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Abstract. A sequential automatic algebra is a structure of the type
(A; f1, . . . , fn), where A is recognised by a finite automaton, and func-
tions f1, . . . , fn are total operations on A that are computed by input-
output automata. Our input-output automata are variations of Mealy
automata. We study some of the fundamental properties of these alge-
bras and provide many examples. We give classification results for certain
classes of groups, Boolean algebras, and linear orders. We also introduce
different classes of sequential automatic algebras and give separating ex-
amples. We investigate linear orders considered as sequential automatic
algebras. Finally, we outline some of the basic properties of sequential
automatic unary algebras.

Introduction

The main contribution of this paper is the introduction of the various notions
of sequential automatic algebras as natural sub-classes of the class of automatic
structures. As such these algebras enjoy all the decidability and model-theoretic
properties possessed by automatic structures. The goal is twofold. One is to
provide examples and investigate fundamental properties of sequential automatic
algebras. The other is to show that sequential automatic algebras have certain
algebraic and algorithmic advantages as opposed to general automatic structures.

Algebras are structures of the form (A; f1, . . . , fn) where each fi is a total
operation on A. Usually operations are replaced by their graphs (in finite model
theory for example). This transforms the algebra into a purely relational struc-
ture. Automata can then be used to recognize the graphs of the operations; this
loses the input-output behavior of the functions because an automaton recog-
nising the graph of an operation does not necessarily compute the output in
a sequential manner. Here we propose to use input-output automata to rep-
resent operations of algebras in order to capture the input-output behavior of
operations. Our input-output automata will be variations of Mealy automata.

Let Σ be an alphabet, and let Σ� = Σ ∪ {�}, where � �∈ Σ. An n-variable
sequential Mealy automaton M is a tuple (Q, q0, Δ, O), where Q is the finite
set of states, q0 ∈ Q the initial state, Δ : Q × Σn

� → Q × Σ� is the transition
function, and O : Q → Σ� the final output function. Note that the automaton
is deterministic. Such an automaton processes inputs of the form (w1, . . . , wn),
where each wi ∈ Σ�, and outputs a string from Σ� as follows. Think of the
automaton as having n input tapes, with wi on the ith tape, and one output tape
on which it writes symbols from Σ�. The automaton moves each of its n heads
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simultaneously from left to right, reading a symbol from each of the input tapes,
changes its state and writes a symbol on the output tape according to Δ (starting
at q0). If wi is shorter than wj , then the automaton assumes the � symbol after
the end of wi. Once all input symbols are �, the automaton concatenates the
string O(s), where s is the current state, to the end of the string written to the
output tape and then halts. The resulting string in the output tape, up to the
first position where � is written, is the output of M. We require that once � has
been written to the output, all subsequent symbols written are � and the final
output function is empty. Thus writing � can be thought of as terminating early.
Each sequential n-variable Mealy automaton uniquely determines a function
fM : (Σ�)n → Σ� called a sequential automatic operation.

Definition 1. An algebra A=(A; f1, . . . , fn) is sequential automatic if the
domain A is a regular language and operations fi on A are sequential automatic.

Operations computed by Mealy automata have been studied for many years.
Mealy automata form a subclass of transducers, an area of active research in
automata theory [3], and have also been studied by group theorists (see [9]
for instance), initiated by Aleshin who used permutations computed by Mealy
automata to solve the Burnside problem [1].

Some simple examples of sequential automatic algebras are finite algebras,
the tree algebra ({0, 1}�; Left, Right) where Left(x) = x0 and Right(x) = x1,
(ω; +), and (ω; S) where S(n) + 1 for n ∈ ω.

If a sequential n-variable Mealy automaton M never writes the symbol �,
we call M a strictly sequential n-variable Mealy automaton and define
a strictly sequential automatic operation and a strictly sequential au-
tomatic algebra accordingly. Strictly sequential automatic algebras form a
subclass of sequential automatic algebras.

