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Abstract. For a set G of points in PG(m − 1, q), let exq(G;n)
denote the maximum size of a collection of points in PG(n− 1, q)
not containing a copy of G, up to projective equivalence. We show
that

lim
n→∞

exq(G;n)

|PG(n− 1, q)|
= 1− q1−c,

where c is the smallest integer such that there is a rank-(m−c) flat
in PG(m−1, q) that is disjoint from G. The result is an elementary
application of the density version of the Hales-Jewett Theorem.

1. Introduction

Note that if M is a rank-(r− c+ 1) flat of PG(r− 1, q), then |M | =
qr−c+1−1

q−1 and each rank-m flat of PG(r − 1, q) intersects M in a flat of

rank at least m− c+ 1. Our main result is the following:

Theorem 1.1 (Main Theorem). For each prime-power q, all integers
m > c ≥ 0, and any real number ε > 0, there is an integer R =
R1.1(m, q, c, ε) such that, if n > R and G is a set of points in PG(n−
1, q) with |G| ≤ (1− ε)

(
qn−c+1−1

q−1

)
, then there exists a rank-m flat F of

PG(n− 1, q) such that rank(F ∩G) ≤ m− c.
We were motivated by a problem in extremal matroid theory posed

by Kung [7]; the matroidal origins of the problem are reflected in our
terminology which we briefly review below.

Let F be a finite field of order q and let V be a rank-r vector space
over F. A rank-k flat of PG(r− 1,F) is a (k+ 1)-dimensional subspace
of V ; the points are the rank-1 flats; the lines are the rank-2 flats; and
the hyperplanes are the rank-(r−1) flats. Technically the projective ge-
ometry depends on the particular vector space V ; to make this explicit,
we write PG(V ) for the projective geometry given by V .

Date: March 9, 2012.
1991 Mathematics Subject Classification. 05B35.
Key words and phrases. matroids, Erdős-Stone Theorem, Bose-Burton Theorem,
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We refer to a setH of points in PG(r−1,F), for some r, as a geometry
over F and we define rank(H) to be the rank of the flat spanned by
H. If H and G are geometries over F, then there are vector spaces V1
and V2 over F so that H is a spanning set of points in PG(V1) and G
is a spanning set of points in PG(V2). We say that H is a restriction
of G or that G contains H, if there is a rank-preserving projective
transformation from V2 to a vector space V ′2 containing V1 so that H
is contained in the image of G.

For a geometry H over F and positive integer n, we let exq(H;n)
denote the maximum number of points in a rank-n geometry over F
not containing H.

For integers 0 ≤ c ≤ m, let F be a rank-(m− c) flat of PG(m− 1, q)
and let G(m−1, q, c) be the geometry obtained by restricting PG(m−
1, q) to the complement of F ; thus G(m − 1, q,m) = PG(m − 1, q)
and G(m − 1, q, 1) = AG(m − 1, q), the rank-m affine geometry over
GF (q). The critical exponent of H over GF (q), written c(H; q), is the
minimum c such that H is contained in G(r(M)− 1, q, c). The critical
exponent was introduced by Crapo and Rota [3] and is related to the
chromatic number of a graph.

The following result, which is an easy corollary of Theorem 1.1, was
all but conjectured by Kung [7].

Theorem 1.2. Let F be a finite field of order q. If H is a geometry
over F with with critical exponent c > 0, then

lim
n→∞

exq(H;n)

|PG(n− 1, q)|
= 1− q1−c.

This theorem bears a striking resemblance to the following theorem
of Erdős and Stone [4]. For a graph H, let ex(H;n) denote the maxi-
mum number of edges in a simple n-vertex graph that does not contain
a subgraph isomorphic to H. The chromatic-number, χ(G), of a graph
G is the minimum number of colours needed to colour the vertices so
that no two adjacent vertices get the same colour.

Theorem 1.3 (Erdős-Stone Theorem). For any graph H with
chromatic-number χ ≥ 2,

lim
n→∞

ex(H;n)(
n
2

) = 1− 1

χ− 1
.

2. old results

In this section we briefly review related results. Note that G(n −
1, q,m−1) does not contain PG(m−1, q); Bose and Burton [2] showed
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that G(n − 1, q,m − 1) is extremal among geometries not containing
PG(m− 1, q).

Theorem 2.1. Let F be a field of order q and m and r be integers with
n ≥ m ≥ 0. Then

exq(PG(m− 1,F); n) = |G(n− 1, q,m− 1)|.

Bonin and Qin [1] determine exq(H;n) exactly for several other in-
teresting families of geometries.

Our main result is an easy application of the following deep result
due to Furstenberg and Katznelson [5, Theorem 9.10] in 1985.

Theorem 2.2. For each field F of order q, integer m ≥ 2, and real
number ε > 0, there is an integer R = R2.2(m, q, ε) such that,

exq(AG(m− 1,F); n) < ε|PG(n− 1, q)|

for all n > R.

This result can be obtained as an easy application of the density
version of the multidimensional Hales-Jewett theorem, also proved by
Furstenberg and Katznelson [6], in 1991, using ergodic theory. An eas-
ier proof was later obtained via the polymath project [8]. The “easier
proof” is still, however, more than 30 pages long. Bonin and Qin [1]
have a much simpler proof of Theorem 2.2 in the case that q = 2.

