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Abstract

With the advent of deep learning, neural networks have enjoyed spectacular success
in recent years across a broad a range of classification problems. A crucial compo-
nent of neural networks is the activation function at each neuron. Popular activation
functions such as the logistic sigmoid, hyperbolic tangent, or rectified linear unit have
been employed with varying success in classification. However, given a fully trained
model, there is no clear interpretation of what the weighted sums on these activations
represent. That is, despite their outstanding success, neural networks still remain a
black box with respect to intelligibility. This project proposes two new types of acti-
vation functions inspired by boolean logic gates, these are called the Noisy-OR and
Noisy-AND activation functions. We show that networks containing logical activa-
tions achieve performance comparable to standard multi-layer-perceptrons, demon-
strate how their weights can be interpreted meaningfully in a fully trained neural net-
work and elucidate the benefits of this interpretation.



1 Introduction

This report begins with a brief introduction to neural networks in section 2. We provides a sum-
mary of the literature regarding activation functions. When referring to our newly proposed
functions, we use the term logical activation. All other activations are referred to as standard
activations. Regarding the network as a whole, this report will consider Multi-Layer-Perceptrons
(MLP’s, introduced in detail below) a conventional architecture for feedforward neural networks.
MLP’s that contain purely standard activations will be referred to as standard MLP’s, whereas
MLP’s containing logical activations are referred to as Logical Neural Networks (LNN’s). We
make the distinction between pure LNN’s which only contain logical activations and mixed LNN’s
which contain standard and logical activations.

Judea Pearl introduces the concept of the Noisy-OR relation [1] to represent non-deterministic
logical relationships in Bayesian Networks [2]. Pearl demonstrates how probabilities can represent
the relevance of an input (or underlying variable) with noise, i.e. some uncertainty regarding that
inputs relevance to the output. In the second part of section 2, we elaborate on Pearl’s work,
explaining the necessary background to discuss noisy activations.

Section 3 outlines our models for a logical activation functions, which are inspired by binary log-
ical gates and the Noisy-OR relation. Firstly, we present each model in terms of the noise of each
input, i.e. the uncertainty in the relevance of each input. We then propose a re-parameterisation
in terms of weights and biases that is appropriate for deployment in a Neural Network. Our main
goal in this paper is to demonstrate that for these activations, learning is feasible in the context of
stochastic gradient descent and furthermore, that these model lead to a more interpretable neural
network.

Section 4 compares the performance of LNN’s with standard MLP’s to demonstrate their learning
capacity. We compare a range of architectures at different depths, testing both mixed and pure
LNN’s. Each network is trained and evaluated on MNIST [3], a handwritten digit classification
problem. We suggest MNIST is a good data set for evaluating whether or not learning is feasible
and evaluating the interpretability of a neural network.

Firstly, this is because MNIST is a non-trivial problem, it cannot be solved accurately by a simple
classifier such as Naive Bayes [4] or KNN [5]. Therefore demonstrating that LNN’s have compara-
ble performance to standard MLP’s on this problem shows that LNN’s can learn complicated rela-
tionships. Secondly, digit recognition provides an excellent benchmark for testing interpretability.
That is, as humans we are acutely aware of how the various substructures within a 6, combine to
make a 6. So we can verify the interpretability of an architecture, by examining the weights of the
network and investigating whether these substructures exist.

Section 5 takes a detailed look at the interpretability of MLP’s demonstrating the superior inter-
pretability of pure LNN models. We present an in-depth theory for why the optimal weights of
a logical activation have an interpretable structure. For fully trained LNN’s and standard MLP’s,
we compare the lower level features formed after training. Section 5 then proceeds to demonstrate
how a pure LNN can be interpreted and how this method is not applicable to a standard MLP. We
conclude this section but elucidating the benefits of interpreting neural networks, highlighting
why further research with respect to logical activations is important.



2 Background

2.1 Neural Network Introduction

This introduction is not intended to be a completely general description of Neural Networks
(NN’s) as applied to image classification, nor is it designed to fully instruct the reader unfamiliar
with NN'’s. The main goal of this introduction is to set up a context in which different architectures
and activation functions may be described.

A neural network is a function approximator. Consider the MNIST dataset, a single image can be
expressed as I; = (X;, Y;) where X; is the vector of pixels for image i and Y; is the true digit class
(e.g. 8). The problem can be described as finding a correct function F(X) from the pixels (inputs)
to the digit class (output). An NN is trained in a supervised learning context to recognise unseen
digits, that is, approximate the true pixel-to-digit class function.

A feed-forward Multi Layer Perceptron (MLP) is composed of sequential layers of nodes called
neurons, with a total number of layers L. Specifically, an input layer is connected to one or more
hidden layers, followed by an output layer. For a given image X;, the input layer merely outputs
the pixels, and each sequential layer performs a computation on the preceding layers outputs,
where the output layer performs the final computation and returns the approximation for Y;, de-
noted as a;.

The neurons are connected in the sense that that a neuron in layer / receives a weighted sum of the
outputs in layer [ — 1:

zp=Wa 1+ (1)

where z; is the vector of inputs to layer / and a;_; is the vector of outputs (activation) from the
previous layer. The matrix of weights W; and vector of biases b; are learnable parameters, which
may be updated to produce a better approximation with a learning algorithm.

Each neuron has an activation function, which is a nonlinear function of z; shown below:

a; = ¢(21) @)
= ¢(Wiay—1 + by)

where ¢ is the activation function, and 4; is the vector of outputs (activations) that will be fed

forward to the next layer.

For classification problems, the MLP is designed such that its output vector a;, contains elements
ay; where Vi,0 < a;; < 1. Each Y; is encoded as a one-hot vector, with the number of elements
equal to the number of classes. This way, the network can train to produce ar’s that are as close as
possible to each Y;. One-hot encoding is used because it is much easier to learn then using a single
scalar integer to represent the predicted class [6].