For the next definition we briefly explain finite automaton recognisable re-
lations. An automaton M recognising a relation R of arity n behaves exactly
as an n-variable Mealy automaton but with no outputs; instead M has a set
Qf ⊂ Q of accepting states. M processes a tuple (w1, . . . , wn) in the same way
as Mealy automata do, and accepts the tuple iff after processing the tuple, it is
in one of the accepting states. Now we define automatic structures. These have
been studied in [4], [5], [10], [12], [17].

Definition 2. A relational structure A=(A; R1, . . . , Rm) is automatic if A,
R1, . . ., Rm are all finite automaton recognisable.

We also use sequential automatic functions as mappings between equivalence
classes. Let f be a function computed by an n-variable sequential Mealy au-
tomaton. Let E be an equivalence relation on A. We say that fM respects E
if for all (w1, . . . , wn), (w′

1, . . . , w
′
n) the condition (w1, w

′
1), . . ., (wn, w′

n) ∈ E
implies that (fM(w1, . . . , wn), fM(w′

1, . . . , w
′
n)) ∈ E. If every operation of an

algebra respects E then E is called a congruence relation of the algebra.
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Definition 3. Let A=(A; f1, . . . , fn) be a sequential automatic algebra. Let E be
a finite automaton recognisable congruence relation of A. The quotient algebra
A/E is called a generalised sequential automatic algebra. If E addition-
ally satisfies the property that for x = x′σk, where x′ does not end in σ, the
equivalence class of x is {x′σn|n ∈ ω} ∩ A, then we call the factor algebra A/E
continuous generalised sequential automatic.

Let SSA, SA, CGSA and GSA denote respectively the classes of strictly se-
quential automatic, sequential automatic, continuous generalised sequential au-
tomatic, and generalised sequential automatic algebras (all closed under isomor-
phisms). We have: SSA ⊆ SA ⊆ CGSA ⊆ GSA. We will provide separating
examples for these later. This is unlike the case of automatic structures, where
quotients by automatic congruence relations give no new structures.

The group (Z; +) is an example of a continuous generalised sequential auto-
matic algebra. Here we represent numbers in base −2, allowing us to add integers
without knowing their signs beforehand.

If A is (strictly, continuous generalised, generalised) sequential automatic and
B is isomorphic to A then we call A a (strictly, continuous generalised,
generalised) sequential automatic presentation of B. Automatic presen-
tations are defined similarly. Often we abuse our definitions and refer to algebras
that have sequential automatic presentations as sequential automatic algebras,
or structures with automatic presentations as automatic structures. When we
describe an algebra as being automatic, it is to be taken as implicit that we are
considering it as a relational structure.

A brief outline of the paper is as follows. Section 1 describes basic properties
of the four classes of sequential automatic algebras and provides examples to
separate them. The section also provides a classification theorem for generalised
sequential algebras in the cases of finitely generated groups, Boolean algebras,
and ordinals. Section 2 proves that if linearly ordered sets are defined as sequen-
tial automatic algebras then the order must be obtained from the lexicographic
order on strings. This implies that the monadic second order theory of each se-
quential automatic linear order algebra is decidable. This also implies, from the
result of Kuske [13], there exists an automatic linear order not isomorphic to a
sequential automatic linear order algebra. Section 3 studies sequential automatic
unary algebras and proves that the reachability problem for such algebras is de-
cidable. This contrasts with automatic unary algebras, where the reachability
problem is undecidable [17], [4]. An example is given of a (unary) permutation
algebra that is automatic as a relational structure, but has no presentation as a
sequential automatic algebra.

