.12
I again casually assumed the “countable axiom of choice”; to define the sequence  we 
make infinitely many —there was no rule telling us how to do it. Having pointed thischoices
out, I shall proceed without further comment to make the same assumption many times .2

There are a lot of elementary facts about functions continuous or sequentially continuous at
a point that follow simply from the definitions and may be left to tutorials or assignments.

Definition 5.7. Let  as above. We say that  is  [or sequentially    continuous
continuous], or sometimes [sequentially] , if it is continuous [sequentiallycontinuous on 
continuous] at each point of . Equivalently, we might say  is a point of [sequential] 
continuity of .

Lemma 5.8. Suppose that  is a closed subset of  and that  is sequentially      [ ]
continuous. Then  is closed in .          

Proof. Let  be a sequence in  that converges to a point . Then          


converges to  in . As  for each  and  is closed in , ; which          

means that . This proves the result.    

Theorem 5.9. Suppose  is sequentially continuous, and  is a nonempty   
sequentially compact subset of . Then  is a sequentially compact       
subset of .

Proof. Let  be a sequence in . For each , there is an  such that       

           
. By hypothesis, there is a subsequence  which converges as 

to a point . But then, as  is sequentially continuous, ; that         

is,  as .       

In the case where , we deduce (cf. 3.12) that  is a closed and bounded subset  
of , and contains both its supremum and its infimum: thus, in particular,

Corollary 5.10. If  is continuous,  is a bounded set in ,           
and there are points  such that    

 and  .                     sup inf 

So  for all ;  is a point in  where the value of  is the               
greatest value it takes on , i.e. the “maximum” value, and  is the “minimum” value.   
The traditional formulation of this property is that “a continuous function on a closed bounded

2 I use the Axiom of Choice unashamedly even if it is unnecessary. Littlewood, I am told, always
emphasized in lectures how to avoid it when possible, by giving some explicit procedure for the choices; at the
time this seemed very important, because Gödel had not yet proved the Axiom was consistent with standard set
theory. But nowadays this doubt no longer exists, and proofs without the Axiom, even when they are possible,
always involve some careful argument that is immaterial to the main idea.
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interval is bounded and attains its bounds”. Here “bounds” meant ”its least upper bound and its
greatest lower bound”, and each is a value of  at some point of . (There may be many  
points  where the value is maximal and many points  where the value is minimal; but, of 
course, a “ ” cannot be an “ ” unless  is constant, when all points of  give the same    
value of .)

In elementary courses, and historically, this was treated as obvious, without much mention
of the conditions of continuity and compactness. It was only seen quite late that something
subtle is involved; the paper usually mentioned is by Heine (1871). Some very big names,
Dirichlet and Riemann amongst them, fell into error as a result, for the property is indeed not
at all automatic.

Suppose  and . The function  defined by      

            
 for ,

is bounded, as  for all , but it has no maximum or minimum value (its        
supremum is  and its infimum is , neither of which is a ). The explanation, of course, is  value
that it is discontinuous at  and at . The function  defined by  

              


 
  
  



for  and ,

is unbounded; and it is discontinuous at . In short, for discontinuous functions, even if the


domain considered is a closed bounded interval, the result isn’t true.
Similarly, it isn’t true if the domain is noncompact, even if the function is continuous. The

interval  is not compact, and  is continuous but unbounded on this interval;    
whilst the function  is continuous and bounded, but does not attain its infimum .   

The other familiar property of continuous real-valued functions of a real variable is the
“intermediate value theorem”. It, too, has many generalizations, but they go in a rather
different direction from ideas of compactness, as you would expect from the proof.

Theorem 5.11. ( ) The intermediate value theorem Let  be continuous,    
where . If  and , then there exists some                    
such that .  

In words, “any number strictly between  and  is the value of  at some point  
strictly between  and ”. This statement of the “intermediate value ” allows  property
    ; in that case, apply the theorem as given above to  instead of  to deduce the

conclusion.

Proof. Let . Then , , and  is certainly bounded                
above by . Hence  has a supremum, which we call , and  evidently. I assert that       
   . I shall prove this directly from the definitions.

If , take . There exists  such that, if  and                
           , .

If  and  (in particular if ), then, for , ,                 
              ,

so that . Thus, if for instance ,  and yet ; which is                 
min 

absurd (as ). Hence, , and either  or .          sup 
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If  (so ), then, for any  with ,              
              . 

This is absurd too, implying there is no point of  in , and contra-        min 
dicting 2.8 . We conclude that, in fact, .(ii)    

It is tempting to suppose, on the basis of the vague intuition that continuity of a function
should mean the absence of breaks in its graph, that the intermediate value property
characterizes continuous real-valued functions of a real variable—but it doesn’t. There are
(ingenious, but quite elementary) examples of functions with the same property that are wildly
discontinuous.

§6. “Uniform”.
The words “uniform” and “uniformly” occur very frequently. It is, however, difficult to give a
satisfactory general sense to them (Whittaker and Watson tried, on p. 52, without, I suspect,
helping anyone very much). In obscure and imprecise language, one might say they are used
when some property involves a choice for every element of some set (of functions or of
points), and the choice can in the case considered be made for all elements of the set
simultaneously. The simplest example is (perhaps) uniform continuity.

Recall 5.7 (or 24.4). To say that  is continuous at each point of   is     
to assert that, for each  and for each , there exists some  satisfying (18).       
Symbolically,

        

          

 

      (19)

In statements, like this, where several quantifiers occur, the order of adjacent universal
quantifiers is immaterial (as is the order of adjacent existential quantifiers), but an existential
quantifier cannot be swapped with an adjacent universal quantifier without changing the
meaning. “For every bottle of mass-produced beer on the shelves today, there is a bottling
machine from which it came” is presumably true; “there is a bottling machine from which every
bottle on the shelves today came” is false. Similarly (19) asserts that, for any , there is a  that 
“works” for that  and the given ; in principle,  may have to change if  changes. We say, by  
contrast, that  is  continuous on  if there is a  that “works” for the given  and uniformly  
for   (and, in that sense, is “independent of ”, at least for ). This amountsall       
to swapping quantifiers in (19).

Definition 6.1. Let . A function  is  on  if          uniformly continuous

      

             

 

  & (20)   

There is a “sequential” version of this definition: if  is a sequence in ,  is a     

sequence in , and , then . I leave it as an exercise to                  

show this is equivalent to (20). (Compare 5.5.)
In many books the definition is (in effect) stated only for , by restricting  to lie in   

  . But such a statement, which puts  and  on exactly the same footing, loses a little of the
force of the Theorem following.
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Two other points. “Uniform” continuity says that  may be freed from dependence on
   . If you think about it for a moment, you will see that it cannot usefully be freed from

dependence on . And it is a condition involving the distance between points  and  where    
may be  in ; as such it is not really a “topological” condition—you need to be ableanywhere 
to compare the distance between  and  to the distance between  and , which a topology    

will not do.

Example 6.2. Consider functions . 
(a) The identity function  is uniformly continuous on the whole of , because,   

for any , we can take  to ensure    

             

(b) not  On the other hand, if  for all , then  is uniformly continuous on .     
However small  may be, if we take , then , but           

  

                 
 

   

which we can make as large as we like by taking  to be large enough (for example, it is more
than  if  or if ).          



(c) A rather less straightforward case is the function . We may argue as  

follows: given , suppose that . Then        




                  


 (21)

so  (as we wish), . Consider theeither or                    
 

second case. There is an inequality

               


 

for , the inequality between arithmetic and geometric means, or,          


more basically, because . We deduce that , and, 
 

               

therefore, that   and , or . But this entails that              
       

                 
   anyway. Hence, taking  always suffices.

Consequently, this function  is also uniformly continuous on , although we had to do 
some calculations “in the margin” (taking  to be  was not mere luck; I had to see what 



number on the right-hand side of (21) would make the argument work) to find a suitable
candidate for . [This is common in writings about analysis—a seemingly unmotivated choice
of some number, here , results from considering what is necessary to make the argument that
follows valid, but the author does not explain the reasons for his choice beforehand because the
argument itself is the explanation.]

In and  the slope of the graph already suggests uniform continuity or its absence,(a) (b)
whereas, for , the graph has a vertical tangent at the origin. More complicated examples

may not have tangents to the graph in any meaningful sense at all, but still be uniformly
continuous. For instance:

Theorem 6.3. If  is a sequentially compact subset of , and every point of  is a point of  
continuity of , then  is uniformly continuous on .    
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Proof. Suppose not. Then (taking the negation of (20))

        

        

 

    & (22)

If we take , then there are points , , such that                  
and .  being sequentially compact, there is a subsequence  of            



      that converges to a point . It follows that

                                

as ; that is,  too. (Recall 2.12.) But  is a point of continuity of , by         

hypothesis; so  and  as . As a consequence,               

            as .

But this contradicts the hypothesis that  for all . So (22) must be false;         
and this establishes the result. 

This theorem does not, of course, find a  for a given ; it is not “constructive”. An 
Intuitionist would claim that such a general proof (by contradiction!) of the existence of a  is
inadmissible, and that one should give a method to  a suitable .find 

Another context where the word “uniform” appears is for sequences of functions.

Definition 6.4. Suppose that , that , and that, for each ,           
    .

  We say  (the sequence  tends or converges(a) pointwise on       
pointwise on  to ) if, for each , the sequence  in  converges to . [I        
apologize for the convenient but ugly word “pointwise”; one could say “point by point”.]

  We say   if, for any , there is some  such(b) uniformly on          
that, whenever ,  for any .            

Remark 6.5. It is traditional to regard the distinction between the preceding definitions as
“difficult”. If we put them symbolically, we get

(a)
(b)

               

               

   

   

 
 





Interchanging two quantifiers of the same kind makes no difference to the sense, so  could(a)
equivalently be written

                   .

(We could read it as “for all  and , ”.) Thus, the essential difference between  and  is  (a) (b)
the swapping of existential and universal quantifiers, as before. What is asserted in  is the(b)
existence, granted , of an  which “works” simultaneously for all ; it “depends” only   
on , and might be written  as a reminder. In , there may in principle be, for given , a    (a)
different  for each . One might call it .   

Example 6.6.  Let . Define functions :(a)          

                  for , for , for all .
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If , then  for all  and all . If , then clearly               

                         only when , that is, when . So 
pointwise (for any specific , we can take ); but definitely not uniformly. (A graph may   
clarify the matter.)

  A more interesting example is this. Let , which is sequentially(b)    
compact. Define  and  for all . Assuming all sorts of           

  
exp 

things from differential calculus that we have not yet begun to justify, we see that ,   

that  increases to a maximum value of  at , and that it decreases    
 



thereafter (the graph shows a “sliding hump” which squeezes more and more closely to the -
axis as  increases, but also becomes higher and higher).  pointwise as ,      

because for  the value is always , and for  the hump of  will pass to the         
left of  as  increases (indeed, we know that, when ,  as ).               

But the convergence is not uniform; indeed,

sup sup                          
 ,

which tends to  rather than to  as .    

Theorem 6.7. ( ) Dini’s theorem on monotone convergence. Let  be a sequentially
compact subset of  Suppose that  (for each ) and  are            

functions continuous on , and that  pointwise monotonically on  (i.e., for each    
individual ,  is a monotone sequence in ). Then   on .          uniformly

Briefly, a pointwise monotonic sequence of  functions on a compact set having acontinuous
continuous (b)limit must converge uniformly. The sequence  in 6.6  is not pointwise 
monotonic (for small positive ,  increases up to a certain value of , and then falls for   

all greater ).

Proof.  Consider  instead of ; this reduces the question to the special caseA.     

where  is identically . As  tends pointwise monotonically to ,          decreases
monotonically to ; if  tends uniformly to , then  tends uniformly to , from the      

definition 6.4 . So all we need to prove is that, if  pointwise, then  uniformly.(b)       

  Suppose not. Then (negating 6.5 , with  and everything nonnegative)B. (b)   

              

Take , and then there are  and  with . If                  

have been chosen, take ; then there are some  and           
             with . We obtain inductively a sequence  in  such that

              for each . For any , , so that

                for all (23)

However,  is sequentially compact, so there is a subsequence  which   


converges to a point . By (23),  whenever  (so that           

          ). But  is continuous at , so  as   

      , and consequently . This must hold for all —so we have found a 

subsequence of  for which the values at  do  tend to .    not
This contradiction of the hypothesis establishes the theorem. 
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My use of sequences here (quite possibly following Dini himself) is not the clearest proof.
Nevertheless, the method of “extracting subsequences” is often useful because it seems so
“natural” and “elementary”, even though it may not be ideal in a theoretical sense. (See 24.7.)

The reason why uniform convergence is rather important is that it is a relatively accessible
condition ensuring that you can interchange the order of two limiting processes without
changing the result. This was first pointed out, in a rather absurd terminology, by Stokes in
1847; the great mathematicians of that era (and earlier) made no distinction between pure and
applied mathematics—Stokes is these days generally regarded as an applied mathematician
(Navier-Stokes equation and all that). An important example is the following.

Theorem 6.8. Let , and let , for each , and  be functions . If         

          uniformly on  and each  is continuous at X , then  is continuous at .

Proof. Take . By uniform convergence, there exists  such that   

            

 . (24)

But, in particular,  is continuous at , and so 

                  & . (25)    



Putting these two facts together, one finds that, if  and ,        

                         

   

   
  
      .

This shows that  is continuous at .  

This proof should be carefully studied. The reason for imposing the condition of uniform
convergence is that, to find a  for the given , we have to refer to some , but we  specific 
then also require   to be small without having any correspondingly specific    

information about . Uniform convergence is a relatively simple condition that arranges we can
do this. (In fact, a rather weaker condition, “subuniform” convergence, is sufficient, since, in
the proof,  is not  arbitrary; it has to be within the distance  of .) completely 

There is an alternative condition that would imply the limit of a pointwise convergent
sequence of functions continuous at  is continuous at . Instead of being able, given , to  
choose  independently of , we could prove continuity of the limit function  if we could  
choose  for the given  independently of . The principle of the argument is identical, but the  
details obviously differ somewhat. This alternative condition is called  of theequicontinuity
sequence  at . (There is also a concept of  on a set , sometimes    uniform equicontinuity
amusingly known as .)equiuniform continuity

As an interesting application of uniform convergence, let me cheat and assume we have
already some knowledge of integration.

Theorem 6.9. Suppose  and , and  is a sequence of continuous        

functions , where   uniformly on . Then  is continuous and        

 
 

 

      . (26)
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Proof. Given , there exists  such that    

           
    


  ,

and, therefore, when ,  

     
  

  

              
  

    


 . (*)

The definition of the convergence (26) is satisfied. 

(The inequalities at (*) obviously depend on properties of the integral. The argument may
not work for some kinds of integral and some more general functions or domains.)

The integral results from some sort of limiting process, so this is another theorem about
interchange of two such processes: . It is not true for general non-lim lim       

uniform limits. For example, in 6.6 , the pointwise limit is : we see that(b) 

 
 

 

 
                 



as  .lim

In pictorial terms, the pointwise limit is  because, for any given , the hump in the graph   
is eventually to the left of . But the  of the hump grows at such a rate that the area height
beneath it does not diminish (and indeed increases towards ).

There are several theorems about taking limits under the integral sign; this is the most
elementary, and applies to most reasonable definitions of the integral, provided the functions
considered are suitably well-behaved.

§7. Differentiability.
In this section we confine our attention exclusively to a real-valued function  defined on an
interval  in , where .    

Definition 7.1. Let .  is said to be , or      differentiable on the right right-
differentiable difference quotient, at  if the 

        
    


 

has a limit in  as . (In 5.2, take , . The notation  seems             
appropriate.) The limit is called the , .right-derivative of  at    



Let .  is , or , at  if the difference     differentiable on the left left-differentiable
quotient

        
    


 

has a limit in  as . The limit is the , .     left-derivative of  at   


If , we say that  is  at  if it is both left- and right-differentiable at     differentiable
      and . This is equivalent to saying that the difference quotient 
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has a limit as the variable “ ” tends to  (“from either side”, “through positive and negative 
values”). The value of this limit is the , , and we sometimes sayderivative of  at    

“  exists” as a shorter alternative to “  is differentiable at  with derivative ”.      

     is described as  if it is differentiable at each point of .differentiable on 
It is conventional to say  is differentiable at  if it is right-differentiable there, and 

differentiable at  if it is left-differentiable there; with this convention, one may speak of
differentiability on , on , and on . The notation  may then be used for       

   
 , there being no two-sided derivative available, and likewise  may be written for

        
  .  is described as C  on  if it is differentiable on  and , as just defined

for all , is continuous on .     

Functions given by simple algebraic formulæ are always differentiable, and there are
familiar methods of finding their derivatives by the “rules for differentiation”, which result from
the algebraic properties of limits. (You should formulate and prove these rules for yourself.)
But, in the abstract, differentiability  is an amazingly strong condition—iteven at a single point
is not satisfied by “most” continuous functions, for instance. It involves only the “infinitesimal
behaviour of ” near the point. One might not expect the  behaviour of  to relate to global
derivatives in any simple way.

Lemma 7.2. If  is differentiable at , it is continuous at .        

Proof. Take ; minor changes in the argument are needed if  is an end-point. As    
            

   exists, there is  such that  and  

         
    


    

 (27)

Given , take . Then, if ,   


       
   

min     

       


     

by (27), as ,   

But then . Hence,  satisfies the                             
definition of continuity at . 

Theorem 7.3. ( ) Rolle’s Theorem Suppose that  is continuous on  and differentiable  
on , and that . Then there is a point  such that .            

Michel Rolle did not prove “his” theorem; that was impossible at the time (his dates are
1652–1719). His statement was for polynomial functions only. (I don’t know his actual
argument, but it is easy to construct one that appeals only to the Intermediate Value Theorem
and to the elementary algebra of polynomials.) The theorem is of course “obvious” if you
“sketch a graph”. Unfortunately, not all graphs, even of decent functions, are “sketchable”.

Proof. 5.10 shows  is bounded and attains its bounds on . Then,  

sup
inf

         

        
(28)

If both inequalities are in fact equalities,  is  on  and  may be taken to be any   constant
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point of . Suppose, then, that the first inequality is strict. By 5.10, there exists some 
     such that

           sup ;

necessarily, then, , and . Our hypotheses tell us that  exists. Now,          

if ,  (as  is the supremum),  is positive, and            

    
    


 . (29)

Taking the limit as , we see . But, for ,  is negative, and             


     
    


 (30)

as  we find . Since, however, , the only possible value                
   

is .   

If the second inequality in (28) is strict, we take  to be the point at which the infimum is
attained; inequalities (29) and (30) are reversed, but the conclusion remains. 

There may be  possible points . (If inequalities (28) are strict, there are at leastmany both 
two.) The theorem only asserts there is  one that is strictly between  and . Of courseat least  
we also have a corollary (of the proof) that everyone knows and that is often applied:

Corollary 7.4. Assume the hypotheses of the theorem. Any point of  at which the value 
of  is either  or  must also be a point at which the derivative is .     sup inf

Theorem 7.5. ( ) The mean-value theorem Suppose that  is continuous on  and is  
differentiable on , where . Then there exists  such that        

        .

The name refers to the fact that  is the “average rate of increase” of  on . With    

suitable physical assumptions, it says that your  speed over the journey must be youraverage
instantaneous speed at some moment or other.

Proof. Let . Then consider :        
  

  

       

and  is also continuous on  and differentiable on . By Rolle’s theorem, there is    
some  such that , or .                  

This Theorem enables us, rather surprisingly, to deduce results about the ‘large-scale’
behaviour of  from information about its derivative; for instance,

Lemma 7.6. Suppose  is continuous on  and differentiable on , and         

for all . Then, whenever  and , .               
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There is, by the way, no reason at all to hope that  is  on . On the other   continuous
hand, there is also a theorem, which I omit, that it must have the intermediate-value property,
so that, here, it cannot be negative at some points of  and positive at others. 

There is a cunning extension of the mean-value theorem due to Cauchy.

Theorem 7.7. ( .) Cauchy’s mean-value theorem Suppose that  and  are both continuous 
on  and differentiable on , and also that  for all . Then there           

is a point  such that   

    

    





.

Proof. By 7.6, . So I may define , and a function   
  

  


             on . Then  is continuous on , differentiable on , and

   
  

  
. (31)

Hence, by Rolle’s theorem, there exists some  such that   

            ,

which is exactly the result. 

This result  the ordinary MVT—just take . However, the implication inimplies   
the opposite direction is false, since 7.5 tells us only that the numerator is  for    



some  and the denominator is  for some , where                    


need not be the same.
 The algebraic manipulations (31) are often presented in terms of determinants. Set

 
  
  
  

      
;

then the properties of determinants ensure , so that by Rolle’s theorem there    
is some  for which   

    
   
   
  







      
,

and, expanding by the bottom row, we deduce the result again.
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Lemma 7.8. ( .) l’Hôpital’s rule, first version Let  be functions differ-    
entiable at , and . There exists  such that              
                      for , and 

  

  






as  through values such that .          

Proof. As  as  and , there is  such
    


             

that, for ,  and . Then  too. Thus, if                
  


  

               ,  and :

         

         
 

   
 

 

   



as . 

This argument depends only on the definition of the derivatives at , and on basic facts
about limits (which, to be fair, I have not proved in these lectures).

Lemma 7.9. ( .) l’Hôpital’s rule, second version Suppose , ,        
and ; let  and  be continuous on , and differentiable at all points of        
                  , with  for all . If  as , then  

      as .

Proof. Take . By hypothesis, there exists  such that    

       
  

  
      








.

Suppose now that . Cauchy’s MVT applies:       

      

      
 









for some  between  and . However,  must also satisfy , and so          

   
   

   
     








 .

So, for given , we have found a , as required by the definition.  

Although the hypotheses of this version of the rule are much more demanding (it requires
differentiability not at  itself, but everywhere else), it has the advantage that it can sometimes
(that is, if  exist and are  and so on) be repeated by passing to the second     
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derivative. For instance,  takes the form “ ” when ; we may seek a limit as
sin   

 
  



     
   

 
 by differentiating top and bottom: . But again, we get “ ” when ,

cos


and to find the limit we can try differentiating again: ; and again: . Here at last
   

 

sin cos

there is a limit as , viz. , and by the Theorem this is also the limit of the previous    


expression and of the original expression.
The implication is again only one-way. The limit of  may exist without the

derivatives’ existing at all, or without their quotient’s having a limit. As an example, let
               sin  for , and . Since  for all ,    

  


    

sin 


3
as .

We can extend  by setting , and it then becomes a continuous function. But the   

quotient of the derivatives is , which has no limit as .
     


  

  
  






cos sin

This is an instance of a general thought. Because the derivative describes the “infinitesimal”
character of a function , it may have behaviour that is very irregular by comparison with  
itself. Equivalently, .integrating a function smooths out bumps

There are several other versions of l’Hôpital’s rule, when either the variable  or the
numerator and denominator of  tend to  or to , or both. They are proved by  
similar applications of the Cauchy MVT.

We now come to Taylor’s theorem. I commented in my introduction that theorems before
about 1800 were rarely stated with the precision we now expect. What Taylor did, I suppose,
was to present an expansion, without discussing what it meant or when it was true:

       
    

 

  

. (32)

As soon as you look at this statement with a critical eye, it collapses. For a start,  need

not be differentiable or even continuous at  (for instance,  is not differentiable at   
         ;  is  times differentiable at , but not  times). If  is differentiable 



infinitely often at all points, being what is called “C ”, the infinite series on the right may not

converge for any non-zero . (One may construct a C  function  such that    
          for all ; then the Taylor series (32) cannot converge if .) And—the

final humiliation—even if the derivatives all exist at all points and the series always converges,
its sum may not be .  

There is a standard example. Let  for , and . This is          exp 

sometimes called the Cauchy function. It is C  on , i.e. its derivatives of all orders exist at all 
points of ; they may be calculated at points other than the origin by the chain and product
rules, and then one may show by induction that all the derivatives at the origin exist and are
zero. So  has an infinite Taylor series about  all coefficients of which are , and which  
therefore converges (with sum ) for all values of . Yet  obviously has non-zero value at  
every point except the origin.

The general moral is that the Taylor expansion (32) cannot be taken seriously without a
clear statement of its conditions of validity. There are, in fact, something like five commonly
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stated versions of “Taylor’s theorem”, which differ in the precise assumptions about the
function  and in the conclusions they draw. Firstly the version that is the most “natural” and
“familiar”:

Theorem 7.10. ( .) Lagrange’s version of Taylor’s theorem Given , let the function  
              be  times differentiable at every point of , where
            , and suppose that  is continuous on  and 

differentiable on . Define the “ th remainder in Taylor’s formula”  by       

         
 



  
     

   





   

Then there is a point  such that     

   
  




 

.

This is often expressed otherwise, by writing  for the appropriate value    
      . This gives a statement that applies also when , namely: there exists




      
    


 such that . (I leave the formulation both of the

 

hypotheses and of the proof in this case to you.) The case  above is just the MVT.  

Proof. Define  and  for . Then   



           



        

 
 
 

               , , , , and these
derivatives are continuous on . Cauchy’s MVT applies repeatedly: 

   

   

   

   

   

   





 

   
   

  

     
  

     

     
     

       

       
 

for some ,

for some ,     

and so on (notice the successive derivatives of  are nonzero except at the origin!), up to

 

 

  

  

 











  
  

 

  
  

 

  




 

 
     

     

for some . Take , and then         

 

 











   

 
 


,

which says exactly that .   
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Theorem 7.11. ( .) Young’s version of Taylor’s theorem If , let the function  
               be   times differentiable on , and let  be

differentiable on the right at . Then

  

 
  

      

 





 

(33)

as .  

Lagrange’s version was a generalization of the MVT to higher orders of differentiation.
Young’s version assumes the th derivative (on the right, in my statement) exists at , but not 
necessarily anywhere else in , and is a generalization of the definition of the (right)   
derivative at . (It even suggests a way of describing “ th derivatives” without assuming the 
previous ones exist.) The condition (33) says that , which is the error in taking  

    
  




 
 to be , is negligible by comparison with  when  is small (it is

“ ” ). There is of course a version for negative  with much the same proof.  

Proof. Argue as before, but this time for . We obtain  such that











   























 











 

 

    
       



which by easy calculation

But, as , necessarily  (as ), and, by the definition of the derivative,           

       


    

 




 .

Hence,  as .
   

  
     

 









The proof above could be slightly shortened by quoting 7.9.

Theorem 7.12. ( .) Cauchy’s version of Taylor’s theorem, or a generalization thereof With
the same hypotheses and notation as in , let . Then there exists some  7.10      
such that

       
   

  


 



 p

.

There is, of course, a similar statement for intervals . The result holds for   
positive exponents  that are not integers, although we have not yet defined such powers.

Proof. Set , . Define for                 


       
        

   

  
 .
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         is continuous on , since . It is also differentiable on , since  is.

Furthermore,  as all the later terms vanish,  because  is defined       
to make this true. By Rolle’s theorem, then, there exists  such that .       

Calculating  and writing  as , we find      

    

  
     

             
         

       

 



 

    

, and so

.




This is the result. 

If we take , we recover Lagrange’s version. Taking , we get Cauchy’s form     

of the remainder, . At first sight this seems very strange, but it has
       

  

   

some interesting applications, for instance to the binomial series for fractional indices.
If we assume basic properties of the integral, we can get yet another version, from which

Cauchy’s may be deduced.

Theorem 7.13. Again with the hypotheses and notation of ,7.10

             
  

  







     .

Proof. Define, for , a function    

     
        

   

  

Here ,  for  as in previous              
    

  



 

calculations; hence,

             
    

  


 

 


 

   (*)

Now substitute  for :           

             
  

  







     . 

Note 7.14.  I have stated and proved the above forms of Taylor’s Theorem on the(a)
assumption that  for brevity’s sake. There are versions for ; I leave the requisite     
changes of statements and proofs to you.

  In the proof of 7.13, I have cheated in several ways, principally because we have(b)
not yet studied integration. The hypotheses of 7.10 implied only that the integrand  of 

(*) is  on , although  is to be continuous on . On that basis, thedefined     
integral at (*) is probably in some sense “improper” because the integrand  may not even 

be defined at the end-points. This integrand is also a derivative on , with no other 
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obvious properties; in what sense can it be integrated, and satisfy the “fundamental theorem of
calculus” that I have appealed to?

If we use the Riemann integral and  that  isadd the substantial extra hypothesis   

continuous (not just defined) on , the integral at (*) may be interpreted as an   

improper Riemann integral (that is, as the limit of  as  and            





        ). Since  itself is continuous on ,  the improper integral is equal to .
This, however, requires  hypotheses for 7.13 than for 7.10.stronger

 Dieudonné in the first volume of his ‘Traité d’Analyse’, the one he published in English
while in Chicago ( , Academic Press 1960), spoke sneeringlyFoundations of Modern Analysis
on p. 142 of the Riemann integral: “a mildly interesting exercise in the general theory of
measure and integration”. (This is a little unfair, since for numerical analysis you have to use
the Riemann integral in some form.) He avoided it for his purposes by introducing an integral
(the “Cauchy integral”) for functions that are derivatives of a continuous function (the
“primitive”) except at countably many points; he called these “regulated functions”. He had to
prove that, for instance, continuous functions are regulated, without using the Riemann
integral—which is not difficult, once you see it done, but a little unexpected. The “primitive”
for him was the (indefinite) integral, but he offered no means, however theoretical, of finding
it. I doubt whether he was aware of the Kurzweil-Henstock integral (invented in 1957 by
Kurzweil, and developed independently and extensively by Henstock after 1961), which starts
from a construction of a (definite) integral that is a subtle variant of Riemann’s and coincides
with the Cauchy integral for regulated functions. If the Henstock integral is used (or the
Cauchy integral), 7.13 is valid on the hypothesis—  than the hypothesis of 7.10—thatweaker
      is continuous on  and differentiable except possibly at countably many points
thereof. See 8.17 below.

  The general point in these four results, 7.10–7.13, is that any rigorous statement(c)
on the lines of “Taylor’s theorem” must be concerned with the  in approximating aerror
function by some combination of terms in its Taylor series. There may be many different
estimates of this error in different circumstances. The fifth standard version is the Taylor
theorem in complex analysis; it is much more pleasing, but Taylor had nothing to do with it.
The reason it looks much better is, of course, that its hypotheses are vastly more restrictive.

§8. Integration.
In this section, as in the last, I shall only consider functions defined on a closed bounded
interval  in , with values in  or in . This is the most fundamental case of integration    
theory, and all that is seriously needed for the rest of the course.

The theory of integration is extremely extensive. Many important theorems are really quite
difficult to prove even for the Riemann integral of a function of a single variable, despite being
treated as obvious in elementary courses. The more radical problem with the Riemann integral
is that there are many functions (for instance unbounded functions, or functions which are very
discontinuous) which it cannot integrate, even when they arise by some simple process from
continuous functions and we should expect a reasonable notion of “area under the curve”. This
difficulty is commonly overcome for first-year students by introducing extensions of the
original Riemann definition of the integral, such as improper integrals of various kinds—but
they are all  improvisations, methods for  expressions that we believe oughtad hoc calculating
to possess a numerical value, and they lack a general justification. At least one such technique
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(the Daniell integral) can be shown to do most of what one might desire, but all such
approaches have a certain whiff of trickery about them. The Henstock-Kurzweil integral, on
the other hand, rethinks the Riemann definition , and as such is much moreab initio
satisfactory. But, despite its relatively simple definition, its deeper properties are not by any
means easy to establish.