That concludes the description of the structure of a neural network. However, we must have an
appropriate choice of W and b for the network to be a useful predictor of digit class. A learning



algorithm is used to iteratively updated W and b such that the network becomes a better predic-
tor. NN’s are trained with an algorithm called back-propagation [7] (backProp) using stochastic
gradient descent (SGD) [8].

To train an algorithm using SGD, we require a differentiable function that measures the quality of
our approximation, i.e. a differentiable function that quantifies how good (or how bad) our MLP’s
predictive power is. For this report we will use the cross entropy loss function shown in equation
3:

d
ZE ijlog(arij) — (1= Yi)log(1 — ary)) 3)
j=li=
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where E(W, b) is the loss, with respect to all weights and biases of the network. m is the number
of samples in the current mini-batch, while d is the number of classes/outputs. We optimise W
and b by minimising E(W, b). A perfect classification would result in a loss of zero, where for each
Yij = limplies a;;; = 1 and for each Y;; = 0 implies a;;; = 0.

Stochastic gradient descent is a very general algorithm for finding optimal values for a set of
parameters 6. It may be applied to non-convex functions and is particularly useful if the exact
solution is analytically or computationally intractable. In the context of a neural network, SGD
is applied to optimise the set of weight matrices and bias vectors by minimising E(W,b). The
standard SGD update rule for a given weights matrix is shown below:

Wi =W —-AVE 4)

v E; is the maximum directional derivative, i.e. the direction in which the gradient of E(W, b) is
the steepest with respect to W;. A is known as the learning rate, a scalar constant which determines
the degree to which the weights decrease in the direction of <\/E;. \/E is determined by back-
propagation, a technique that computes the gradients of one layer by applying the chain rule using
gradients of the previous layer. Without backProp, training MLP’s would be computationally
prohibitive.

SGD is stochastic, in the sense that rather than computing the gradients based on all training obser-
vations at once, they are computed for random mini-batches of the input. Matrix multiplications
have a complexity of O(mp;_1p;) where m is the mini-batch size, and p;_; and p; are successive
layers in an MLP. BackProp is the most expensive part of training a network and seeing as it is
comprised primarily of matrix multiplications it pays to keep the mini-batch size m small. Fur-
thermore, choosing a smaller mini-batch allows for quicker convergence and SGD tends to achieve
higher classification accuracies than gradient descent, which uses the entire training set each batch

[8].

A neural network is considered deep when it has many hidden layers, traditionally this is more
than about 3 or 4 layers. However recent advancements successfully employ up to 152 hidden
layers [9]. Deep Learning achieves better results than shallow networks on image classification
datasets and has been shown to avoid local optima better than shallow networks do.[10].



2.2 Summary of Activation Functions

Introducing a nonlinear activation function at each neuron allows a network to approximate a
wide range of possible functions, such as a function from an image’s pixels to its digit class. This
section describes the activation functions that are commonly applied in the NN literature, present-
ing the theoretical and empirical rational for using these functions.

Sigmoid

When training a neural network with back-propagation was first shown to be feasible [7] the
activation function used was a sigmoid, the logistic function:

1
14

aj (5)
The sigmoid neuron is loosely speaking, biologically inspired. A biological neuron will either fire
or not fire a signal to another neuron based on its incoming signals. A sigmoid function models

this behaviour by approximating the step function, particularly for large for large elements of
W.

Hyperbolic Tangent

A second commonly applied activation is the hyperbolic tangent function:

a; = tanh(z;) (6)

Both the logistic sigmoid and the hyperbolic tangent have problems with saturating gradients,
where for the extreme values of the gradients are low and therefore training is very slow. Begnio
et al, 2010 [11] demonstrate that on image classification problems such as MNIST and CIFAR-10,
a logistic sigmoid is more susceptible to saturation than the hyperbolic tangent, particularly as
the number of layers in the network is increased. The hyperbolic tangent function has a range
—1 < a < 1, and is only flat when |a| ~ 1. Hence, the gradients for W in a tanh neuron are not
susceptible to saturation at a ~ 0 unlike the logistic sigmoid.

Rectified Linear Unit
However, Krizhevsky et al, 2012 [12] popularised a radically different kind of activation function,
the Rectified Linear Unit (ReLU) [13]. Krizhevsky et al, shattered previous performance bench

marks on the ImageNet dataset [14] by employing rectified linear units in a deep convolutional
neural network. The ReLU activation function is shown below:

a; = max(0,z;) )

Presently, ReLU’s are the most popular activation function achieving the best performance across
image classification data sets [9, 15, 16]. The success of ReLU’s is partially attributed to the fact
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that unlike their sigmoid counterparts, their gradients do not saturate [17]. The gradient of a
ReLU is always one when z > 0, which implies no slow down in training. Indeed Krizhevsky
et al, 2012 [12] demonstrate that a network composed of ReLU’s trains several times faster then a
tanh neuron on the CIFAR-10 image data set.

Softmax

The softmax activation [18] is used in the final layer of a neural network for classification prob-
lems:

e%i

= Z:
Y, e

(8)

ar;

for all p elements i of the output vector a;. Hence p is the number of output nodes and each z; is
the weighted sum at each of these nodes. The softmax is useful because it transforms vectors over
the entire range of the reals to the range 0 < a; < 1. Furthermore, if a given z; is greater than all
other z;’s then ay; will be exponentially larger than each a;;, which helps when training one hot
encoded outputs [19].

For each activation function described above (aside from the softmax), it has been proved that a
neural network composed of such functions is a universal function approximator. That is, with a
single hidden layer, a neural network made up of one of these activations functions, can approx-
imate any continuous function (where increasing the number of hidden units reduces the error
of the approximation). Cybenko, 1989 first showed this result for a neural network composed of
logistic sigmoids [20]. Hornik, 1991 introduced more general conditions which an activation must
satisfy to serve as a universal approximator and noted that the multi-layered architecture of an
NN is what allows for universality [21].

Knowing that a neural network can approximate any continuous function given the correct set
of weights and biases is promising, however the challenge lies in choosing an activation function
that allows a learning algorithm such as backProp with SGD to learn the correct set of weights and
biases.