3. New results

We start with a proof of Theorem 1.1; for convenience we restate it in
a complementary form. (The equivalence between the two statements
is easy and is left to the reader.)

Theorem 3.1 (Reformulation of Theorem 1.1). For any integers m >
c ≥ 1 and real number ε > 0, there is an integer R = R3.1(m, q, c, ε)
such that,

exq(G(m− 1, q, c);n) < (1− q1−c + ε)|PG(n− 1, q)|,

for all n > R.

Proof. Let m > c ≥ 1 be integers and let ε > 0 be a real number. The
proof is by induction on c; the case that c = 1 follows directly from
Theorem 2.2. Assume that c > 1 and that the result holds for c− 1.

Let r = R2.2(m − c + 1, q, ε/2), let t be sufficiently large so that
q1−c(qr − 1) ≤ ε

2
(qn − qr) for all n > t, and define

R3.1(m, q, c, ε) = max(t, R3.1(r, q, c− 1, q2−c − q1−c)).
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Now let n > R3.1(m, q, c, ε) and let M be a restriction of PG(n− 1, q)
with |M | ≥ (1− q1−c + ε)|PG(n− 1, q)|.

By the inductive assumption, M has a G(r − 1, q, c− 1)-restriction.
Thus there are flats F0 ⊆ F1 of PG(n − 1, q) such that rank(F1) = r,
rank(F0) = r− c+ 1, and F1−F0 ⊆M . Let F c

0 ⊆ F1 be a rank-(c− 1)
flat that is disjoint from F0.

Note that, by our definition of t,

|M \ F1| ≥
(
1− q1−c + ε

2

)
|PG(n− 1, q)− F1|.

So by an elementary averaging argument, there exists a rank-(r + 1)
flat F2 containing F1 such that

|M ∩ (F2 − F1)| ≥
(
1− q1−c + ε

2

)
|F2 − F1| = (1− q1−c)qr + ε

2
qr.

We want to find a rank-m flat F ⊆ F2 such that F c
0 ⊆ F 6⊆ F1 and

F −F1 ⊆M . If F satisfies these conditions, then rank(F ∩F0) = m−c
and, hence, the restriction of M to F contains G(m− 1, q, c).

Let S = (F2−F1)∩M . For a flat F of PG(n−1, q) and point e 6∈ F ,
we let F + e denote the flat spanned by F ∪ {e}. Let e ∈ F2 − F1 and
let Q = (F0 + e) − F0. Now, for each f ∈ Q, let Sf = (F c

0 + f) ∩ S.
Note that (Sf : f ∈ Q) partitions S and |Sf | ≤ qc−1. Finally, let Q1

be the set of all f ∈ Q, such that |Sf | = qc−1.
All vectors in Q−Q1 extend to at most qc−1 − 1 elements in S, so

(qc−1 − 1)qr−c+1 + |Q1| ≥ |S|
≥

(
1− q1−c + ε

2

)
qr

= (qc−1 − 1)qr−c+1 + ε
2
qr.

Thus |Q1| ≥ ε
2
qr. By Theorem 2.2, there is a subset Q2 of Q1 such that

Q2
∼= AG(m− c, q). Let F be the flat of PG(n− 1, q) spanned by F c

0

and Q2. Thus F has rank m, F c
0 ⊆ F , and, since Q2 ⊆ Q1, F−F1 ⊆M .

So the restriction of M to F − F0 gives G(m− 1, q, c). �

We can now prove Theorem 1.2, which we restate here for conve-
nience.

Corollary 3.2. Let F be a finite field of order q. If H is a geometry
over F with with critical exponent c > 0, then

lim
n→∞

exq(H;n)

|PG(n− 1, q)|
= 1− q1−c.

Proof. Observe that H is a restriction of G(r(N)− 1, q, c) but it is not
a restriction of G(n− 1, q, c− 1). Then, by Theorem 3.1, for all ε > 0
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and all sufficiently large n,

qn

qn − 1
(1−q1−c) =

|G(n− 1, q, c− 1)|
|PG(n− 1, q)|

≤ exq(H;n)

|PG(n− 1, q)|
≤ 1−q1−c+ε,

so the result holds. �

The value of R3.1(m, q, c, ε) provided by Theorem 3.1 depends on
that of R2.2(m, q, ε), for which the bounds in [8] are Ackermann-like
for all q > 2. In the binary case, however, the main theorem of [1]
implies that the relatively small functionR2.2(m, 2, ε) = 2m−2d1−log2 εe
will satisfy Theorem 2.2. From this, one can derive from the proof
that R3.1(m, 2, c, ε) = Tc(m + d) will satisfy Theorem 3.1, where d =
dlog2d(2− log2 ε)ee, and Tc is the tower function recursively defined by
T0(s) = s and Ti(s) = Ti−1(2

s) for all i > 0.

References

[1] J.E. Bonin, H. Qin, Size functions of subgeometry-closed classes
of representable combinatorial geometries, Discrete Math. 224,
(2000) 37-60.

[2] R.C. Bose, R.C. Burton, A characterization of flat spaces in a
finite geometry and the uniqueness of the Hamming and Mac-
Donald codes, J. Combin. Theory 1, (1966) 96-104.

[3] H.H. Crapo, G.-C. Rota, On the foundations of combinatorial the-
ory: Combinatorial geometries, M.I.T. Press, Cambridge, Mass.,
1970.
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