The “Lebesgue integral” is the standard integral for most uses, partly because it makes
mathematical sense of probability theory and partly because it enables us to integrate in
abstract spaces rather than just in . But it needs quite a lot of preparation, and its relation to

differentiation, and indeed to other integrals, is not transparent. (The Henstock and Lebesgue
integrals have the same value in cases for which they both make sense.)

The mathematical theory of integration—Lebesgue or Henstock or Daniell integrals and
dozens of others that have been invented from time to time—is mostly concerned with
theoretical questions: what it means to integrate a function, which functions can be integrated,
and what properties the integrals have. General algorithms for  integrals have toevaluating
assume the integrands have very special properties (for instance, they may rely on the
calculation of the values of the integrand at certain specified points). In this sense, the Riemann
integral remains fundamental, even though it can only be applied to a very restricted class of
functions. The situation is not unlike that with real numbers; in practical calculations, we must
always use  numbers, but we need the “abstract” concept of “real number” for otherrational
reasons.

Definition 8.1. A  in  is a function .gauge       

We require  of a gauge except that it be strictly positive at all points of . (Bynothing  
the way, the word “gauge” has some other quite different mathematical senses.) It may, for
instance, be very discontinuous indeed. At the other extreme, it may be constant, i.e. it may
take the same positive value  at all points of . (In that case I shall give the gauge the  
same name  as its constant positive value.) But we can instantly say that

Remark 8.2. If  are gauges in , so is , defined                   min
“pointwise”, i.e.

                min min            .

(For each , the smallest of the positive numbers  is positive.) We may        

also say of gauges  that  if  for each .               

Definition 8.3. (a) division  A of  is a finite subset  of  such that            

                

The points  are the , or just , of the division.        division points points
The same idea may be formulated by describing a division as a finite set  of closed, non-

degenerate, non-overlapping subintervals of  whose union is the whole of :   

                       



(A “nondegenerate” interval is one that is neither empty nor a singleton; “nonoverlapping”
means that the intersection of any two of them is either empty or a singleton.) The subintervals
      are then the “intervals of the subdivision”.

The relation between the two formulations is obvious, and I shall use either. [In higher
dimensions, things are not so simple, here or later.]
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  A division  is a or  of the division  of  if every(b) subdivision  refinement   
division point of  is a division point of , or, equivalently, if every interval of the division 

   is included in an interval of . (The equivalence does take a moment’s thought.)
  A of  is a division  of  together with the(c) tagged division      

assignment to each interval  of a specific point .  is called the  of , and        tag
may in principle be anywhere in . (Two adjacent intervals of  may, therefore, have the same 
tag, if it is a common endpoint—and only then.)

Thus, a tagged division is a set  of ordered pairs, where, for             
each , , and ; or, equivalently, it is of the form                    
               , where  is a division of  and  for each .

  If  is a gauge in , a tagged division  of  is -  if, for each(d) fine     

                , . In the formulation with “division points”, this means   

that, for ,  and .                        

Definition 8.4. Suppose that . For any tagged division  of ,       

consisting of a division  with tags  as above, there is a                   
corresponding  of ,Riemann sum 

          




    (34)

[This is exactly the kind of  originally proposed by Riemann, but his definition of thesum
integral involved taking a limit of the sums in a different sense, as we shall see.]

Definition 8.5. A number  is said to be a  (or   generalized Riemann integral

Henstock or Henstock-Kurzweil integral, etc.) of  on , and we write  (or     


various other familiar notations like  or ) if, for every , there is a 
 



     

gauge  such that, for any -fine tagged division  of ,     

        (35)

If such a number  exists, we say that  is  (generalized Riemann-integrable,  integrable
Henstock-integrable, Henstock-Kurzweil integrable, &c.) on  (and say also that  is the  
gauge integral, etc., of  on ).  

Remark 8.6.  It is clear that, in some sense,  is a to be a “limit” of Riemann sums of(a) 
tagged divisions as the tagged divisions “get finer and finer”. The difference with Riemann’s
original definition is that he restricted attention to  gauges:  is Riemann-integrable onconstant 
       (with a Riemann integral ) if, for every , there is some  such that, for 
every -fine tagged division  of , . Evidently this requires much           
more than 8.5, since only constant gauges are allowed. For the Henstock integral, one is free
to adjust the gauge for a given  so that (35) is satisfied for all -fine tagged divisions. The 
integral is also a limit of Riemann sums, but the “limit” is taken in a relatively undemanding
sense.

  Riemann’s definition is often stated somewhat differently these days (using(b)
suprema and infima of  over the subintervals rather than tags), but that need not concern us.
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  It is conceivable that there may be some gauge  in  so strange that(c) a priori   
no -fine tagged division of  can exist. In that case, (35) would not make sense at all for  
that , and the definition of the integral would be vacuously satisfied for any . 

Given any constant gauge , you can take all the subintervals to be of length less than  
(for instance by taking all of them of length exactly  for ), and then       
any tagging of the division gives a -fine tagged division; but for a general gauge  it is not 
immediately obvious that -fine tagged divisions exist.

The difficulty can be removed by an argument of Goursat (not very different in principle
from 23.6) that appears in the complex analysis in the slightly altered form Goursat used for a
quite different purpose. (See D2.1 of Appendix D.)

Lemma 8.7. For any gauge  on , there is a -fine tagged division  of .     

Proof. Obviously  defines a gauge (which I shall still call ) on any closed subinterval of 
        , by restriction, and, if  and there are -fine tagged divisions of both 
and , they may be combined  to give a -fine tagged division of .   

Suppose, then, that there is  -fine tagged division of . Then, perforce, one at leastno   
of the subintervals  and  admits no -fine tagged division. Continue         

  

in this way, at each stage splitting the interval in half. One obtains a sequence  of    

subintervals, where , , , and  is either the left-                      


or the right-hand half of the preceding interval and does not have a -fine tagged division.
But  is sequentially compact, by 3.11. Thus there is some subsequence  of   

                 that converges to a point . In fact  for all , since
                    

 whenever ; and it follows that , and 
similarly for . Hence, both sequences  and  tend to .        

However,  by the definition of a gauge. Consequently, if  is so large that    

      
 ,

                   

and so   have a tagged -fine division consisting of the one interval  with          does 
  as its tag. This is a contradiction of our hypothesis, so the Lemma is established. 

The countable Axiom of Choice was used above, for it may have been necessary to choose
a half-interval infinitely many times. I could, however, avoid all choices by insisting that the
left-hand half of  should always be taken if possible (that is, if it has no -fine tagged     
division) and the right-hand half only if it cannot be avoided. Then no “choices” are required.
This is the sort of procedure Littlewood used in such cases.

Brouwer had a different objection to arguments like this. We proved the existence of some-
thing by contradiction from the assumption that it did not exist—the proof as we gave it was
nonconstructive. No method was given or suggested to construct a -fine tagged division. It is
not very important, in my view, whether this is a serious philosophical objection. (Brouwer
was worried about Russell’s paradox, in which the “set of all sets that are not members of
themselves” is not in his opinion “constructive”. However, there are less radical ways of
avoiding the paradox.) The distinction between “constructive” and merely “existential” proofs
is significant, nevertheless, for other reasons. A “constructive” proof suggests possible (though
not always very practical) methods of computation, whereas a “nonconstructive” proof is
merely airy-fairy. (Any existence proof that depends essentially on the Axiom of Choice must
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obviously be nonconstructive .) It is, however, possible to formulate a “constructive” proof of3

8.7, albeit by a rather different method (cf. 22.3).
At any rate, we now have a watertight definition both of Henstock-integrability and of the

Henstock integral. The effort is not worthless:

Lemma 8.8. If  is Riemann-integrable on , with a Riemann integral , it is also   
Henstock-integrable, with a Henstock integral .  

Lemma 8.9. Let  be Henstock- Riemann- integrable on , with       [ ]
integrals . If , then  is also Henstock- Riemann- integrable on           [ ]
    , with integral . 

Proof. [Hint.] Given , choose gauges  for  and  that satisfy (35) for  and for      

                  . (Cf. 4.3.) Then take ; a -fine division must be both - min   

fine and -fine.  

We must also show that the integral has at most one value. Furthermore, the definition, like
the definition of the limit of a sequence, has the defect that it appears to be necessary to know
the value  of the integral before integrability can be proved. So we must also provide a
Cauchy condition for Henstock-integrability (at least if  takes values in  or ).  

Lemma 8.10. There can be at most one Henstock integral of  on .  

Proof. Suppose  are both H-integrals of  on , and . Take          

       
      , and then, by the definition 8.5, there are gauges  such that

 
 
    

    

   

   

 
 

 
 

whenever the tagged division  is -fine, and
whenever the tagged division  is -fine.

Take . If  is -fine, it is  -fine and -fine; hence,         min    
 both

                         
 

       (36)

which is absurd. We conclude that .    

Lemma 8.11.  is Henstock-integrable if and only if, for any , there is       
some gauge  such that, for any two -fine tagged divisions  of ,      
               . It is Riemann-integrable if, for any ,  there is a constant

gauge with the same property.

3 There are at least two situations in analysis in which the Axiom of Choice was used to “construct”
something that was then proved to be unique (so that the choices were irrelevant). In one case—the existence of
Haar measure—an alternative construction without the Axiom was later found. In the other—construction of
the Shilov boundary—as far as I know (I am out of touch) it remains a puzzle. In many “practical” instances
one can see how to dispense with the Axiom, but the uniqueness proof is quite general.
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Proof. [Sketch.] The condition is clearly necessary (cf. 2.23). Suppose it is satisfied. Then,
taking , we obtain a gauge , and, taking , we may suppose,             

   min
not only that  “works” for , but also that  for each . Let  be a -fine       

 
  

tagged division of , for each ; then  is a Cau      
 

 chy sequence in , so has a
limit . Now check (it is easy!) that 8.5 is satisfied. 

Lemma 8.12. If  is continuous, it is Riemann-integrable on .     

Proof. Take any . By 6.3, there is  such that, if  and ,               
then . Suppose that  are -fine tagged divisions of .          

  
    

Let  (the set of all division points for either division) and take any tags     
whatever for  to get a tagged division .  



I claim  for . Indeed, if we take a subinterval               
  



         
 

 
   

 
( ) ( )  of  with tag , it is divided into several subintervals  of , each  

with its tag . As  for each , certainly  and      
   

  
        ( ) ( )  

           
 



 . So

 

 

  

          

        

         



  
     

   

   
   



   
   



 

 

 

 

     
     

   
  

   
 

since the s constitute a division of . But, summing over ,     


 
 ( ) ( )

      


       
   

   
   



 



The same estimate must apply to : . Hence,       
   

      

                                        
     

As this is true for any two -fine tagged divisions of , the condition of 8.11 holds.   

Remark 8.13.  6.3 plays an essential rôle here, because the gauges considered must be(a)
constant. Relatedly, it is not difficult to see that  can only be Riemann-integrable on  if it  
is bounded on . However, some unbounded functions may be Henstock-integrable, if the 
gauges  may be chosen to “counteract the growth of ”. It is clumsy to give examples directly 
from the definition; see qu. 4 of Tut. Ex. 6 (2011), for instance.

  The example that is always given of a  function which is not Riemann-(b) bounded
integrable (on any nondegenerate interval) is the so-called Dirichlet function:  for    
rational and  for  irrational.   
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  I leave it as an exercise to show that, if , then the function(c)       

 
    
    

when ,
when ,

is Henstock-integrable with integral . The proof is very like that of  

Lemma 8.14. If  and  is countable ,               4

then, if  is Henstock-integrable with integral , the same is true of .  

Proof. Because of 8.9, it suffices to show that a function  such that    
           is countable is Henstock-integrable with integral . (For then,

take  and apply 8.9 to deduce the result.)    
Enumerate the points of  (without repeats) as . Given , define           




  
     

 
  (37)

for each point of ; and, if ,  may be any positive number, for instance .        
Now, for any -fine tagged division ,  

         




    (38)

as at (34). If , the th term is  as . If ,  for some                  

           , and then , as  is -fine, so that  


              
    

   


 


However,  can be a tag for at most two subintervals of the division (if it is an endpoint of
two abutting subintervals), so that the mapping  is at worst two-to-one and the sum  
(38) is definitely less than . This proves the result.   


   

The point is, of course, that it is the value of  at the  that determines the fineness of tags
the tagged division; so we adjust those values appropriately. But the Lemma has the
consequence that we can talk of the Henstock-integrability of a function that is defined on all
but a countable number of points of —for instance on ; for we may define the   
function at the missing points in any way we like, and integrability and the integral will be the
same for all such definitions.

Corollary 8.15. The Dirichlet function is Henstock-integrable with integral  (on any
interval ).   

This alone should convince you that Henstock’s theory is at least interesting, but there is a
general warning. One of the properties of integrals that is often used, and that I have often
called the “fundamental estimate”, is the inequality

4 It would be sufficient that  be of measure zero. We do not have any need for this in the course, and it
would require a very substantial digression.
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      (39)

For Riemann sums,  is obvious;    
 
 

                 
consequently, if  is continuous, so is , both sides of (39) exist and are limits of  
Riemann sums, and the inequality holds. More generally, if  is Riemann-integrable on
  , so is  (this is not so obvious), and (39) is again valid. The Riemann theory is an 
“absolute integration theory”, as is the Lebesgue theory; that is, they do not allow
“conditionally convergent integrals”, which may be introduced later as ad hoc devices.

But the Henstock integral is not “absolute”. We shall soon see that  may be


 

defined as a Henstock integral in cases when  cannot be so defined (and there are  

 

also, theoretically, cases where the opposite happens). Some such cases would be regarded in
the nineteenth century as “conditionally convergent improper integrals”, but they will be quite
respectable as Henstock integrals. Thus, the inequality (39) will be true for Henstock integrals
only when  sides are defined as Henstock integrals.both

Definition 8.16. Let . A function  is a  for  if          primitive
   is continuous on , and(a)   
  there is a  subset  of  such that, if ,  is(b) countable          

differentiable at  (recall 7.1) and .    

The word “primitive” does not always carry this sense, but see 7.14 .(b)
I want to finish this brief description of Henstock’s theory with a proof of the most

startling of its elementary properties, which was already remarked on at 7.14 : a version of(b)
the “fundamental theorem of calculus” which says, amongst other things, that if a function is a
derivative, it is Henstock-integrable, with the integral you expect. This is (if you are accus-
tomed to other definitions of the integral, and until you see the proof) amazing, because there
is no simple answer to the question  a function is a derivative; indeed, as far as I amwhen
aware, no really satisfactory answer is known; and it is absolutely certain, from elementary
examples, that a derivative may not be Riemann- or even Lebesgue-integrable.

Theorem 8.17. If  is a primitive for , then  is Henstock-         
integrable on , and its integral is .    

Proof. Let  be a countable subset of  such that  exists and equals      

whenever . Enumerate the points of  without repeats as .  may be            

finite, but I shall for the moment employ notation as if it were infinite.
Take any . I wish to define a gauge  so that, for any -fine tagged division  of     

        , .   

If , then  for some .  is continuous at  (by 8.16), so there exists          
some  such that  

 . (40)           
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However, we may also imitate 8.14. Combining (40) and (37), I set

  


      
     

  


min   (41)

If ,  exists and is equal to . Thus, from 7.1, there is some          
(specific to this ) such that, if  and , then             

 
    

   
   


(42)

If , where , and ,                             

   
          

      

     
 

  
(43)

(notice that, unlike (42), this holds when , the only case with equality. We excluded  

    in (42) to ensure that the difference quotient made sense), and similarly

   
          

     

     
 

  
(44)

(The equality again only arises when .) From (43) and (44),  

 
   

         

                  

 
   

  

   

   

 

g
  (45)



(Equality holds only when .)     

Let us now define , for each . This completes the definition of         
the gauge  on .  

Suppose  is a -fine tagged division of . Then 
           

 

 

  

 





     

           

           






    




    

(46)

where, for each , , .                             

If , we have  for some . From (40) and (41),         

              


   
 


(47)

(for , and, therefore, ); at the same time, since                      
          ,

             


      
    




 
(48)
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Hence, adding the estimates (47) and (48), when   

                  
  (49)

On the other hand, if , we have the inequality resulting from (45):  

             
   

  
    

 




(The inequality is strict unless both sides are .) Substituting these estimates in (46), we find

     

 

  

  

       
   

   

   
  

  

 
  

  



 
 

These inequalities are strict, because the sums include all terms that might arise from a given ,
whether  or not, and in any case only finitely many  occur;  is an 

    
estimate for , because the same tag  may occur for two distinct indices 


 

 
(for two adjacent intervals) but no more, so that a given value of  may appear at most
twice for different , and only finitely many times at most. If  is finite, only finitely many 
subscripts  will be needed, but the estimate remains valid.

Thus, the Henstock integral of  exists and is .    

Corollary 8.18. If  has a primitive , then        

          




where the integral is the Henstock integral. 

Note 8.19. (a) Although the proof of 8.17 seems long and involves some messy estimates,  it
is fairly straightforward in principle. First we deal, rather as in 8.14, with the points where the
derivative of  either does not exist or does not agree with , and then use the definition of 
differentiability. It is, indeed, rather surprising that the result was not noticed earlier (if it
wasn’t). The “Cauchy integral” (as I called it) of 7.14  is obviously closely related.(b)

  In footnote 4 (and in MATH 243) I mentioned “sets of zero measure”. It is not(b)
overwhelmingly difficult to generalize 8.14, with a rather similar proof, to allow the
“exceptional set”  (i.e. the set of exceptions) to be of zero measure rather than merely
countable. One might naturally expect something similar for 8.17; however, the obvious
candidate for a generalization (that is, letting  except at the points of a set of   

zero measure) is —there is a famous example of a function  on  and a set offalse   
measure zero  in  such that  is continuous on  and differentiable with zero     
derivative on , but , . The integral of  (which is defined except          

on ) exists and is , by the generalized 8.14, so it does  give the increment of .  not
Something must go wrong in the proof above. In fact, continuity of  on its own is not

good enough to control the estimates at uncountably many points of non-differentiability. We
made use in 8.14 of  in the definition of ; that would not be possible if we had to handle  
uncountably many potential tags. There is a well-known “generalization” of 8.17 in the context
of the Lebesgue integral, but it imposes a much stronger condition than continuity on  (so-
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called absolute continuity), and as a consequence forces the derivative to be absolutely
integrable. This excludes some useful cases in which 8.17 is valid.

  The Theorem makes clear that all the examples of “improper Riemann integrals”(c)
on bounded intervals that we have ever met are in fact Henstock integrals. For instance, in the

integral  the integrand may be defined to have any desired value at , and then has 

 


 

a primitive . 

  The function defined by  for  (and, for instance,(d) sin cos   
  

  
   

taking the value  at ) has a primitive , so is Henstock-integrable on . So is    



sin 

the function  (directly from the definition, or by various other arguments); sosin 



 

 
 cos   is also Henstock-integrable on . However, its absolute value is not, though

this is not altogether obvious without more development of the theory.

§9. Power series.
In §4, I was considering  series, whose terms are (real or complex) numbers. It isnumerical
also possible to consider series whose terms are functions, . Familiar examples are 
power series and Fourier series, but there are other kinds (Dirichlet series, wavelet expansions,
Mittag-Leffler expansions). Again, to describe such a series as  is to assert that theconvergent
sequence of partial sums has a limit; but where functions are involved, the ideas both of a
‘partial sum’ and of a ‘limit’ may need further explanation.

We shall only deal with so-called power series, and (prematurely) with the complex case
(see §10), of which the real case is an easy corollary.

Definition 9.1. A power series in one variable  with complex coefficients , 
           , about the centre , is a series , whose terms are 




monomials  in .      


The indices of all the series will now be numbered from  (not from ) for convenience, 
and I denote the index set of non-negative integers by . To begin with, the monomials are

just algebraic expressions in an ‘unknown’ (a mere symbol) . Associated to such a monomial
is a monomial  , which, when  is assigned a complexfunction           

 
value , gives the function  the complex-numerical value . In analysis,            



one can usually treat lightly the distinction between the monomial itself (an algebraic
expression) and the monomial function it defines; for example, we often write “the function
      ”, although  is just an algebraic expression and the function is really .

When we substitute for the ‘unknown’  the complex value , each term of the power 
series acquires a complex value, inevitably denoted . (In particular, when ,      


       

   is understood as  for every choice of . If , this is a special convention
for power series, because it may be argued that  should in general be undefined.)

In this way, to each complex number  the power series (of monomials) associates a  series
of complex numbers, denoted . If this numerical series is convergent (in the    


usual sense that its partial sums in  form a convergent sequence in —cf. 2.9), we say that 
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the power series converges at the complex number . Similarly, if the numerical series is
absolutely convergent, that is, if the real series  converges in , we say the     

 
power series is  convergent at the complex number .absolutely 

Theorem 9.2. The power series  converges at . If it converges at , then it      
 

converges absolutely when .        

(The second sentence tells us nothing when .)  

Proof. The first statement is clear; the numerical series is . Now suppose     

that  converges. By 4.18,  as . (Recall that this is                
  

true because  is the difference of consecutive partial sums of the series, and the partial  


sums converge to a limit by hypothesis). Hence there is a constant  such that  
         

  for all  (see 2.14 ). Thus, for each ,(e)

      
 

 












  .

       
  converges (geometric series, common ratio less than ), so, by 4.7,

          
   converges, i.e.  converges absolutely. 

Consider the set  of real numbers  such that there is a complex number      

with  and  convergent. 9.2 shows that  and that, if              


             , then  for any . If  is not bounded above, write , a 

symbolic value. If  is bounded above, let sup .   

Definition 9.3. , as above, is the  of .    radius of convergence 




Remark 9.4. This definition, with 9.2, has the consequences that
 (a) if ,  and the series converges only at ,       
 (b) if , , and the series converges  at all values of .      absolutely 

Indeed, if , there exists  such that  (otherwise  would be an              

upper bound for ), and 9.2 assures us that  converges absolutely. Similarly,    



 (c) if , the series converges  when  and diverges      absolutely  

when . If , there exists some  such that ,                     

                 
     converges if  (such a  does exist!), and then 

converges absolutely by 9.2. If , then , and so  does     
            

not converge, by the definition of .
  There is no general statement about convergence if . The series(d)      

           diverges for all  on the “unit circle”  (for its terms do not tend to ), but

   

   
   

  

diverges when  (it becomes the harmonic series) and converges at all other points of the  
unit circle (I omit the proof); whilst

  

  
  

  

 

converges (absolutely) at all points of the circle, since the moduli of the terms form the series
 , for which see 4.11 and 4.13. All three series have  as radius of convergence.
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  9.2 implies that the radius of convergence of  may be determined by(e)     


considering only values of  such that  is real (convergence being in ).    
  It is often possible in useful cases (where the coefficients of the series are fairly(f)

well-behaved) to find radii of convergence by the ratio test; this is, indeed, why the ratio test
has a certain priority amongst convergence tests, as “the first thing you try”.

Definition 9.5. Let  be the set of complex numbers  at which the series      




converges. If , the sum to infinity  is defined in . It defines a       






function , which is called the  or  of the power series: we write    sum-function sum

     





.

Remark 9.6. A complex numerical series  is absolutely convergent if and only if
     and  are both absolutely convergent. See 4.15.

Theorem 9.7. Let  be an absolutely convergent series of complex numbers. Then any

rearrangement or grouping or rearranged grouping of the terms of the series also yields an
absolutely convergent series; and the sum is unchanged.

Proof. This follows from 4.23, with 4.15. 

Suppose now that  and  are absolutely convergent complex series. We may   

arrange the terms  in a single sequence , so that to each pair  there corres-       
ponds a unique value of . (The Cartesian product  is in one-one correspondence   

with ; in other words, the product of two countable sets is countable.) In this situation

Lemma 9.8.  is absolutely convergent. 

Proof. Since  is nonnegative for each , it suffices to show the partial sums      


are bounded as  varies, by 4.6. For any given , the terms  constitute a        

selection of finitely many of the products , for which there will be a largest value  of   
the suffixes “ ” and a largest value  of the suffixes “ ”; thus  form a         

subcollection of

                 

    

                 

    

  
    

           

 

,

and             

(for every term on the left of the first equality appears also on the right, and all are non-
negative). If , , it follows that all partial sums  are            

  
    

bounded by ; that suffices. 

Now, according to 9.7, the sum  is unchanged by arbitrary groupings and 
rearrangements. One such (not a very pleasant one, since infinitely many terms are grouped
together at each step) is
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A rather natural way to group terms together is the so-called , for whichCauchy product
we group together all terms  with the same total index . The Cauchy product of     
the series  and  will be , where, for each , .                 

Theorem 9.9. If  and  are absolutely convergent complex series, so is their   

Cauchy product , and .           

Proof. The equality has been proved (  is a grouping and rearrangement of ). It   

only remains to note that , so that ,                         

which is a grouping and rearrangement of  and therefore converges by 9.7.   

The Cauchy product of two numerical series behaves much more satisfactorily than this; it
converges and has the sum  when  and  both converge and only           

one of them is absolutely convergent. There would be little point in giving it a special name if
most of its properties were shared by all other methods of grouping the terms .  

However, we need no more information than 9.9.
The reason for studying the Cauchy product is that it is well adapted to the multiplication

of power series. For given , the Cauchy product of  and             
 

 

is , where . In symbols rather than numbers, it is natural to           




describe  as the Cauchy product of the power series  and         
 

    
 .

We can also speak of the sum of the power series  and ,         
 

meaning the power series .       


Theorem 9.10. Suppose that  has radius of convergence  and      


      
  has radius of convergence . Then the sum and the product of these power

series have radii of convergence not less than .min   

Proof. Take any  such that . Then , so that              min   
               

    is absolutely convergent, and , so that  is
absolutely convergent; it follows from the general properties of series that the sum
                   

     or  is absolutely convergent, and from
9.9 that the product series , as defined above, is absolutely convergent.     

 

Definition 9.11.  Let  and  (that is,  is to be a positive real number). The(a)      
open disk in  of radius  about    is the set

             

where the  recalls its alternative name as an open . (The only reason for preferring the ball
name “disk” here is to emphasize that it is a set in two dimensions.) The closed disk about  of
radius  is

             

  A subset  of  is if, for any , there is some  (specific to )(b) open        
such that . (See §20, in particular 20.10. This is equivalent in the context of     
[or of any metric space] to the previous definition 3.6, as you may easily check.)
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  Suppose  is an open subset of , and .  is (c) complex-differentiable      

at  if the difference quotient  has a limit in  as  through     
    




complex values. The limit, when it exists, is called the complex-derivative of  at , and is 

denoted  or  or for more precision  (etc., etc.) (Notice that there is    


           such that  whenever , so the difference quotient makes sense for 

all complex  such that . The limit means that, for every , there is             
such that

             
    


     & 

This definition should be compared with 7.1; the essential difference is that here the limit is
taken in  and with respect to a two-dimensional (that is, complex) variable.

Note 9.12. If, in 9.11 ,  is complex-differentiable at , it is continuous at . The(c)     
proof is almost the same as at 7.2 (with changes to take account of the changed hypotheses).

Power series are important in this course for two reasons. The first is that they can be used
to give precise and logical definitions of the elementary transcendental functions (see below).
But the ‘holomorphic’ functions we shall soon be discussing are, as it will turn out, those
which can be  represented as the sums of complex power series. In one direction, thislocally
involves proving that the sum-function of a power series is complex-differentiable where
possible. There is an ‘advanced’ proof of this fact using the Cauchy integral formula. The
‘elementary’ proof I give here is, in fact, better and more general; that is, it can be applied in
other contexts, not just for complex power series. To shorten formulæ I shall take the centre of
the power series to be , but this amounts only to a change of variable (from  to ) in the    
calculation.

Given a power series , we call the power series  (in which, as       
 

usual for power series,  is taken in ) the ‘formal derivative’ of . The word   


‘formal’, which is very common among mathematicians, emphasizes that we are not speaking
here of a genuine derivative of a genuine function (neither series is assumed even to converge
except at , for instance), but only of something that has the ‘form’ one might hope such a
thing to have if it existed.

Lemma 9.13. The radius of convergence of a power series is the same as the radius of
convergence of its formal derivative.

Proof. Let the radius of convergence of  be , and . Then          
 

   
  is absolutely convergent by 9.2, and

           
        for all ,

so that, by 4.7 (the comparison test; take “ ” to be ),  is also convergent.     


Thus, from 4.5 ,  converges absolutely if , and the radius of convergence(a)     
 

              
 of  cannot be less than , . If  or , this is true anyway

(in the obvious sense).
Suppose , and . Take  such that .  converges              

     
absolutely; there is  such that  for all . For each ,       



              
      , and  converges by the ratio



71

test. Hence  converges absolutely whenever , and the radius of       
  

convergence  of  cannot be less than . If ,            


   

automatically. Hence  in all cases (including ).         

If the radius of convergence of the series is , the sum-function is only defined at the origin
and cannot, therefore, be differentiated.

Theorem 9.14. Let  be a power series with positive radius of convergence . For   


    , let  be the sum-function of the series, and  the sum of the formal
derivative series (which is also defined on , by ). Then, at each point 9.13
          , the function  is complex-differentiable, and .

Proof. Fix , so that  and  are both defined. Choose some             
so that . Then  converges, so that its terms are bounded: there is        



             such that  for all , or . 
 

Take any , with . Then , so that                        
    is defined, and furthermore

   
  

   

                

 
   

 
        



    


  

  
  



  

    by general facts about series  the terms for  in the first two series cancel)

  
  


     

 


 

(by the binomial theorem)

    
  



 
            

 

   
      

           

   



 

  








  





  

 

    

(by actual summation of the three series involved—which are all standard series)

 
          

          

      


         

 

 

 

(

as .





This shows that  exists and is , as required.       
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Corollary 9.15. The function  is complex-differentiable  times, for any   
positive integer , at each point  of . Furthermore, for each such ,  

    
  


 




  , (50)

where the series converges.

Proof. Apply 9.13 and 9.14 inductively. (50) is the th formal derivative of . 


 

Note 9.16. The results above may be summarized by saying that, provided one remains
strictly inside the ‘circle of convergence’ , where  is the radius of        
convergence (possibly , one may treat power series about any centre  almost as if they 
were  polynomials; the functions they define may be added, multiplied (using the Cauchy
product), and differentiated ‘term-by-term’ in the natural ways. Let us apply these ideas to give
a treatment of the elementary transcendental functions. Later on, knowledge of the (real)
exponential and circular functions will be assumed, but the definitions of these functions as you
have so far met them are in some ways unsatisfactory.

Those definitions were roughly as follows. The trigonometrical functions were defined
from right-angled triangles; relations amongst them, such as the addition and derivation
formulæ, were obtained by geometrical arguments; and Maclaurin series (that is, Taylor series
about ) for the sine and cosine were found from the derivation formulæ. For the exponential
function, one possible procedure was to define it as the inverse function of the logarithm,
which, for positive values  of the variable, was the (Riemann) integral of  over the 
interval  of values of  (or minus the integral over ).    

