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ABSTRACT. For a set G of points in PG(m — 1,q), let ex,(G;n)
denote the maximum size of a collection of points in PG(n — 1,q)
not containing a copy of G, up to projective equivalence. We show
that

lim ex‘](G’ ’I’L) -1 ql—c’

n—oo |[PG(n —1,q)|
where c is the smallest integer such that there is a rank-(m —c) flat
in PG(m—1, q) that is disjoint from G. The result is an elementary
application of the density version of the Hales-Jewett Theorem.

1. INTRODUCTION

Note that if M is a rank-(r — c+ 1) flat of PG(r — 1, ¢), then |M| =

qT_qcifl and each rank-m flat of PG(r — 1, q) intersects M in a flat of

rank at least m — ¢ + 1. Our main result is the following:

Theorem 1.1 (Main Theorem). For each prime-power q, all integers
m > ¢ > 0, and any real number € > 0, there is an integer R =
Ri1(m,q,c,€) such that, if n > R and G is a set of points in PG(n —

n—c+171

1) with |G < (1—¢) (£
PG(n —1,q) such that rank(F N G) < m — c.

>, then there exists a rank-m flat F' of

We were motivated by a problem in extremal matroid theory posed
by Kung [7]; the matroidal origins of the problem are reflected in our
terminology which we briefly review below.

Let F be a finite field of order ¢ and let V' be a rank-r vector space
over F. A rank-k flat of PG(r —1,F) is a (k + 1)-dimensional subspace
of V; the points are the rank-1 flats; the lines are the rank-2 flats; and
the hyperplanes are the rank-(r —1) flats. Technically the projective ge-
ometry depends on the particular vector space V'; to make this explicit,
we write PG(V) for the projective geometry given by V.
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We refer to a set H of points in PG(r—1, ), for some r, as a geometry
over F and we define rank(H) to be the rank of the flat spanned by
H. If H and G are geometries over F, then there are vector spaces V;
and V3 over IF so that H is a spanning set of points in PG(V}) and G
is a spanning set of points in PG(V2). We say that H is a restriction
of G or that G contains H, if there is a rank-preserving projective
transformation from V5 to a vector space Vi containing V; so that H
is contained in the image of G.

For a geometry H over I and positive integer n, we let ex,(H;n)
denote the maximum number of points in a rank-n geometry over F
not containing H.

For integers 0 < ¢ < m, let F' be a rank-(m — ¢) flat of PG(m —1, q)
and let G(m — 1, ¢, ¢) be the geometry obtained by restricting PG (m —
1,q) to the complement of F; thus G(m — 1,q,m) = PG(m — 1,q)
and G(m — 1,¢q,1) = AG(m — 1, q), the rank-m affine geometry over
GF(q). The critical exponent of H over GF(q), written ¢(H; q), is the
minimum ¢ such that H is contained in G(r(M) — 1, ¢, c). The critical
exponent was introduced by Crapo and Rota [3] and is related to the
chromatic number of a graph.

The following result, which is an easy corollary of Theorem 1.1, was
all but conjectured by Kung [7].

Theorem 1.2. Let F be a finite field of order q. If H is a geometry
over F with with critical exponent ¢ > 0, then
lim ex,(H;n)
n—oo |PG(n —1,q)|

—1— ql—c‘

This theorem bears a striking resemblance to the following theorem
of Erd6s and Stone [4]. For a graph H, let ex(H;n) denote the maxi-
mum number of edges in a simple n-vertex graph that does not contain
a subgraph isomorphic to H. The chromatic-number, x(G), of a graph
G is the minimum number of colours needed to colour the vertices so
that no two adjacent vertices get the same colour.

Theorem 1.3 (Erdds-Stone Theorem). For any graph H with
chromatic-number x > 2,
ex(H;n) 1

li =1-—

2. OLD RESULTS

In this section we briefly review related results. Note that G(n —
1,q,m—1) does not contain PG(m —1, q); Bose and Burton [2] showed
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that G(n — 1,q,m — 1) is extremal among geometries not containing
PG(m —1,q).

Theorem 2.1. Let I be a field of order ¢ and m and r be integers with
n>m>0. Then

exy(PG(m —1,F);n) =|G(n—1,¢q,m — 1)|.

Bonin and Qin [1] determine ex,(H;n) exactly for several other in-
teresting families of geometries.

Our main result is an easy application of the following deep result
due to Furstenberg and Katznelson [5, Theorem 9.10] in 1985.

Theorem 2.2. For each field F of order q, integer m > 2, and real
number € > 0, there is an integer R = Ry2(m, q,€) such that,

ex,(AG(m — 1,F); n) < ¢|]PG(n — 1,q)|
for alln > R.