There is no hard theory of activation functions, no mathematical proof that demonstrates why
ReLU’s are superior when applied to image classification. As it stands, the main reason for the
popularity of ReLU’s is their strong performance on image classification data sets.

2.3 Bayesian Networks

Bayesian Networks are a type of probabilistic graphical model that formulate a principled way of
reasoning about an uncertain real world. A Bayesian network is an agent that consists of a pre-
defined directed acyclic graph (DAG) where each node represents some underlying feature of the
real world. Consider the following example construction, if the agent’s conception of reality is the
(28 *28) grid of possible pixels of an MNIST image, two nodes could be the pixels at (3, 4) and (5,
2). These pixels are parent nodes that could be connected to a child node that represents a higher
level feature which in turn could be connected to a node that represent the presence of a particular
digit.



The edges exist between these nodes by construction, but the probabilities on these edges are
trained using Belief Propagation [22]. These probabilities generally represent the conditional de-
pendence of one node on another. While obtaining such a structure would be richly interpretable,
in practice the training Bayesian networks does not scale well because the number of parameters
they have is exponential in the number of parents nodes. Given that a Bayesian Network applied
to MNIST would consist of at least 784 pixels (potential parent nodes), using one for this problem
is infeasible.

Noisy-OR

One particular variant of the relation between a node and its parent nodes is termed the Noisy-
OR relation [4], developed by Judea Pearl. Consider a binary node D in a Bayesian network, with
three binary parent nodes, Si, S; and S3. We prescribe the following structure to the network,
D will be present if S; OR S, OR S3 present, in the logical sense. However, we specify some
uncertainty ¢; regarding whether S; influences D. Assuming independence of predecessor nodes,
we can express the probabilityD = 1 as follows:

3
P(D =1|51,5,53) =1—] [ 9)
i=1

In the following section, we describe an extension of Pearl’s Noisy-OR applied in MLP’s. Rather
than predefining the structure of nodes, we learn that structure using SGD and backProp. Fur-
thermore, we generalise Pearl’s Noisy-OR by considering parent nodes as probabilities, rather
than binary nodes. In section 5, we proceed to show that networks containing such relations are
interpretable, like Bayesian Networks are.

3 Logical Activation Functions

3.1 Motivation

Deep convolutional neural networks are theorised work by automatically extracting localised fea-
tures from an image at the base layer, and building higher level abstractions of these features at
preceding layers [23]. We hypothesise that an image’s class could be determined by a logical com-
bination of these higher level features. For example, consider a network trained on the MNIST
data set. A high level abstraction could be F;, a downward stroke at the top left and F,, horizontal
bar at at the bottom of the image, The presence of F; and F, suggest the digit 2. Figure 1 depicts
this logical relationship.

Given the universal approximation status of standard MLP’s and the fact that in practice such
networks can achieve a very high classification accuracy on MNIST [24, 25], standard MLP’s can
learn this relationship. However, as we shall demonstrate in section 5, the equivalence of infinitely
many optimal weight solutions makes it difficult for us to infer what relationships have been
learnt. We set out to design activations which do not suffer from this equivalence and demonstrate
clearly interpretable relationships whilst still achieving reasonable classification accuracy.
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Figure 1: Illustration of a logical combination of features that might be learned by an agent. The
two is taken from the MNIST data set.

In this section, we propose two activations based on logical OR and logical AND. Our motivation
for networks containing these activations is based on two premises. If classification problems are
well represented by logical combinations of lower level features, then a correctly parameterised
logical activation should be able to capture this structure. More importantly, such a network
would be more interpretable to a data scientist because OR and AND have a directly interpretable
relationship with respect to their inputs.

3.2 Noisy OR

A logic gate only receives binary inputs and is non-differentiable, therefore it is unsuitable for
an MLP trained with backProp. However, using Pearl’s Noisy-OR we can derive a differentiable
activation based on equation 9. Note that in equation 9, the errors (noises) ¢; are defined on binary
nodes (inputs). To reiterate, the noise represents an uncertainty regarding a given inputs influence
on the output. For example if ¢; = 0.4 the agent believes there is a 60% chance the input i influences
its output node through a logical OR with the other inputs. Or conversely, a 40% chance that the
input is irrelevant, i.e. a 40% chance the input can be ignored.

To apply Noisy-OR in an MLP, we need to generalise the model for real inputs in the range 0 <
x; < 1. That is, we model the input nodes as probabilities, rather than binary inputs. Each x;
represents the agents belief as to the probability of the ith node being on. This means that the
probability of an input node being irrelevant to the Noisy-OR relation is not only influenced by its
noise ¢;, but also x;, the probability of that input node being on.

Therefore we need some function of f (e, x) that describes the independent probability of irrele-
vance for input i, with respect to the output 4;. Such a function must satisfy the following proper-
ties:

1. e =1implies f(e,x) =1
2. x =0implies f(g,x) =1

3. Monotonically non-decreasing in € but monotonically non-increasing in x



That is, 1) if &; = 1 then no matter what x; is, the input i cannot influence 4; so f(1, x;) must be
1. 2), if the input i certainly does not exist, (x; = 0) then the no matter what the noise is it cannot
influence a; so f(e;, 1) must be 1. 3) if the noise increases, or the probability that input 7 exists

decreases, then the probability of input i’s irrelevance must increase (or at least remain at 1, if it is
at1).

We propose the following function to satisfy these properties, displayed in figure 2:

fle,x) =¢* (10)
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Figure 2: f(e, x) = €%, i.e the irrelevance of a given input with respect to a Noisy-OR activation’s
output. It is easy to see that this function satisfies the properties described above.

We are now in a position to describe the Noisy-OR activation function. A discrete OR function
takes p discrete binary inputs, and returns a = 0 if all the inputs are 0, or 2 = 1 otherwise. We
propose the continuous function, Noisy-OR:

p

a=1-]]e" (11)

i=1

Where p is the number of inputs. x; is the ith input, which is constrained to the range 0 < x; < 1.
g1 is the noise on the ith input, ¢; is constrained to 0 < &; < 1.