Definitions of this kind, which (at least for the circular functions) follow historical lines, are
open to several “philosophical” objections. To begin with, they are more complicated than one
might wish. To define the trigonometrical functions in this way, we must assume rather a lot of
Euclidean geometry (up to similar triangles and Pythagoras’s theorem); and, since the 1800s,
we are aware that the logical structure of Euclidean geometry is not as straightforward as
Euclid once thought, and that it has no absolute claim to be an accurate description of the real
world. It is undesirable to define the circular functions, which will appear in contexts far
removed from geometry, in a way that makes them dependent on a specific, quite complicated,
and maybe unrealistic geometrical theory. As for the above definition for the exponential, it
requires a fairly full discussion of the definite integral even to state it, and its extension to the
complex exponential function (to be discussed later) demands a rather “unnatural” appeal to
the trigonometrical functions.

One way of setting up the real trigonometrical functions which avoids the geometry, and
allows a parallel definition of the exponential function, is to define them as solutions of suitable
differential equations. Thus  is the solution of the second-order equationsin

            , , ,

and  is its derivative; whilst  is the solution of the first-order equationcos exp

        , .

These definitions are certainly preferable in a logical sense, in that they involve no appeal to
anything outside analysis, but they assume that the differential equations do have solutions
satisfying the initial-value conditions and that those solutions are unique. (There are differential
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equations for which either existence or uniqueness fails.) The equations above do satisfy the
hypotheses of Picard’s existence and uniqueness theorem for solutions of ordinary differential
equations, but the theorem itself would take some time and effort to set up.

Our approach is therefore crude and direct: we  the functions by their “Maclaurindefine
series”. This approach is given with some historical comments in the Appendix to Whittaker
and Watson. It has a small secondary advantage: the various other definitions raise the
question of showing that the Maclaurin series do converge to the functions. This involves using
a theorem about remainder terms (Lagrange’s form of Taylor’s theorem will do). If the sum-
functions of the series  the functions by definition, there is nothing more to prove. Ofare
course there is a loss as well as a gain—at some stage the functions defined by the series must
be identified with the ones that arise in geometry—but this difficulty is much less serious;
without going into details, one finds that the functions have the same properties, so they must
be the same. So we say:

Definition 9.17. The exponential function  is defined byexp   

        
 

  
    


exp 






 .

It is easily seen (for instance by the ratio test) that this power series has radius of convergence
   . Thus exp  is complex-differentiable at all points of , by 9.14. Note that exp .

Proposition 9.18. For any complex numbers  and , 

exp exp exp exp exp          and .

Proof. By 9.14,

exp  

 

 
      

   

   
  exp

the formal derivative series (recall 4.5) may be re-indexed in the obvious way. Likewise

exp exp    
 

 
     .

Here each series is absolutely convergent, so that the product of their sums is the sum of their
Cauchy product, by 9.9. Thus

exp exp

by the binomial theorem

by definition.

   

 

 

 

 
 

 


 

 

   




   

  

  



 

  

 

  



 

exp 
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Definition 9.19. The  functions cosh  and sinh  are defined byhyperbolic

cosh exp exp
sinh exp exp

  

  

    

    






and
.

The  (or ) functions cos  and sin  are defined bytrigonometric circular

cos cosh sin sinh         , .

It follows instantly that these functions have the customary power series expansions:

cosh cos

sinh sin

     

       

         
   

   

       
   

   

   

   

, ,

, .

Furthermore, 9.18 leads to all the addition formulæ, and to the identities

cosh sinh cos sin              , , for all . 

(I leave the derivations of these facts as easy exercises; they were given for the hyperbolic
functions in 113). All these functions are defined by series having only real coefficients, so that
they take real values for real , and we can treat them as real-valued functions of a real variable
when appropriate; but the addition formulæ and the identities are also valid for complex values
of the variables. However, if we consider real values, we have

Lemma 9.20.  and .cos cos     

Proof. The first statement is trivial. For the second, argue as follows. Let

             
   

   

           
   

   

            
     

     

   

 
 

 



   

From this,   .      cos             
 

   

The argument is to calculate an approximate value for cos  from early terms of the series,
and then estimate the error in this approximation by comparing the sum of the “tail” with the
sum of a geometric series. The computation above is already far more accurate than we need;
in fact it is fairly obvious that

             
    
  




,

which is good enough for the Lemma (for which we only need ). On the other hand,  

Lemma 9.21. Suppose . Then   

       


 cos (51)
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Proof. As previously,

cos    

   
 

 


  

      




           
 

   

      
 

  

      
   

   





 

 

 




 

, where

   

 




  

 

 

 

   

    
 

 

           
  

   

  
  

  

,

,

   


 

and these estimates give (51). 

Corollary 9.22. There is a number  such that  and .       cos

Proof. By 9.14,  is complex-differentiable everywhere, and therefore continuous every-cos
where (as a complex-valued function of a complex variable). It is therefore certainly con-
tinuous if one only considers real values of the variable. As  and , thecos cos     
existence of  follows from the intermediate value theorem (which is a result about real-valued
continuous functions of a real variable). 

Definition 9.23. Let the  positive zero of  be denoted by .least cos 

That is,  is the number such that , cos , and, for any  with        


      
 , cos .

By 9.22, there is  positive number  such that . We want the least membersome  cos  
of the set & & cos . 9.22 ensures , and  is                  
bounded below by  by definition; hence it has an infimum . For any positive integer ,   
there is an element  such that , by 2.8. Hence  and       


     

cos cos cos       for each ; but, as  is continuous, it follows that . Since
cos         , this implies that , and therefore . So the infimum of  belongs to , 

and must be its least element. (More briefly:  is a closed bounded non-empty subset of , so 
must contain its infimum; this follows instantly from 3.8 and 5.8.)

So there is a least positive zero of the cosine. Is the  of Corollary 9.22 necessarily that
zero? By (50),  for ; hence , and             cos sin cos sin     

cannot be zero. The mean-value theorem tells us that, whenever ,  
cos cos sin                   for some  strictly between  and ; it follows that
cos  is one-to-one on the interval , and it can take the value  at only one point of this  

interval, namely at .

Remark 9.24. We have just seen that  for . However,  andsin sin         

cos sin
sin sin sin

           
  . Thus  as , so that sin  for small
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enough positive values of . (This may also be proved directly from the series for , by easy sin
estimates like those in 9.20). Hence  for , as it cannot take a positivesin       
value at one point and a negative value at another without taking the value  somewhere in
between (by the intermediate value theorem). In particular, as

sin cos  
 

          ,

sin ; we have shown the sign must be positive, so  and .             
    cos sin

Now apply the addition formulæ:

cos cos cos sin sin sin
sin sin cos sin cos

sin cos sin
cos

           

          

         

 

      

      

    



  
  
  
  




cos and in turn

   

    

    

        

         

          

sin
sin sin sin
cos cos


 cos Hence,

and
cos

So the (complex) circular functions  and  are , with period . This is theircos sin periodic 
smallest positive real period. If , where , cos cos sin cos              

and , and  for all  by the addition formula;  is, then, a periodsin cos cos          
of cos . But also

            cos cos cos  
   , .

If the positive sign holds,  is a smaller period of . If , 
  cos cos   

          cos cos  
  and .

Hence , by the definition of , and , as asserted. In the same way,  is  
         

the least positive number such that cos .)  

It is possible to carry the development of the circular functions much further than this, but
the method should now be clear. At no point have we applied to geometrical intuition, or, for
that matter, to geometrical argument. The word ‘angle’ is quite redundant. To jump ahead a
little: the  of a non-zero complex number  is that number principal argument     
such that  and    

cos sin    
 

        

The existence and uniqueness of such a number is now easily established.
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§10. Complex numbers.
Our aim from now on is to describe some of the ways in which the introduction of complex
numbers leads to new ideas in analysis (and, to a certain extent, in geometry). We shall
discover some very striking results, which seem to arise magically in the complex context, have
no elementary analogues in real analysis, and often seem far more intuitive. There is a very
prosaic reason for this—the functions we study are much more restricted than those which are
customarily discussed in the real case; but nevertheless they include all the functions that one
meets in standard applications.  That is why the subject used to be called the Theory of
Functions, on the principle that any respectable function ought to obey it. (The “set-theoretic”
definition of a function that we met in 151 was invented very late; for a very long time people
thought of functions as things given by “formulæ”.) That said, there is also a  reasonpoetical
for the theory’s amazing properties: it looks, quite seriously, although less mysteriously than it
at first sounds, as if the universe actually runs on complex numbers and not real ones. Quantum
mechanics is based on complex-valued wavefunctions.

I begin by recollecting some basic remarks about complex numbers.

Remark 10.1. Recall that  is an ordered field (see 1.8). The usual laws of arithmetic
concerning addition, multiplication, and division hold; in particular, one can always divide by
any real number different from . Moreover, we can compare any two  numbers  to  real
decide (trichotomy) that either , or , or , and there are rules for the        
behaviour of these inequalities under arithmetical operations.
The set of all ordered pairs  of real numbers is, of course, called . We can define an  

addition in  (the usual addition in  as a vector space) by  

            . (52)

However, we can also define a multiplication of sorts in , by the formula

         ( , (53)

and we call the resulting object (  with this multiplication and addition) the set of complex

numbers, . Notice that, ,  is just , and the new symbol therefore indicates the  as a set 

new algebraic structure. The common (not invariable) custom is to use the letters  and  
mostly to denote complex numbers, whilst , and  are mostly reserved for real numbers.   
If I write , it is usually to be understood that  is complex and  and  are real.      

Remark 10.2. The addition and multiplication just defined in  are commutative and
associative, and multiplication is distributive over addition. I show, for example, that multipli-
cation is associative. Suppose , , . Then             
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from (53),
, again from (53),

    

            

, rearranging,
, from (53).

The other statements are proved similarly (but are easier).

Remark 10.3. If the complex number  is , the real number  is called the ‘real part’ of   
    , and is written  or Re , and the real number  is its ‘imaginary part’, written  or
Im . Notice that the ‘imaginary part’, so called, is a real number! The absurd adjectives
‘real’ and ‘imaginary’ are historical survivals, without philosophical justification.

There is an operation called (complex) conjugation in . If, as before, , then its    
complex conjugate, written  or, if it is typographically more convenient, , is . Thus  –

     and  have the same real part, but ‘opposite’ imaginary parts. It is obvious that  for–

any . (The jargon is that conjugation is , or an , which means that   involutory  involution
doing it twice in succession brings you back where you started). Also conjugation is an
automorphism of the field , which means that it respects addition and multiplication; for any
complex numbers  and , 

         – –, . (54)

Remark 10.4. If , or equivalently , so that  is of the form , we say that        
          is  or just ‘real’; if , or , so that  is of the form , we saypurely real
that  is . Now, if  and  are purely real,  and , we          purely imaginary
see that  and , so that  and  seem to behave exactly like             
the real numbers  and . It is therefore not too misleading to abbreviate  to , and so    
on. Furthermore, for any complex number , 

        

by a simple calculation. Thus, if we denote the complex number  by , we can write  
            as . (When I write , or , it is usually to be understood that  and
         , or  and , are real numbers, and, of course, one usually writes  as  and  as
         ). Now , which we write as . The general rules for addition

and multiplication become

              

             

       

,
.

These would be the expected rules for expressions , if ordinary algebraic manipulations  
are permitted and . The form  of a complex number is therefore very     

convenient, because it carries with it the easy mnemonic  for the multiplication. In  

particular the complex number , that is , is a multiplicative identity in :  for      
all .
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Note 10.5. The word ‘imaginary’ was originally introduced because, when complex numbers
were invented (essentially by Cardano and Bombelli, in the late sixteenth century, in connection
with the solution of the cubic; see Appendix C for an explanation why the cubic seemed to
require new ideas when the quadratic did not), it was in effect by  that there were apretending
square root of , called , and seeing what resulted. But, of course, the real number   
does not have a real square root, so that  was described as ‘imaginary’. The procedure is risky
from the logical point of view—how can we be sure that no contradiction will ever result from
pretending  has a square root? (There was a similar problem with the Axiom of Choice,
and at 1.19 I point out that even the real numbers are subject to the same sort of criticism until
they have been adequately defined.) The method of constructing complex numbers that I have
followed avoids the logical difficulty. It was only explicitly proposed by Hamilton in 1835,
although ideas of much the same sort had been around since the 1790s, already more than two
centuries after complex numbers had been in common use.

Mathematicians write  for an ‘imaginary’ square root of , but sometimes  already has  
some other customary meaning. Electrical engineers, who often want  to stand for current,
may use  for the square root of . People who wish to avoid detailed explanations may 

write simply . Similarly,  is also a letter often exploited as a dummy index in summation; 
there is a tacit convention (mainly due to negligence) that in such contexts it does not mean a
square root of . For these and similar reasons, MAPLE denotes  by .  

Remark 10.6. The zero of  is , or , usually written ; it is the only complex      
number which is simultaneously purely real and purely imaginary. As above,  or ,    
usually written , is a multiplicative identity. Now, if , then , and           

    has a multiplicative inverse by the calculation:

     
 

     
    

.

Notice that, if , then  (that is, the purely real complex number          

          ). Thus  (if suitably defined)  to be the inverse of , and theought
calculation above confirms this.

Let me review the facts so far discussed.   , with the usual vector addition and a is 

suitable multiplication; these operations satisfy the rules of arithmetic (they are both commu-
tative and associative, multiplication is distributive over addition, there are an additive zero and
a multiplicative identity, and non-zero elements of  have multiplicative inverses). Thus  is a 
field. Complex conjugation respects addition and multiplication (and inverses). The complex
numbers that are unchanged by conjugation—the purely real complex numbers—also form a
field (a subfield of ) isomorphic to the real numbers, and they are customarily written as if
they were real. These are the essential purely algebraic properties of .

It is natural to conjecture that something similar could be done with  or , or with  

   in general. This is not true; only  can be furnished with a multiplication turning it into a
field with  as a subfield. (If we abandon commutativity of the multiplication, there is also a
suitable multiplication in , making the quaternions, which are a ‘skew field’ or ‘division

ring’. If we even abandon associativity, there is a multiplication, with inverses, in , giving

the (misnamed) ‘Cayley numbers’ or octonions. But that is as far as it goes if you want
inverses, although a final proof, of amazing subtlety, was only given by Adams in 1958. It since
been simplified somewhat, though it remains quite difficult.)
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Remark 10.7. Since  is, except for its multiplication, just , it is natural for us to think of a 

complex number  or  as a point in the Cartesian plane. For the        
historical reasons summarized at 10.5, this idea was not originally so obvious, and is therefore
referred to as ‘representing  on the Argand diagram’. As so often happens in such cases,
Argand was not in fact the first person to invent it (just as the Cayley numbers were not first
discovered by Cayley, but by Graves, who was a friend of Hamilton, a little earlier). He
published the idea in 1806, but Wessel had already written about it in 1797, and Gauss, who
was always reluctant to publish, and was 20 at the time, knew about it then too. The distance
from the origin of the point representing  on the Argand diagram is  (recall that the     

square root sign applied to a nonnegative real number denotes the nonnegative square root),
which is called the  of  and written . As  is purely real and may be regarded asmodulus    
identical to the real number , we can write , the non-negative real square       
root of the non-negative real number .

As , where | |  denotes the absolute value of the real numbers  and         

      , one has  and . For a purely real complex number, the modulus agrees
with the absolute value, so that the use of the same notation | |  for both causes no practical
difficulties.

The modulus has the following properties, for any .   

    if and only if .(a)      
Since  is just the distance from  of the point represented by , this is geometrically  

obvious. But one can also argue that, if , necessarily  and  has an inverse, and      
so  (for otherwise multiplication by the inverse of  would give ).      

  (b)    
For ; take non-negative              –

square roots. If , , the equality thus proved between the squares of         
the moduli yields the remarkable identity

                    ,

which has a striking application: the product of two integers each of which is the sum of two
squares is also the sum of two squares.

  (c)        
This is the triangle inequality for the length in . We can prove it thus:

              

       

           

          



   

  

–

The result follows by taking non-negative square roots. (This argument is related to familiar
proofs of the triangle inequality in . The scalar product  , when          
and  are regarded as vectors in , is just .)    

For later use, let me note the following version of the triangle inequality:
  (d)         
The outer, longer bars on the right-hand side represent the absolute value in .
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Remark 10.8. Let  be the point on the Argand diagram representing the complex number

      , and let  represent . Then the vector  is represented by , and the distance


    is the length of this vector, .
In the Euclidean geometry of , there is also a notion of . This leads to the idea of angle

the , , or  of a non-zero complex number. (Mathematicians usuallyargument amplitude phase
call it the argument.) If ,  is the corresponding point on the Argand diagram, and     
the origin, then an argument or amplitude of  is one of the angles through which the positive
 -axis may be rotated in the  direction to coincide with .  This conceptanticlockwise
makes sense only if  (for you can’t have an angle between two lines in the plane when  
one of them reduces to the single point ). But a non-zero complex number has many 
arguments.

If one possible argument is  (more or less), but  may be rotated through , 
     

        
 , , etc., with the same result. The fact that the argument of  is not

uniquely defined is involved in many profound results we meet later.
Although  is not uniquely defined, one often writes arg  to denote whicheverarg  

argument of  is indicated by the context. In particular, the  argument of  is   principal
that argument  of  which satisfies . The principal argument of  has strictly       
smaller absolute value than any other (unless it is , when  has the same absolute value). 
We may denote it by Arg .

[A function, by the definition nowadays accepted, has only one value at each point of its
domain. It is tempting to say that arg  is a ‘many-valued function’, and Victorian
mathematicians were happy to do so, but we must now be careful not to use such phrases in
serious mathematical reasoning. I have been scrupulous not to describe arg  as a function of
     . By contrast, Arg   a function of , for . It is not a  function, since, foris continuous
any small positive number , Arg  is close to  and Arg  is close to .          

One way to describe arg  legitimately as a function would be to define it as a function
whose values are sets of numbers rather than numbers themselves.]

Remark 10.9. Suppose  is an argument of the non-zero complex number . Let     
              . Then  and , so that, together, ; this iscos sin cos sin   

the  of the complex number. For convenience, we may abbreviate  topolar form cos sin  
cis . (Some authors prefer to write  or ; this accords with 9.19). Notice that exp  

        cis      exp cos sin 

automatically, so that, from 10.7, cis  (provided that ).      
Similarly, let cis . Then (de Moivre’s theorem)   

        

        

              

     

         

       

cos sin cos sin
cos cos sin sin cos sin sin cos
cos sin cis ,

using the addition formulæ for  and  (again see 9.19), and the definition (53) ofcos sin
multiplication of complex numbers. This again shows that , as at 10.7, but    
also that  is an argument for  when  is an argument for  and  for . Crudely      
speaking, multiplication of complex numbers multiplies their moduli and adds their arguments,
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although care must be taken in interpreting this statement because the argument is not uniquely
defined.

If cis , then cis  if and only if  and  is an                       
argument of . That is, Arg  for some . As  is nonnegative by          
definition, , and cis cis Arg  for some . Both  and               

 cos sin
reverse sign when the variable increases by , so that cis cis Arg . In short, there     



are exactly two square roots of , cis Arg . (Of course the complex number        


  has only one square root,  itself.)

Remark 10.10. Now consider the non-zero complex numbers  and  as displacement 
vectors in  (starting at the origin). Then an argument of  measures the angle from the 
vector  to the vector , taken anticlockwise, and the modulus of  is the ratio of the  
magnitude  of the vector  to the magnitude  of the vector .   

That finishes our survey of basic facts about complex numbers.

Remark 10.11. The convention, as above, is that angles are measured anticlockwise; that is,
they may be described as positive or negative, the anticlockwise sense being positive. This is,
of course, merely a convention about the pictorial representation of the complex plane. In
‘classical’ Euclidean geometry, triangles  and  may be similar although 
corresponding angles in the two triangles have opposite senses; the circuit  may go
clockwise although  goes anticlockwise. But it is perfectly possible to set up a plane
geometry which distinguishes between ‘similarity’ and ‘antisimilarity’.

Remark 10.12. There are two important cautionary remarks.
  We cannot make  into an ordered field as we did for . Whether  were positive(i)   

or negative,  would have to be positive; so  would be positive [  negative] if  were or   

positive [  negative]. But . This does not mean that  cannot be “ordered” at all,or    
only that any order that we give it will lack the useful algebraic properties of 1.8.

  For non-negative real numbers ,  or  is usually understood as denoting(ii)    

the non-negative square root of . This convention ensures that . There          

is no corresponding systematic way to select one of the two square roots of an arbitrary non-
zero complex number . The definition in  obviously uses the order in . As with , the   (i)
difficulty in  is not in making a selection in the first place—one could, for instance, always
take the square root with an argument in the interval —but in doing it for all  whilst  
preserving the relation . To preserve it, we should need     

                      ,

which is absurd. Thus, if we ever want to use the symbol  or a square root function, we

shall have to state explicitly which square root we have in mind, and to take care about its
properties. There is nothing mysterious about this; it is the inevitable result of passing from the
ordered field  to the field  that lacks an “algebraic” ordering. 

In particular,  has two square roots,  and . We have given the name  to , but     
there is no way  of distinguishing between  and . (This is a slightly lessintrinsic to   
pompous way of saying that complex conjugation is an automorphism of , so that any purely
algebraic property of  must be shared by ). 
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§11. Functions in .

For the time being, I shall mostly talk about  rather than , but, where necessary, I write 

       to mean  (the length of the vector  in ).   
Our discussion will mostly be restricted to functions defined on open sets of . Vaguely

speaking, this is because we want to be able to study a function’s directional derivatives in all
directions at each point of its domain. It is possible to generalize the domains used, but there is
remarkably little advantage in doing so at this stage.

Definition 11.1. A  in  is a continuous function , where  is apath         
closed interval in  with . The path is said to begin (or start) at the point  and end    
(or finish) at the point . If , the path is called . (As so often, it would      closed
be preferable to use a different word, but it is too late).

For the path , there is an equivalent way of describing its continuity. For     

each ,  is a pair  in . Here  and  are real-valued, and the        












 

vector in the codomain  is written as a column vector. Continuity of  is then equivalent to 

the continuity of both  and  as real-valued functions of .   

Definition 11.2. Let  be a subset of .  is said to be  if, for any two  path-connected
points , there is a path  which begins at , ends at , and takes all          

its values in . (It is evident that one may assume  and .)      
A path-connected open subset of  is called a  of , or of , or of ‘the plane’.   region

(Another word in common use to describe a region of  is “domain”, but it is undesirably

ambiguous).

There are other sorts of ‘connectedness’, but we are only interested in open subsets of ,

for which they are all equivalent (though not obviously so) to path-connectedness.
The various ideas of convergence of complex-valued sequences, continuity of complex-

valued functions, and so on, are special cases of the concepts for metric spaces (see §§20, 24).
For instance, if  is an open subset of , we can define continuity of a function      
at a point . All the properties you expect hold; their proofs are word for word as in the  

real case. Thus, if  and  are both continuous at , then so         

are their product  (defined by  for each ) and their sum        
   , similarly defined pointwise.

Definition 11.3. Let  be an open subset of ; suppose . We can regard  as       

a pair of functions , such that, for each ,       

       .

Given  and , consider the difference quotient of  in the first variable,           

   
   

        
         


. Since  is open, there exists some 

(varying with the choice of ) such that  whenever          

                  . Hence  makes sense, provided that the real number 
satisfies . If  has a limit as , we say that  is differentiable               

with respect to the first variable, customarily called ‘ ’, at , and the value of the limit     
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is the partial derivative at  with respect to the first variable, . In a similar          



way  one defines differentiability of  at  with respect to the second variable ‘ ’, and      

the corresponding partial derivative , starting from the difference quotient


    

  
   

     
         


.

The same applies to . The function , which takes values in , may therefore have as many  

as four numerical derivatives at , namely the “first” and “second” partial derivatives of    

     and of . If all four of them are defined (each of  and  being differentiable in both  and
), the matrix

   
      
   

   

   
       

   

   
       

 
   

   

 or 

which is an acceptable abbreviation when there is no doubt which point  is meant, is    

called the  of  at the point . Write it as .Jacobian matrix            

The existence at  of all four numerical derivatives of  need not tell us much about     

the behaviour of  at nearby points. A function which has the value  on the coordinate axes 
has all four derivatives at the origin, and they are all ; but its values off the axes may be
completely arbitrary. This example emphasizes the obvious fact that partial derivatives involve
the behaviour of the function only in the directions of the coordinate axes. This objection was
met by Stolz in 1887 by defining differentiability (in the sense of a vector-valued function of
two real variables) of  at :     

           is differentiable at  if there is a 2  matrix  such that  

            

 
 

     



(55)

as . (The term  signifies the matrix product). The quotient makes sense    

 

as long as , and, of course, the assertion that it tends to  as          
means that, for any , there exists  such that, whenever , the          
quotient is less than .

If this definition is satisfied, all four partial derivatives must be defined at , and ,     

the so-called Fréchet derivative, must be the Jacobian matrix . For example,    

consider what happens as ; then (55) becomes    



             

            
       

    
,

whose upper entry tells us that  as ,                    

and therefore that  is differentiable with respect to  at  and , whilst          

the lower entry says likewise that . Similarly for derivatives with respect to .   

This notion of ‘differentiability’ restricts the behaviour of  as  tends towards  
      in any fashion, not just along straight lines parallel to the coordinate axes, and it
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generalizes one version of the definition of differentiability for a real-valued function of a real

variable—namely, that  as . (The rôle of the
         


    

  


derivative  is taken by the Jacobian matrix). The disadvantage is that the definition is  


often not easy to check in practical cases, but fortunately checking is rarely necessary, because
of the standard result that follows. Its proof is an easy application of the mean-value theorem,
and I omit it.

Theorem 11.4. Suppose  is an open subset of , that  as above, and that      

the partial derivatives , , , and  exist at each point   
       . If all four partial derivatives are continuous (as functions of two real
variables) at , then  is differentiable at .              

Definition 11.5. If  is open in  and , and all the four partial derivatives      

exist at each point of  (so that each of them defines a function ) and are all   
continuous, as real-valued functions of two real variables, on , then  is said to be C  (more  

precisely, of differentiability class C ) on . More generally,  would be C  if all the th.   
partial derivatives, including all the mixed ones, were defined at all points of  and were
continuous; and C  if it were C  for all positive integers . Thus 11.4 tells us that a C  
function is differentiable at each point of .

I shall wish later to recall Green’s theorem, which applies to C  functions.

§12. Complex-differentiability.

Definition 12.1. Let  be an open set in , and . Let . Then  is         

complex-differentiable complex at  if the  difference quotient  has a limit as
    


     through complex values. The limit, when it exists, is the (complex)  derivative 

of  at . Of course  is a complex-valued function on the set of points at which  is complex-   

differentiable. As in the real case, one can write  instead of .  

Since  is open, there exists  such that  whenever . Thus the           
difference quotient exists when , and the definition is an obvious extension of the    
definition of real-differentiability: the complex derivative at  exists and its value is the
complex number  if

            
    


       

The crucial ingredient of this definition is that , like , is a field (algebraically speaking)—so 
that the “difference quotient” is defined in ,—and also has a topology (indeed a metric,
            ) which allows us to speak of limits.

Remark 12.2. Complex-differentiability has the properties you expect, and the proofs are
exactly as in the real case. Thus, if  are both complex-differentiable at , so     

are  and , and   
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,

If  is a second open set in  and , and  is complex-differentiable at        
        , then the composition  is complex-differentiable at  and
            

   .
The question that naturally arises is whether complex-differentiability is a common property

or not. So it is appropriate to begin by accumulating some easy examples.

Example 12.3. Let  be constant:  for all . Then  exists, and is         

         , for all . Indeed,  for all non-zero .

Example 12.4. If  for all , then  for all non-zero .           
So  is complex-differentiable everywhere, with derivative . 

Example 12.5. Let .          

If  and , then  too, and               
       

     
 

  
  

      

 



as ; that is, . (Notice that  is to tend to  whilst .)                

Example 12.6. Consider , where . When , 12.4 shows          
  

that  is complex-differentiable everywhere with derivative . Suppose that, for any     

and any ,  is complex-differentiable at  and . As                
 

for all , the product rule (see 12.2) gives

         

           

  
  

 

   .

Hence, by induction,  is complex-differentiable everywhere for , and . In      


other words, .    

Hence, any complex polynomial function is complex-differentiable everywhere. Of course
we have already proved much more—see 9.14; functions represented by power series are also
complex-differentiable within their radius of convergence.

Example 12.7. Consider . The difference quotient is      

     

 


(for ). However,  has no limit as . When  is real, , but when            
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is pure imaginary . There can, therefore, be no limit as  through all     
nonzero complex values.

Remark 12.8. Definition 12.1 may be expressed differently.  is complex-differentiable at  
if there is a complex number  such that    

       


    

   as .

(This is just a complicated way of saying that ). If we translate      

into the language of , with , , and so on, this is
           

             

 
 

    (56)

as .  

Writing  as a column vector,       

    
     
     



(recall the definition of multiplication of complex numbers!) and comparing the definition (55)
of differentiability of vector-valued functions of two variables discussed in 11.3 with (56), one
sees that they are identical except that the matrix in (56) has to be of a special form. We can
put this as follows:  is complex-differentiable at  if it is differentiable as a vector-valued 
function of two real variables and if at the same time its Jacobian matrix is of the form

 
 
 

. Since the entries are the partial derivatives, this condition on the Jacobian matrix

says that at     

 

 
 

 

 
  

, which is ;

, which is .
(57)

The conditions (57) are called the Cauchy-Riemann equations. They say that the Jacobian
matrix at  (a real matrix, representing a real linear mapping in ) acts as a       


complex-linear mapping in  (in effect a  complex matrix) when  is identified with      

in the usual way. So we can state:

Theorem 12.9. The function  is complex-differentiable at              

if and only if it is differentiable as a vector-valued function of two real variables at     

and satisfies the Cauchy-Riemann equations there. Furthermore, in that case

              
       

       


 . (58)

Proof. See 12.8. The derivative is , where  and , as in          
(57). 
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Complex-differentiability at a single point is not very interesting.

Definition 12.10. Let  be an open subset of , and . Say that  is      
holomorphic on  if it is complex-differentiable at each point of . (Occasionally one says   
is  when it is holomorphic on some open set containing ).holomorphic at  

    is  on  if it is holomorphic on  and the complex derivative  isstrongly holomorphic 

a continuous function on .

“Strong holomorphicity” is  a standard notion, for a very good reason. We shall seenot
that, if  is holomorphic on , it is necessarily strongly holomorphic on , but this is    not
obvious (and will not be fully proved in the lectures; I shall distribute a handout to fill the gap).
In the earliest investigations of complex analysis by Cauchy and others, the functions were
tacitly assumed to be strongly holomorphic.

The word ‘holomorphic’ is nowadays the most commonly used in connection with these
concepts, and we shall keep to it. However, its popularity is relatively recent; before about
1950, the word was usually ‘analytic’, which is still frequently used in some circles (in
particular by applied mathematicians of rather traditional interests), and before 1940 ‘regular’
was often used. (These words were not always treated as perfect synonyms. But the
distinctions between them that some authors introduced need not concern us ) The reason for
avoiding ‘analytic’ and ‘regular’ is not just fashion. They have many other meanings, whilst the
word ‘holomorphic’ is  unambiguous. There is, however, the general moral: do notfairly
assume without evidence that words used by somebody else have exactly the meanings you
expect.