Finally, we stress that the goal is to show that sequential automatic algebras
are more tame structures than their automatic counterparts. The ultimate goal
in the study of sequential automatic algebras is to investigate whether or not
natural problems asked about sequential automatic algebras, e.g. the isomor-
phism and the elementary equivalence problems, are decidable. This is the first
paper devoted to this study.
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1 General Properties, Separating Examples and
Classification Results

The first part of following proposition implies that all decidability properties
enjoyed by the class of automatic structures are present for automatic sequential
algebras (see [10]). The second part states that sequential automatic algebras
are closed under finite Cartesian products; the proof is straightforward:

Proposition 1. (1) Every generalised sequential automatic algebra is auto-
matic. In particular, there is an algorithm which, given a generalised sequential
automatic algebra A, a first order formula φ(x̄), and a tuple ā ∈ A, decides if
A |= φ(ā). (2) If A1, . . . ,Ak are (continuous generalised, generalised or strictly)
sequential automatic then so is A1 × . . . ×Ak. 	

Now we separate SSA from SA, SA from CGSA, and CGSA from GSA. The
proof of the following proposition is easy:

Proposition 2. If A = (A; f1, . . . , fn) is strictly sequential automatic then for
each a ∈ A and fi the set f−1(a) = {x̄ | fi(x̄) = a} is finite. Hence, algebras
from the following classes are strictly sequential automatic iff they are finite:
groups, rings, Boolean algebras, lattices with complements, vector spaces. 	

Corollary 1. SSA is a proper subset of SA.

Proof. The algebra (ω; f), where f(x) = 0 for all x ∈ ω, is a separator. 	

Proposition 3. A group is sequential automatic iff it is finite. Hence SA is a
proper subset of CGSA.

Proof. Let n be the length of the string for the unit element 1. When the automa-
ton for multiplication reads a pair (x, x−1) of length > n, it halts and outputs
1 based on prefixes of length n. If the group were infinite, there would be in-
finitely many such pairs and finitely many such prefixes, and so distinct (x, x−1)
and (y, y−1) exist which share the same prefixes. Then (x, y−1) therefore would
output 1. A separating witness is the group (Z; +). 	

Definition 4. An algebra A is residually finite if for all distinct x, y ∈ A there
is a homomorphism φ : A → F onto a finite algebra F such that φ(x) �= φ(y).

Proposition 4. All algebras in the class CGSA are residually finite.

Proof. We first show this for sequential automatic algebras A = (A; f1, . . . , fn).
For n ∈ ω, define φn to be the function such that for a string w = σ0 . . . σk, if
k ≤ n then φn(w) = w, otherwise φn(w) = σ0 . . . σn. Define Fn = (F ; f ′

1, . . . , f
′
n),

where F is the image of A under φn and f ′
i = φn◦fi◦φ−1

n ; φn is a homomorphism
from A to Fn. Given two elements x, y of A, let n = max(|x|, |y|) be the length
of the longest string. Then φn : A → Fn is such that φn(x) �= φn(y). For a
continuous generalised sequential algebra A/E, we construct F from A as above,
and then take F/E′ where E′ is such that x ∼=E′ x′ iff there exist y, y′ ∈ A such
that y ∼=E y′ and φ(y) = x, φ(y′) = x′. 	
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Corollary 2. CGSA is a proper subclass of GSA.

Proof. The algebra A = (ω; f), with f(0) = 0 and f(n) = n−1 is generalised se-
quential automatic but not residually finite and hence not continuous generalised
sequential automatic.

This additive group of rational numbers is not residually finite. Hence:

Corollary 3. The group (Q; +) does not belong to CGSA. 	

Now we give a classification result for the classes of finitely generated groups,
Boolean algebras, and ordinals as continuous generalised sequential automatic
algebras. These have been classified as automatic structures (see [12], [8]). We re-
call some definitions. For groups, a finitely generated group is virtually abelian
if it contains an abelian subgroup of finite index. A finitely generated group is an
automatic structure iff it is virtually abelian [14]. For Boolean algebras, Bω de-
notes the Boolean algebra of finite and co-finite subsets of ω. An infinite Boolean
algebra is an automatic structure iff it is isomorphic to a finite Cartesian prod-
uct of Bω [12]. For ordinals, an ordinal is automatic iff it is strictly less than ωω