Consider the case where there is no noise on the inputs, i.e. every ¢; — 0 and where the inputs are
binary. If any input x; = 1, then ¢} — 0 which means the entire product in equation 6 is zero, so it

8



outputs 1. In this case, the only way that Noisy-OR can output 0 is if all the inputs are 0, as ¢! = 1.
Therefore, when all ¢} — 0 and all inputs are binary, Noisy-OR will compute a discrete logical OR
gate across all inputs.

Suppose a given ¢ = 1 for an input k. For all values that input x* can take on, ¢/* = 1. That
is, input x; is ignored, it does not influence the product in equation 6. In general, increasing ¢;
will increase ¢}’ increasing the irrelevance of input i. Similarly the larger x; is, the greater the
certainty the network has regarding the presence of the feature x;, and the less irrelevant input i
becomes.

We will also introduce an error with no input, a bias ¢:

p
a=1- H(Efi)gb (12)

i=1

To apply the Noisy-OR activation function within a neural network, we re-parameterise equation
7

p

a=1-T](es

i=1

—1_ er;l log(e;)x;+log(ep) (13)

—1—¢ YF L wixi+b;

Where w; = —log(e;) and b = —log(ep), 0 < g;,6, <1 — 0 < w;, b < .

Therefore the weighted sum for a Noisy-OR neuron may be expressed as z; = Wx + b, where W
and b are constrained to be non-negative. Hence the activation function for Noisy-OR may be
expressed compactly as:

ag=1—¢% (14)

3.3 Noisy AND

A discrete AND function takes p discrete binary inputs, and returns a = 1 if all the inputs are 1,
or a = 0 otherwise. We propose the continuous logical AND function, Noisy-AND:

p
a =1 e (15)

Where p is the number of inputs. x; is the ith input, which is constrained to the range 0 < x; < 1.
g1 is the noise on the ith input, ¢; is constrained to 0 < &; <1

Setting ¢, = 1, consider the case where there is no noise on all the inputs, i.e every ¢; — 0 and
where the inputs are binary. If any input x; = 0, then ¢} — 0 which means the entire product in
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Figure 3: The Noisy-OR activation function expressed in terms of the weighted sum z;. We see
that as z; increases, the gradient reduces at an exponential rate.

equation 7 is 0, so the function outputs 0. In this case, the only way that Noisy-AND can output 1
is if all the inputs are 1, as ¢! = 1. Therefore, when all ¢} — 0 Noisy-AND will compute a discrete
logical AND gate across all inputs.

¢; behaves in a very similar manner to that in Noisy-OR, as ¢; increases e}_xi has less impact on
the product and therefore less impact on the resulting activation. Furthermore, the larger x; is, the
closer s}_x" is to 1. That is, the larger x;, the more input i is considered on.

To apply the Noisy-AND activation function within a neural network, we re-parameterise equa-
tion 10:

p

= ](e; e

i=1

_ X0 logles) (1-xp)+log () (16)

— e Y wi(1—x;)+b;
Where w; = —log(e;) and b = —log(ep), 0 < ¢;,6, <1 — 0 < w;, b < o0 as with Noisy-OR.
The weighted sum for Noisy-AND is z; = W(1 — x) + b, where W and b are constrained to be non-

negative. With this interpretation for z;, the activation function for Noisy-AND may be expressed
compactly as:

a =e (17)

10
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Figure 4: The Noisy-AND activation function expressed in terms of the weighted sum z;. We see
that as z; increases, the gradient reduces at an exponential rate.

3.4 Logical Activations in Neural Networks

We consider a broad range of architectures for our logical activations. Typically, we propose plac-
ing a layer or two layers of logical activations prior to the softmax at the end of the network. Here,
the network can learn to form abstract high level combinations of low level features. In the models
we present, sigmoids are used at lower layers which are intended as feature extractors.

However, using networks entirely composed of pure activations function is a boon to interpretabil-
ity. We propose a pure LNN where Noisy-OR neurons are applied in the first hidden layer. It is
feasible to learn a logical OR of pixels, i.e. a low level feature is unlikely to exist in the same exact
place each time but if it could be located at the pixel (i, ) or the nearby pixel (k,I). By contrast,
a logical AND of raw pixels is difficult to learn, given the noise in the feature’s exact location.
Preliminary experiments using Noisy-AND neurons in the first hidden layer confirmed their in-
feasibility as low level feature extractors.

In our parameterisation of Noisy-OR and Noisy-AND, we have taken the care to design a function
that when fully trained will exhibit sparse weight representations. Section 5 outlines why we the-
orise these activations will exhibit sparse weights, and provide empirical evidence to demonstrate
that is the case. With respect to interpretation this sparsity is desirable. That is, we would like
each neuron to learn to recognise a few import features and take a logical combination of those,
whilst considering the rest of the features irrelevant.

4 Performance Comparison

To establish the feasibility of using Noisy-OR or Noisy-AND in an MLP, we apply each in an
architecture targeted at the MNIST digit classification problem. We compare networks where the

11



hidden layers are composed entirely of sigmoids (with a softmax output) to one pure LNN and
various mixed LNN’s. In every architecture, the outputs are 10 neurons intended to capture each
digit with one-hot encoding.

41 MNIST

The MNIST data set is composed of 70,000 handwritten digits. The training and test set are pre-
specified, [3] split into 60,000 training images and 10,000 test images. For training the final models
we adhere to this split, however for hyper-parameter selection we will split the training images
into a training set of 50,000 images and a validation set of 10,000 images.

4.2 Network Architecture

We propose 9 different architectures which contain logical activations. Each architecture begins
with a feature extraction layer composed of one or more sigmoids, or a noisy-OR layer. This
is followed by one or more layers of different logical activations, and a softmax at the end for
classification. We compare these models to 3 architectures composed of sigmoids followed by a
softmax. All 12 models are displayed in table 1.