Lemma 12.11.  is strongly holomorphic on  if and only if it is  on  as a vector-  C

valued function of two real variables (see ) and satisfies the Cauchy-Riemann equations 11.3
(57) at each point of .

Proof. The C  condition means that the partial derivatives exist and are continuous at each

point of . By 11.4, this means that  is differentiable at each point as a vector-valued function 
of two real variables. By 12.9,  is complex-differentiable at each point, and  is continuous 

(as  and  are).  

§13. More examples of holomorphic functions.
At 12.3–12.6 we saw that any complex polynomial function is holomorphic on the whole of ,
and that the function , for complex constant , is holomorphic except at the point .    

Using the chain rule, one deduces that any rational function , where  are        

polynomials in  (and  is not identically zero), is holomorphic on the whole complex plane 
minus the finitely many points at which  vanishes.

Example 13.1. From 12.6,  is holomorphic on . Now     

             

     

         

  

 

, where
, .
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Both  and  have continuous partial derivatives of all orders (in fact their partial derivatives of 
total order  or more are identically zero); that is, they are C  on . And  

   

 
   

   

 
   

, ,  

, .

Thus the Cauchy-Riemann equations (57) are satisfied at every point of . This demonstrates
again, this time from 12.9, that  is holomorphic, and indeed strongly holomorphic, on . 
Furthermore,

           
  ,

as at  12.6.

Example 13.2.  Define  by   

         , where

           exp cos exp sin (59)

Both  and  are evidently C  on ; that is, all their partial derivatives of any order (mixed   
or not), exist and are continuous at all points of . And

   

 
      

   

 
     

exp cos exp sin

exp sin exp cos

, , 

, .

Thus the Cauchy-Riemann equations (57) are satisfied at every point of . The function  is 
consequently holomorphic, and indeed strongly holomorphic, on . As

               exp cos sin exp cis (60)

     agrees on the real axis (that is, when ) with the usual real exponential . If, asexp
was historically the case, the exponential and trigonometrical functions had been defined ad
hoc, it would be natural to call  the (complex) exponential function.

We have cis . Also, it is easy to see that          
  exp

        .

It follows that  for any , since it has a reciprocal .    
A noteworthy property of , which the real exponential function does not prepare you for,

is that the complex function is periodic with (pure imaginary) period , since 

exp exp exp exp exp               cis .

This is roughly how the complex exponential function was originally developed. I explained
at 9.16 why it is not an entirely satisfactory procedure from the mathematical point of view,
and at 9.17 et seqq. how one can use power series to define the complex exponential,
trigonometric, and hyperbolic functions directly. 9.14 then shows that, on the power series
definition, they are everywhere strongly holomorphic.
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Example 13.3. Similarly, try now the function

         sin cosh cos sinh . (61)

Here , . They are C  on , and         sin cosh cos sinh  

 

 
     

 

 
      

cos cosh sin sinh

sin sinh cos cosh

, ,

, .

The Cauchy-Riemann equations are satisfied, and  is holomorphic on . Since, once again,  
agrees on the real axis with the real sine function, it may be called the (complex) sine function,
and written . We havesin

        



      


 sin

cos cosh sin sinh . (62)

This function is written , and clearly agrees on the real axis with the familiar cosinecos 
function for a real variable. It is easy to check, by the same means as for , that it issin
holomorphic on . (This, and other properties, are left as exercises).

Note 13.4. Although the identity  remains true for the complex functions,sin cos     
we cannot deduce that the complex-valued functions  and  are bounded (insin cos 
modulus) for all . Indeed, if ,  as . It is               sin cosh
only for real  that  and so on.    sin

Example 13.5. A like procedure may be used for the “historical” approach to the hyperbolic
functions. We define, by analogy with the real case,

cosh exp exp
cosh cos sinh sin

           

      




, (63)

from the formulæ (59), and likewise

sinh exp exp
sinh cos cosh sin

           

      




. (64)

As  and  are holomorphic on , so are their sum and difference; thus  andexp exp cosh  
sinh  are holomorphic. (We do not need to check the Cauchy-Riemann equations again). Now,
on these definitions,
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cosh cosh
cosh cos sinh sin
cosh cos sinh sin
cos

sinh sinh
sinh cos

    

      

      

 

    

 

, by (63) and (62), and

    

       

  

cosh sin
cosh sin sinh cos
sin , by (64) and (61).

(When  is real, the formulæ ,  result immediately from       cosh cos sinh sin
(63) and (64), or from (61) and (62).)

These identities explain the analogy between the real trigonometric and hyperbolic
functions; they are the same functions except for factors of , and that is why identities relating
trigonometric functions translate to similar formulæ for hyperbolic functions, with a change of
sign if  appears. Some of these identities appear in the exercises. But, of course, the

approach of 9.16 . is conceptually preferable.et seqq
Remark 13.6. In each of the above cases, we have constructed a function strongly
holomorphic on  which coincides on the real axis with a well-known function  of a real 
variable. You might wonder whether this can “always” be done (for “reasonable” functions on
the real line). We shall see later that it cannot; see 17.8.

To do it in general, we should have to find real-valued functions  and  such   
that  and  is holomorphic. If we assume  is C  (we see          

later that it must be), the Cauchy-Riemann equations ,  show that ,         

which must be C  (as  is holomorphic),  is in fact C  (and vice versa), and that   

                    , .

Thus the real-valued functions of two variables  and  both satisfy Laplace’s   
equation in two dimensions, which for a function  is

    
   

 

 

 
.

(Some people prefer to define the Laplace operator  with the opposite sign, for very good
reasons that we need not discuss here.)

Definition 13.7. Let  be an open set in . A function  is  on  if it       harmonic
is C  on  and satisfies Laplace’s equation at each point of .  

The sum of two harmonic functions is harmonic. Thus we have:

Lemma 13.8. If the real part of a holomorphic function  is  on , the    C

imaginary part must also be  on , and both the real and imaginary parts are harmonicC 
functions on . The same applies if the imaginary part of  is .  C 

This suggests that holomorphicity is not as similar to real-differentiability as its original
definition might have indicated. The obvious question is whether every harmonic C  function

on  is the real part of a suitable holomorphic function on . 
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Suppose  is a harmonic C  function on . If it is the real part of a holomorphic   
function , the Cauchy-Riemann equations must be satisfied:    

   

   
  , , at every point of .

If  is fixed, the first equation says , which is a known C         
 

 
  



function of , as  is given. We can integrate with respect to :  

            



   








  . (65)

On the other hand,

           









  


  (66)

from the second Cauchy-Riemann equation. Thus  determines  completely, except for the 
choice of ; and (65) ensures that . (A small change in  only affects     
(65)). However, it is not clear that , so all we have done so far is find a  
small class of possible solutions of the problem (differing from each other by constants); we
have not shown that any of them really is a solution. Furthermore, we have made no use of the
harmonicity of .

Recall the material from MATH 206 about integrating vector fields along paths. (I shall
have more to say about this later). In effect, we have found  by integrating the vector    

field

         

around two sides of the rectangle which has  and  as opposite vertices. The first      

side was from  to , where, as the path travels along the -axis, the integrand     

reduces to , and the second was from  to , giving the integrand . This            

path of integration may be called , and the integral of  along  may be written as . But we   
could have gone round the other way, from  to  first and then to ; call          

this path , and the corresponding integral . If we integrate along the path ‘first , and then  
the reverse of ’ (which we could write as ), the result is . But thus  is the       
integral of  round the perimeter of the rectangle. (It might be the integral either clockwise or
widdershins, depending on the values of  and , and that means there is an uncertainty of  

sign below).
Now apply Green’s theorem.  is a C  vector field on , and consequently its integral  

around the perimeter of the rectangle is equal to plus or minus the integral of its curl over the
rectangle. But

         ,

which is  by the harmonicity of . Thus  has zero integral round the rectangle, whether the  
integral is taken clockwise or anticlockwise: , . In other words, instead of       
calculating  from (65) and (66), we could use the other half-circuit of integration,    

                
 

 
  

 

 

 
 

    (67)
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and get the same answer as before. But (67) shows that . (A change in    

affects only the second integral). This proves that

Proposition 13.9. Any  harmonic function  on  is the real part of a holomorphicC  

function  on . Any two candidates for  differ only by a purely imaginary     
constant; that is, we may choose the real number  arbitrarily, but once we have done 
so  is completely fixed. 

Notice, though, that our proof worked in , not in a general open set , because we 
needed to integrate round a rectangle and to know that everything inside and on the rectangle
is in .

§14. Harmonic functions.

Example 14.1. Define , for . Then       


   

     

         
 

           

         
 

 

     

     

       

and ,

and .

So  is a harmonic function on . As it is undefined at , the proof of 13.9     

cannot be applied without change. Recall (65) and (66). We find

           
  

     
  



  


  
   


 




and, if ,  

             












 

(since  on the -axis). Thus  when , and            


   

        


   
 when  by the same argument; on either half-plane,

       is a candidate for the imaginary part  of a holomorphic function whose real
part is , and it is in fact defined everywhere except the origin. (Other candidates defined on
        would be obtained by setting  to be any real value we choose.) It
is also possible to argue likewise for the upper or lower half-planes. Since  is  
            , which is certainly holomorphic on , we need not verify
that the second Cauchy-Riemann equation is satisfied.

Definition 14.2. If  are harmonic functions on a region  of ,   is said to be   

conjugate to  on  if  is holomorphic on .     

As , it follows that  is conjugate to . 13.9 shows that any        
harmonic function on the whole of  has a conjugate on the whole of , whilst in 14.1 we  
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had an example of a harmonic function on  which also has a conjugate on   
    .

Example 14.3. Let . If ,  and .                 

Let  be a C  function of  alone (a “radially symmetric” function). Then 

      by the chain rule and, by the chain and product rules,

   

   
     

            

  

 
 



       

 
 

   

  and likewise for ;

, as .

So  will be harmonic on  if and only if . Rewriting this (it is a            
linear first-order equation in  as a function of ) as , one finds that  a            
constant, and . Thus the harmonic functions on  that depend        log 

only on  are necessarily of this form. (Again I recall that I use  to denote the  log natural
logarithm—not that it really matters here.)

For Laplace’s equation, dimension  is rather special, since no power of the radius  is 
harmonic; the reason why it is special is that  does not have an antiderivative which is a

power of . In dimension , the same argument shows that  is a solution of    

Laplace’s equation on  (the so-called ).   fundamental solution

Example 14.4. The function log  is now harmonic on . Let us try to find     

a conjugate harmonic function . It must satisfy

(i) (ii)
     

         
       

   
   

Holding  constant non-zero and integrating , we obtain (ii)

        tan  ;

substituting back in , . Thus in fact  must be (for ) ,(i)   
        tan

for some constant . For , it is , for some constant . On each         
tan

of the left and right half-planes,  differs by a constant from the polar coordinate . 
For , equation integrates to ; and, on the lower         (i)  tan



half-plane ( ), . However, when  and  are both non-            tan


zero, . So, again,  differs from  by a constant on the lowertan tan  
      

half-plane.

Note 14.5. Thus, if we let  denote the principal argument of  and  its modulus, the  
function  is holomorphic on the right half-plane, on the upper half-plane,    log 
and on the lower half-plane; but on the non-positive real axis  is discontinuous; it jumps from
   to  as  moves on to the axis from just below.

Example 14.6. Applying (60) of 13.2, with , cis ,        

exp exp log        cis cis (68) 

whilst, conversely,
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exp log exp exp
exp

Arg
log Arg cis . (69)

So , defined except at , is a function inverse to . Since  can never be ,     exp exp
as we remarked at 13.2, it is not surprising that the inverse function is not defined at . It is
natural to call  the  of the logarithm; ‘logarithm’, because it extends the principal value
ordinary logarithmic function (defined only for positive real numbers) and is an inverse to the
exponential, and ‘principal’ because it involves the principal value of the argument. It may be
written as Log  (or Ln ). I emphasize again that it is holomorphic only on the plane minus the
nonpositive real axis.
Remark 14.7. There are other inverses to the exponential function. For instance, given any
integer , Log  is also inverse to , by essentially the same calculation as at (68)    exp
and (69). One could also take any ray from the origin (with polar equation ) and set  

log log            , where  is that argument of  which takes values in
             . By this choice,  is discontinuous at the points of the ray  insteadlog
of the points of the negative real axis. The nature of the discontinuities is the same, however;
as one leaves the ray anticlockwise,  instantly jumps by . A minor adjustmentlog   
would be to choose  to take values in  instead, and then the jump would         

occur on arriving at the ray rather than on leaving it. Still more generally, one could do
something similar with any curve which goes steadily outwards from the origin (for instance a
spiral) and ‘cuts the plane’ so that one cannot go round the origin without crossing the curve.

The important thing is that there is no harmonic function conjugate to  and defined onlog 
the  of ; it must “jump” somewhere (and so be discontinuous). Thewhole    
argument just given is already in principle a messy proof of this statement, and there will be a
far snappier one soon. The thing that goes wrong, in any case, is that it is impossible to choose
an argument continuously for all 0 . Any attempt at such a choice fails because it leads 
inevitably to an increase of  after a circuit of the origin. On the other hand, there is a
harmonic function conjugate to  on any region in which it is impossible to encircle thelog 
origin—because such a choice of argument is then possible. But that has not yet been proved.

Definition 14.8. Let  be a region in , and  a holomorphic function such that     
exp         for all . Then  is called a  in .branch of the logarithm

So, if  is harmonic, where  is a region in , there may or may not be a    

conjugate harmonic function defined on . When  is the whole of , there always is, by  

13.9, but 14.4 shows that there exist functions  and regions  for which a conjugate function 
does not exist on the whole of . A specific such region is the ‘punctured plane’ , and  
a specific such function is .log 

The argument of 13.9 depended only on integrating around the perimeter and over the
interior of certain rectangles. It will work without alteration for any region , provided that
there is some fixed point  of  such that, for any other point  of , the whole            

rectangle with corners , , ,  lies inside  (together with its                       

interior). This will be true if  is a circular disk, and for some other simple figures like
coordinate rectangles. So we can say, for instance,

Theorem 14.9. Let  be a circular disk in . Then any harmonic function  defined on   

has a conjugate harmonic function  also defined on , and this conjugate function is unique 
except for the possible addition of a constant. 
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Thus any harmonic function  on a region  has a conjugate harmonic function ‘locally’— 
for any point , there is a conjugate harmonic function to  defined on a neighbourhood   
of . (Any disk included in  and containing  would do).  

Remark 14.10.  Let  have partial derivatives       

     

     
       

Then we can define the “formal derivatives”

           
       

       
   

    and  are in principle  numbers, so that  and  are not, in general,complex
conjugate to each other. The Cauchy-Riemann equations are exactly equivalent to ,  

and if they are satisfied then . In this symbolic sense,  can         

indeed be thought of as the “partial derivative with respect to ” and  as the “partial 
derivative with respect to ”, but, of course, these phrases lack a literal meaning, since  and   
are not independent variables.

Let  be harmonic. A second way of associating a holomorphic function with   
, instead of trying to find a conjugate harmonic function, is to take

     
  

  
  .

Since  is harmonic, it is easy to check that  satisfies the Cauchy-Riemann equations     
and so is holomorphic on .  is always holomorphic if  is harmonic, but  may not have a   
harmonic conjugate. Indeed,  has a complex antiderivative if and only if  has a harmonic 
conjugate. Suppose that

       

were a complex antiderivative of ; then  would be holomorphic, with (recall (58)) 
           

  , ; thus  would differ from  by a
constant, and  would be a harmonic function conjugate to . So the search for complex 
antiderivatives of  is essentially the same as the search for harmonic conjugates of . 

§15. Complex integration.
Since a complex-valued function of a complex variable  is a pair of real-valued    
functions of two real variables, one could integrate each of  and  with respect to two- 
dimensional area, taking double integrals as in 206. This idea is interesting for some purposes,
but it cannot be closely related to the idea of complex differentiation, since it makes no use of
the complex numbers as such. The most useful way to integrate , which leads to the amazing
results I mentioned at the outset, is along ‘contours’. In effect, our integrals will be taken over
one-dimensional objects in .

Definition 15.1. Let  be a path in  (recall 11.1), where . We say that        
  is C  (continuously differentiable) on a subinterval  of  if its both its real part 

   
and its imaginary part  are C  on . (Recall from 7.1 what this means.) Then  is 
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piecewise C  on  if there exist points  such that
               

               

and  are both C  on each of the subintervals  for .    
         

Notice that, at the subdivision points ,  and  have both left and right       
derivatives, but these one-sided derivatives are not necessarily equal. We take  to mean
  
      (and likewise for the one-sided derivatives).

A piecewise C  path may be called a . contour

Definition 15.2. Suppose that  is a region in ,  is a C  path, and       

      is a continuous function. We shall define the integral of  along , .  As I


said above,  is a ‘one-dimensional’ object; we are not talking about the integral of  over a 
two-dimensional region. The definition is concisely stated as

 


     



  . (70)

This formula requires explanation. For , , , and .               

Multiply these complex numbers: let . Both  and    are          

continuous on , so their product  is a continuous complex-valued function of . Hence,   
the right-hand side of (70) is the integral of a complex-valued continuous function  of the real
variable .

Such an integral is conveniently defined by separating its real and imaginary parts:

  
  

  

         .

Thus, if  as usual, and , the memorable and convenient             

formula (70) is interpreted as meaning a more complicated expression in terms of  ‘ordinary’
Riemann integrals of continuous real-valued functions of a real variable:

 





           

           





    
 





    
 

     

      .
(71)

Notice also that  does not “depend on the parametrization of ”, in the following
  

sense. If  in  and  is C  (as a mapping into ; thus it has a right          

derivative at  and a left derivative at , and so on) and , , then        
  

    is a C  path parametrized by , and

 
 

 

 
             

This follows directly from the usual formula for change of variable in the integral of a real-
valued function of a real variable, by way of (71) [check this]. But it means that, vaguely
speaking, it is the “picture of ” that matters—the direction it is traversed in and the “track” it
leaves, rather than the rate at which we travel along it.
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Remark 15.3. If  and  are paths, and if , they           
may be concatenated to give a path . This idea has already been used, in a    
casual way, in the proof of 13.9. We define  to be  when , and        
when ;  is then clearly continuous (because ), and is the path        
which ‘goes first along  and then along ’. 

   is only defined when the end of  coincides with the beginning of . On the other
hand, concatenation is “associative as far as possible”, in the sense that, if  and  are 
both defined, then so are  and , and they are equal. A multiple concatenation 
such as  will make unambiguous sense without brackets, provided that the binary      

concatenations  are all defined.            

Unfortunately,  will not usually be C  when  and  both are, for  (a left     

derivative) and  (a right derivative) need not agree. This is why we introduced   piecewise
C  paths. The concatenation of two C  paths is piecewise C , and the concatenation of two  

contours is always a contour.

Definition 15.4. Suppose that  is a region in , that  is a contour in , and that  
     is continuous. Then  may be defined as follows.



Choose C  paths  so that
       

       ,

which is certainly possible, by the definition of a contour. Now set tentatively

 


  






. (72)

This is not at first a legitimate definition, because it depends on the choice of .       

But if piecewise C  paths  are also such that , then there is a
              

third way of splitting  (by taking all the subdivision points of its domain  that appeared  
as end-points of subintervals that were domains of any  or ), and the integrals  and    






   are sums of the integrals over these smaller subintervals of ; it follows that

  
 

 

  

   

The choices involved in (72) do not, therefore, affect the proposed value of . The formulæ


(70) and (71) may, in fact, still be used to define , but they now involve—if we continue



to use the Riemann integral—“formally improper” integrals, because there may be points (only
finitely many, however) at which  (the  derivative at ) is undefined. (This two-sided
problem vanishes if we use the Henstock integral.) I take this for granted henceforth.

A contour  is described as  if . (Compare 11.1).         closed

Remark 15.5. The contour integrals just defined have reasonable properties. Specifically, if 
is a contour in the region , and  and  are both continuous on , then   
    
                 and  for any complex constant . Also, when the

contours  and  may be concatenated, .   
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Recall that, if  is a real-valued function of a real variable  for , there is the      

‘fundamental estimate’ for its integral, , provided that the integrals    
 
 
    

exist.

Lemma 15.6. Suppose that  is continuous on the region  and   
      is a contour. Then

  


      



  . (73)

Proof. Choose an argument  for .  Then 
 

   
  

       exp exp  by 15.5.

Write , so that  is real and non-negative. In (71), only the           exp  


real part of the integral of  can survive:

  

 



             

            





      
 

 

 

 
 

     

     

(since, for any complex number , )   

      



 

This completes the proof. 

Note again that the integral on the right-hand side of (73) is, strictly speaking, an improper
Riemann integral, since  may be undefined at certain points of . But the impropriety  
is of the simplest possible kind.
Remark 15.7. The integral

  
 

 


 
             

(this too exists as an improper Riemann integral) defines the length of the contour in the usual
geometrical sense in . Call this length . If the modulus of  is bounded by  on the   
contour (that is,  for ), then 15.6 tells us        

 


   . (74)

In words: the modulus of the integral of  along a contour cannot exceed the product of the
length of the contour and the supremum of the modulus of  on the contour. This is a useful
estimate, but 15.6  can potentially yield more information.
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Note 15.8. The contour integral  is more usually written , and the right-hand 
   

side of (73) is correspondingly denoted . This notation derives from a second
  

sort of contour integral along  of a continuous complex-valued function . This is the 
‘unoriented contour integral’ or ‘integral with respect to contour length’, written .

  

It is defined as , with the usual conventions about subdivision points and

      

real and imaginary parts. We shall not use it except as a convenient notation. (In (73), the
integrand “ ” was in fact , which is real-valued.) 

Example 15.9.  Suppose that  is a function strongly holomorphic in a region , and let(a)  
      be a continuously differentiable path. Then the complex derivative  is

continuous on , so that  is defined. But, by the definition (70), 




  


               

 

 

  

(the chain rule holds for complex-valued functions of a complex variable!)

                 

If , the integral is by definition , where both               
 
  

integrands are continuous, so it is

              

Thus, the integral of the complex derivative of a strongly holomorphic function along a
continuously differentiable path is just the difference in the values of the function at the ends.
For the integral along a contour, as defined at 15.4, the same holds (by addition). This is
precisely analogous to the situation for real-valued functions of a real variable:





      

if  is C  on . However, contours are defined in two dimensions. There will be many  

contours in  that start at  and end at , and the integral will be the same,   
      , over every one; only the ends matter.

  In particular, the integral of the complex derivative of a strongly holomorphic(b)
function over a  contour must be .closed 

Example 15.10. Take the function , which is strongly holomorphic on ,    
and the closed contour  defined by        

       exp cos sin (recall (60)).

As  goes from  to ,  travels widdershins round the unit circle , starting         
and finishing at . We have











          

       




exp sin cos

exp
exp

Thus,

. (75) 
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It must be emphasized that this is just a calculation from the definition; there is no mystery
about it. But it enables us to give an easy and convincing proof of the fact we found in 14.7,
that there can be no branch of the logarithm defined on the whole of .  

If  were a holomorphic function on  such that , then, by the      exp
chain rule, , ; thus  would be a complex derivative of the          exp
holomorphic function , which would in fact be strongly holomorphic, as  is continuous on 
    . By 15.9, the integral of  round the closed contour  would be . It is not, by
(75), so there can be no holomorphic function ; that is, there is no holomorphic branch of
the logarithm on . [In its essence this is the same proof as before, the difference being  
that integrating around a circle is much easier.]

Example 15.11. If we ask for the integral of  round a  of the unit circle, such as segment
the contour  for , the only alteration in 15.10 is that the limits of       exp  

integration in (75) become  and  (instead of  and ). The integral is therefore     
     .

Example 15.12. Let us study the integral of , which is holomorphic on 


  
               , around the circle  for . I must assume that , exp
since otherwise  does not map into . The integral can be evaluated directly by   
elementary methods, but the details are rather painful (they are rather like 14.4), and it is easier
and more informative to proceed as follows.

Suppose firstly that , and define  for .                 


Then, for each such ,

  




is defined, because  (which ensures that  maps into , on which  is       

holomorphic). But, for such values of ,

 
  

   



 exp
exp

.

Here  appears as a parameter in the integral. Now I am going to cheat, by taking for granted
what is in fact true but has not been proved, that  may be differentiated with respect to the
parameter  and that

   
  

    

   
  

   











 

  

 







exp
exp

exp
exp

,

where . (This procedure is called ‘differentiating under the integral sign’,     


which is a particular case of interchanging a limit with an integration; see 6.9. It is not always
correct, and there are various theorems about its applicability. In particular, it suffices to know
that the derivative with respect to the parameter  is continuous as a function of .) The  
effect of this calculation—which is valid in this case—is that
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However, the last integral vanishes by 15.9, since  is a closed contour and  is
  

the complex derivative with respect to  of . It follows that  does not    

change with , for , and therefore that     

 
  

 

   
        , by 15.10.

The condition  says that the circle  goes round .   
Next, suppose that . Now the point  lies outside the circle . As before,  is    

defined for , because then  maps into a region where  is holomorphic; and, as in    

the previous case, , so that  is constant for all . But now       

 
  

 

     
     . (76)

For  and ,       

              ,

by the triangle inequality (10.7 ). The length of  is . Thus, by the fundamental(d)    
estimate (74) and (76), I have, for any ,  

    
  

   

        
      


as .

Hence,  (otherwise the inequality fails for large enough ).




  
  

The conclusion is that  when  lies outside the circle traced out by ,




  
   

whilst  if  lies inside the circle.




  
   

If  lies  the circle , the integrand is undefined at .  on 
Now suppose that  for , so that  goes  round the circle          exp twice

of radius . The arguments are essentially unchanged, and we find in this case that the integral
is  if  is within the circle and (again)  if it is outside.   

Example 15.13. Lastly, consider the integral around the same  of the function

    
  

        

It is necessary to assume that , since  is undefined at  and at . We have, by 15.5,     

  
    

  
 

     
,
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and, by 15.12, both these integrals are zero when . (Then both  and 1 lie outside the   
circle). On the other hand, if , the circle encloses both 1 and , and   

 

  

 

  

 

  

  ,

  , .

 

     
    

 

     
      





It is of course possible to integrate round an anticlockwise circle which encloses (say)  but
not ; then the integral will take the value ; or round an anticlockwise circle enclosing    
but not , when the integral is .  

The use of circular contours in each of these examples is peculiarly convenient because
  cancels with the denominator of , but it is also possible to carry out explicit
computations with some other figures. There will be some exercises on this. However, in
practice it is rarely necessary to resort to lengthy direct calculation, as we shall see.

Remark 15.14. Let  be a  contour, and suppose that      closed
         is continuous. Given , there is another closed contour
        , defined as follows.

If , ;
If , .

        
          

 






The effect is that  parametrizes the same loop as , and in the same direction, but it starts 

and ends at  instead of . This might be called              

‘cyclic reparametrization’. The easiest way to visualize it is by wrapping the interval
     once round a circle , so that the points of the circle corresponding to  and to
    coincide;  then determines a mapping of  into , and  describes the same 
mapping, but begins the description at a different point.

The significance of the reparametrization  of the closed contour is that .  
   



This is a trivial consequence of the definitions: the integral round  is the sum of the integral
over parameter values from  to  (which is equal to the -integral over parameter values  
from  to ) and the integral over parameter values from  to  (equal to the      
-integral for the same range of parameter values).

The parametrization of the circle is immaterial, because of the formula for change of
variable in an integral in dimension . It is important only that  goes round the loop the 
required number of times in the positive sense, i.e. anticlockwise. In 15.10, for instance, we
could take  instead. If the sense is reversed, the sign of the integral is reversedexp    
too. In intuitive terms, the integral is a ‘function of the directed circle’ only—that is, of the
circle counted in the right direction and the right number of times. This is the justification of
the notation  already introduced, in which the actual ‘parameter of integration’ 

   

does not appear at all, and of another, , in which  denotes the ‘oriented curve’
   

(curve with a sense) traced out by . Occasionally  is used to mean ‘  with reversed  
sense’, and then . It is sometimes convenient to use the notation 

      

    even in cases where  is not a single curve, to mean the sum of the integrals over

several curves making up a figure . In the same spirit, we shall sometimes use such phrases as
‘the points of the contour ’, meaning in more rigorous language the values taken by . It is 
not entirely easy to justify these verbal and notational usages, but I hope that they will seem
natural in context.
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§16. Cauchy’s theorem.
The subject of this section is the most fundamental theorem of complex analysis, and leads
rather quickly to the startling results I mentioned earlier. As with some other very basic
results—for example the fundamental theorem of calculus—it is very easy to state Cauchy’s
theorem imprecisely, but rather difficult to formulate it in a way that accurately describes the
various situations in which it is true. For this reason, you will find several different versions in
textbooks. I shall take the course of presenting Cauchy’s original version, and then discussing
informally how it may be improved.

Definition 16.1. Let  be a subset of . The frontier of  in , which we may write as  
Fr , is the set of points  such that, for any , there is a point of  and there is a      
point of  which are both within distance  of : 

              

[That is,  is an adherent point of both  and its complement, or is a point of the closure both 
of  and of its complement; cf. 21.1.]

When  is a “simple geometrical figure”, the frontier of a set, as thus defined, is precisely
what one would expect; for example, the frontier of the circular disk  is the       

circle .       

Definition 16.2. A contour  (this means, by 15.4, that  is piecewise C ) is a      

Jordan contour if it is closed (that is, if ) and if  only when either           

               or . (If  is wrapped round a circle  and  is regarded as a 
mapping , as in 15.14, then  is Jordan if it is one-to-one as that mapping .    
In visual language, a Jordan contour is a deformed circle).

Theorem 16.3. ( .) Cauchy’s Theorem, Cauchy’s version Let  be strongly   
holomorphic, and let  be a Jordan contour such that  is the frontier       
of a region  included in . Then .    



Compare 15.9 . What is true for  closed contour and the derivative of a strongly(b) any
holomorphic function is also true for a Jordan contour and a function that is strongly
holomorphic on a region including both the contour and the region “inside” it. The function
may be more general, provided that the geometrical condition is stronger.
Remark 16.4. According to Green’s theorem, if  is a C  vector field defined on an open set 

    in , and  is a Jordan contour whose image is the frontier of a region    

    , so oriented that  always lies to the left of  (this is saying that  has a piecewise
C  boundary, and that  traverses it anticlockwise), then 

 


         



curl

(  here indicates the integral with respect to area). For this purpose curl  is regarded  
as a scalar (in three dimensions it would be a vector perpendicular to the -plane, with its 
sense determined by a ‘handedness rule’). The assertion of the theorem again shows that the
parametrization of  is irrelevant, and for this reason it is often expressed as
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.