[17]. In order to treat ordinals as algebras we introduce the concept of a linear
order algebra. Let L = (L;≤) be a linearly ordered (lo) set. Define the function
f : L2 → L as f(x, y) = min(x, y). This function has the following properties
for all x, y, z ∈ L: 1) f(x, y) = f(y, x); 2) f(x, y) = x or f(x, y) = y; 3) if
f(x, y) = x and f(y, z) = y then f(x, z) = x. Given any function f : A → A
satisfying these conditions, we define a lo set by x ≤f y iff f(x, y) = x. We
call algebras (A; f), where f satisfies the above conditions, linear order (lo)
algebras. These transformations between lo sets and lo algebras preserve the
isomorphism type, and a lo set is automatic iff the corresponding lo algebra is
automatic (as relational structures).

Definition 5. Let L1,L2 be two linear order algebras. The algebra L1 +≤ L2 is
over L1 ∪ L2 such that if x ∈ L1 and y ∈ L2 then min(x, y) = min(y, x) = x,
and otherwise min(x, y) follows from L1 or L2. The algebra L1 ×≤ L2 is over
the Cartesian product of L1 and L2 such that min((x1, y1), (x2, y2)) is (x1, y1)
iff min(x1, x2) = x1, or x1 = x2 and min(y1, y2) = y1.

Proposition 5. Given two sequential automatic linear order algebras L1,L2,
the algebras L1 +≤ L2 and L1 ×≤ L2 are sequential automatic. In particular, all
ordinals less than ωω are sequential automatic linear order algebras. 	

Theorem 1. 1. A finitely generated group is continuous generalised sequential

automatic iff it is virtually abelian.
2. An infinite Boolean algebra is continuous generalised sequential automatic

iff it is isomorphic to a finite Cartesian product of Bω to itself.
3. An ordinal (as an lo algebra) is sequential automatic iff it is strictly below

ωω.
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Proof. For part 1), the proof essentially follows [8]. Let G be a finitely generated
virtually abelian group. We can assume that that our group G has a finitely
generated free abelian normal subgroup N of finite index. Then any element
g ∈ G can be given in the form g = fn where f ∈ F = G/N, n ∈ N . Given
two elements g1, g2 ∈ G, then g1g2 = f1n1f2n2 = f1f2f

−1
2 n1f2n2. Since N is

normal, φf (n) = f−1nf gives an automorphism of N for any f . Therefore when
we multiply f1n1 by f2n2 we get (f1f2)n where n = φf2(n1)n2 ∈ N .

We describe in general terms the sequential automatic encoding of G. We
represent group elements as a pair (f, n) where f ∈ F and n ∈ N . Because
F is finite and the F part of the product depends only on the F part of the
two inputs, we can encode f in the first digit. The rest of the string encodes n.
When computing the product (f1, n1)(f2, n2), the first state outputs f1f2 and
then branches to one of finitely many subautomata depending on f2.

We need to show that a sequential automaton can compute n1φf2(n2). The
subgroup N is, by assumption, isomorphic to Z

r for some r ∈ ω. Using the
encoding of Z and Proposition 1, we can encode elements of N and compute their
sums. All automorphisms of N ∼= Z

r can be determined from linear extension
of their action on a minimal generating set, and therefore correspond to matrix
multiplications. That means we can associate with each f ∈ F an integer matrix
Mf which computes the automorphism φf on the vector representation of N .
Multiplication by Mf can be computed by a sequential automaton.

To compute n1φf (n2), we combine the addition automaton for N and the
automaton for Mf , so that the first input string is given straight to the N
automaton, and the second input string is processed by the Mf automaton, the
output of which is given as the second input of the N automaton. Now one uses
the construction described to give a sequential presentation of G.