Architecture Sizes
or-and 784-30-10
sig-or 784-30-10
sig-and 784-30-10
sig-or-sm 784-30-30-10
sig-and-sm 784-30-30-10

sig-sig-or-sm

784-30-30-30-10

sig-sig-and-sm

784-30-30-30-10

sig-or-and-sm

784-30-30-30-10

784-30-30-30-10
784-30-30-30-10
784-30-30-10
784-30-10

sig-and-or-sm
sig-sig-sig-sm
sig-sig-sm
sig-sm

Table 1: The twelve models constructed for training on the MNIST data set. The first layer cor-
responds to the 784 input pixels, whilst the remaining numbers in the sizes column denote the
number of activations at each consecutive layer. For example, in sig-or-sm the 784 input pixels
are connected to 30 sigmoid units, followed by 30 Noisy-OR units connected to 10 softmax units
which produce the models output.

4.3 Hyper-Parameter Selection
Given the unique nature of these logical activations, there is no literature that helps to prescribe

how to set hyper-parameters in networks that contain logical activations. Therefore, we perform
a grid-search across a broad range of hyper-parameters.

We choose the hyper-parameter grid base on:

12



1. The theoretical properties of each model

2. Preliminary experiments

Weight Initialization

Initialising the weights and with a standard normal distribution has proven effective for standard
activation functions [6]. Such a scheme is infeasible for logical activations, as it would allow
the weighted sum z; to be negative, which is not permitted. For the weight initialisation of our
logical activations, we adopt the folded normal distribution [26] (the absolute value of the normal
distribution) and adjust the weights produced by a scaling factor c. This scaling factor will be
determined by the grid search. We present an heuristic argument for the grid of c’s used.

Consider equation 14: g4; = 1 — e~ for the Noisy-OR activation. Recall that the weighted sum z,

must be positive. Figure 3 plots this equation, its slope may be expressed as % = ¢ %, That s, the

slope is exponentially decreasing starting from % = 1 at z; = 0. Since all the weights and biases

are positive, we would like to choose small weights, such that z; ~ 0 and hence the gradients with
respect to the weights and biases are larger, than they would be for a large z;.

Therefore we choose the weight scale ¢ to be a grid beginning at 1, and decrease by a factor of 10 for
each entry in the grid. Note that small weights have an intuitive interpretation in terms of logical
OR. If all the weight are near zero, this implies the underlying errors are near 1, ¢; ~ 1 (recall
g; = e~ ). That is, all the inputs are ignored to begin with. This is approximately equivilent to an
OR gate which has all zeros as its input. Hence the increase of just a single weight (equivalently the
reduction of a single error) will have a large impact on the activation, like a single input becoming
one in an OR whilst all others are zero.

In other words, the gradient with respect to any one input is large at initialisation time, prompting
better training. Furthermore, as noted above we would expect a logical representation to be sparse.
If the optimal approximation is sparse (which we demonstrate in section 5), then we have a better
chance of obtaining it by starting all weights at zero and allowing SGD to increase the few weights
that are relevant.

da;

Similarly the logical AND function (see figure 4) has the gradient 7! = —e™* only differing in
sign when compared to continuous OR. Therefore by our heuristic argument, we would also like
small weights and biases. Like Noisy-OR, small weights and biases imply ¢; ~ 1. In the context
of logical AND, this is approximately equivalent to an AND gate with all ones as the inputs.
So a single input changing to zero (or noise ¢ decreasing below 1) would have a large effect on
the activation. That is, the gradients are more receptive at lower weights. Again if the optimal
approximation is sparse, the initialisation should benefit training.

4.3.1 Learning Rate
The derivate of the sigmoid function and the softmax in terms of 4; is:

oa
5—2; =a(1-a) (18)
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whereas for Noisy-OR and Noisy-AND this is 4; and —a; respectively. For each model 0 < g; <
1, which implies for a given 4;, the gradient in Noisy-OR and Noisy-AND always has a larger
magnitude than that for a sigmoid. Therefore, we would expect the logical activations to require
smaller learning rates. We prescribe a schedule of learning rates that is lower than those prescribed
for the softmax and sigmoid networks.

4.3.2 Selection Methodology

Activation Function Hyper-Parameter Grid
Asigmoid Sigmoid/Softmax 3.0,1.0,0.3,0.1,0.03
Mogicat OR/AND 1.0,0.3,0.1,0.03, 0.01
weight scale OR/AND | 1.0, 0.1, 0.01, 0.001, 0.0001

Table 2: Hyper-Parameter grid based on heuristic arguments above.

Setting different hyper-parameters for each individual layer and performing an exhaustive grid
search would be combinatorially prohibitive. However, standard activation functions are scarcely
trained with different learning rates [23]. Therefore, all sigmoid and softmax neurons will have
the same A for any given run (for all architectures). For networks with no logical activations, this
means the grid is simply one dimension in Ag;goid-

For architectures with a single logical activation, all Agjgiq are considered, all Ajygicsr (on the
logical layers) and all weight scales are considered, for a total of 125 hyper-parameter combina-
tions.

For those architectures with two logical activations, we assign priority to weight scaling. That is,
all combinations of weight scaling are considered on the logical layers, but the same learning rate
is used at each layer. This limits the total number of hyper-parameter combinations to 125.

Each run corresponded of 50 epochs with a mini-batch size of 10, after 25 iterations every learning
rate in the network was divided by 3 to fine tune convergence. The following table presents the
results of the grid search, showing the hyper-parameter combination which found the lowest test
error on the validation set:
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Architecture | Agiomoid | Mogical | Weight Scale OR/AND | Error %
sig-or-sm 0.3 0.3 1072 3.17
sig-and-sm 0.03 0.1 102 3.20
sig-sig-or-sm 0.03 0.03 102 3.18
sig-sig-and-sm 0.1 0.1 1073 3.37
sig-or-and-sm 0.1 0.1 1072/1073 3.73
sig-and-or-sm 0.3 0.3 1073/1073 3.66
or-and - 0.1 1072/10°3 8.67
sig-or 0.3 0.3 102 7.81
sig-and 0.3 0.3 1073 4.15
sig-sig-sig-sm 0.1 - - 3.30
sig-sig-sm 0.03 - - 3.13
sig-sm 0.1 - - 3.41

Table 3: Final hyper-parameters chosen for each model based on 10,000 validation images after
training on 50,000 images. The Error column is the classification error obtained on the valida-
tion set. Where two logical activations are present the first weight scale corresponds to the OR
activation and the second to AND.