Here  is the ‘positively oriented boundary of ’, where  always lies to the left as one  
traverses the boundary; that is, one goes around  anticlockwise. Once a piecewise C 

parametrization   of the boundary is fixed, the left-hand side means     






 
 
              . (77)

This integral, of course, is calculated in the ‘piecewise’ sense, as in 15.4; it is the sum of
integrals over subintervals on each of which  is continuous—one takes the left derivative
at the right-hand end, etc. Now compare (77) with (71). Both the real and imaginary parts of

   can be put in the form of integrals of vector fields along :

 





           

           





  
 





  
 

   

    ,

if  is the real part of , and  its imaginary                  

part. By Green’s theorem, therefore,

     


         
   

    

(writing the integral “with respect to area” as a repeated integral). The two Cauchy-Riemann
equations show the two integrals to be . This establishes Cauchy’s theorem when  is 
strongly holomorphic on . Notice that  has to be C  as a function of two variables to ensure  

the validity of Green’s theorem; once the contour integral has been transformed to an integral
over , the Cauchy-Riemann equations are all that is needed.

Note 16.5. Cauchy’s theorem and its proof via Green’s theorem, as just given, are due to
Cauchy himself. There are reasons, explained at length in §D1 of Appendix D, for some dis-
satisfaction with it, and I shall now explain in merely intuitive terms the more satisfactory
version that I shall assume for the rest of the course. We could easily make do with 16.3,
provided that we assumed some “obvious” facts of plane topology, considered only strongly
holomorphic functions, and repeatedly exploited some rather tedious geometrical tricks.

Definition 16.6. Suppose  is a closed path, and  is not a value of .        
The  of  with respect to , or the  of  about , written , is theindex winding number      
total number of times , , goes round  in the positive (anticlockwise) direction.      
As in 15.14, this does not depend on the parametrization of . Thus, if  is a circle with centre 
           described once anticlockwise, ; if it is described once clockwise, . 
If it goes round once clockwise, then twice anticlockwise, then once clockwise, . I    
take it for granted that we can determine  in all the cases we shall need. (They will all  
be very simple).

If ,   about ; otherwise,  .       does not wind winds about 
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Remark 16.7. Winding numbers have the property

                 

whenever the statement makes sense, i.e. whenever  have the same beginning and  
finishing points (so that  is defined and closed) and  is not a value of either. In   
particular, if  for all , then .              

Definition 16.8. Let  be a region in , and  a closed path in . We say that  is     homo-
logous to zero nullhomologous in  or  in  if, for any , ; that is, if            
does not wind about any point  .outside 

This depends on the “position” of  in  and the position of  in .  

Theorem 16.9. (Cauchy’s theorem, first “topological” version). Let  be a region in , 
and  a holomorphic function. Then  for any closed contour      



      which is nullhomologous in . 

Example 16.10. If , there are no points outside ; consequently, any closed contour   
is nullhomologous in , and any function holomorphic on the whole of  has zero integral 
round any closed contour.

The formula  defines a function  that is holomorphic    
  

        

on . It is easy to construct a contour  (  a Jordan contour, for it must       not
cross itself) that has winding number  about both  and . Then  is nullhomologous in   

 


  
, and the integral of  around  must be .




A circle about the origin of radius greater than  winds once about  and once about .  

As in 15.13,  has integral  around such a           
 

     
    

circle.

Remark 16.11. The topological version 16.9 of Cauchy’s theorem can be further generalized,
following the hint in 15.14. Suppose that, instead of a single closed contour  (corresponding
to an ‘oriented closed curve’ ), we have a ‘closed chain ’ (usually called a ) consisting  cycle
of several oriented closed curves , not necessarily all different—that is, we are     

allowed to repeat them (finitely often) if we wish. Here each  can be parametrized as a

closed contour . Provided that the point  is not on any of the , we can define    
               to be . Then we say that  is nullhomologous in  if  for






all . The generalization of 16.9 is that, if  is holomorphic on  and  is     
nullhomologous in , then

 
 

    






.

I sketch below the proof (from 16.9) of the particular case of this result where  consists of
two closed contours  and . Essentially the same argument gives the general case, but the  

particular case will be used repeatedly.
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Theorem 16.12. Suppose  is a region of  and  is holomorphic. Let  and      
     be closed contours in  such that  for all . Then          

 
  

   .

Proof. Since reparametrizations do not affect the integrals (see 15.2; but the repara-
metrizations here may be very inoffensive), I may assume that  and     
               . Since  is connected, there is a contour  joining 

to : that is,  and . Then , where– –                           
    – – is  reversed and reparametrized ( ) and likewise          
   – – is defined by , is also a closed contour in . Its winding           

number  about any point  not on itself is , because the             

contributions of  and  to the winding about  cancel out. Hence  is nullhomologous in–    
 , so by 16.9




   . 

On the other hand, it is clear that

    
    

       = ,
   

and the result follows. 

Remark 16.13. Two cycles in  that have the same winding numbers about any point not in
  are described as homologous (to each other) in ; thus, we have in effect shown that the
integral of  is the same around either of two closed contours that are homologous in . 

§17. Consequences of Cauchy’s theorem.

Theorem 17.1. (The Cauchy integral theorem). Let  be holomorphic on the   
region , and let  be a closed contour homologous to  in . Then, for any       
    which is not on ,

  
  

    






.

Proof. Suppose . Choose  so small that . Given any          
                             , let  for . If , exp

because  is nullhomologous in , and  as . (A sketch will make            
this clear). But  by the very construction of . Hence  and                  
have the same winding numbers about any point not in . (Such a point is either not in  
 , or is  itself).
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Now take , which is not defined at , but is clearly holomorphic on  


  
        . Applying 16.12 to  and to  in the places of  and ,

 

 

  

   

   

     


  
   

     

 

   

.
(78)

Here, however,

 
 

 

  

    

   
       




 

exp
exp

(79)

(the calculation, directly from the definition of the contour integral, is essentially the same as at
15.10). This is true for all values of , so (78) tells us that   

 
  

    

     
     

 
. (80) 

 

Now,  is complex-differentiable at :  as . Hence, there       
  

  


is some real number , ,  such that     

           
  

  

  

  
      

   

   









The length of  is . So, by the fundamental estimate (74),        

       
  

   
  

(81)

whenever . According to (80), the expression inside the modulus sign is   




 

  
     ,

which is independent of , but the right-hand side of (81) may be made arbitrarily small by
suitable choice of . Hence, necessarily


  

  

  
      whenever .

(Indeed, if , take , and (81) becomes false. So               min 


by contradiction). The Theorem now follows from (80).
If , one need only change the definition of  to       

                 exp for  

and the proof is otherwise unaltered. 
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Theorem 17.2. Suppose  is a cycle nullhomologous in , and  (that is,  is not a    
value of any of the contours that appear with nonzero coefficient in ). Then

  
  

    






.

Proof. This follows from 16.11, as 17.1 comes from 16.12. 

Remark 17.3. The most important case of 17.1 is when  is a Jordan contour in  which is 
the frontier in , described anticlockwise, of a region  itself wholly included in ; these were  
the hypotheses of 16.3. It is intuitively clear that  then consists exactly of the points whose
index with respect to  is . (This is, indeed, how Eilenberg’s proof of the Jordan curve 
theorem proceeds; see Ahlfors.) Then, for any ,  17.1 gives  

 
  

    



.

This is Cauchy’s integral formula as he gave it. It applies, for instance, if  is a circle small
enough for its inside to be wholly within .

Remark 17.4. The Cauchy integral formula expresses the value of  at any point  as   
an integral involving the values of  on the boundary contour . For  continuous function  any
     Fr , we can define  by the formula 

       


 , for any , (82)

where . The expression on the right of (82) is analogous to


  


   
multiplication of a vector  (with “coordinates”  for the various ) by a “matrix” ,     
with integration in the place of summation.  has continuous families of “rows” 
(indexed by ) and “columns” (indexed by ). Thus the function  may be     
thought of as obtained by applying a linear operator or matrix  to , where , defined by the  
integral on the right-hand side of (82), is called an ‘integral operator  with kernel ’. (This 
use of the word ‘kernel’ is quite distinct from, and older than, its usual meaning in algebra; it is
unfortunately too late now to clear up the ambiguity).

The kernel  here, , is the “Cauchy kernel”; and Cauchy’s integral theorem    
says that, for the given holomorphic function , Fr . In this way,       
the values of  on the frontier of  completely determine its values in . For example, if you  
know  on a circle nullhomologous in —the frontier of a closed disk included in —its  
behaviour on the whole disk is completely prescribed. This is only one aspect of what we might
call the ‘rigidity’ of holomorphic functions. In general, they are fixed by surprisingly sparse
data.

Proposition 17.5. Again let  be an open set in , and  a Jordan curve in  whose image  
is the frontier of a region . Suppose that  is continuous, let ,       Fr  
and define  by    
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for all . (83)

Then  is holomorphic on , and, for each ,     

      
 . (84)

Proof. Fix , and suppose that  is so small that  too. Then        

      



 
   

         


          

          

 

 

 

 

  










.

However, by the binomial theorem,

            

       

  




  ,

so there is a polynomial in two variables  such that    

                  

          



           

         




    

 
 

 

 

 



















    

 


      

         







 
.

As , each integrand here has a limit:  

   

              


     

         
 

 

 

 



,

.

It is natural to suppose that the integrals tend to the integrals of the corresponding limits; and
this follows quite rigorously, if one checks that the convergence of the integrands is uniform
for Fr   so that 6.9 applies. (I omit the details, which are tedious rather than hard; you  
should be able to supply them.) Consequently,

         

     
   

 





as . (85)

So  exists for , and is given by the stated formula.     
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The statement (85) is another instance of ‘differentiation under the integral sign’, as at
15.12. As there, a detailed proof may be obtained by an appeal to 6.9.

Corollary 17.6. Let  be a positive integer. Then , as defined at , is complex-    (83)
differentiable  times at , and 

   
        

    








. (86) 

Proof. Apply 17.5, specifically (84), inductively. 

We obtain the quite amazing corollary:

Theorem 17.7. Let  be an open set in , and suppose that  is holomorphic.     
Then  has complex derivatives of all orders at every point of . 

Proof. Take any point  in , and  such that . Then, if ,               
let  for . This is a Jordan contour in  which goes round             exp
the frontier of . So we can apply the Cauchy integral formula: for any ,        

   
  

    



, (87)

where Fr . But now, 17.6, with  and any , tells us that, for           
any , the th complex derivative of  at  exists and is given by the formula     

   
  

    






, (88

which proves the Theorem. 

Remark 17.8. The existence of the  derivative  at any  is precisely thefirst     

hypothesis that  is holomorphic on . But the formula (88) for  is new; for general , it    

is called Cauchy’s formula for the derivatives. Notice that Cauchy’s version of the Theorem
assumed that  is strongly holomorphic (to apply Green’s Theorem), but that is unnecessary
(see Appendix D, and in particular D2.1, which is the crucial substitute for Green’s Theorem).

We have now proved, from the stronger version of Cauchy’s Theorem in Appendix D, that,
if the complex derivative of  exists at every point of an open set , all the higher-order 
complex derivatives of  exist at every point of . A holomorphic function is strongly 
holomorphic, since its first complex derivative, being itself complex-differentiable, is
continuous; its derivative is itself holomorphic; and so on. I called this an amazing fact, since
nothing similar is true for real-valued functions of a real variable.

For a simple example, start from the function

 
       


for ,
elsewhere.

This function is continuous everywhere, but not differentiable at  and at , where the  
graph has ‘corners’. If  is an indefinite integral of ,  is once differentiable everywhere, but  
not twice differentiable at  or .  
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There is a famous class of examples (invented by Weierstrass) of functions continuous
everywhere on  but differentiable nowhere. There are even significant senses in which it can
be said that ‘nearly all’ continuous functions are nowhere differentiable. The indefinite integral
of any such function will be differentiable everywhere, with continuous derivative, but will be
nowhere twice differentiable.

There is an apparent paradox here. A function  which is everywhere complex- 
differentiable is everywhere twice complex-differentiable, but a function  which is 
everywhere real-differentiable need not be twice real-differentiable anywhere. The resolution of
the paradox is that some real-differentiable functions  cannot be extended to any 
complex-valued complex-differentiable function on any open set  in  including .  

For a function of a real variable, there is a second related property that contrasts with the
behaviour of holomorphic functions. Even if the real-valued function is differentiable to all
orders everywhere on , the sequence of its derivatives at a specific point  is quite arbitrary, 
as I mentioned before 7.10. Given  sequence  of real numbers, there is a C  functionany  



         such that  for all . (This theorem of Denjoy is messy rather than


profound, and it has long been superseded by famous but more difficult theorems of Whitney,
my mathematical grandfather). The sequence  can increase as rapidly as we like; one 
might take , or . However, for holomorphic functions the       

exp exp exp
successive (complex) derivatives at a fixed point cannot increase too rapidly because of the
Cauchy estimates.

Lemma 17.9. Suppose in  that the length of the contour  is , and that 17.5     
and  for every point  on . Then, for ,            

   
     

   





. (89)

Proof. Apply the fundamental estimate (74) to the integral (86). [The formula (89) does make
sense, as .]   

Theorem 17.10. (The Cauchy estimates). Let  and , and suppose that  is     
defined and holomorphic on the disk  and that  for           
       . Then, for ,

     . (90)

Proof. Let ; 17.9 applies with , Fr . On ,           exp
          , and the length  of  is . So, by (89) with , 

    
  


 

 


 .

Since this is true for any  such that , it must be the case that    

     .

(If this ‘limiting case’ were false, , it would be possible to choose    

        so close to  that ).  
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Remark 17.11.  Let  be a function holomorphic on an open set  containing . Let(a)   
                  be such that  (cf. 9.11 ). This set is  (a)

(sequentially) compact by 3.11. By 5.9,  is also sequentially compact, so it is 

bounded in :  for all  and some . (Here                   

depends on .)

  For that  and , the sequence of derivatives of  at  satisfies(b)      

inequalities of the form (90). The derivatives cannot increase too rapidly with ; we cannot, for
example, have . In particular,    exp

       

 
          


 





for 2 .  

  If ,  is a geometric series with common ratio(c)       
  


 




  

less than 1, and, therefore, converges (cf. 4.8)  The Taylor series    
 







converges (absolutely) by the comparison test (and 4.13). Thus: if  is holomorphic on  and 
           , the Taylor series of  about  converges for . If, in fact, the

open disk  (for instance, if  is exactly , or if  is the distance from     
  to the nearest point at which  is undefined or is not complex-differentiable), the above
reasoning works for any , so that the Taylor series converges for any  

            (given , take  so that ).  
This contrasts with the situation for real-valued C  functions of a real variable, whose

Taylor series at a point need not converge (as is clear from Denjoy’s theorem, mentioned in
17.8, which says that the Taylor coefficients at a point may be anything at all). , theHowever
sum of the Taylor series of  about  has not yet been shown to be ; see 18.11.  

This rather tough section will end with an interesting and easy “digression”. Liouville’s
theorem, one of three famous results to his name, in three widely divergent branches of
mathematics—apart  from this, in mechanics and in number theory—, was actually discovered
by Cauchy, and Liouville simply included it in some lectures a couple of years later; such are
the vagaries of fame. It has many important applications, but for us its immediate interest is to
give a proof of the Fundamental Theorem of Algebra.

Theorem 17.12. ( ). Liouville’s theorem Suppose  is holomorphic and   
bounded; that is,  for all , for some . Then  is constant.        

Proof. Fix ; apply 17.10 to . We find that  

     .

But  may be as large as we like, whilst  is given once and for all. So the only possibility is 
that . As this must be true for all ,  is identically . Not surprisingly, it        
follows that  is constant. For instance, taking  to be the contour  for ,         

      




for any choice of , by 15.9 .   (a) 

There are other proofs—one is in the corresponding assignment.



114

Theorem 17.13. ( ). The Fundamental Theorem of Algebra Any complex polynomial of
degree greater than  has at least one complex root.

Proof. Suppose the polynomial is

           
,

where  and  (this is what it means to “have degree greater than ”). Assume, if      

possible, that  has no complex root. As a function of the complex variable ,  is holomorphic  
(by 12.3–12.6) and  for all  by hypothesis. Hence  is holomorphic on     
all of  (by 12.5 and 12.2). But, if ,   

          

          

  


  
 

which tends to  as , since the  term dominates (you should invent a genuine    

proof for this). Thus  is holomorphic on  and tends to  as ; it is therefore    
bounded on the whole of , and Liouville’s theorem tells us that it is constant. Furthermore,
the constant must obviously be . This is absurd, as  cannot take the value .   

Another contradiction is available: if  is constant, so is . But, if  is a constant  
function (takes only the one value), it must be a polynomial of degree  (why? This requires a
little thought!), which is contrary to our assumptions.
Remark 17.14. There are many other proofs of the Fundamental Theorem of Algebra, some
of which may require less preparation in total—for we have used a lot of analysis—and some
of which allow useful generalization. D’Alembert presented a proof of sorts in 1746, and Euler
suggested an “algebraic” proof  (using, however, the non-“algebraic” facts that  is an ordered
field and that real polynomials of odd degree have a real root) in 1749, and these proofs  were
legitimized by later mathematicians. It is often said that the first  proof was due tosatisfactory
Gauss (around 1799), before complex analysis as such existed. In fact his proof also required
later correction (by Ostrowski in—perhaps—1927). The whole question was a sort of
watershed in mathematics, being perhaps the first time that a solution of a problem had to be
shown to  without its being  in a formula of some sort. (We now know, ofexist exhibited
course, that there are serious difficulties in ‘exhibiting’ a root of a general polynomial of degree
greater than 4 by any algebraic formula.) The proof above, however, is perhaps the easiest to
understand if Liouville’s Theorem, which is important for other reasons, is already established,
and it requires only rather inoffensive versions of Cauchy’s theorem; in principle, it is enough
to know the theorem for rectangular contours. There are many other proofs that do not require
any complex analysis as such.

One naturally feels that there should be a purely ‘algebraic’ proof of the FTA. The feeling
depends on what you understand by “algebra”, and so is incapable of precise expression, but, if
one accepts the vague pseudo-definition presented in the Introduction, that algebra is
concerned exclusively with finitary operations (ones that involve only finitely many arguments
or steps, like addition or multiplication), it is unfounded. The FTA is a result specifically about
complex numbers, not about algebra in general. What it says in algebraic terms is that the
algebraic completion of the field  is the splitting field of the polynomial , a quite   

specific extension of . (Other fields have algebraic completions, but usually they are
constructed by the Axiom of Choice and cannot be described explicitly.) Now, the complex
numbers are constructed from the real numbers, and the construction of the real numbers is
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itself not ‘algebraic’.  Thus any theorem which is directly or indirectly about real numbers,
rather than about fields in general, must implicitly involve limiting processes or something
equivalent. You will have noticed above that Euler’s proposed proof required some form of
the Intermediate Value Theorem, which is not “algebraic”.

§18. Singularities.
The word ‘singularity’ is used by mathematicians in many contexts, often without precise
explanation, to mean either ‘something that goes wrong’ or ‘the circumstances in which
something goes wrong’. In complex analysis, we can make the following

Definition 18.1. Let . The function  has a singularity at the point      
    , or, equivalently,  is a singularity of , if either

(a)  is not defined on the  disk  for any ;  in            whole   
other words,  is not an interior point of ; or 

(b) although there is some  such that  is defined at all points of , the     
complex derivative of  does not exist at . 

Definition 18.2. Suppose that, for some ,  is defined and holomorphic at all points on   
the so-called ‘punctured disk’

               ,

but is either undefined or is not complex-differentiable at  itself. Then  is called an   isolated
singularity of . Notice that in this case  is an interior point of .    

The importance of isolated singularities is twofold: they appear in interesting circum-
stances, and they have a simple and illuminating theory. A rough-and-ready classification,
taking no account of the questions whether all the types we distinguish are possible or whether
the classification is  useful, might be as follows.

Definition 18.3. Suppose that  is an isolated singularity of . 
   is a  singularity of  if there exists  such that  is defined,(a) removable    

holomorphic, and  on . [For the moment, the name “removable” is justbounded    
a convenient word.]

   is a  of  if  as . (This is the simplest possible(b) pole       
behaviour  might have if it is defined and holomorphic, but unbounded, on ,    
for any small enough ).

   is an  if it is neither removable nor a pole.  (On(c) isolated essential singularity
every small punctured ball about ,  is unbounded; but  does  tend to  as     not
   .)

Remark 18.4. The method we shall employ to study holomorphic functions on a punctured
disk works somewhat more generally. Suppose , where  may take the symbolic     
value . The set
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is the (open)  centred at  of inner radius  and outer radius . If , it is theannulus      

region between two circles  and ; and, if , it reduces to a               

punctured disk of radius  about . If ,  is the whole region outside the        

circle .     

Lemma 18.5. Let  be a complex-valued function defined and  holomorphic on ,   

where .      
(a) For , let  be the contour defined for  by           

         exp

If , the integral  does not depend on .          
  




(b) If , then            

  
     

          
 
       

.

Proof.  The function  is holomorphic on the annulus, as  is, even(a)          
 

for negative . The two concentric anticlockwise circles,  and , where  are             

as in , are evidently homologous in . (Each has winding number  about any(b)    

          and does not wind about any .) The result follows from 16.12.
(b)  lie in , and the cycle  is nullhomologous                        

in  and winds once around . Apply 17.2:   

    
        

                
  
        

as required. 

Remark 18.6. I must now introduce . First, I recall some facts from §9.Laurent series
A power series about the centre  takes the form , where             

  
denotes  (even if ) and the coefficients are arbitrary. It converges when       
     , with sum , but need not converge for any other values of ; however, it has a

radius of convergence , either a non-negative real number or , which has the property that 
the series converges absolutely if  and diverges if . (When            

       , the first inequality is true and the second is false for all ; if  the first
inequality is always false).

By a  about  we mean an extended expression of the formLaurent series 





  
       . The (formal) sum is now taken over all integer powers of . This

raises an obvious question: what can we mean by convergence or summation of such a
“series”? For an ordinary power series, convergence means convergence of the sequence of
partial sums, but for a Laurent series, which has no ‘first term’, it is not clear what a ‘partial
sum’ should be. To avoid worrying about this, we define convergence of the Laurent series
 

 
 

   
             at  to mean convergence of both the series 

and .



 
    

The first of these is an ordinary power series (called the  of the Laurent series).regular part
It has a radius of convergence which I may call .
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The second, which reverses the order of the terms in the Laurent series, is called the
singular part of the Laurent series. If all the coefficients  for  are , we agree that    

this singular part converges when  with sum . Otherwise, the singular part is a power   

series in the variable , and, as such, has a radius of convergence . It converges   
 

absolutely when  and diverges if . If , this means it              
   

converges absolutely for  and diverges for . If , it never            
   

converges at all, as  is impossible. If , it converges for all .           
 

The Laurent series, therefore, converges absolutely when  and  
       

                   , and diverges if , , or . That is, the
interior of the set of convergence of a Laurent series is an open annulus, called the annulus of
convergence, on which the series converges absolutely (and so it is unimportant what rules we
use to sum it). We call  the inner radius of convergence and  the outer radius of  

convergence. As with a power series, there can be no general statement about convergence at
the points of the frontier circles. However, when  the series never converges  
(  is a limiting case of this), and, if , the only points where it may possibly     

converge lie on the circle , so that the annulus of convergence will certainly be    


empty.
The singular part determines the inner radius  of convergence, and the regular part the

outer radius  of convergence.

Since a Laurent series is in effect the sum of two power series, the standard properties of
power series (see §9), after the obvious modifications, apply when appropriate.

 (1) the sum of a Laurent series is a holomorphic function on its annulus of
convergence, and

 (2) if one has two Laurent series in , say  and ,                
  

and they both converge on an annulus  (which may be a proper subset of       

both annuli of convergence), then ‘they may be multiplied term-by-term’ thereon. That is, if we
multiply all the individual terms and collect together like powers of , the resulting  
Laurent series,

  
 


  

     

converges on the same annulus, and its sum at each point of the annulus is the product

    
 

 
   

           .

This is a corollary of the theorem on multiplication of absolutely convergent series (see 9.9), as
the Laurent series must converge  on their annuli of convergence. (The product isabsolutely
not, however, a Cauchy product, as the terms of the new series are, in principle, infinite sums).
This fact is of some importance later.

 (3) For the same reason, the sum of a Laurent series may be differentiated term-by-
term on its annulus of convergence, the result being, of course, another Laurent series.

Theorem 18.7. ( ). Laurent’s theorem Let  be a function holomorphic on the annulus
          , where . Then there is a unique Laurent series





  
       , whose annulus of convergence includes , such that, for

every ,    

      



 

 . (91)
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Furthermore, the coefficient  is given for each  by the formula   

        


 
 

 





 

(92)

where  is, as in , a circular Jordan contour contained in the annulus:   18 5(a)
                   exp , for , with .

The choice of  has no effect on the formua (92), by 18 5 .    (a)

Proof. Choose  and  so that . As in 18 5 ,                  (b)

  
     

          
 
       

. (93)

Now, as  for each  on the contour ,                 

     

                 
   

    
     

        


   

   

   




  

 




 





 

  

 ,

this being merely a geometrical series with common ratio  of modulus less       

than . So

   
      



 





 

      

      
  . (94)

We may interchange the summation and the integration. (This follows from 6.9; the partial
sums of the series converge uniformly on the contour to the sum . Indeed, as    
is continuous on the contour, there is a constant  such that  at every point   
       (cf. 17.11 ), and then the th. term of the series has modulus not exceeding the(a)

corresponding term  of a convergent geometric series not depending on .)    
 


So we obtain from (94)

  

    

     
 

     

     







  



 

 

 








  





 







, by (92) and 18.5(a). (95)

[Since we now know this series converges for , it converges absolutely there,    
from 9.2. But one may also use the fundamental estimate to show directly that

       



   

 


  

which implies absolute convergence of the series (95) for .]    
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On the other hand,  for each  on the contour , and                 

     

               
   

        
     

     

   





  

 



 

   .

Again, the series is a geometric series with common ratio  of modulus less       

than . From this,

   
      



 





 

      

      
   ,

where, once again, we can interchange integration and summation (the series converges
uniformly on the contour , much as before), and obtain  

  

    

            


 







  

 

 

 




 

 

 





(96)

As with (95), this series converges absolutely for , so that it can be    
rearranged in any fashion without abolishing its convergence or changing its sum. In any case,
our conventions 18.6 on Laurent series prescribe summing in the order ‘  downwards ’, so
that, in writing the summation “from  to ”, we really mean the same as (96). In short, 
we may write  in the place of , and then (96) becomes   

          


 

      

  






 

 

 




 



  

, again by (92) and 18.5(a). 

Combining this with (93) and (95) yields (91).
The uniqueness of the Laurent expansion follows by substituting (91) into (92) and

justifying the interchange of summation and integration, exactly as above. 

Remark 18.8.  In the , the outer contour  contributes the nonnegative powers(a) proof   
of  in (91) and the inner contour  contributes the negative powers. But 18.5      (a)
shows that the coefficients  may be calculated for all values of  by the integral (92) around 

any circle  lying within the annulus.     
  Although the Laurent series for  exists and its coefficients are given by (92), it is(b) 

rarely appropriate to employ those formulæ to calculate them. Almost always the relation (92)
is used to evaluate integrals on the right. The Laurent series being unique, the coefficients can
be found by other methods (term-by-term multiplication, differentiation, or what-not). Recall
(2) and (3) of 18.6. Examples will clarify this later.

Remark 18.9.  Suppose that  is a removable isolated singularity of  (recall 18.3 ).(a) (a) 

By definition, there are positive numbers  and  such that  is holomorphic and  
          when . Applying the fundamental estimate (74) to (92), with 
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    ,

              
  

  
 

 

 
 

  
 

 

(97)

(compare 17.9). This estimate holds for any  and , and, when ,         
               

  as . Thus  and  when , and the Laurent series
has zero singular part:

              



  

 for .

  The right-hand side here is an ordinary power series, and defines a function (b) 
that is holomorphic for . (See 9.14.) Therefore,  only has a singularity at         

because it is either undefined or has the “wrong value” there; for  agrees with  on the 
punctured disk and is holomorphic on the whole disk. A removable isolated singularity may
therefore be ‘removed’ by defining or redefining the value of  at the singularity. The new
value must be .lim




  As simple examples of removable singularities, we may mention the singularities at(c)
      of the functions defined at all other points  by the formulæ  or . To sin
complete their definitions as holomorphic functions on the whole plane, we need only specify
the “correct” value at , which is  in both cases. The regular parts of the resulting Laurent 
series are

          
  

  


  

,

Note 18.10. In 18.9 , let  if . The(a)                 sup    
calculation (97) then gives . It follows as before that, if  as        

    
                  (in effect saying that  as ), then  and     

for all ; the Laurent series again has zero singular part, and the singularity at  may be   
removed, as before. In “intuitive” language,  means that “  tends to        
genuinely more slowly than  as ”, and so one appears to have a notable       



strengthening of the result of 18.9 ; but the conclusion is that it only happens if the(a)
singularity may be removed, so that  is bounded anyway on a punctured ball about .  
Functions holomorphic on the punctured disk  for which  as              
must in fact be bounded on some punctured disk  with .      

   
You might guess there are exceptions like , for which one may suppose that   



        as . But recall 14.4 and 14.7. Such a fractional power cannot be defined
as a (single-valued) continuous (or holomorphic) function on a whole annulus about , so the
Laurent expansion does not apply at all.

Theorem 18.11. If  is holomorphic on the punctured disk  and is bounded on   

         for some , then there is a function , holomorphic on the disk
         , which agrees with  on . Furthermore, the Taylor series of  about 
converges to  at every point of .  

If  is in fact holomorphic on , then of course .     

Proof. In 18.9 we defined  by the Laurent series of , which turned out to be an ordinary 
power series. That it is in fact the Taylor series of  about  follows from comparing (88) of 
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17.7 with (92) of 18.7, or, indeed, by taking successive derivatives of the series for  term-by-
term (by 9.14) and evaluating them at .  

Remark 18.12. Removable isolated singularities are often ‘removed’ without comment. One

might carelessly say, for instance, that ‘  is holomorphic on ’, because its singularity at 
sin




is obviously removable. In 18.9  one would not normally distinguish  from its extension (b)  
across the point .

In 18.11, we have proved that a holomorphic function on  is the sum there of its 

Taylor series about . In the real case, the question of convergence of the Taylor series (32)
of a function to the function itself involved many difficulties, as we saw; the function might be
differentiable only a limited number of times, so that the Taylor series lacks its later terms; the
Taylor series might not converge at all; it might converge, but not to the function. A proof that
the Taylor series does converge to the function usually involves messing with complicated
remainder formulæ. The complex case is simpler, because complex-differentiability at all points
of  is a vastly stronger condition than the existence of real derivatives even of all 

orders.
The radius of convergence of the Taylor series in 18.11 cannot be less than . If it is

       
, the sum of the series defines a holomorphic function  on the larger disk ,

and  agrees with  on . There can be only one such function  defined on    

    
  (you should consider why this is now obvious). Thus  is uniquely defined by ,

and we can think of it as the natural extension of  to the larger disk. Hence, the radius of
convergence  of the Taylor series of  about  is the distance from  to the nearest   

 

‘genuine’ singularity of —meaning that there is a holomorphic extension of  to the disk 
  

 , but not to any larger disk. (If there were a holomorphic extension to a larger disk,
its Taylor series would be the same series, but would have a larger radius of convergence, by
18.11).