For part 2), by Proposition 1 we need to consider Bω. We encode subsets of ω
in binary. The final character of a binary word is interpreted as being recurring
(so when � is read following a 0(1) it is treated as a 0(1)). Our language can code
any finite or co-finite set. Given this encoding, the algebra Bω is a continuous
generalised sequential algebra.

The last part of the theorem follows from Proposition 5. 	


2 Linear Order Algebras

Here we investigate sequential automatic linear order (lo) algebras. The lexico-
graphical order will play an essential role in describing these algebras.

Example 1. Let L be a regular language. Consider �L, the lexicographic order
restricted to L. The algebra (L; min�) is sequential automatic. 	

As a corollary, one obtains that the dense order (the order of rational numbers)
is a sequential automatic lo algebra; this is isomorphic to the � order on the set
{w101 ∈ {0, 1}� | w does not have 101 as a substring}.
Example 2. An infinite sequential automatic lo algebra over a unary alphabet
is isomorphic to ω + n, n + ω�, or ω + ω�, where ω� is ω reversed. 	
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Theorem 2. A linear order algebra is sequential automatic iff it is isomorphic
to the lexicographic order on a regular language.

Proof. One direction is explained in Example 1. The idea for the other direction
is that we have to decide which string is the minimum at the first position where
they differ, because then we have to output the next digit from either one or
the other. This is like the lexicographic order. Given a sequential automatic lo
algebra L = (L; f) we explicitly construct a regular language and an isomor-
phism. Let M denote the automaton for recognising L. For the isomorphism,
we use a slightly generalised form of sequential automata: instead of computing
a function from Σ∗ to itself, we have two alphabets Σ and Σ′ and compute a
function from Σ∗ to (Σ′)∗. Let Σ be the alphabet for L, and Σ′ = {0, . . . , |Σ|}.

For distinct strings w1, w2, let i be the first position where they differ. If one
is a prefix of the other, then this position is immediately after the end of this
string, when a blank symbol � is first read. Let u = f(w1, w2) be the output
string. For j < i, w1(j) = w2(j) = u(j). At position i there is a choice: u(i) must
equal either w1(i) or w2(i), determining the rest of the string. The ordering of
w1 and w2 gives an ordering on the pair of symbols {w1(i), w2(i)}; any pair of
inputs that reach the current state of the automaton and read these symbols
next must obey this ordering.

If we look at all pairs of symbols that can be read at this state, we get
an ordering on each pair. We would like to combine these orderings to give an
ordering on all of these symbols, and extend that to give an ordering on Σ∪{�}.
However, it is possible to get orderings on pairs which are not consistent (that
is, they cannot be simultaneously true in a linear ordering, for example a < b,
b < c, c < a). We deal with this by keeping track of the state of M. Given a
state q of M, let Σq be the set of all symbols (including �) which can be read
from q as part of a path to a final state of M. If we have a reachable state (q, r)
in the product of M and the automaton for f , the orderings given by r for pairs
in Σq must be consistent and so we can combine them to give an ordering on
Σq and then extend this to an ordering on Σ ∪ {�}.

We construct a sequential automaton A mapping L ⊂ Σ∗ into (Σ′)∗. Let the
states be the product of M and the automaton for f . When a symbol σ is read,
we treat the f part as being given the input (σ, σ) and the M part as being
given σ, and output the element of {0, . . . , n} corresponding to the position of σ
in the ordering on Σ ∪ {�} associated with the pair of states. The final output
function for each state outputs the element of {0, . . . , n} corresponding to the
position of � in this ordering.

From the construction of A, it preserves the order of L when we take the lex-
icographic ordering on its image, and the function computed by A is injective.
It remains to show that the image of L under this function is a regular language
over Σ′. Construct another automaton by taking A and swapping the inputs
and outputs on the transitions. We add a single final state q0, and from each
state p = (q, r), where q is a final state in M, we add a transition to q0 when
O(p) (the final output function in A) is read. This gives an automaton which
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recognises exactly A(L). Therefore A is an isomorphism from L to a regular
language with the lexicographic order. 	