44 Comparison

With the hyper-parameters obtained for each model, we run full experiments on each model and
compare classification error. Each architecture is run for 60 epochs, where after 30 epochs all
learning rates are decreased by a factor of 3. For each architecture, the experiment is run 30 times
for statistical significance. It is worth noting that for each run a new network is generated to
guard against a single favourable /unfavourable weight initialisation. The results are presented in
figures 5, 6, 7 and 8 and table 4.
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Figure 5: Comparison of three layer architectures, and a two layer model sig-sm The hyper-
parameters used are those derived from the grid search. The graph displays the test classification

Three Layer Networks

sig-and-sm
sig-or-sm
sig-sig-sm
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error at the end of each epoch of training.

Figure 5 compares two three layer mixed LNN’s with two standard architectures. Both mixed
LNN architectures achieve comparable performance to the standard MLP’s. It is interesting to
note that to begin with, both LNN’s train faster than the other three layer model sig-sig-sm. sig-
or-sm appears to have a more noisy learning path way, although this may because the optimal

learning rates for this model are higher than for the others.
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Four Layer Networks
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Figure 6: Comparison of four layer architectures, and a three layer model sig-sig-sm The hyper-
parameters used are those derived from the grid search. The graph displays the test classification
error at the end of each epoch of training.

Figure 6 compares two four layer mixed LNN’s with two standard MLP’s. Again the results are
comparable with standard MLP’s. However it is worth noting that increase in depth has made the
results worse for all classes of MLP (see table 4). For example, sig-or-sm has a final classification
error of 3.49, whereas its four layer counterpart sig-sig-or-sm has a worse classification error of 3.73.
Similarly, the standard MLP sig-sig-sm has a final classification error of 3.13, while sig-sig-sig-sm
has a final classification error of 3.43.

While the increased depth does not increase the representational power of our networks on MNIST,
it is still useful to know that mixed LNN'’s retain comparable performance to standard MLP’s with
increased depth.
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Figure 7: Comparison of four layer architectures, specifically the LNN’s with two activations, and
two standard models. The hyper-parameters used are those derived from the grid search. The
graph displays the test classification error at the end of each epoch of training.

The experiments displayed in figure 7 are designed to assess the effectiveness of mixed LNN'’s
with multiple logical layers. While it is not the focus of this work, providing a proof of concept for
deeper LNN's is an important part of demonstrating their feasibility. sig-or-and-sm although slow
to train, does not significantly differ in performance to sig-sig-or-sm. However, sig-and-or-sm has a
final classification error of 4.00% whereas sig-sig-and-sm is lower at 3.64%.
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Figure 8: Comparison of two layer architectures. or-and is a pure LNN, sig-or and sig-and are mixed
LNN's and sig-sm is a standard MLP. The hyper-parameters used are those derived from the grid
search. The graph displays the test classification error at the end of each epoch of training.

Two layer networks are the only LNN's that are significantly outperformed by standard MLP’s. In
particular, final classification error for or-and is nearly three times that of the standard MLP sig-sm.

or-and and sig-or train particularly slowly, but training beyond 60 epochs does not significantly
reduce their classification error.

It is interesting to note that both networks layers containing a noisy-OR model exhibit a similar
training pattern. That is ,both these models train slowly and exhibit considerable noise (even after
averaging over 30 runs this can still be observed). By contrast sig-and exhibits a similar training
pattern to sig-sm. This difference has not been investigated in this report but should be noted for
future work, particularly work regarding performance improvements for logical activations
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Architecture | Final Test Error %
sig-or-sm 3.49
sig-and-sm 3.45
sig-sig-or-sm 3.73
sig-sig-and-sm 3.64
sig-or-and-sm 3.84
sig-and-or-sm 4.00
or-and 10.32
sig-or 7.65
sig-and 4.05
sig-sig-sig-sm 3.58
sig-sig-sm 3.13
sig-sm 3.34

Table 4: Final test error averaged across all 30 runs of each architecture.

The results demonstrate that for standard MLP architectures, mixed LNN’s have comparable per-
formance to networks composed of standard activation functions. Pure LNN'’s despite being the
only models that we can fully interpret, do not achieve comparable performance but nonetheless
achieve a high enough classification accuracy for inference to be worthwhile.

5 Towards Interpretability

Neural networks are renowned for being a black box, a data scientist is unable to look at the
individual weights and meaningfully interpret the learned relationships between the target class
and inputs. We propose a method for pure LNN’s, that is a promising step towards interpreting
the relationship between inputs and class in a neural network. We compare this method for pure
LNN’s, mixed LNN’s and standard MLP’s, demonstrating the superior interpretability of pure
LNN’s.

5.1 Low Level Features

In this analysis, we will visualise lower level features using feature maps for the first layer of each
network. These feature maps are simple images of the weights feeding into a single neuron, and
are shaped according to the original image for inference purposes. In the first layer of the network,
this image corresponds to the 784 (28 x 28) weights on each individual pixel. In the grey-scale
feature maps, the darker regions correspond to more positive weights, whereas the whiter regions
are more negative weights or weights that are closer to zero in the context of a logical activations
(which have no negative weights). An example taken from a fully trained sig-sig-sm model is
shown in figure 9.
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Figure 9: A grey-scale feature map, showing the weights feeding into a single neuron in the first
hidden layer for the model sig-sig-sm. Note that the more white the more negative a weight is (or
close to zero in the context of logical activations) and the more black the more positive. While we
can see that some learned structure exists, it is very difficult to discern exactly what this structure
means. For all conventional activation functions, the learned weights have this problem, where
the structure is uninterpretable.

To test the interpretability of each class of networks we will visualise feature combinations in
the pure LNN or-and, the mixed LNN sig-and and the standard MLP sig-sm. Figure 10 shows 5
randomly selected feature maps from the first layer of each network.