A function holomorphic on all of  is called an  (or an ; entire function integral function
these odd names are translations of the odd original German ganze Funktion). Entire functions
as so defined (for the phrase has other senses) have the property that their Taylor series about
any point have infinite radius of convergence. Conversely, any such Taylor series defines an
entire function. Typical examples are , sin , sin .exp exp     

Remark 18.13.  Next, suppose that  as  (  has a pole at ).(a)         

There exists  such that  for . So  is holomorphic and           

bounded for ; its singularity at  is removable, and by 18.11        




      




  

 for some coefficients ,

where the series converges at least for , although the equality requires       
            . Furthermore, , since it is the limit of  as . However, 

cannot be constant (as  isn’t), so not all the coefficients  can be , and there must be a  

least index  such that . This index  is called the multiplicity of the zero of the      

sum-function at . For ,         
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 ,

where  is defined by the series . This series must converge for          

               (why? recall 9.2), so that  is holomorphic and . Therefore,
              when  is sufficiently close to , say for , and  

 
is holomorphic for . In turn  has a power series expansion:     



                     


The indices start at  for convenience, and . So      


                     

             

     
 

   
 

(98)

for . We exclude , as  is not defined there. This shows               
 

that  has a Laurent series about , valid (in the first instance) for , with         


only finitely many nonzero coefficients for the negative powers of . Laurent’s theorem  
shows that  has a Laurent series in any punctured disk  on which  is         

holomorphic; by uniqueness, it must be the one we have found on .   


Conversely, any Laurent series whose singular part is not zero but contains only finitely
many non-zero terms can be written in the form (98), where . As , the series      

in braces tends to , and therefore  as . Hence poles are completely       

characterized by this property of Laurent series.
  In short, a removable isolated singularity of  is one about which the Laurent(b) 

series of  has zero singular part, and a pole  is an isolated singularity about which the 
Laurent series of  has a singular part consisting of at least one, but only finitely many nonzero
terms (and therefore the singular part converges everywhere in a punctured disk about 
except at  itself). The singular part about a pole is sometimes called the of the principal part 
function. The order of the pole is  when  is the lowest power (that is, the largest    



negative power) of  that appears with non-zero coefficient in the Laurent series.  
A zero of a non-constant function , say at , corresponds to a pole of  at , and vice   

versa; the order of the pole  of  is the same as the multiplicity of  as a zero of . A zero   
of multiplicity 1 is called a  zero; and a pole of order 1 is a  pole. If thesimple simple
multiplicity or order is , one speaks of a  zero or pole, and so on. double

Remark 18.14. From 18.3 , it follows, as the remaining possibility, that an isolated essential(c)
singularity of  is one about which the Laurent series of  has infinitely many negative powers 
with non-zero coefficients. This can really happen. For instance,  is a functionexp
holomorphic on , and its Laurent series about  is   

    
  

  

  

,

which has infinitely many non-zero terms in its singular part.
Note 18.15.  We have not classified  singularities, but only singularities, which(a) all isolated 
are rather special. If we define  for , then  has a singularity at any point        
with , simply because it is not defined at . In this case, we could extend the   
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definition of  to the holomorphic function  on the whole of , and so our singularities are  
‘removable’ even though they are not isolated. But it is easy to invent ‘genuine’ examples of
non-isolated singularities. For instance, sin  has simple zeros at , for any integer ;  
sin  therefore has simple zeros at , , and the function       

  

   cosec  has a sequence of simple poles tending to . The origin is therefore a limit 
point of simple poles of , and, as such, is of course a singularity, though not an isolated one.

  Consider the series , with radius of convergence . Its sum(b)          

         is defined, and is holomorphic, on the unit disk . Thus  has a
singularity, in the sense of 18.2, at every point of the unit circle ; for the series    
does not converge at any point of the circle. However, we know that  for all    
      , and so there is a function, namely , which agrees with  where possible and

is holomorphic on .  Consequently, all points of the unit circle except , although they   
are not isolated as singularities of , are ‘removable’, like the singularities of  above, in the 
unofficial sense that they only arise from an inadequate definition of . This function
exemplifies the principle of 18.12 that the radius of convergence of the Taylor series at  is the

distance to the nearest ‘genuine’ singularity, which is the pole of  at .


  


  Let  be the sum of the power series , which has radius of convergence(c)   

   .  is defined and holomorphic on , and has a singularity at every point  of the unit
circle. However, none of these singularities can be removed by an improved definition of . To
put it precisely, there is no holomorphic function defined on a whole disk  centred at , and 
agreeing with  on . Such a function would extend the definition of  holomorphically   
across the unit circle, at least near . (The proof is neither difficult nor obvious, and I omit it.)
One then says that the unit circle is a ‘natural boundary’ for .

It is a curious fact that any open set  in  is the domain of some holomorphic function 
for which Fr  is a natural boundary, but that the analogous statement in  is false. That is 

to say, there are open sets  in  such that any holomorphic function (in the two- 

dimensional sense, which we have not discussed) defined on  must extend to a holomorphic
function on a larger open set.
Remark 18.16.  We can now explain the method of partial fractions in elementary(a)
calculus. (I should say that there are also algebraic explanations, but they are more elaborate,
although they are also more general.) In a  rational function  of  (  is the quotient ofproper   
two polynomials, the numerator being of lower degree than the denominator), each zero of the
denominator gives a pole of . Let  be the sum of the principal parts of  at all these poles.  
Then  has only removable singularities in ; remove them. Both  and  tend to  as     
       (this is where we assume  is proper). Then, by Liouville’s theorem,  (after

removal of singularities) is constantly , which means that  except at the poles of .      
is, indeed, the partial fraction expansion of . All that remains is to find economical methods of
calculating the partial fraction expansion in practice.

In 113, it was necessary to stay in the real domain, so that the denominator of the rational
function might have irreducible quadratic factors over . Over , the fundamental theorem of 
algebra makes all the irreducible factors linear.

  One can also discuss ‘singularities at ’. For example,  has an isolated(b)  exp
essential singularity at , since  has an isolated essential singularity at . But I    exp  
shall not discuss the idea of the complex point at infinity.

We have shown that a function holomorphic on  (where  and ) is the      
sum of a Taylor series  with radius of convergence at least . This has an





    

interesting consequence.
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Lemma 18.17. Let  be a region, and let  be holomorphic  For any ,       
the set  is either the whole of  or has no limit points in  (whether it is        
empty or not). That is: either  is constant on the region , or, for any , there is a    

disc  of positive radius  about  such that, for each ,                 

    .

Proof. Given ,  is holomorphic on . It has a Taylor series          
                      

  about , convergent on  for some . As ,
certainly . There are two possibilities.  

(a) All  coefficients  are zero. Then  for all . If  is any other           

point of , let  be a continuous path with  and . Such              

a path exists—recall 11.2. Let

                    

which is nonempty (for ) and bounded above by . Let . We have shown       sup
that  is  for , so that . But, by continuity of  on ,             

 

        
   for all  (for  is the limit of a sequence in ; apply 2.11  and 5.5). Thus,(a)

in fact, the Taylor series of  about  is also zero;  is zero on  for            


some , and it follows that  cannot be the supremum of  unless . Therefore,       
 

                       for . In particular, , that is, .   

This holds for any . It follows that  is constant on .    

(b) Alternatively, there is a first nonzero coefficient, say , where . Then   

               
 


 , with . (This series also converges

absolutely for , and there defines a holomorphic function.) But, as           
and  is continuous, there is  such that  when , and             

 
                  

   if . This proves  is not a limit point of 
          , and, because of , this conclusion must hold for any  if  is(a) 

not constant. 

Corollary 18.18. If  is holomorphic on the region , and  is such that    
           has a limit point in , then . 

Of course  can have a limit point only if it is nonempty. And it is      
important that the limit point should be in  (not in , that is, in effect, in Fr ). For   
example, , holomorphic on , has zeros at the points  for all nonzerosin     
integers , and these points have  as a limit point; but  is not constant on .     sin  

Once again we see that holomorphic functions are very “rigid”; they are fixed completely
(on regions in ) by surprisingly weak data. Indeed, if  are holomorphic on the region      

and  has a limit point in  (I stress “in ”), then  and  agree at               

all points of . (Take  and  in 18.18.)         

§19. Residues.

Definition 19.1. Let  be an isolated singularity of the function , with a Laurent series 

     





 , (99)
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which converges when , for some . The  of  at , which I shall           residue
write res , is the coefficient of  in the series, that is, .     



Lemma 19.2. Suppose that the function  is holomorphic on the punctured disk
           . Then, for any number , and for the circular contour
           exp , ,




      res .

Proof. This is just the case  of the formula (92) of 18.7.   

Indeed, only the term in  in (99) is not a derivative; all the other terms have zero  

integral around  by 15.9.

Theorem 19.3. ( ). The residue theorem Let  be a cycle homologous to  in the region  in  
 . Suppose the distinct points  do not lie on , and that  is a function          

holomorphic on . Then          

 


            



 res (100)

Note 19.4. The residue theorem is stated in the literature in many different ways—as one
would expect, since it is deduced from the equally polymorphous theorem of Cauchy. The
above version is more general than one needs for almost all applications.

Proof. Choose  to be so small that the disks  are disjoint from each other      

and included in . Around each , construct a small circular Jordan contour  of radius .   
Then the cycle  is homologous in  to  (around any point               

outside , both have index ; and around each , their indices are equal by definition). Thus,  
by Cauchy’s theorem in the form discussed at 16.11,

  
 

                    


res

by 19.2; and this is the result. 

Therefore, the value of an integral around a cycle may be calculated by finding residues.
Using formula (92) to find the residue would be a circular argument; one must employ other
methods of developing Laurent series. Here are some examples.

Example 19.5. From 13.3, , andsin sin cosh cos sinh         

            

       

       

sin sin cosh cos sinh (here )
 

as .
(101)

    

   

   

sin sinh cos sinh
sin sinh sin cos

Hence,  if and only if  and , and the only zeros of the complexsin sin sinh        
sine function are those which are already zeros of the real sine function (that is, those on the
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real axis): , for integers . Likewise,   

 cos cos cosh sin sinh
cos sinh sin sinh
cos sinh

      

       

    

    

   

 

(102)

Again, all the zeros are on the real axis,  for .      
  

The Taylor (or Laurent) expansion of sin  about  is of the form

sin                 
 

where, since , necessarily . But, if we write ,sin            

sin sin
sin cos cos sin cos sin

    

        

     
 

 

     


 
 

 

So the required Taylor expansion is

sin        
   



  
   



 









(103)

Again, this must be the expansion, because it is a power series expansion for  about sin 
and there can be only one such.

Example 19.6. The complex cosecant function cosec  is defined exactly as in the real case
to be the reciprocal of . It follows that cosec  is holomorphic and non-zero except at thesin 
isolated singularities ; as they are isolated zeros of , they are poles of cosec . sin
Furthermore, 19.5 shows that the zeros of sin  are simple:

sin            



    .

Thus  is a simple pole of cosec , and

cosec , (104)        
 

   





 

so that the residue at this pole is . (Only odd powers appear in the series; I am using a

general theorem  about substitution of power series in powerthat I have not stated or proved
series. In this case, I appeal to , which has radius of          

convergence , and take , which converges for all . The ellipsis      
 

 
   

in (104) indicates terms, all even powers, that are not easily calculated.)
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Remark 19.7. A function  has a pole of order  at the isolated singularity ,    

            
  ,

with , if and only if  has a finite non-zero limit as ; and this limit         


is . In particular,  has a non-zero limit as  if and only if  is a simple       

pole of , and then the residue of  at  is lim .     

For a pole of order , the residue  is the coefficient of  in the Taylor      


expansion about  of . As such it is    

lim





 

   
    .

This formula is rather less useful than the one for a simple pole.

Example 19.8. Let . It has singularities at the zeros of sin , which are       cot
the real integers. Further,  is periodic with period ; that is,  for all :       

cos cos sin sin              and .

Hence the Laurent expansion of  about any of the singularities  will have exactly the same 
coefficients as the expansion about . Now

  



          



 
cot cos

sin
as .

(The standard limits for  and for  as  hold in the complex case—indeed,sin cos    
they follow directly from the series expansions of  and .) So the singularities of  aresin cos 
simple poles, one at each integer, with residue .

Remark 19.9.  Let  and  be functions defined, non-constant, and holomorphic on(a)  
        , where  is a pole or removable singularity of both  and ; let  denote
the least power of  that has non-zero coefficient in the Laurent series for  about , and    
similarly for . It is evident that

       , (105)

for the leading term of the product Laurent expansion is the product of the leading terms of the
expansions of  and of . Similarly, if ,     

        min .

(If , there may be cancellations, so ).             
From (105), it is clear that a pole of  may be ‘cancelled out’ by a zero of high enough

multiplicity, and vice versa.
  Generally, the residue of  at  is a sum of several products of coefficients of(b)  

the Laurent expansions, but if  it will be just the product of the leading  
coefficients, i.e. the coefficients of the lowest powers that have non-zero coefficients. In
particular, if  has a simple pole at , and  has a removable singularity at  with limit ,      
then  has a simple pole at , with residue res .    

Briefly, res res , provided the pole of  at  is simple and  is        
holomorphic near  (if  this statement remains true).   
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Lemma 19.10. Suppose the function  is holomorphic on , where , and       
has a simple pole at a. If  for , where ,                     exp

then  is bounded as .



         

  

 res

(For a simple pole , the integral around a segment of a circle centred at  is approximately 
  times the angle of the segment times the residue, the error in the approximation tending to 
as rapidly as the radius  as . Of course the integral around the whole circle is exactly   
    res , independently of the radius, provided it is small enough.)

Proof. The Laurent series, valid for , is of the form      

              


  


  
 ,

where res . Define   

          ,

the regular part of the series. Then  as ; there is some number  such        

that  whenever , for example. Now       


 

    

 



   

  

 


   

    

    
     

           

exp
exp




 

 

, and

res

by the fundamental estimate, as the length of  is .      

This result can be very useful if the contour of integration appears to have to pass through
a simple pole. We shall see examples.

Example 19.11. Squaring the Laurent expansion of cosec  about  from (104): 

cosec ,              



  

so that the residue of cosec  at  is in fact . As cosec , the residue of          cot
cot  

   is also . By contrast, the residue of cosec  is , by a similar argument.

Remark 19.12. The residue theorem is the crown of the course, because of its frequent use to
evaluate difficult definite integrals and series. But it does not really constitute a ,method
despite phrases such as “the method of residues” or “the calculus of residues”. There are,
indeed, large classes of integral to which it can be applied in standard ways, but it is also
unpredictably useful in many other situations. It often leaves much scope for individual
ingenuity, both in the choice of contour and in the manipulation of the integrand. It will be best
here to present some few sadly abbreviated examples.
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Example 19.13. Let . The function  

 
 



 cot


has simple poles at all non-zero integers, by 19.8 and 19.9, and the residue at  is  
         . At  it has a pole of order . For , let  be the square, centred at , 
with sides parallel to the axes at  and .          

 

     
         

         


    

    

cot
cos cosh sin sinh
sin cosh cos sinh

cos sinh
sin sinh


   

   

 

 




 

 

 

(cf. (101) and (102)).

It follows that, when , and for any value of ,     


       
     

     
cot

sinh
sinh





 

 

 


,

since  for all . If , sinh sinh cos   
                        

and , so thatsin   

        
 

   
cot

sinh
sinh











Hence  at all points of . In addition,  at all such            cot  


points. The length of  is . By the fundamental estimate (74),   

 


















  
   

  

    



 .

As , this shows that  as .        


The poles inside  are at the real integers , and the residue of      
     at , where , is , by 19.8 and 19.9 . The residue theorem gives  (b)

 










 

      

         



 

res

res

As , then,  

 










 

  
       res

 

from which we draw the simple consequence that













    res
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In principle, then, to calculate , all we have to do is to find the residue   
 

  

of  at . But this is not trivial.
cot  






To find the Laurent expansion of  about , argue as follows. cot  

 
 



  

  

 

 

cot   
 

 

     

     

        
 

 

      
 

 

   




cos
sin

 
 

   

 
 

   

    

   




 

 

  

 

 

   

   

   


   




      
 

 

     
 

 

  

  

(as  for ). res  is the coefficient of  (the pole is


  
             

of order ) in the expansion in powers of  of 

 

  

  

     
 

 

      
 

 

     
 

 

 

 

 

   

   

   


It is impossible to give a general formula for this coefficient. However, the coefficient of  is

clearly

   
  

  
     ,

and of  is . Thus     
    

     



     

 
 

   
 

     and .

The computations grow rapidly in difficulty as  increases.

Remark 19.14. The method as given above cannot yield the sums of odd or fractional powers
of . Having even powers, we could extract useful information from a contour of integration
that was symmetrical about the origin. Much the same method can be used for such series as
       , and a similar trick with cosec  can be done to sum alternating series of 
the same general type.
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The sum  can also be deduced from an argument with Fourier series (as,  


indeed, can some other sums of the kind), and possibly in other ways as well. The Fourier
series proof is sometimes given in second-year courses; it is legitimate, but relies at least on
Dirichlet’s non-trivial result on the convergence of Fourier series, which is not proved in our
courses. Our proof above, by contrast, is in principle completely rigorous (granted Cauchy’s
theorem), except for some minor technicalities which I have not discussed in full. (Dirichlet’s
proof, by the way, is not really more difficult; it is just different.)

Example 19.15. The Cauchy-Riemann integral  is defined as the limit of


 



 

    

Riemann integrals  as . Here the cube root has its customary real


 



 

    
  

value. That the limit exists can be proved directly by the “comparison test” for integrals
(another thing we have not discussed in this course), but it will also result from our arguments
below.

The integral may be seen as a ‘contour integral’ along the ‘infinite contour’ of the positive
real axis. To try to apply the residue theorem, we must first extend the integrand to a
holomorphic function, and for that we need to consider fractional powers of complex .

If  is not an integer,  is not well-defined (even  is “two-valued” for ). We      

must define a holomorphic branch of , i.e. an appropriate holomorphic function , defined 

on a suitable region, which satisfies  at all points of the region. This suggests    
a relation with branches of the logarithm (see 14.8), which satisfy the differential equation
      

 . Following this hint, we define  to mean log  where log  is a exp 
branch of the logarithm chosen to suit our convenience.

[The easiest way to define fractional powers of a positive real number  is by setting

     exp log

where  is the inverse of the exponential function. This “logarithm” is alsolog  
the restriction to the positive real axis of the principal value of the complex logarithm.]

In our case, it is essential that  should be real and positive when  is; but it may also 

help if it is holomorphic on the negative real axis. So let us define log  by
log log arg , where arg . Then  is defined and  

 
 

            

holomorphic except on the negative imaginary axis, where its argument must jump from  
 

to  as the axis is crossed in the anticlockwise direction, and at the origin.  
 

Now  is holomorphic except on the nonpositive imaginary axis, and 


    





also at the zeros of , which are the non-trivial cube roots of . The only singularity     

in the upper half-plane is therefore at cis . Since         
 



   
 

         

    


 

 







 




 
lim 

there is a simple pole at  with residue , and .             
Let  consist of a semicircle of large radius  centred at the origin, starting at  and   

going anticlockwise to , followed by the segment  of the real axis (where  is a  
small positive number), by a small  semicircle of radius about the origin, and by theclockwise 
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segment  of the real axis. The small semicircle avoiding the origin is needed because of
the lack of holomorphicity there. The integral round  will be 

                 
cis ,

by the residue theorem and our definition for the fractional power.
The fundamental estimate (74) for the integral round the large semicircle is

      . ; round the small semicircle there is a similar estimate 
        . Both estimates may be made as small as we wish by taking large
enough  and small enough . The remaining parts of the integral over  are  
  
  
  

          and . For , our definition of  implies that

         


exp  ,

and therefore in all

   



 



 


 




        


         

 

 
  



exp 

 cis
(106)

the remainder term  consists of the integrals over the semicircles, which, as we observed,
may be arbitrarily small if  is sufficiently large and  sufficiently small. Thus, in the limit, 
taking the imaginary parts on both sides of (106),

sin
sin

sin

   
 

    

  



 

     
 

  






 








 







 

 

 



 
which reduces to

(107)

Taking the real parts in (106) and using  (107), we obtain what we wanted:

 

 


 



 
 



   
   




 

     
   

     



         




 
  



   



  

 

cos sin
cos

sin cos cos sin

sin



This integral can in fact be evaluated by methods taught in MATH 142, but not easily. You
substitute  and then use partial fractions.  

Example 19.16. As a last example, consider








 

  


sin

for .  
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This is a conditionally convergent Cauchy-Riemann integral, and we need a subtler
argument than before. Take , and let our closed contour       exp  
consist of the interval  on the real axis and the semicircle  of radius     

described anticlockwise from  to . Thus, . For real , the          
  



real part of  is , which is an odd function, and the imaginary part,     cos 

    sin  , is even; hence,

 
 

 


    

  

  

sin

For large , the only singularity of  enclosed by  is a simple pole at , where the    
residue is  by 19.9 (for   exp 




   

         
 

  

has a simple pole with residue ). Thus, if we can show that the integral around  
tends to  as , we can deduce that the limit exists:   

     
  

  

  

  
 
























sin



sin

.

Remark 19.17. The proof that the integral over  tends to  must be different from the 
argument in 19.13 or the similar reasoning in 19.15. In those cases the modulus of the
integrand had a bound , for some , and as the length of the contour is proportional   
to  this showed the integral tends to  like . Now, however, ;           

when  is near to the real axis,   is close to , and  is approximately  for large      

  . As  is of length , the “fundamental estimate” alone cannot show the integral
tends to  as .   

However, a slightly more delicate argument does work. The fundamental estimate (74)
uses the “maximum modulus” , but the integrand may sufficiently often be significantly
smaller than  to make (73) a better estimate. The Lemma below is rather special, but is often
useful and has earned a name.

Lemma 19.18. ( ). Jordan’s Lemma Suppose that , that  is defined and    
continuous when  and , and that the maximum value  of  on        
             (defined when ) tends to  as . Then  as




   .

Proof. As  is defined and continuous on the compact set  when , it is     
indeed bounded. Since , (73) gives   exp exp
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exp cos sin

exp

  

 sin .
(108)

But now , so thatsin sin     

 
 

 

exp sin exp sin         .

For , sin . (The easiest way to  yourself is graphical: the line           convince
       lies underneath the curve . But how would you  it formally? Theresin prove

are many possible proofs; try to find one.) So the right-hand side is not greater than

         




     
 

  










exp exp    



 

 

.

Hence , and the desired result follows. 


   







Returning now to 19.16, one may take , for which     

        if ;

so  as . From Jordan’s Lemma,     








 

  
    as .

This completes the proof in 19.16 that .  








  

  
 

sin
 

Remark 19.19. I commented that the “calculus of residues” does not altogether constitute a

method, and 19.16 perhaps illustrates the point. We changed the integrand to ,
 

  

exp


although it might have seemed more natural to take , because the estimates on
 

  

sin


  would not have worked for a sine. Similarly, in 19.13, the use of the cotangent is
probably rather unexpected. It is, in fact, the only function that could be used in exactly the
desired way, because it has simple poles with residue  exactly where we want and is bounded
on the frontiers of all the squares . (A small modification of Liouville’s theorem is
relevant.)
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APPENDIX A

Remarks on convergence
The general idea of the definition of convergence of a sequence given at 2.9 dates back at least
to Wallis in 1655. It is perhaps the oldest thing in the course, and is possibly the most difficult
concept to grasp. The remarks below (some of them are also in the main text) are intended to
convince you that, however strange it may seem at first, it is in fact the natural expression of
our intuitive ideas of a limit.

When we say that a sequence  converges, or , to a limit  (which we write as   tends  
       or as ) we have in mind the vague intuitive idea thatlim

(A)  gets closer and closer to  as  gets larger and larger.  

Thus, for instance,  gets closer and closer to  as  increases: .        
  

As a precise definition, however, (A) will not do. To begin with, what do we mean by
‘closer and closer’? Presumably, we are describing the behaviour of the  of  from ,distance  

which is . That  gets closer and closer to  as  increases would then mean that this       

distance gets steadily smaller and smaller as  increases:

(B) for each , .           

But that is not good enough to fit all the cases we have in mind; for instance,  gets  

closer and closer, in this sense, to , but we do not want to say it converges to , because we 
believe its limit should be . Or, the sequence ought, we feel, to have the            

     

limit , but it does not  steadily in absolute value. decrease
Clearly, then, what we really want is not that the distance  should . The    decrease

important thing is that it should, in the course of time, become “arbitrarily small”, or “as small
as we like”. However we define smallness, it must eventually be as small as that. Furthermore,
the distance must be “small” in our chosen sense, for all large enough values of .consistently 
A sequence such as  for even values of ,  for odd , ought not to  

     
converge to , because  never settles down within distance  of  —every second term is at 




distance  from . 
Suppose we choose a positive number  to be our measure of smallness;  is “small”    

if it is smaller than . Then what we want is that  for all values of ,        large enough 
which presumably means for all  at and after some definite stage . That is, there is some   
such that . And finally, we want the same to be true whatever  we          

choose as our measure of smallness. In short,  
 (C) for any , there is some  such that   

         whenever  .

This is precisely the DEFINITION as I gave it: symbolically,
 (D) .                

These equivalent statements (C) and (D) are the mathematical  of what we meandefinition
by “ as ” or “  converges to ”, and are what any mathematician has in         
mind when he uses those phrases about a sequence.

The discussion preceding (C) and (D) has no mathematical status at all; it is just an attempt
at persuading you that (C) and (D) are reasonable expressions in precise language of our
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intuition. But once we have a clear concept of convergence for sequences, intuition is
superfluous, for logical argument must begin with the definition.

Some clarifications are called for. In the first place, it is unimportant whether  is required
to be an integer, or a positive integer, or is allowed to be any real number. If  is a real
number such that ,  then the smallest integer which is not less than ,          

sometimes written  (if , then , whilst, if , ) is an                  
integer  such that . (If this is not immediately apparent, notice that,          

since ,  implies that .)        
The second point is that the number  in (D) usually “depends on” . By this I mean only 

that, when the chosen value of  is altered, the  whose existence is asserted by (C) or (D) 

may also have to be changed. For example, when we say that  as , we mean



    

that, for any positive , there is some real number  such that, whenever , .      



Since         if and only if , a possible value of  in this assertion, in fact the
least possible value, is . So a suitable value of  when  is ; but this is not a     



suitable choice for  if , since . To stress the fact that the  in (D) is associated      
  

with a particular , people sometimes write . This does not mean that  is a “function”   
of , for there are (in principle) many possible values of  for each . 

This remark, that the  in (D) is related to the  under consideration, is implicit in the 
order of the quantifiers  and . “For every positive , there exists an  ” means that     
works for that  (and need not work for others). If the order of the quantifiers is reversed,
“there exists an  such that for all  ” is a far stronger, and usually untrue, statement. For 
another example, “Every person in Wellington has or had a father” may be rephrased as “For
every person in Wellington, there exists or has existed someone who is or was that person’s
father”; which is true. But reversing the order of the quantifiers gives “There is or was
someone who is or was the father of every person in Wellington”, which is presumably false.
(It may be observed that the order of quantifiers doesn’t matter if they are of the same kind,
both  or both . But you can’t swap round  and  without changing the meaning).   

A third point is that, in the statements (C) and (D), the inequalities  may be  
changed to , individually or together, without changing the meaning of    these
particular statements. (This is because of the quantifiers in (C) and (D). I am absolutely not
saying that and  can usually be substituted for each other!) 

If (D) is true, then, given , there is an , which we might call , such that   


                     

 . Hence, , and it follows that

                     . Similarly, if , then
            .

Finally: to prove that definition (D) is satisfied, one must show that, for all possible
choices of the positive number , there exists an . Normally, this is done by giving a  
formula of some sort for , or at least some procedure to find , in terms of  (as, for  
instance,  above). But there will not be a single correct formula (for example,  

          
  is, for definition (D), just as acceptable as ), and the

definition does not require a formula, as such, at all. There are even cases where a formula, in
any usual sense, cannot easily be presented. This is obviously the same question about
“constructive” methods that I mention elsewhere, after 6.3 and after 8.17.
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APPENDIX B
I remarked at the beginning of §3 that, in earlier years, these notes had included an intro-
duction to ideas of general topology and that it had become superfluous with the introduction
of a separate course. Here are the notes that were removed. (I have changed the numbering to
preserve cross-references in this Appendix; but you will notice that some material here repeats
things that also appear in the 2012 version.)

§20. Metric spaces and topologies.
The ideas of Cauchy sequence and of convergent sequence, though not of upper and lower
limits, depend only on the ‘distance’ in , and we can introduce a similar idea more generally.

Definition 20.1. Let  be any set. A  (or ) on  is a function metric distance function
          such that, for any ,

(a)
(b)

  if and only if , and
 .
      
       

The pair  is called a . If  has been unambiguously fixed, one speaks of “the    metric space
metric space ” and suppresses mention of .  is the  for .  (b) triangle inequality

The definition is often stated in slightly different, less concise, and perhaps more natural
forms. Taking  in  and applying ,  for any ; since            (b) (a) 
and  may be swapped, we deduce  always. Taking , we find        
similarly that , so that  only takes non-negative values. Thus we may add that    
(a) (b)and  imply the further properties of the metric

(c)
(d)

        

        



 ,

which are often taken as part of the definition; and  may then be written as(b)

        .

Theoretical physicists, and some differential geometers, use the word “metric” to denote
not the actual distance function  on a manifold but rather its “infinitesimal” version, which is a
structure in the tangent bundle. This is not our convention here.

In  and in , there is a  given in each case by  standard metric

              max .

(In the case of , the metric just defined takes only rational values; which is all right.)

Definition 20.2. Let  be a sequence in the metric space , and let . We say        
that  tends to  as  tends to infinity, or that  converges to , or (briefly) that      

    , if, for any positive real number , there exists some natural number  such that
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              whenever . If there is some  such that , we say that
        


 is convergent or that the limit of  is , .lim

The definition is a generalization of (8). The remarks of Appendix A apply.

Lemma 20.3. The sequence  in the metric space  converges to  if and        
only if the numerical sequence  in  tends to .    

Lemma 20.4. If  is a sequence in a metric space , it can have at most one limit. That  
is, if  and , where , then necessarily .             

Proof. Let ; , by 20.1  and 20.1 . Let . Then there exist         (c) (a)  


      such that

                     .

Take . If , both  and , so that, by               max     
20.1  and , . This is absurd, and we must(b) (d)                 
conclude that . (Compare 2.11.)   

Consequently, in a metric space, we may speak of  limit of a sequence, if a limit exists atthe
all.

Lemma 20.5. If a sequence  in the metric space  converges to , then any        
subsequence of  also converges to .   

Definition 20.6. A sequence  in the metric space  is  (that is, it is a      Cauchy
Cauchy sequence) if, for any positive real number , there exists some natural number  such 
that  whenever  and .            

Again, it would be enough to restrict the values of  to numbers  for . I leave it   
to you to make the necessary changes in the arguments.

Lemma 20.7. A convergent sequence in any metric space is Cauchy. 