Corollary 4. The monadic second order theory of any sequential linear order
algebra is decidable.

Proof. From the theorem above, the result follows from the fact that the lexico-
graphical order is MSO definable in the binary tree [16]. 	

Corollary 5. There exists an automatic linear order (L;≤) which is not iso-
morphic to any sequential automatic linear order algebra.

Proof. In [13] Kuske constructed an automatic linear order that is not isomorphic
to the lexicographical order on any regular set. 	

The third application is this. A word is (ω;≤, P ), where P is a unary relation.
A word is automatic if it is isomorphic to an automatic structure. The word
(ω;≤, P ) can be transformed into the following algebra (ω; min≤, fP ), where
fP (x) is the maximum y such that y ≤ x and P (y). Call this a word algebra.
Two words are isomorphic iff their corresponding word algebras are isomorphic.

Corollary 6. If (ω; min≤, fP ) is a sequential automatic word algebra then (ω;≤,
P ) is a morphic word. Hence its monadic second order theory is decidable.

Proof. The order can be replaced with the length-lexicographic order in which
P is still regular. From results in [2], it follows that P is a characteristic of a
morphic word. The rest follows from Thomas and Carton in [8]. 	


3 Sequential Automatic Unary Algebras

Here we consider algebras of the form A = (A; f1, . . . , fn), where each fi is a
unary function on A. These algebras are called unary algebras. A unary algebra
can be transformed into a graph (A, E) where E(x, y) iff f1(x) = y∨. . .∨fn(x) =
y. The reachability problem for the unary algebra A is the set {(x, y) | in the
graph (A, E) there is a path from x to y}. For unary automatic algebras even
with one unary operation the reachability problem is Σ0

1 -complete [17] [4]. In
contrast, we have:

Theorem 3. If A = (A; f1, . . . , fn) is a sequential automatic unary algebra then
the reachability problem for A is decidable in PSPACE.

Proof. Suppose we want to check if (x, y) is in the reachability relation, and that
y has length n. If f(z) has length |f(z)| ≤ n, then either |z| ≤ n or f terminates
early, after at most n digits are read. In the second case, any string with the
same first n digits as z would give the same output. Since all our functions fi

are sequential, we need only consider the first n+1 digits when determining if y
is reachable. We need one extra digit to make sure we don’t mistake a string of
which y is a prefix for y itself. The algorithm is a straightforward search: begin
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at x, for each fi branch to search on the first n + 1 digits of fi(x), terminate
a branch when a string is reached that has already been visited, terminate the
algorithm either positively when y is reached, or negatively when all branches
terminate. Since we only consider the first n+1 digits, the search space is finite,
so the algorithm will always terminate. 	

Proposition 6. There exists a sequential automatic unary algebra A in which
the reachability relation is not recognised by pushdown automata.

Proof. Consider the unary algebra (A; f), where A = 0∗1∗2∗ and f(0i1j2k) =
0i+11j+12k+1. Let x be the string 012. The set of elements reachable from 012
is {0n1n2n | n ∈ ω}, which is not recognised by pushdown automata. 	

An algebra of permutations is a unary algebra (A; f1, . . . , fn) where each
fi : A → A is a bijection.

Proposition 7. There is a PSPACE algorithm that, given a strictly sequential
automatic unary algebra A = (A; f1, . . . , fn), where A = Σ�, decides if A is an
algebra of permutations.

Proof. Take a Mealy automaton M computing one of the operations of the alge-
bra. Assume that all states are reachable. A strictly sequential Mealy automaton
gives a permutation on Σ� iff each state gives a permutation of its input and all
of the final output strings are empty.

For each state s ∈ M, we check whether the final output string O(s) is empty,
and whether for each pair of symbols (σ1, σ2) ∈ Σ2, σ1 �= σ2 the output when
σ1 is read in state s is distinct from when σ2 is read. The space required is a
counter to run through the states which is proportional to log(|M|). 	