Referring to figure 10,we see in both cases where sigmoids form the lower level feature maps there
clearly exists some structure, however it is not clear what this structure means. Furthermore, there
is noise in that structure. Specifically, the semantic structure that would be useful to data scientist
is mixed across features.

The problem is indirectly highlighted in [27]. In [27], Baldi demonstrates that a linear network
learns semantically meaningful content. For example, Baldi shows a linear auto-encoder with a
single hidden layer learns the first p principle components of the data (where p is the number
of hidden units). However, he demonstrates that because there are multiple layers, there are
infinitely many equivalent weight matrices that can represent these principle components. So
a data scientist, without decomposing the weight matrices properly is unable to discern these
principle components or even infer that they were learned.

This problem of equivalence highlighted by Baldi exists for all the standard activation functions.
The general point we make is that if there was an underlying structure meaningful to a human,
it would not be readily inferable because of that structure’s equivalence with many other un-
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Figure 10: Feature maps for the weights feeding into 5 randomly selected neurons, in the first
layer of 3 different neural networks. Top: The standard neural network sig-sig-sm, where each
diagram represents the weights feeding into a sigmoid neuron in the first layer. Middle: The
weights feeding into 5 Noisy-OR neurons in the first layer of or-and. Bottom: The mixed LNN,
sig-and. Despite its logical layer, the weights feeding into its first layer (sigmoids) are difficult to
interpret.

interpretable weight matrices. To our knowledge, no one has achieved a proper decomposition
of the weights in the context of non-linear activations, which would be an incredibly useful tool.
Such a decomposition is beyond the scope of of our work here. We turn our attention to the feature
maps produced by a Noisy-OR first layer.

The Noisy-OR neurons from the first layer of or-and, lack the noisy looking feature overlap that is
present with sigmoids. By contrast, their weights come to represent very distinct features focusing
on a specific region of the input. That is, not only does a Noisy-OR neuron learn to capture the
localised feature interactions inherent in any image recognition problem, but it does it in such a
way that we can interpret which pixels the neuron is assigning credit to. This is in accordance with
our central hypothesis regarding logical activations, that they would learn to ignore most inputs
and focus on a few relevant features.

We present our theoretical rational for choosing the Noisy-OR (and Noisy-AND) activation func-
tions, and demonstrate how this is confirmed by the empirical evidence in figure 10. Recall the
activation function for a Noisy-OR neuron (ignoring the bias term for brevity). We rearrange the
equation for the sake of demonstrating our point:
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Consider any single input pixel that has a non-zero weight. If that pixel is active, it will cause an
exponential decrease in the magnitude of e"* and an exponential increase of the activation value.
That is, the logical activation is a product of inputs (with exponential weights), so it only takes a
single input to increase the activation substantially.

For example, suppose a useful feature is the horizontal bar at the top of a 5, or a 7. Suppose that
we had a single OR neuron that represented this feature, with weights all near zero apart from
the region where the horizontal bar on a 5 or 7 usually is. The inclusion of a single large weight
to the bottom of the image, would invalidate the representation of this feature, as this input alone
can radically alter the activation (particularly if for a given image, x; = 0 for all truly relevant
pixels).

Therefore, such a feature may only be represented by weights all near zero, apart from the region
where the horizontal bar on a 5 or 7 usually is. In contrast, sigmoid or ReLU activations exhibit
some form of additive equivalence, where a single weight into 1 neuron can be equivalently rep-
resented as a sum of smaller weights into other neurons.

So given an LNN achieve reasonable classification accuracy, that is, learn good feature represen-
tation (which we have demonstrated empirically in section 4). Then these feature representation
should manifest in the weight matrices of individual neurons, that is, weight matrices that only
contain the information specific to one feature and are zero elsewhere.

5.2 Combination Layer

Of equal importance for the interpretation of these models is the second layer, i.e, the weighted
combinations of lower level features. Figure 11 illustrates a stark difference between the LNN'’s
and the standard architecture. We see that in a standard MLP the weights retain a Gaussian distri-
bution, even after training. For logical activations the trained weights follow a radically different
distribution, with a few large weights but most near zero.

For the second hidden layer sig-sm, it is unclear what these weights could represent. The network
has achieved a final classification accuracy of error of just 3.43%, so it has clearly learnt a mean-
ingful structure. However without the kind of decomposition alluded to above, the interpretation
remains illusive to human data scientists.

By contrast for the LNN’s, we can easily interpret the large weights as the few input features
which the logical activation has learnt to pay attention to. By the same mechanism described in
the analysis of the first layer, each logical activation ignores the bulk of the inputs, and takes a
logical combination of select features.
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Figure 11: Histograms depicting the distribution of weights at the second layer of each of our
proposed models. Top: sig-sm, the weights in the second layer still follow a normal distribution,
even after training. Middle: or-and, the distribution is multi-modal, with most of the weight near
zero, and a few large weights roughly between 2 and 6. Bottom: sig-or, again the overwhelming
majority of the weights are near zero, but the distribution is not multi-modal, with less weights at
higher magnitudes.



5.3 Interpretation

Consider the pure LNN or-and. Each AND neuron, is one of 10 outputs that correspond to a digit
class. Let us choose a target class D for inference, such as 3. For the weights feeding into the output
neuron that represents 3, we know that most are zero, while some weights are large. We choose all
the large weights feeding into this neuron. More formally, we choose every weight feeding into
this neuron that exceeds some threshold ¢. For these weights, we examine the features determined
in the first hidden layer (the OR layer), and interpret them with respect to logical AND. In practice
we choose t = 1. The determined features are shown in figure 12.

Figure 12: The coloured feature maps represent the size of the weight on each pixel for a given
tirst layer neuron. Dark blue represents a zero weight, whereas green though to yellow through
to red represents increasingly large weights. These are the first layer OR features that are most
significant to the output neuron that represents 3 in a fully trained or-and LNN. These are chosen
by selecting the feature maps that have large second layer weights on them where w > t = 1.