This is a straightforward copy of 2.23. It is tempting to suppose the converse should be
true as well (that is, that 2.25 holds in any metric space), but it is FALSE in many cases. A
Cauchy sequence in , with the metric already described, need not have a limit in . For a 
familiar example consider the sequence defined inductively by

      
 

 
  


  .

By induction,  for all . The sequence converges in  to ; it is the usual method      
(Newton-Raphson) of calculating  by successive approximations. So the sequence is

Cauchy in , and Cauchy in , but has no limit in , since we know  is not in  by 1.11.   

Definition 20.8. A subset  of a metric space  is  if every Cauchy sequence    complete
in  converges to a limit in . (The commonest case is when .)    
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The word “complete” is grossly over-used in mathematics, but this is its main use in this
course. Where it is ambiguous, one might say “metrically complete”.

There are very many examples of metric spaces, and some are given in the exercises. For
the moment, let me point out two. The  (where ) is the real vectorEuclidean space    
space  together with the  Euclidean metric

                                
  ,

whilst the (or )  is the complex vector space  togetherHermitian space unitary space    

with the Hermitian metric

                              
  .

(The s and s were  numbers, the s and s are .) When , these formulæ      real complex
reduce to the previous definitions of the standard metrics in  and in . 

Notice that we have proved the (metric) completeness of  with respect to the standard
metric at 2.25. The proof depended on Dedekind’s axiom.

Theorem 20.9.  is complete with respect to the Euclidean metric and  is complete  

with respect to the Hermitian metric, for any .  

Proof. (Sketch only.) If  is Cauchy in , where , then, for each        



 

  

   , the sequence of th coordinates  is also Cauchy, this time in . So it converges to a  
 

limit . Set , and then  in .         
          

The argument in  is much the same; indeed,  is obviously “isometric with”  in a    

natural sense. 

Definition 20.10. Let  be a metric space. If  and , the          open metric ball
in  of radius  about     is . It is the set of points of           
whose distance from  is strictly  than . The is less closed metric ball about  of radius   
          .

Lemma 20.11. Given , . If , . If , then                 

                    . If , then . If , then . 

Definition 20.12.  A subset  of the metric space  is  if, for every ,(a) open      
there exists some  such that . (From 20.11, an equivalent way of stating        

the same condition is that there exists  such that .)         
  If  is open, it is a union of open metric balls (each  is in , where(b)       

  is such a number as is required in ).(a)

In intuitive terms,  is open if every point  of  is not just   but ; any point of    in inside 
 sufficiently close to  also belongs to . For example, consider the interval 

           ,

where we may to begin with assume  in .   

Lemma 20.13. If  in , the open interval  is open in  with the usual metric.     
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Proof. Suppose . Then ;  and . Take                  
                min , and then, if ,  and 

             

             

so that  too. This proves . As the argument works for any         
     ,  is an open subset of  with the usual metric. 

Here  was defined by a formula that obviously varies as  changes, and a moment’s 
thought will reveal that it must do so;  must be very small if  is close to  or to . Even more   
obviously,  depends on the choice of interval  containing .   

The statement that “an open interval is an open subset of ” is equally true for “semi-
infinite open intervals”. I leave the proof to you.

Lemma 20.14. For any , both of the semi-infinite open intervals   
                   and  are open subsets of . 

The symbol  (to repeat the matter) does not in itself denote anything.

Lemma 20.15. Let  be a metric space, and suppose that  and . Then        
   is an open subset of .

This tells us .open metric balls are open sets

Proof. Let . Then . Let . I claim              
             . Indeed, suppose . Then , so that

              ;

which means that  too, and this shows . As  was any element         
of , it follows that  is open.    

Proposition 20.16. Let  be any metric space, and let  be the class of all open   
subsets of . Then  has the following properties. 

    and .(a)     
  For any index set , if  for every , .(b)           




  If  for some , then .(c)            
  

[In words: the whole space  and the null set are both open in ; the union of  class of  any
open sets is also open; the intersection of  open sets is also open. It is veryfinitely many
important to grasp that in  the index set  may be entirely arbitrary. It is not restricted to(b) 
being finite or countable. In ) only finite index sets are allowed.](c

Proof. That  itself is open is trivial, since  for any  and any , directly       
from 20.10. That  is open is “vacuously true”—the definition 20.12 is satisfied because there
is no point  in . (We want . But recall that  is             
logically equivalent to , and in this case  is “ ” , where ; thus  is          
automatically true.)
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Suppose  is open for each . Let . There is a specific  such          


that , and, as  is open, there exists  such that . Then            

     
     . This shows that  is open.

Finally, suppose  are all open and . For each , there is          


                        such that . Take . (It is essential here tomin
have only finitely many sets .) Then, for each , . It follows that           

        
  
  

  . As  was any element of , this proves  is open in . 

With 20.12 , this tells us that(b)

Corollary 20.17. Every open set in  is a union of open metric balls, and every union of
open metric balls is an open set in .

Definition 20.18. Let  be  set. A  in (or on)  is a class  of subsets of  (that   any topology
is, ) which satisfies the three conditions    

(a) (a) (b) (b) (c) (c)(as 20.16 ), (as 20.16 ), (as 20.16 ).

A pair  of a set  together with a topology  in  is called a .       topological space

Lemma 20.16 may therefore be restated: if  is a metric space, the class of all the  
subsets of  that are open with respect to  constitutes a topology in , and in this way   
automatically becomes a topological space.

In this course all the topological spaces we meet arise from metric spaces. However, there
are several reasons to have a distinct concept of topological space. Firstly, many (though by no
means all) of the important ideas we discuss do not depend on the specific metric we use, but
only on the open sets it defines, and two different metrics may (and often do) have exactly the
same open sets. So it makes sense to concentrate our attention on the open sets rather than on
the metric. This can often lead to simpler definitions and proofs (as I said in my Introduction).
Secondly, there are also important ways of constructing topologies that do not involve metrics
at all. (It was an obvious problem how to characterize those topological spaces that could be
obtained from a metric. The problem was finally solved in 1950 by Nagata; but the solution,
though very ingenious, is both difficult and of little practical value, because the properties a
topology must have to be derived from a metric are quite difficult to check. In practice, when
one is given a topology, it is usually easier to construct a suitable metric from the definition of
the topology than to show that the topology has the “theoretical” properties required by a
metrizability theorem.)

This procedure of abstraction (from  to metric spaces, then to topological spaces) does
have costs.  has both an order structure and an algebraic structure, neither of which is usually
present in a metric space, and similarly a topological space lacks the idea of a specific distance
that is the basis of a metric space.

When we start with a topological space, it is customary to describe the sets in  as the
“open sets of ”. Thus there is an ambiguity: in a  space a metric  is  and the metric given
“open sets” are in terms of  by Definition 20.12, whilst in a topological space thedefined 
topology  is  and an “open set” is just another name for a member of —it is open by given
decree, as it were, rather than having any other property. In practice this never causes any
difficulty, because the context will make it clear which meaning is intended. If one speaks of a
topological space without ever mentioning a metric, obviously the second meaning is the only
possible one.
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Given a metric space , one often speaks of “the metric space ”. Likewise, in   
statements about a topological space  one frequently suppresses mention of  and    
simply calls certain subsets “open”.

Definition 20.19.  Let  be a topological space, and . A subset  of  is a(a)         
neighbourhood of  in   if there is an open set  such that .      

The word “neighbourhood” is sometimes used in slightly different senses, but this is
perhaps the most common one in general topology. However, some authors (such as Rudin)
define a neighbourhood of  in a  space to be what I have called a metric ball of positive metric
radius about .

  If  is a metric space,  is a neighbourhood of  [in my sense] if and only if there(b)   
exists some  such that .      

  I write  or  to denote the class of all neighbourhoods of  in .(c)    

Definition 20.20. Let  be a topological space and . The  of  in ,        interior
denoted by int , int , or , is the set of all points of  of which  is a neighbourhood.   

 

Lemma 20.21. For any subset  of the topological space , 
   is an open subset of ;(a) int 
  any open subset of  is included in ;(b) int 
   is the largest open subset of ;(c) int 
   is open in  if and only if . (d) int    

Proof. Let & . Then  is a union of open sets, so           


is itself open in  by 20.18 . It is also obviously a subset of , and includes every open (b) 
subset of  by definition; thus it is the largest open subset of , and will be equal to  if and  
only if  is itself open. To complete the proof I show int .   

If int , then  is a neighbourhood of , so there is an open set  with     
              ; thus , and, by definition, . This proves int .

On the other hand, if , then (by the definition of union) there exists some      
such that ; as  is open and a subset of , this shows that int . Hence,       
     int , and, with the previous inclusion, this shows int . 

As an example of the way in which other definitions may be reformulated in terms of
“topologies”, we have

Lemma 20.22. Suppose that  is a metric space,  a sequence in , and .        

Then  if and only if, for every neighbourhood  of , there exists  such that       
       whenever . 

Thus convergence according to 2.9 is equivalent to a statement in which the metric is not
mentioned at all, being substituted by the idea of “open sets” or “neighbourhoods”. It is
therefore natural to define the notion of convergence of a sequence in a space bytopological 
the condition given in 20.22:

              . (109)
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The definition of a neighbourhood means that it is enough to consider  neighbourhoodsopen
here; (109) will hold if the following is true.

Definition 20.23. The sequence  in the topological space  is said to converge to  
      if, for every open set  of  that contains , there exists a natural number  such

that  whenever .     

However, it is impossible to express the idea of a “Cauchy sequence” by means of open
sets alone. For it depends on comparing the distances between varying pairs of points, not the
distances from the fixed point  to the varying point . 

§21. Closed sets.

Definition 21.1.  Let  be a subset of a topological space . A point  is called an(a)    
adherent point of  if every neighbourhood of  contains a point of ,  

       .

   is called an  of  if every neighbourhood of  contains a(b) accumulation point  
point of   other than ,

          .

Equivalently,  is an accumulation point of  if every open set that contains  also contains a  
point of  different from . 

  An adherent point of  is either a point of  or an accumulation point of (c)   
(possibly both). The set of all accumulation points is called the  of .derived set  

This is a rather extreme example of terminological uncertainty; you have to be very careful
what meaning an author gives to these terms. Accumulation points are often called, and in
many contexts are the same as, “limit points” or “cluster points”, but I have tried here to give
names you will quite probably never need to unlearn.

Example 21.2. Let  be  with the usual topology. The subset  of integers has no  
accumulation points in  at all. (Such a set is sometimes called .) Every real number is isolated
an accumulation point of the set  of rational numbers, by 1.21. An interval , where  
                 and , has derived set , but  has derived set . 

 

Example 21.3. Let  be a non-null subset of  which is bounded above. Then  is an  sup
adherent point of . This follows immediately from 2.8. There is a similar statement for infima.

Lemma 21.4. Let  be a metric space, and . If  is an accumulation point of      
  , then every neighbourhood of  in  contains  points of . infinitely many

That is: the definition only requires that it contains one point of  (apart from ), but in 
fact it must contain infinitely many.
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Proof. Suppose ; there exists  such that . Assume that         
         is finite. Enumerate its members other than  as , and let  

              min  . Then  is the least of  positive numbers, so is itself
positive. Now  is a neighbourhood of  (by 20.15), and , so that        
                   can contain only  apart from . However,    

for each , so that ; and therefore  must be either  or the singleton           
  . This contradicts the assumption that  is an accumulation point of , and the
contradiction proves the Lemma. 

Definition 21.5. Let  be a subset of the topological space . The class of all adherent points 
of  in  is called the  of  and is denoted according to the context by cl , cl ,    closure
cl , or sometimes . 

    is described as  in  when cl .closed 

It follows that cl  always, and  is closed if and only if .          

Lemma 21.6. The subset  of the topological space  is closed if and only if its complement 
   in  is open. In general, the closure in  of a set  is the smallest closed set of   
including , and is the complement of the interior of the complement of : 

cl int or .             

Proof. Suppose cl . This means that  is not an adherent point of , so there is a    
neighbourhood  of  such that , or . Hence,  is a neighbourhood          

of , and int . The argument reverses. So cl int . taking complements           

gives cl int . This shows that a set  is closed if and only if      

        int or int ,   

that is, if and only if  is open. (Recall 20.21 .) (d)
For any , int  is the largest open subset of  (20.21 ), and so its complement     (c)

cl  must be the smallest closed  of .   superset 

Remark 21.7. The Lemma shows that closed sets are just the complements of open sets, and
this is often taken as the  of a closed set. Then cl  would be  as thedefinition defined
intersection of all the closed sets including . In metric spaces, sets are sometimes defined as
closed if they satisfy the property given as Lemma 21.11 below. These various approaches
arose as the ideas developed, and you must accustom yourself to the fact that different authors
start from different definitions.

Beware of the “standard mistake” of supposing that a subset of a topological space  must
be either open or closed. Most subsets in most interesting spaces—like —are neither (for
instance, the interval  in  is neither). The sets  and  are  open and closed; and    both
there are many non-trivial topological spaces in which there are more than these two sets that
are both open and closed. When such sets are of special interest, they are sometimes called
clopen (because it almost sounds like a word).
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Lemma 21.8. Let  be a metric space,  and . The closed metric ball        
   (see ) is a closed set in .20.10 

Proof. Let , so . Take ; if               
                 , then , and

         ;

thus  too. This shows that ,  for any . So              

   is open. Use 21.6. 

Remark 21.9. A sequence  (in any set at all) is said to be  if       without repeats
whenever the indices  and  differ: . [That is, the sequence is a one-to-         

one function. I don’t call this a formal definition only because it is so obvious.]

Lemma 21.10. Let  be a subset of the metric space . A point  of  is an     
accumulation point of  if and only if there is a sequence  in  that has no repeats and   

converges to .

Proof. Let . By hypothesis, . Choose an element of this set          

to be . If  have been constructed, then         

                
  

by 21.4; choose  to be an element of the left-hand set. This inductive construction

produces a sequence without repeats, and , so that  by 20.3 and        
1

2.19.
Conversely, let  be a sequence in , without repeats, that converges to . Let     

         be a neighbourhood of  in . There exists  such that , which  

shows that  contains infinitely many points of . So  is an accumulation point of .    

In this proof we used a version of the axiom of choice (by making countably infinitely many
arbitrary choices).

Lemma 21.11. A subset  of a metric space  is closed if and only if every sequence in   
  that converges in  has its limit in .

Proof. Let  be closed. If a sequence in  that converges in  has infinitely many different  
terms, it clearly has a subsequence without repeats. This subsequence is also in  and tends to
the same limit; by 21.10, the limit is an accumulation point of , so belongs to . If, on the 
other hand, a sequence in  has only finitely many distinct terms, it has a constant subsequence
(all its terms are the same), which converges to the repeated value. Thus the limit is again in 
(being actually a term of the sequence).

Conversely, suppose that every sequence in  that converges in  has its limit in . If  is  
an accumulation point of , then by 21.10 it is the limit of a sequence in  without repeats; by 
hypothesis this implies . So  is closed.    
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It is interesting to contrast this characterization of closed sets in a metric space with the
definition of open sets. At first sight they perhaps seem unrelated; but we now know open sets
and closed sets are just complements of each other.

Lemma 21.12. Let  be subsets of the metric space . If  is complete, it is closed    
in . If  is complete and  is closed in , then  is complete.    

Proof. Let  be a sequence in  such that . Then it is Cauchy by 20.7, so        
converges to a limit  by the definition of completeness, 20.8. But then  by 20.4.     
Thus, , and this shows that  is closed, by 21.11.   

Similarly, if  is a Cauchy sequence in , it is a Cauchy sequence in , so     

converges to a limit . But, by 21.11,  too (as  is closed). So . This          
shows that  is complete.  

Definition 21.13. Let  be a metric space. A non-empty subset  of  is described as    
bounded   if  is a bounded subset of . In that case,with respect to         
sup        is called the  of .diameter

This notion of boundedness is specific to the given metric .

§22. Compactness.

Definition 22.1. Let  be a subset of a topological space . A class  of subsets of  is   
described as a  (or just a ) of  if  (in words:  is included in thecovering cover     



union of all the members of ).
A subclass  of a covering  of  is called a  of  if the union of the members   subcovering

of  still includes . 
A covering  of  is  (in ) if all the members of  are open sets in . (It is,    open

similarly, a  if all its members are closed sets in .) It is a  covering if itclosed covering finite
has only finitely many members.

Thus, a covering of  is a class of subsets of —that is, a set whose members are subsets 
of ; and it may have  members (even uncountably many). very many

We now come to one of the most important ideas in the whole of mathematics:
compactness. It crops up in quite unexpected places, and, as a vague explanation of its
importance, one might say that it is a “topological analogue of finiteness”. The usual modern
formulation, which was the end of a long evolution, is given below. It needs some effort to
grasp what it means, but it is both general and simple to apply in most situations. In metric
spaces, however, it is equivalent to several other conditions that may seem rather more natural
at first sight than 22.2. I shall discuss them in some detail and with some redundancies in §23.

Definition 22.2. Suppose that  is a subset of the topological space .  is said to be 
compact Heine-Borel property [or to have the ] if every open covering of  has a finite
subcovering.

This definition says that, in any class consisting of infinitely many open sets whose union
includes , nearly all of them are redundant for the purposes of covering—you can throw out
all but finitely many and still cover . This is trivially true if  has only finitely many points: 
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for each point of , take one set of the covering containing that point, and the result of these
choices will be a finite subcovering ; but it is surprising that there are more interesting compact5

sets. The central fact is as follows.

Lemma 22.3. Let . Then the closed interval  is compact in  in the       
usual topology (defined by the metric ).      

Proof. If ,  is either  or a singleton, and the result is trivial; so we assume .       
Let  be an open covering of . Say that a point  is -  or just       reachable reachable
if there is some finite subset  of  for which . (“You only need to pass     



through finitely many sets of  to reach  from ”.) Evidently  is reachable (  belongs to at    
least one member of ). So the set of reachable points is non-empty and bounded above by . 
By Dedekind’s axiom, it has a supremum . There is some  for which      
       ;  is open in ; so, by definition 20.12, there is some  such that
           .

Now, by 2.8 , there is a reachable point  for which  (  is the(ii)          

supremum of the reachable points). Let . Then  too,  and           
  min

is also reachable, since  may be reached via finitely many members of ,  and the one  
 

additional member  suffices to reach . As  was the supremum of the reachable points  


and , necessarily . But the definition of  shows that this can only occur if        

min           


, which evidently implies that . We conclude that  is
reachable, which is just what is desired. 

You may find it helpful in following the proof to sketch the positions of the points on a
line—as often, what is being said is quite easy in terms of geometrical intuition, but clumsy to
phrase in rigorous language. Cambridge folklore was that this proof was presented by an
undergraduate in an exam, when all that was expected was mere regurgitation of material from
a lecture.

The Lemma is often summarized as . (  has anbounded closed intervals in  are compact 
upper bound  and a lower bound .) It is another statement that is in some sense equivalent to 
Dedekind’s Axiom. At any rate, we can conclude that compactness is not uselessly uncommon,
especially in view of the next Lemma.

Lemma 22.4. Let  be any topological space, and suppose  is a compact subset of  and 
   is a closed set in . Then  is also compact in . 

Proof. Let  be an open covering of . Then  is an open covering         

of , so it has a finite subcovering . In principle,  may or may not have  as a     

member; let  (i.e. remove  if it is in ). Then , and  is               

clearly a covering of  (though perhaps not of ), since  is disjoint from . That     
is,  is a finite subcovering of .  

In this case, a Venn diagram may clarify the proof, although, of course, Venn diagrams
cannot on their own constitute proofs.

Corollary 22.5. Any bounded closed subset of  is compact.

5 This does not require the Axiom of Choice. Only finitely many choices have to be made, and the usual
axioms of set theory permit that.
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Proof. Let  be any bounded closed subset of , with an upper bound  and a lower bound 
     . Then , which is compact. So, by the preceding Lemma,  is also compact. 

In older books, before the modern concept of “compactness” was invented, many results
were stated with the hypothesis that a set was bounded and closed in or in . 

§23. Notions related to compactness.
There are many properties that are equivalent to compactness, perhaps under suitable
additional hypotheses, and I shall give only the commoner ones. Furthermore, those of you
who have come across it will notice that I am making free use of the axiom of choice; and I
should point out that (at least partly for clarity, but also to introduce some additional concepts)
I have not tried to follow the most economical line of exposition.

Throughout this section,  is a topological space (at least).

Definition 23.1. A subset  of  has the if every infinite  Bolzano-Weierstrass property 
subset of  has an accumulation point (in ; see 21.1) belonging to . That is: if  and    
   has infinitely many elements, then some point of  is an accumulation point of  in .

Lemma 23.2. Let  be a subset of the topological space . If  is compact, it has the 
Bolzano-Weierstrass property.

Proof. Let  be an infinite subset of , and suppose it has  accumulation point in . Thus,  no
for every , there is an open set  of  (see 21.1 ) which contains  but no point     (b)
of  (except possibly  itself in the case that ). Certainly  is an open         
covering of , since each point  belongs to the corresponding . But  is compact;   
hence, there is a finite subcovering . Each of  contains             

at most one point (the “ ” that indexes it) of , and so  has no more than       


members. This contradiction shows that  must have an accumulation point in .  

Definition 23.3. A subset  of  is said to be  if any sequence  in   sequentially compact 

  has a subsequence that converges to a limit in .

Lemma 23.4. If the subset  of the topological space  is sequentially compact, it has the 
Bolzano-Weierstrass property.

Proof. Let  be an infinite subset of . Then we can construct by repeated choices a 
sequence  in  without repeats. By the sequential compactness of , there is a    



subsequence  that converges to some point  of . By the definition 20.23, any    


neighbourhood of  contains infinitely many terms of the sequence, and so  is an accumulation 
point of . 

Perhaps surprisingly, the argument does not reverse. The difficulty is to pass from an
accumulation point of a   to a subsequence of the  . But, for metricset sequence    

spaces:
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Lemma 23.5. Let  be a subset of the  space . If  has the Bolzano-    metric 
Weierstrass property, it is sequentially compact.

Proof. Let  be a sequence in . If any of its terms is repeated infinitely often (with value  

, say), it has a constant subsequence (consisting of those repeated terms) that converges to
   .

If no term is repeated infinitely many times, there is a subsequence  entirely without 
repeats. Indeed, if  have been chosen, where                 

          , take  to be the least index for which  differs

from all of , and let  be . In this way, we define by induction a           

subsequence  without repeats; then  is an infinite subset of , and so the         
Bolzano-Weierstrass property would mean it has an accumulation point  in . As  is a  
metric space, 21.10 applies: there is a sequence without repeats  whose terms belong  



to  and which converges to . It may not, however, be a sub  of ,         sequence
as the  may not increase as  increases. 

Nevertheless, we can  as follows a subsequence  of  which is also aselect     

subsequence of . Let , and, if , let ,                

where  is the least index greater than  such that . There must be such         

an , as otherwise the whole sequence  (without repeats) has no indices greater than   

       , which is absurd. And, of course,  is a subsequence of  and, therefore,
converges to .  

Thus, in METRIC spaces, the Bolzano-Weierstrass property and sequential compactness
are equivalent, and are  compactness. To show they  compactness requiresimplied by imply
intermediate concepts that are of interest in themselves.

For the rest of this section,  will be a metric space with metric . 

Lemma 23.6. Let  be a sequentially compact subset of . Suppose that  is an open cover  
of . Then there exists  such that, for any , there is some  for which        
    .

Thus, if we shrink every member  by taking away its “outer shell” of thickness ,   
leaving , the result  is still a covering of . A                 
number  with this property is often called a  for the covering  of . Lebesgue number 

Proof. Suppose it were untrue. Then, for each , there must be some  such     

that  is not included in any member of . By sequential compactness, the sequence   
         

 in  has a subsequence  which converges to some point . Thus
               for some . As  is open in , there is  such that . As 
               


, there is a  such that . Suppose that

            max , and take any ; then (recall from 2.2 that )

                    



   

  
   ,

so that . This contradicts the construction of the sequence . We       

conclude that the Lemma must be true. 

A sketch (possibly in two dimensions) may help to grasp the argument.
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Definition 23.7. The subset  of the metric space  is  [or, especially in older  precompact
texts, ] if, for any , there is a finite subset  of  such thattotally bounded     
   

 .

Equivalently, there is a finite subset  of  such that any point of  is within distance  of   
some point of . It clearly implies that  is bounded with respect to  (as at 21.13), since, for  
any  and any , there is some  for which       

                 max

this is a number that does not depend on the choice of  in  (the maximum is taken over 
finitely many numbers that are independent of ).

Lemma 23.8. The subset  of the metric space  is precompact if and only if, for any 
           , any subset  of  such that  for any two distinct points  must

necessarily be finite.

Let us say temporarily that a set such as  is “ -separated”. 

Proof. Suppose that  is precompact and . There exists a finite subset  of  such       
that . If  is any subset of  with more elements than , then there       



 

must be two elements  which belong to the same ball  (this is the so-called     


“pigeonholing principle” or Schubfachprinzip). Thus,

           
    .

So a -separated subset  of  cannot have more elements than ; in particular, it cannot    
be infinite.

Suppose that any -separated subset  of  must be finite. Let  be given. Choose     
inductively  in  so that, for each ,         

     

 ,

if such a choice is possible. In this way,  whenever , i.e.                

    is -separated. It is therefore finite, by hypothesis. There must be some  for which no
  may be chosen; that is,





     .

As  was arbitrary, this shows  is precompact.     

Lemma 23.9. A sequentially compact subset  of a metric space  is precompact. 

Proof. By 23.8, it will suffice to show that, given , any -separated set  must     
be finite. If it were not, we could select a sequence  without repeats from . By  

hypothesis, there is a subsequence  convergent in . It is therefore Cauchy, by 20.7.  

There exists  such that  if . This is absurd, as  is                

-separated as a subset of . 
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Theorem 23.10. The subset  of the metric space  is sequentially compact if and only if it 
is compact.

Proof. If  is compact, 23.2 shows it has the Bolzano-Weierstrass property, and 23.5 then
shows it is sequentially compact. Now suppose it is sequentially compact, and let  be an open
covering of . By 23.6, there is a Lebesgue number  for the covering. By 23.9, there is  
a finite subset  of  such that . For each , there is a           

  

such that ; and so    

      
   ,

and  is a finite subcovering of .      

There is yet a third way of characterizing compactness of a subset of a metric space, with
the advantage that it generalizes valuably to some other situations. We start with an easy
observation that is often quite useful.
Remark 23.11. If  is a Cauchy sequence in , and has a subsequence  that con-    

verges to , then  too.     

Proof. Let . As  is Cauchy, there is  such that  when .               



Also, there exists  such that . Hence, if , where           



  max ,

                 
 
    .

(I have used the fact that .)       

Lemma 23.12. If the subset  of the metric space  is sequentially compact, it is complete 
(see ). 20.8

Proof. Let  be a Cauchy sequence in . By sequential compactness, there is a  

subsequence  which converges to a point . But  by 23.11.        
 

Lemma 23.13. The subset  of  is precompact if and only if every sequence in  has a 
Cauchy subsequence.

Proof. Suppose  is not precompact. By 23.8, there is some  for which there is an  
infinite -separated set .  will contain an infinite sequence without repeats, which    
cannot have a Cauchy subsequence, since, for any subsequence, the distance between terms is
always at least .

Suppose  is precompact, and  is a sequence in . We use a ‘diagonal process’ to   

construct a Cauchy subsequence. First,  may be covered by finitely many balls

            

with centres . At least one of these balls contains infinitely many         

terms of , say ; we get a subsequence     
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of . Now, there are finitely many balls  that cover , with            
 
 

centres . At least one of these balls, say , must contain          



infinitely many terms of , constituting a subsequence  of . If the          


  

sequence  has been defined,  is covered by finitely many balls   

          
  ,

at least one of which, say , contains infinitely many terms of .       




These terms constitute a further subsequence . In this way we obtain a sequence  +1

      
 


 of subsequences of , each being a subsequence of its predecessor.

Define  for . This “diagonal sequence”  is certainly a            

subsequence of , and all its terms after the th form a subsequence of  and lie in      

   
 . Thus

                           
  .

Hence,  is a Cauchy sequence, and a subsequence of .     

Theorem 23.14. Let  be a subset of the metric space .  is sequentially compact if    
and only if it is complete and precompact.

Proof. Let  be sequentially compact. It is complete by 23.12 and precompact by 23.9.
Now suppose that  is complete and precompact, and let  be a sequence in . By   

23.13, it has a Cauchy subsequence; by completeness, that Cauchy subsequence converges to a
point of . So  is sequentially compact.  

In short, compactness, the Bolzano-Weierstrass property, sequential compactness, and
completeness+precompactness, are all equivalent FOR SUBSETS OF METRIC SPACES. The
proofs above are not the shortest possible; you will certainly find different arguments in other
sources. There are also various generalizations that I omit.

Theorem 23.15. A subset of  is compact if and only if it is closed and bounded with

respect to the Euclidean metric. A subset of  is compact if and only if it is closed and

bounded with respect to the Hermitian metric.

Proof. Suppose first that  is a compact subset of . Let  be a sequence in  that   


converges to . As  is sequentially compact,  has a subsequence that converges    


to a point . By 20.5, , so that . By 21.11,  is closed in . As  is            
totally bounded, it is bounded (see the remark after 23.7).

Now suppose  is closed and bounded. As  is complete by 23.14, any closed subset is 

also complete (by 21.12). All we need to show, therefore, is that a bounded set in  must be

totally bounded. If  is -bounded, there exists  such that  for every ,         
and, if ,          
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 .

Thus   is included in the ‘cube’ .                
Given , choose  such that . We may split up the cube of side          

into  smaller cubes of the form

                                    ,

where  ranges over all -tuples of integers such that, for each ,          

     . But

                   

(why?), and so . This proves that  is precompact,        
       

  

as required.
The proof for  is (except for more notation) the same as for .    

There are many other proofs of this Theorem (for instance, compare 3.11). In older texts
sequential compactness or the Bolzano-Weierstrass property are often proved directly for
bounded closed subsets of . It should be emphasized, though, that the result applies

specifically to  or . In more complicated spaces, boundedness certainly does  always   not
imply precompactness, and a set that is bounded and complete need not be compact.

§24 Subspaces and continuity

Definition 24.1. Suppose that  is a metric space. If  is any subset of , the     

restriction  of   to  is a metric on , and we describe  as                 

a  of . In effect, this means that, if , we define the distancemetric subspace        

between them as points of , , to be exactly the same as the distance between them   

as points of , .   

If we say “the metric space ”, without explicit mention of the metric , we may also 
speak of “the (metric) subspace  of ”, taking for granted the metric . We might even  
denote both metrics by  when notation is needed, since they have the same values for pairs of
points in .

[It’s worth noticing that in “real life”, we don’t always use this “subspace metric”. When
we speak of the distance from Wellington to Tokyo, we usually mean the distance as measured
along a great circle in the subset constituting the surface of the earth, rather than along a
straight line through the interior.]

Lemma 24.2. In , a subset  of  is open  closed  in  (with respect to ) if and24.1 [or ]   

only if there is a subset  of  that is open  closed  (with respect to ) and such that  [or ] 

    .   