This result can be obtained as an easy application of the density
version of the multidimensional Hales-Jewett theorem, also proved by
Furstenberg and Katznelson [6], in 1991, using ergodic theory. An eas-
ier proof was later obtained via the polymath project [8]. The “easier
proof” is still, however, more than 30 pages long. Bonin and Qin [1]
have a much simpler proof of Theorem 2.2 in the case that ¢ = 2.

3. NEW RESULTS

We start with a proof of Theorem 1.1; for convenience we restate it in
a complementary form. (The equivalence between the two statements
is easy and is left to the reader.)

Theorem 3.1 (Reformulation of Theorem 1.1). For any integers m >
¢ > 1 and real number € > 0, there is an integer R = R31(m,q,c,€)
such that,

ex(]<G(m - 17Q7c);n) < (1 - qlic + E)’PG(H - 17Q)|7
for alln > R.

Proof. Let m > ¢ > 1 be integers and let € > 0 be a real number. The

proof is by induction on ¢; the case that ¢ = 1 follows directly from

Theorem 2.2. Assume that ¢ > 1 and that the result holds for ¢ — 1.
Let 1 = Roa(m — ¢+ 1,q,¢/2), let t be sufficiently large so that

g (g — 1) < 5(¢" —¢") for all n > ¢, and define

R3-1(ma q, ¢, 6) - max(t, R3.1(7"7 q,c— 1’ q2—c _ ql—c>>‘
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Now let n > R31(m,q,c,€) and let M be a restriction of PG(n — 1,q)
with |M]| > (1 — ¢'=¢ + €)|PG(n — 1,q)|.

By the inductive assumption, M has a G(r — 1, ¢, ¢ — 1)-restriction.
Thus there are flats Fy C F} of PG(n — 1, q) such that rank(F;) = r,
rank(Fy) =r—c+1, and Fy — Fy C M. Let F§ C Fy be a rank-(c—1)
flat that is disjoint from Fj.

Note that, by our definition of ¢,

M\ P[> (1-¢"+§) |PG(n—1,q) — F.

So by an elementary averaging argument, there exists a rank-(r + 1)
flat F5 containing F) such that

MO (F = F)| = (1=¢ " +5) [l = Fil=(1-¢"q + 57"

We want to find a rank-m flat F' C F; such that Ff C F' € F; and
F—F, C M. If F satisfies these conditions, then rank(FNEy) =m—c
and, hence, the restriction of M to F' contains G(m — 1, ¢, ¢).

Let S = (Fo—Fy)NM. For aflat F' of PG(n—1,q) and point e € F,
we let F'+ e denote the flat spanned by F'U {e}. Let e € F;, — F} and
let Q = (Fy +¢e) — Fy. Now, for each f € Q, let Sy = (F§+ f)NS.
Note that (S; : f € Q) partitions S and |Sy| < ¢°'. Finally, let Q;
be the set of all f € @, such that |S| = ¢“ .

All vectors in Q — Q; extend to at most ¢°~! — 1 elements in S, so

(= 1)@ Q] > |9
> (1-¢™+8)q
= (T =g+ g
Thus [@Q1] > 5¢". By Theorem 2.2, there is a subset Q2 of )1 such that
Q2 = AG(m — ¢,q). Let F be the flat of PG(n — 1, q) spanned by F§

and Q2. Thus F has rank m, F§ C F, and, since Q)2 C @1, F'—F; C M.
So the restriction of M to F' — Fy gives G(m — 1, ¢, c). O

We can now prove Theorem 1.2, which we restate here for conve-
nience.

Corollary 3.2. Let F be a finite field of order q. If H is a geometry
over F with with critical exponent ¢ > 0, then

lim exqy(H;n)

=1—¢q" "
n—oo |PG(n —1,q)| q

Proof. Observe that H is a restriction of G(r(N) — 1, ¢, ¢) but it is not
a restriction of G(n — 1,q,¢ — 1). Then, by Theorem 3.1, for all € > 0
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and all sufficiently large n,
qn l1—c ‘G(n_ 17q70_ 1)‘ e‘rQ(H;n> 1—c
1— q = S S 1— q + €,
1 )= RG9S 1PGn—1,q)
so the result holds. O

The value of R31(m,q,c,¢) provided by Theorem 3.1 depends on
that of Roo(m,q,¢€), for which the bounds in [8] are Ackermann-like
for all ¢ > 2. In the binary case, however, the main theorem of [1]
implies that the relatively small function Ry o(m, 2, €) = 2™ 2[1—log, €]
will satisfy Theorem 2.2. From this, one can derive from the proof
that Rs1(m,2,¢,€) = T.(m + d) will satisfy Theorem 3.1, where d =
[log,[(2 —logy €)]], and T, is the tower function recursively defined by
To(s) = s and T;(s) = T;-1(2°%) for all i > 0.
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