
Conclusions

•Multivariate regression using Gaussian Processes can be achieved by inferring convolution ker-
nels instead of covariance functions. This makes it easy to construct the required positive definite
covariance matrices for covarying outputs.

•One application of this work is to learn the spatial or temporal translations between outputs.

• Another application is in the forecasting of multiple time series that are not independent.

• In general, if we wish to use Gaussian Processes to model multiple sets of data that are not
independent then we can use dependent GPs.

Multiple Outputs and Non-stationary Kernels

•We can also modelN -dependent-outputs, each defined over ap-dimensional input space by as-
sumingM -independent Gaussian white noise processesX1(s) . . . XM (s), andM × N kernels.

• The kernels used in need not be Gaussian, and need not be spatially invariant, or stationary. All
that we require kernels is that are absolutely integrable.

Figure 3 - Example 2
Three coupled time series, where series 1 and series 2 predict series 3. Forecasting begins after
100 stepst = 7.8, with the dependent model forecast coloured cyan, and the independent (control)
forecast coloured green. The dependent model does a far better job at forecasting the next 10 steps
of series 3 (black dots).
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Coupled Time Series Forecasts

•Consider the observation of multiple time series, where some of the series lead or predict the
others.

•We simulated a set of three time series (figure 3) where series 3 is positively coupled to a lagged
version of series 1 (lag = 0.5) and negatively coupled to a lagged version of series 2 (lag = 0.6).

•We built dependent GP models of the three time series and compared them with independent GP
models. The dependent GP model incorporated a prior belief that series 3 was coupled to series
1 and 2. The independent GP model had no coupling between its outputs.

•Clearly, the dependent GP model does a far better job at forecasting series 3.

Figure 2 - Example 1
Strongly dependent outputs where output 2 is simply a translated version of output 1, with indepen-
dent Gaussian noise. The black lines represent the model, the red lines are the true function, and the
dots are samples. The shaded regions represent 1σ error in the model prediction.(Top)Independent
model of the two outputs.(Bottom)Dependent model.
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Deriving the Covariance Functions

In figure 1,k1, k2, h1, h2 are parameterised Gaussian kernels wherek1(s) = v1 exp
(
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)
,

k2(s) = v2 exp
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, andhi(s) = wi exp
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)
.

We can derive the set of functionsCY
ij (d) that define the autocovariance (i = j) and cross-covariance

(i 6= j) between outputsi andj, for a given separationd between arbitrary inputssa andsb. By solv-
ing a convolution integral,CY

ij (d) can be expressed in a closed form and is related to the parameters

of the Gaussian kernels and the noise variancesσ2
1 andσ2

2 as follows:

CY
11(d) = CU

11(d) + CV
11(d) + δab σ2

1 CY
12(d) = CU

12(d)

CY
22(d) = CU

22(d) + CV
22(d) + δab σ2

2 CY
21(d) = CU

21(d)

where

CU
ii (d) =

π
p
2v2

i√
|Ai|

exp

(
−1

4
dTAid

)
CU

12(d) =
(2π)

p
2v1v2√

|A1 + A2|
exp

(
−1

2
(d− µ)TΣ(d− µ)

)
CU

21(d) =
(2π)

p
2v1v2√

|A1 + A2|
exp

(
−1

2
(d + µ)TΣ(d + µ)

)
= CU

12(−d)

CV
ii (d) =

π
p
2w2

i√
|Bi|

exp

(
−1

4
dTBid

)

with Σ = A1(A1 + A2)
−1A2 = A2(A1 + A2)

−1A1.

HavingCY
ij (d), we can construct the covariance matricesC11,C12,C21, andC22 and hence define

the positive definite symmetric covariance matrixC for thecombinedoutput dataD = {D1 ,D2}:

C =

[
C11 C12
C21 C22

]
whereDi is the observed data from outputi.

Figure 1
(a) Gaussian process prior for a single output. The outputY is the sum of two Gaussian white noise
processes, one of which has been convolved (?) with a kernel (h).
(b) The model for two dependent outputsY1 andY2. All of X0, X1, X2 and the “noise” contributions
are independent Gaussian white noise sources. Notice that ifX0 is forced to zeroY1 andY2 become
independent processes as in (a) - we use this as a control model.

Strongly Dependent Outputs

•Consider the situation in figure 2 where we observe two strongly dependent outputs. Here, output
1 is uniformly sampled, but output 2 is sparsely sampled.

• If we build a dependent GP model of both the outputs assuming that they are coupled (figure 1b),
then the model does a good job at predicting output 2 in its data sparse region.

•Observe that the dependent model has learned the coupling and translation between the outputs,
and has filled in output 2 where samples are missing. The control model cannot achieve such
in-filling as it is consists of two independent Gaussian processes.

Introduction

• An alternative to directly parameterising a Gaussian Process (GP) covariance function is to treat
GPs as the outputs of stable linear filters and parameterise the filter instead.

• If we stimulate a linear filter with Gaussian white noise,x(t), then the output,y(t), is necessarily
a Gaussian Process.

• The output is defined byy(t) = h(t) ? x(t) =
∫∞
−∞ h(t − τ )x(τ )dτ , whereh(t) is the impulse

response of the filter and? denotes convolution (figure 1a).

•We can construct multiple dependent GPs by stimulating a multiple output linear filter with Gaus-
sian white noise sources (figure 1b).

Abstract

Gaussian processes are usually parameterised in terms of their covariance functions. However,
this makes it difficult to deal with multiple outputs, because ensuring that the covariance matrix is
positive definite is problematic. An alternative formulation is to treat Gaussian processes as white
noise sources convolved with smoothing kernels, and to parameterise the kernel instead. Using this,
we demonstrate Gaussian Process regression over multiple, coupled outputs.
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