The proof is easy (see 20.12 and 20.15 for the open sets, and take complements for the
closed sets; one may also use the “sequence” definition of closed sets). This suggests

Definition 24.3. Suppose  is a topology on the set , and  is a subset of . Then the   
subspace topology on  (induced from ) is .        
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It is easily checked that the subspace topology is indeed a topology on , and that, if  is 
defined by a metric  on , the subspace topology on  may be defined by the subspace  
metric  (cf. 24.1).

Definition 24.4.  Let  and  be metric spaces. Suppose that (a)             

is a mapping.  is said to be  at  if  continuous 

                     

This is an obvious translation of 5.1 into the language of metric spaces (and, as there, one may
say “  is a point of continuity of ”). It may be expressed in terms of metric balls: 

                

(The notations  are, I hope, self-explanatory.)  

   is  (or ) if it is continuous at every point of .(b) continuous continuous on   

Lemma 24.5. Let  be a mapping between metric spaces.  
   is continuous at  if and only if, for every neighbourhood  of  in(a)     

 , the inverse image  is a neighbourhood of  in .  

   is continuous (on ) if and only if, for every open set  in ,  is an(b)      

open set in .

Proof.  Suppose  is continuous at , and  is a neighbourhood of  in ,(a)      
       (in an obvious notation). By 20.19 , there is, by 20.12 , some (b) (a)

such that (again in an obvious notation) . By 24.4 , there is  so        (a)
                . Thus, ; and this means that

    


, again by 20.19 . This proves “only if”.(b)
Conversely, ; if , there is some            


    

          such that , again by 20.19 , and this implies that


 (b)
         , as required for 24.4 .(a)

  Suppose  continuous and . Take any . By definition,(b)       


          and (  being open) . From , ; it is a neigh-  (a) 

bourhood of each of its points, and is open in  (cf. 20.21 ). (d)
The converse is now a trivial exercise. 

This Lemma suggests the following definition.

Definition 24.6.  Let  and  be  spaces, and suppose(a) topological         

      a mapping.  is said to be if, for every , its inverse imagecontinuous 

     under  belongs to : that is, if the inverse image under  of any open set in  is an 

open set in .
   is said to be (where ) if, for every neighbourhood  of(b) continuous at      

     in ,  is a neighbourhood of  in . In that case, one also says that  is a   point
of continuity of .

This is the usual definition of continuity in general topology. It is rather remarkable that,
starting from s and s, we arrive at a definition of continuous mapping that is stated in terms 
of pure set theory (that is, a topology is a class of subsets having certain set-theoretic
properties, and the definition of continuity is in terms of those classes.)
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If and , one may say that  is continuous on  if it is continuous         
with respect to the subspace topology on  and  on . When  and       
         is continuous,  is certainly continuous on . However,   

may be continuous when  is not; that is, every point  may be a point of    

continuity of  (with respect to the subspace topology on ) without being a point of  

continuity of . It is easy to construct trivial examples.
As an example of the way in which the idea of compactness can allow relatively snappy

proofs of some results, here is a “purely topological” version of  6.7.

Theorem 24.7. (Dini’s theorem on monotone convergence.) Suppose that  is a  


sequence of continuous functions , where  is a compact topological space; and  
that, for each , the numerical sequence  tends monotonically to a limit     



     , where  is itself continuous. Then  uniformly on .  

Proof. As at 6.7 , it suffices to assume  pointwise on  (and each  is continuous).A     
Take any , and any . There exists  such that       

       

As  is continuous at ,  is an open set  containing . Thus,            

      is an open covering of , and has a finite subcovering, say
        .

Take . If , any point  is in  for             max    
some , , and, as ,  (as the sequence is                   

decreasing). Thus,

                   

which is precisely the uniform convergence asserted. 

APPENDIX C

Solution of the cubic
The aim of this note is to amplify the frequently stated remark that Bombelli (together with

some contemporaries) invented complex numbers in connection with the solution of the cubic.
Solution of the cubic or of the quartic is a topic that has almost been squeezed out of the
syllabus, except occasionally for some remarks in first-year courses and sometimes as an
application of Galois theory in the fourth year, but it is really quite elementary and extremely
ingenious. Of course Galois ‘explained’ it; he indicated why the method worked, why the
similar method for the quartic was also possible, and why the idea could not be extended to the
quintic; but the actual solution of the cubic itself was much older, and due in successive
refinements to Scipione del Ferro (1465–1526), Niccolà Fontana (usually called Tartaglia, ‘the
stammerer’) (1500–1557), and Gerolamo Cardano (1501–1576), who was so famous
throughout Europe that his name itself was translated into other languages and you may find
him called Cardan. James VI (as he was at the time) accused him of witchcraft. His fame,
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however, was principally in medicine. He claimed—quite falsely—the “rule of Cardan” that if
you have gout, you cannot catch tuberculosis or suffer from gallstones. Much medical science
until very recently consisted largely of such unsubstantiated assertions, and indeed it seems to
be an innate characteristic of human beings to generalize wildly on the basis of minimal
evidence. The quartic was solved, with surprisingly little additional difficulty, by Ludovico
Ferrari (1522–1565), who was Cardan’s pupil.

In the cubic equation , we may as well assume , for                  
 

otherwise it reduces to a lower degree. Dividing the original equation by , we can  

suppose the cubic is . If we now set , ,                     
    

 
 

the corresponding equation in  is

       , (1)

where , . This is called a cubic (without a term               
  
   

  reduced 
in the square of the unknown). Notice that  and  can have arbitrary values. 

Cardano worked with the reduced cubic (1). Put . Then    

               

         

      

  

,
.

The effect of this calculation is that, if  can satisfy the simultaneous equations

       , , (1) 

then  will be a solution of (1). But we can solve (2). More precisely, we can solve the  
related equations, obtained by substituting  for ,  for ,   

        , , (2)

whose solutions are the roots of the quadratic

         . (3)

This last equation (4) is the of the original reduced cubic. Its rootsquadratic resolvent 

  
     
     

                   

where the same choice of the complex square root is made in both formulæ, are cubes of the
roots of (2). Choose  to be a specific cube root of ; the first equation of (2) will then fix  

(unless , which applies only if ). So the formula (Cardan’s formula, 1573)     

                     
     

   
 

(4)

gives a root of the cubic (1), provided that the two cube roots are chosen so their product is
  . It is clear that the prior choice of the square root does not affect the result—reversing it

simply interchanges the terms of the sum (5). We might write the formula as
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to emphasize the correct choice of cube roots, though at the cost of losing the symmetry of
(5).

If one possible choice of cube roots in (5) is , and if  is a complex cube root (that   
is, other than ) of unity, the other possible choices with product  are  and     

  
 

 
    ; we get solutions of (0)

             
 , , . (5)   

(Recall that , so that the sum of these three solutions is indeed , as it must be      

for a reduced cubic.) Thus “in principle” the formula (5) gives three distinct solutions of (0),
which, if genuinely different, must be all the solutions.

[There is an alternative way of setting out the argument, which may appear more natural
and which is presented in some books. Given the reduced cubic (0), substitute , where  

              
 ; this puts it in the simpler form . Now, substitute ; 



then the equation becomes

                     ,

i.e. , which is a quadratic in . A moment’s thought will convince you that      
this is essentially the same method as before.]

Let us try to discover what happens if the possibilities (6) are not all distinct. If

      

            

      

   


  


  


 

   

 

, then
, and

(since  and ). Other pairs from (6) are equal if  or             
 

              
   . Since  have to solve (3), in each of these cases  and

   
  . Hence, if two of the formulæ (6) give the same values, necessarily the

discriminant cubic  must vanish. (  is called the discriminant of the ; but it is     


also the discriminant of the quadratic resolvent of (4), in the old sense for quadratics).
If all the formulæ (6) give the same values, we have , so that      

 
             ; it follows that (again) , but, in fact, . Hence, the reduced

cubic is just , so that its roots coincide.   all 
Suppose, on the other hand, that , but . Then it is easily checked by direct     

calculation that  is a root of both the polynomials   


        , 3 ,

of which the second is the formal derivative of the first. So  must be a  root of the repeated
first polynomial. (If  factorizes as , its derivative is           
              , which can only have  as a root if —that is, if  is a

repeated root of ).
The upshot is that, if two of the formulæ (6) have the same value, the cubic (1) anyway has

a repeated root; if all the formulæ (6) have the same value, the cubic has three coincident roots
(all zero, because it is a reduced cubic). So the formulæ (6) do, in fact, give all the roots of (1),
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and, what is more, the vanishing of the cubic discriminant is the necessary and sufficient
condition for there to be a repeated root.

In the argument so far I have taken complex numbers for granted, by assuming the
existence of  cube roots (and of at least one square root). But now, consider what thethree
mathematicians of the sixteenth century, for whom the coefficients  and  had to be real, 
could understand by Cardan’s formula.

When , the quantities whose cube roots appear in the formula are both real, have  
product , and differ from each other; thus we may choose  and  to be real and   




 

different. The formulæ (5) give a single real value. In addition, there are two mutually
conjugate complex values (notice that ) which our men of the sixteenth century,  

recognising only real cube roots of real numbers, could not perceive.
If , we can take  and  to be real and equal. (This needs checking, for recall     

that  is to be .) Hence the formula certainly gives us real root, .            

 one 

A sixteenth-century mathematician could then use this root to reduce the degree of the
equation (dividing by ), and could solve the resulting quadratic to obtain the other two  
roots (which must coincide, as we saw above, and so be equal to ). However, Cardan’s
formula, in his understanding, would  have given him these roots. In  terms it yieldsnot modern
the two expressions  and , which, although                 

 

themselves real, arise from non-real cube roots in the formula. This is odd enough.
When , the peculiarity of the formula becomes quite striking. In this case—  and     

being real—  must be negative, from the definition of ; hence  and  are cube roots of    

two conjugate complex numbers, and must themselves be conjugate (as their product  is 
to be positive). Thus (6) gives , , , all of which are real and                
different (as we saw above). Notice, by the way, that this means that, when the coefficients 
and  of the reduced cubic are real, the sign of  determines whether there are three distinct 
real roots (when ), two real roots with one repeating (when ), or only one    
(when ). Our argument shows that in the case of three real roots, ,      none at all
of them could be derived by a sixteenth-century mathematician from Cardan’s formula, since
they all involve .

At the time this was extremely mysterious. The formula seemed to be “correct”, in some
metaphysical sense; its derivation was convincing when the various roots existed, and it
certainly gave solutions of the cubic when it could be interpreted in real terms. But in the case
    it did not detect any roots at all. And yet it was clear that any real cubic has at least

one real root, since large positive values of  make quadratic  positive and large    

negative values make it negative. (Of course, the intermediate value theorem had not been
rigorously proved at the time—the apparatus did not exist for any modern “proof”; but, like
many other theorems of elementary analysis, it was pretty obviously true at least for
polynomials.) In fact, it is not difficult to see, by checking the values of the cubic expression at
some particular choices of  and applying the intermediate value theorem, that there must even
be  real roots if . This baffling situation—there is at least one root for quitethree   
elementary reasons, and one can even see in a fairly straightforward way that there must be
three, but the formula, which seems to be correct in other respects, makes no sense—was
therefore called the “irreducible case”.

Cardan’s suggestion, which Bombelli elaborated to a system of algebra, was to get over
this seeming absurdity by ‘pretending’ that the negative number  did have a square root. As
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we know, this leads to the existence of three distinct cube roots of non-zero complex numbers.
Then Cardan’s formula yields all the roots in all cases, as we found above, and the anomalies
fall away. But there seemed at the time to be no legitimate explanation for this. I do not know
what people really thought then; there have been far more recent examples, however, of
concepts that were accepted as useful despite a general awareness that they could not be
justified as they stood (one that you may find familiar is Dirac’s -function—but, now that
ideas spread far more rapidly, it was justified, and in a valuable way, after only a few years).

The curious aspect of these arguments, from our point of view, is that the solution of a real
quadratic did not present a like paradox to a sixteenth-century mathematician. The formula for
the solution of a quadratic would make no sense to him precisely when he would say that there
are no solutions anyway, namely when the quadratic discriminant is negative. In graphical
terms, a quadratic expression is represented by a parabola that may never cross the -axis,
whilst a cubic curve must cross it at least once and possibly three times. So it was only the
solution of the cubic that motivated “complex numbers”.

APPENDIX D

25 Cauchy’s theorem.

§D0   Introduction
In the lectures, I adopted the policy of explaining and using a rather strong version of Cauchy’s
theorem, whilst “proving” only a weak version (my proof relied on Green’s theorem, which
itself is rather difficult to prove satisfactorily). The purpose of these notes is to discuss a proof
of the version I have actually used. In the interests of brevity and readability, I shall not be
absolutely rigorous, but all the steps I fudge can be supplied fairly easily by using facts from
the earlier part of this course.

Cauchy’s original proof of his theorem was more or less the one I gave. That is, he
considered only functions strongly holomorphic on a region (recall that these are the functions
for which  not only exists at each point of the region, but is also a continuous function of 

), and then applied Green’s theorem. The argument should not be despised, because it can be
generalized to higher dimensions in various ways, whereas the more precise proof I shall soon
give is rather more specific to . Furthermore, Cauchy’s version of his theorem is indeed
sufficient, with a few contemptible extra tricks, to prove all the later results of the course,
provided that one restricts attention to strongly holomorphic functions. All the functions we
shall be interested in are obviously strongly holomorphic. On the other hand:

 1. We now know, though Cauchy didn’t, that a holomorphic function on a region must
be strongly holomorphic. A proof of Cauchy’s theorem which requires strong holomorphicity 
is, therefore, making a superfluous assumption. In practical terms this is perhaps of little
importance, but the fact is startling, and by far the easiest  that holomorphic functions areproof
strongly holomorphic uses Cauchy’s theorem for  functions.holomorphic

 2. There are topological problems involved. If you recall the proof of Green’s theorem
that you have seen (in whatever version), it amounts ultimately to the fundamental theorem of
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calculus, plus the geometrical assumption that any line parallel to one of the axes cuts the
contour of integration in a particular way. Crudely speaking, the points that it has in common
with the contour can be classified as “points of entry” (into the region enclosed by the
contour), “points of exit”, or “neither”. The fundamental theorem of calculus is applied to the
intervals between points of entry and points of exit, which are assumed to occur in pairs. In
effect, the assumption is made that a closed contour must have an “inside” and an “outside”.
For closed contours that do not cross themselves, this looks overwhelmingly obvious, and, in
Green’s and Cauchy’s day, mathematicians were disinclined to worry about it. That it is not
obvious can be seen if you consider circles on the surface of a torus, some of which do split the
surface in two and some of which don’t; those which ‘go right round’ the torus don’t. The
property that a closed non-self-intersecting contour splits the plane into an “inside” and an
“outside” is a property in some measure specific to the plane, and is the ,Jordan curve theorem
which was first proved some decades after Cauchy’s work.

The most accessible proof (not Jordan’s, but Eilenberg’s) of the Jordan curve theorem uses
some of the ideas in the proof of Cauchy’s theorem below.

That is not all, however. The condition that the contour be a Jordan contour is odd; for a
change of parametrization of the contour does not alter the integral, but may easily make the
contour non-Jordan. It is thus not the “right” condition. (Of course, it is quite conceivable that
it might nevertheless be the only convenient one.) However, there are many situations in which
the contour integral must manifestly be  though the contour is not Jordan. In 16.10, we
mentioned a contour that gives a zero integral for any function holomorphic in ,   
but that is not Jordan.

The moral is that Cauchy’s statement of his theorem is not ideal, either analytically or
topologically. We shall see that his proof (even if supported with a full proof of Green’s
theorem) is not the ideal proof.

 3. In practice, one tends to need Cauchy’s theorem in situations to which 16.3 does not
apply directly (because the contours are not Jordan contours, etc.), and this leads to various
messy techniques where contours are split up into Jordan contours or expressed as limits of
Jordan contours. It is better to have a more general version at the outset, and then the
applications follow easily and naturally.

§D1. Goursat’s Lemma
An amazingly simple and elegant argument of Goursat proves Cauchy’s theorem in a case with
no topological difficulties. By the ‘boundary’  of a rectangle , I mean the contour 
obtained by travelling round its sides in the obvious way (anticlockwise); you can easily write
down appropriate formulæ. In the proof below, I have employed diagrams to clarify the
notation, but it is evident that the argument does not really depend on the geometry at all and
could be set out in purely analytical terms.

Lemma 25.1. Let  be a rectangle included in the region  of , and let  be    
holomorphic. Then the integral of  around the boundary of  is zero. 

Proof. Suppose that . Let the perimeter of  be . If  is split into four 
        

congruent “quarters” , for  (see the diagram below), then      
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,

because the integrals over the  line
segments cancel two by two. Hence

,

internal

and there is an index  such that . The rectangle  may be similarly     





subdivided, and so on. In this way one may select a sequence of rectangles ,  
    , , such that each is a quarter of its predecessor, and, for each
      ,

   


  . (D1)

(Incidentally, this is another situation in which Littlewood might have given a scheme for
making the choice of  amongst the four quarters of ; see my remark after   
8.17.) The rectangles  must converge to a point . That is to say:   

                    

(This follows from any of several related arguments, the details of which you can easily supply.
For instance: if one takes a point  for each , then all the  for  lie in         

     , and, since the diameter of  is  times the diameter of , the sequence  is


Cauchy, therefore must converge, and its limit is . Or, take any point  in  for each   

 —or, to avoid the Axiom of Choice, take the bottom left-hand point of —and the
sequence  has a convergent subsequence, by sequential compactness of ,  with a limit  

 .)
Now  is complex-differentiable at : there exists  such that      

 
    

   
           






  when .

Hence, if  and ,      

               



   

 . (D2)

(This is true when  as well.) But  

    

 

 
  




  



              

            

But  is , and is continuous. So the                  
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last integral is  by 15.9 , and therefore, using (D2) and the fundamental estimate, (b)

  
 

     



. (D3)

The perimeter of , i.e. the length of , is , and, for every point ,      

        
 ; the integral on the right of (D3) cannot exceed . Putting

this together with (D1),

       


  .

Hence , which is absurd; the initial assumption that  must have been false.      
 

The proof only uses complex-differentiability of  at the single point , but there is   

no prior information on the location of  in , so the hypotheses must demand 

differentiability at all points of . (It is possible to weaken them slightly, but little is gained in
the end by doing so). The really striking fact, however, is that only complex-differentiability is
used. There is an analogous argument for Green’s theorem on a rectangle (briefly described at
25.16), but the requirement that the curl be integrable over the rectangle forces one to assume
more than mere differentiability of the vector field—customarily, although rather too
demandingly, that its derivatives be continuous as well.

§D2. The rectangle property

Definition 25.2. A region  has the with respect to  if, for any   rectangle property 
     , the closed rectangle with  and  as opposite vertices lies entirely in .

Corollary 25.3. Let  be holomorphic in a region  having the rectangle property with res- 
pect to some .  is the complex derivative of a strongly holomorphic function in .    

Proof. For any , let  be the integral of  around two sides of the rectangle of    
which  and  are opposite vertices (starting at  and ending at ). There are usually two   
choices for the contour of integration, but 25.2 ensures they give the same answer. Calculate
  by taking that contour of integration which ends with a horizontal segment. Hence
    , and is continuous in  as  is. From the other contour of integration,
    . Hence,  is C  on  and the Cauchy-Riemann equations are satisfied at each

point . By 12.11,  is complex-differentiable at , and . So  is           

strongly holomorphic in . 

Proposition 25.4. Let  be holomorphic in a region  having the rectangle property with 
respect to one of its points. The integral of  around any closed contour in  is .  

Proof. Put together 25.3 and 15.9. 
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Remark 25.5. It is evident that a disk , or any open  rectangle containing  coordinate
 , has the rectangle property with respect to . (There are many other examples of such
regions).

Suppose  is holomorphic in a region , and that  is a closed contour.         
Choose points  such that, for ,  and                       
      are points on the frontier of a closed rectangle that is wholly included in , and 
lies in the same rectangle for —the proof of this involves Lebesgue numbers     

(see 23.6), and I omit it. Hence, from 25.4, the integral of  over the contour ,  is     

equal to its integral over parts of the edges of the rectangle (see the diagram, in which  

is the third point where the contour crosses the edges of the rectangle; there is a choice of two
routes over the edges of the rectangle, but this is unimportant, since both choices give the same
integral).

Proceeding in this way for each , we can substitute  by a new contour consisting of 
rectilinear segments each parallel to one of the axes, and each traversed at a constant rate. Let
us call such a contour a .rectangular contour

Lemma 25.6. Let  be any contour in the region . Then there is a rectangular contour  in 
 , having the same end-points as  (in particular,  is closed if  is), such that, for any  
function  holomorphic on , 

 
 

   . 

§D3. Cycles and winding numbers
In the lectures I made a brief mention of the notion of a closed chain or cycle. (More precisely,
we were interested in closed piecewise C  chains with integer coefficients). A fuller definition

is as follows: a , or , is a formal sum  of finitely many terms, wherecycle closed chain  
each term consists of an integer coefficient  multiplying a closed contour . More 
generally, a  is a similar formal linear combination of contours that are not necessarilychain
closed.

At first sight these seem perverse definitions. Why introduce ‘linear combinations’ that
have no geometrical meaning? (The use of the word ‘formal’ here is in effect the same as after
9.12: these linear combinations are just , having no more concrete interpretation;expressions
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they are ‘formal’ because their ‘form’ is all they have). I shall not try to justify doing so in any
detail, but the idea is that a chain is (more or less) the most general object over which we can
integrate a function. If  as above, one simply defines  

 

 
 

   


.

One  of the chain as consisting of  copies of , for each . Just as we write thinks      
to mean that  is a value taken by the function  (when  is a path or contour), so also we  
write  to mean that  is a value of one of the functions  that have a non-zero   
coefficient , and say that ‘  is a point of the chain’, although the chain is neither a subset of 

   nor even a function. The of  is the set .complement     
Cycles can be added or subtracted in the obvious way (adding or subtracting the

coefficients of a contour that appears in both cycles, etc.; treating terms that have coefficient 
as algebraically “zero”; and so on.)

Let  be a closed contour, with , and suppose that .                   
Thus  traces out a curve that does not pass through , and, since the function  is    
holomorphic except at , its integral around  exists. In this situation 

Lemma 25.7.  is a real integer.
 

    



Proof. For , let . For any  at which  exists, which  
  

 
      

  

   



 


will also be a point of continuity of  (by the definition of a C  path), 




                     exp exp exp  ,

since . Hence  must be constant on each of                 exp
the C  paths making up , and hence on the whole of , with value . So, as ,            

        
 

       

    

exp exp 
   



, and

exp ,

from which we know that  is a real integer.
    

      


 







Definition 25.8. If  is a closed contour and , then the of  about ,    winding number 
or the of  with respect to , is the real integerindex  

   
 

    






.

If  we say   about . More generally, if  is a cycle (the            winds 
  

being closed contours) and , the winding number ,  of  about  (or the index of      
 with respect to ) is

           .
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Lemma 25.9. Given a cycle ,  is continuous on the complement of .    

Proof. By 17.5, it is complex-differentiable on the complement of .  

Lemma 25.10. For any cycle , there exists  such that  when .           

Proof. Choose sup . Then, if ,  is a continuous              
function of  for all  (since ). Since it takes only integer values, it must be      
constant.  Now, however, if  and ,     

 

    
 

    

   
   

   









 





 



and

| by the fundamental estimate

(here  is the length of , and  because ). The right-hand side             

may be made less than  by taking a large enough value of , and therefore the constant value 
of the integer  must be .    

§D4. Homology.

Definition 25.11. Let  be a cycle in the region  of . Then  is  in  or   nullhomologous
homologous to outside in  if its winding number about any point   is . This is sometimes  
written “  in ”. Two cycles  and  are homologous in  if  in , or,              

equivalently, if  for any . We say  is in  if              simply-connected 
any cycle in  is nullhomologous in . It is both necessary and sufficient for this that any 
closed contour in  should be nullhomologous in . 

In intuitive terms,  in  if it does not wind about any “hole” in , and  is simply-     
connected if it has no “holes” for a cycle to wind round. The general notion of “homology” in
algebraic topology has to do (speaking very vaguely) with the number and the dimension of
“holes” in a space. However, the definitions I have just given, although extremely convenient
for the formulation and proof of Cauchy’s theorem, are the standard ones of algebraicnot 
topology. They are equivalent to those standard ones when one restricts attention to a region
  of , but the equivalences are not by any means obvious and involve lengthy argument. For
my purposes, the generally accepted meanings of the phrases “homologous” and “simply-
connected” are unnecessary, require far too much preparation, and will not be given.
Remark 25.12. Suppose now that we have a cycle   in a region . According   

 

to D2.4, each of the closed contours  appearing with non-zero coefficient in  may be 

substituted by a rectangular closed contour  in , in such a way that, for any holomorphic 
function  in , the integrals of  over  and over  are the same. Thus the integrals of      

over  and over the ‘rectangular cycle’  are also the same, and, in effect, we need  

only consider rectangular cycles.
A rectangular cycle  is a finite sum of integral multiples of closed rectangular contours,

each consisting of finitely many rectilinear segments parallel to the coordinate axes. Extend
each such segment to a bi-infinite line of the form constant  or constant . (It is   
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possible that several segments belonging to contours of  may lie on the same line). This
divides the plane into a grid; the closed contours of the cycle go along some of the edges of the
grid, and the plane is split up into a finite collection of bounded rectangles and semi-infinite
strips (i.e. “rectangles with one edge missing” or “unbounded rectangles”). Let  denote the
class of bounded or unbounded rectangles thus created.

If , take a point  in the interior of , and set . This index is           
independent of the choice of the point , for any two points of the interior of  can be joined 
by a line segment in the interior of , which does not meet ; along this line the index with 
respect to  therefore varies continuously, by 25.9, and must be constant. When  is an 
unbounded rectangle,  by 25.10. Now, set   

 . (D5)   


This is also a rectangular cycle (although not necessarily in ).

Lemma 25.13. If  is nullhomologous in , then each  for which  appears with    
nonzero coefficient in  is wholly included (together with ) in .  

Proof. Suppose that . By the definition of , this means that      
             for any int ; since  is nullhomologous in , this implies that . So
int . Suppose there is a point  such that . Then  too (for  is a            

cycle in );  is defined, and must be equal to  by continuity, since there are      
points of int  as close as one wishes to . Hence , which contradicts the      
assumptions that  and  is nullhomologous in . It follows that  too.       

Lemma 25.14. Any function holomorphic on  has the same integral around  as around 
. .[Notice that 25.13 ensures the integral around  makes sense]

Proof. Let  be holomorphic on .  and  are sums of integral multiples of integrals    
 

over parametrized edges of rectangles . For each such edge , choose a specific  
parametrization, to get a contour  going from one end-point of  to the other. 

In the cycles  and , the edge  appears finitely many times, with various  
parametrizations. Each appearance contributes to the integral over the cycle in question; the
contribution will be  if the parametrization is in the same sense as  (I may call this an

  

appearance with coefficient ) and  otherwise (an appearance with coefficient ).   


    must be an edge of exactly two rectangles . For definiteness, suppose that  
     lies to the left of ; that is,  is part of the closed contour , described anticlockwise.

Then  must lie to the right of . I assert that the sum  of the coefficients of all  
appearances of  in  is .          

Firstly, if  does not appear in  at all, then  is defined and continuous at and near    
the mid-point  of , so that , and  as required.             

Otherwise, draw a circle  about , of radius so small that it is included in . Let     

    be the open disk with  as frontier, and take points , .        

Construct a new cycle  by substituting, for each appearance in  of the diameter of , a  

semicircular contour around the half of  in . Each substitution changes the winding 

number about . If, for instance, the appearance of  had coefficient 1 , the substitution  

removes the (anticlockwise) diameter and adds the (clockwise) semicircle, in effect subtracting
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 from the winding number. (See the note at the end of the proof). In this way

         
  .

The line segment between  and  does not cross , so that, from 25.9,  


        
   ,

whilst , since each substitution makes no alteration in these winding       
 

numbers. The assertion follows

    

 

               

       
   



 

 
.

However, since  can appear in  only as an edge of  or as an edge of , and in no other    

way, this proves that  is precisely the sum of the coefficients of the appearances of in . 
Thus  makes the same contribution to  as to .   

 

Adding over all the edges , one has the result. 

Note. I have treated as obvious the facts that a clockwise circuit around a “semicircle plus
diameter”  about  has winding number  about , and  about . The second       

statement results from 25.9 and 25.10, for  may be joined along a radius of  to a point of 
arbitrarily large modulus. For the first, change the semicircle to a clockwise circle; in effect this
means adding the second semicircle, also clockwise, which has winding number  by the
argument just given. The winding number of the circle about  is the same as about , 

which is  by explicit calculation (as at 17.12).

Theorem 25.15. (Cauchy’s theorem, topological form). Suppose  is a function holomorp-
hic on the region . Then, for any cycle  nullhomologous in , .     



Proof. Use 25.12 to substitute  by a rectangular cycle  in  over which, by 25.14, all  
functions holomorphic in  have the same integrals as over . For , then,   

          
   

         
 

 
 
 

,

since  is holomorphic on . Thus  in , and I may construct a cycle  from       
 by (D5); then

   
  


        






by definition. By 25.13, the only terms on the right for which  have ,      
and therefore  by Goursat’s lemma 25.1.    

Remarks 25.16. I hinted in the introduction to Appendix D at like arguments for Green’s
theorem. The idea would be to consider, given the C  vector field , for what cycles   

 


         curl ,

where, of course, “ ” means the integral with respect to area and the integral is in principle
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extended over the whole plane (because of 25.10, the integrand is zero outside a sufficiently
large disk). curl  is in effect a scalar-valued function. Goursat’s argument is readily modified
to prove this for rectangles, and the general result follows much as for Cauchy’s theorem.

As I remarked previously, elementary proofs of Green’s theorem assume something like the
Jordan curve theorem (and are in some ways less general than the form above, since they
presuppose that the contour does not cross itself). The standard  proof of Green’sadvanced
theorem, as a special case of the -dimensional “Stokes’s theorem”, avoids the Jordan curve
theorem by assuming that the contour is the frontier of a ‘cell’. The added generality of 
dimensions is attained by making suitable geometrical assumptions at the start. Moreover, the
formula above does not generalize in a direct way.

Our proof of Cauchy’s theorem is essentially due to Emil Artin, who noticed that the
rudimentary homology theory (winding numbers) needed in the proof may be developed
entirely within complex analysis. I have taken it, with minor modifications, from Ahlfors’s well-
known textbook. (Eilenberg’s proof of the Jordan curve theorem appears in his exercises.) His
exposition is quite readable already. If you wish to dismiss the arguments as unnecessarily
elaborate, compare some other books—there is a whole paperback by M. H. A. Newman
whose avowed aim is to expound the plane topology required for a satisfactory discussion of
Cauchy’s theorem, and there are textbooks of complex analysis, such as that by Thron, which
devote disproportionate space to the topic. It should also be added that there are other
versions of Cauchy’s theorem with slightly weaker analytical hypotheses on , but they are of
little interest at this stage; indeed, it is surprising how rarely one needs to apply the more
refined versions. Even the full strength of the version given above is not really needed
anywhere in the course, since we only used quite simple contours.

Another approach is to prove a “homotopy” form of the theorem, rather than the
“homology” form studied above. Heins’s text does this. However, I cannot see any advantage
in doing so.