Each image represents the weights into a single OR neuron in the or-and architecture. For any
feature, a small subset of the pixels is required to cause that feature to activate, seeing as these are
weights on a Noisy-OR activation. Feature e) has learnt to to require the right hand side of a 3 or
the upwards flick at the bottom. Whereas feature h) recognises the curve at the top of a 3, or the
bottom right curve. Furthermore, features d) and j) represent the central flick of a 3.
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Most of the features are not entirely unique to a 3. For example feature h) could be more useful
for classifying a 9. Some features such as b) seem better suited to other features such as 6 or
0 (however the larger weights are concentrated at the top flick, which is present in a 3). It is
important to recognise that the network would have to learn to share features, seeing as there are
only 30 lower level feature maps and 10 digits to share these.

These features partially give us insight as to what parts of a 3, make a written digit a 3. In par-
ticular, the curves at the top right, bottom left, and bottom right occur with high intensity and
frequently across these features. Of course, interpretation with respect to image recognition is
largely an academic problem. For pure interpretation purposes, a human does not need to know
what shapes make up a digit, a child can describe what makes a 3, a 3. However, feature interpre-
tation becomes very useful where the relevant substructures are not fully known such as scans for
cancer patients.

For example, consider a data set of cancer patients (where the tumour class, benign or malignant
is known). The doctors may have an idea of what constitutes a malignant tumour, however they
don’t fully understanding all the visual cues that make a tumour malignant. An interpretable
network such as a pure LNN (provided it was accurate enough) could identify part of the images
that are important in the classification of tumours, part that human experts did not realise were
important. Our work here specifically targets a problem for which the substructures are well
known, as to demonstrate the feasibility of interpretation.

That said, a second benefit of being able to interpret the composition of learned features is obtain-
ing insights about the potential problems of the network. That is, obtaining insights about why
the network made certain misclassifications, problems that could be apparent across data sets. By
identifying such problems, we are ultimately able to make adjustments to improve the design of
our network more rigourously. For example, the network that evolved the features in figure 12
had about a 90% classification accuracy, meaning it is misclassifying about 1000 digits in the test
set. It is easy to see why a 3 might be misclassified as a 6 and vice versa, given the features in figure
12.

With the problem clearly identified we can begin to consider solutions for dealing with it. For
example, if the features shared between 6 and 3 are too common we might hypothesise greater
network width at the first hidden layer will help improve performance, by introducing a wider
variety of features. Testing a wider model, we can again examine the lower level features to
identify if this hypothesis was correct and continue that process.

Using standard activations we could also hypothesise the network required a wider variety of
features, but the crucial difference is that it is a lot harder to identify whether such a problem
exists, because we cannot interpret what has been learnt. We present an attempt that interpreting
sig-and in the same way we interpreted or-and. That is, for the output 3 we choose all weights
exceeding the threshold ¢+ = 1 and examine the low level features that those large weights are
coefficients for.

Figure 13 shows all the features for which there is large weights feeding into the output 3. The
model is sig-and so we interpret by taking a logical AND of all the features, i.e. all of these features
must activate for the network to output 3. However, it is not clear what these individual feature
maps represent due to the problems with equivalence described above. In short, we are unable to
interpret networks that utilise standard activations, in our logical interpretation framework.
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Figure 13: The first layer sigmoid features that are most significant to the output neuron that
represents 3 in a fully trained sig-and LNN. These are chosen by selecting the feature maps that
have large second layer weights on them where w > t = 1.

6 Conclusion

Deep Learning has proved incredibly useful in the last 5 years, and is being deployed in com-
mercial applications in domains such as object recognition, speech classification, and machine
translation at an increasing rate [23]. While simply achieving good performance in these domains
is a huge achievement and very useful to society, we would also benefit from understanding the
patterns and features these deep architectures learn.

Interpreting what a powerful neural network has learned would primarily allows us to discover
semantically meaningful patterns in the data, allowing a human to take action based on the iden-
tified patterns. We highlighted tumour recognition in section 5, as an incredibly valuable ap-
plication of such interpretation. We could have even more to gain in the domain of non-image
classification problems, such as identifying whether a debtor will repay their loan or not. That
is, humans are evolutionarily adept at recognising patterns in images but patterns in less natural
data sets such as information regarding debtors, are be more difficult to recognise

In this report, we design new activation functions that are a step towards the goal of powerful and
interpretable neural networks. Drawing from Bayesian Networks, and Pearl’s Noisy-OR relation
we derive more general relations that are valid for continuous inputs, under noise (uncertainty of
influence on the relation). These models can be re-parameterised using basic algebra, to serve as
logical activations in a neural network.
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We present a clear case for why one would want to use logical activations in a neural network. In
section 3 we discuss the inherent interpretability of AND’s or OR’s of inputs. Whilst in section 5,
we discuss why logical activations given correctly trained weights can be interpreted in a logical
manner. We introduce the notion of Logical Neural Networks (LNN’s), MLP’s that contain logical
activations.

Section 4 demonstrates that these LNN’s can learn a reasonably challenging problem, classifying
the MNIST data set. We show that mixed LNN’s which contain sigmoids and a softmax as well
as logical activations, achieve performance comparable to standard MLP’s. Our single pure LNN
or-and achieve 90% classification accuracy on MNIST. Although lower then the other models, this
is still high enough to make the model worth interpreting.

We then demonstrated how a pure LNN could be interpreted, using the MNIST results as an
example. The feature maps in figure 11 showed that the individual weight matrices of or-and
could be interpreted as the features that make up a given digit. We then described how the second
layer allows us to consider a logical combination of easily recognisable lower level feature maps.
The entire process results in a fairly effortless way to interpret a pure LNN, and paves the way for
the interpretation of more complicated models.

This work is not necessarily close to achieving the lofty applications for high performance neural
network interpretation stated above. However it is a solid proof of concept, using activations that
are yet to have years of optimisations from a community of neural network researchers. That is,
future work to develop new activations and improve LNN architectures would be worthwhile
steps towards achieving high performance, interpretable neural networks.
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