
Whiley: a Better C?

David J. Pearce
School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

djp@ecs.vuw.ac.nz

Abstract
An ongoing challenge for computer science is the devel-
opment of a tool which automatically verifies programs
meet their specifications, and are free from runtime errors
such as divide-by-zero, array out-of-bounds and null deref-
erences. We have been developing a programming language
from scratch to simplify verification, called Whiley, and an
accompanying verifying compiler. Like other modern pro-
gramming languages (e.g. Go, Rust) Whiley eschews ideas
from object orientation and is perhaps most similar in style
to C. In this paper, we illustrate a short example in Whiley.

1. Introduction
The idea of verifying that a program meets a given speci-
fication for all possible inputs has been studied for a long
time. Hoare’s Verifying Compiler Grand Challenge was an
attempt to spur new efforts in this area to develop practical
tools [1]. A verifying compiler “uses automated mathemati-
cal and logical reasoning to check the correctness of the pro-
grams that it compiles” [1]. Commonly occurring errors that
could be automatically eliminated include: division-by-zero,
integer overflow, buffer overruns and null dereferences.

The Whiley programming language has been developed
from the ground up to enable compile-time verification of
its programs [2–5]. The Whiley Compiler (WyC) attempts
to ensure that all functions in a program meet their spec-
ifications. When it succeeds in this endeavour, we know
that: 1) all function post-conditions are met (assuming their
pre-conditions held on entry); 2) all invocations meet their
respective function’s pre-condition; 3) runtime errors such
as divide-by-zero, out-of-bounds accesses and null-pointer
dereferences are impossible. Note, however, that such pro-
grams may still loop indefinitely and/or exhaust available
resources (e.g. RAM).

2. Example: C Strings
As an example, let us consider representing the C strings in
Whiley. This is useful as we can then try to verify proper-
ties about functions operating on C strings (e.g. strlen(),
strcpy(), etc). The main points about C strings are:

• C Strings are arrays of 8bit ASCII characters (roughly
speaking).

• C Strings are terminated by the special character ’\0’
(also called null terminated strings).

• C Strings do not carry any other length information (e.g.
for the size of the containing memory chunk).

The interesting thing about Whiley is that we can en-
code these constraints within the language itself. Specifi-
cally, we’re going to encode a C string as an array integers
with appropriate invariants. The array will be constrained to
ensure it is null terminated, whilst the contained integers will
be constrained to ensure they are between 0 and 255.

Before giving our definition of a C string, we first need to
define the notion of an ASCII character as follows:

type ASCII_char is (int n) where 0<=n && n<=255

We have defined an ASCII character to be an integer
which is constrained between 0 and 255 (i.e. 8bits ASCII).
Using this, we define our notion of a C string as follows.

type C_string is (ASCII_char[] chars)
where |chars| > 0 && chars[|chars|-1] == 0

Here, a C_String is an array of integers constrained to
ensure it is always null terminated. Using this, we implement
the well-known strlen() function:

function strlen(C_string str) → (int r)
ensures r >= 0:

//
int i = 0
//
while str[i] != 0 where i >= 0 && i < |str|:

i = i + 1
//
return i

The Whiley compiler statically verifies this function does
not overrun the string bounds. The loop invariant given by
the where clause is needed as a hint to the verifier, but does
not affect the function’s execution in any way.

References
[1] C.A.R. Hoare. The verifying compiler: A grand challenge for

computing research. JACM, 50(1):63–69, 2003.

[2] The Whiley Programming Language, http://whiley.org.

[3] D. J. Pearce and J. Noble. Implementing a language with flow-
sensitive and structural typing on the JVM. ENTCS, 279(1):47–
59, 2011.

[4] D. J. Pearce and L. Groves. Whiley: a platform for research in
software verification. In Proc. SLE, pages 238–248, 2013.

[5] D. J. Pearce and Lindsay Groves. Reflections on verifying
software with Whiley. In Proc. FTSCS, pages 142–159, 2013.