Theorem 4. (see also [9]): The length of a cycle on strings of length n of a
strictly sequential automatic permutation over Σ is of the form

∏n
i=1 ai where

1 ≤ ai ≤ |Σ|.
Proof. There are at most |Σ| strings of length 1, and since these are permuted
amongst themselves, cycles on strings of length 1 have lengths 1 ≤ L ≤ |Σ|.

We proceed by induction. Given a cycle of length Ln on strings of length
n, we consider these strings truncated to the first n − 1 digits. These strings,
by the induction hypothesis, are in a cycle of length Ln−1 =

∏n−1
i=1 ai where

1 ≤ ai ≤ |Σ|. Truncating to the first n − 1 digits gives a homomorphism, so
Ln−1 must divide Ln. Since Ln/Ln−1 cannot exceed |Σ|, the result follows. 	

Corollary 7. There are algebras of permutations which are automatic but not
strictly sequential automatic.

Proof. Let p : ω → ω be any nonzero polynomial with positive coefficients. Let
L be a regular language over Σ such that growthL(n) = |L ∩ Σn| = p(n) for
all n. Such languages exist (see [15] or [11]). Define the function f : L → L as
follows: If x ∈ L is not the largest length-lexicographically among all y ∈ L with
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|x| = |y|, then f(x) is the length-lexicographically least element z ∈ L greater
than x such that |x| = |z|; if x ∈ L is the length-lexicographically greatest
among all y ∈ L with |x| = |y|, then f(x) is the length-lexicographically least
element z ∈ L such that |z| = |x|. The structure (L, f) is an automatic relational
structure. The range of p coincides with the set of all lengths of cycles of the
permutation f . By the theorem above, (L, f) cannot be isomorphic to a strictly
sequential automatic permutation. 	

It is an open question if there is an algorithm that, given two sequential auto-
matic permutations, decides whether the permutations are isomorphic.
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6. Blumensath, A., Grädel, E.: Finite presentations of infinite structures: automata

and interpretations. Theory of Computing Systems 37(6), 641–674 (2004)
7. Cannon, J., Epstein, D., Holt, D., Levy, S., Paterson, M., Thurston, W.: Word

processing in groups. Jones and Bartlett (1992)
8. Carton, O., Thomas, W.: The monadic theory of morphic infinite words and gen-

eralizations. Information and Computation 176, 51–76 (2002)
9. Grigorchuk, R., Nekrashevich, V., Sushanski, V.: Automata, Dynamical systems,

and groups. Tr. Mat. Inst. Steklova 231(Din. Sist. Avtom i Beskon. Gruppy), 134–
214 (2000)

10. Khoussainov, B., Nerode, A.: Automatic Presentations of Structures. LNCS,
vol. 960, pp. 367–392. Springer, Heidelberg (1995)

11. Khoussainov, B., Rubin, S.: Automatic Structures: Overview and Future Direc-
tions. Journal of Automata, Languages and Combinatorics 8, 287–301 (2003)

12. Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic Structures: Richness
and Limitations. In: LICS, pp. 44–53. IEEE Computer Society, Los Alamitos (2004)

13. Kuske, D.: Is Cantor’s theorem automatic?. LNCS, vol. 2850, pp. 332–343. Springer,
Heidelberg (2003)

14. Oliver, G., Thomas, R.: Automatic Presentations for Finitely Generated Groups.
In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 693–704.
Springer, Heidelberg (2005)

15. Saloma, A., Soittola, M.: Automata-theoretic Aspects of Formal Power Series.
Springer, Heidelberg (1978)

16. Rabin, M.: Decidability of second order theories and automata on infinite trees.
Trans. AMS 141, 1–35 (1969)

17. Rubin, S.: Automatic Structures. PhD Thesis, University of Auckland (2004)


	Sequential Automatic Algebras
	General Properties, Separating Examples and Classification Results
	Linear Order Algebras
	Sequential Automatic Unary Algebras



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




