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Abstract
Large amounts of Java software have been written since the lan-
guage’s escape into unsuspecting software ecology more than ten
years ago. Surprisingly little is known about the structureof Java
programs in the wild: about the way methods are grouped into
classes and then into packages, the way packages relate to each
other, or the way inheritance and composition are used to putthese
programs together. We present the results of the first in-depth study
of the structure of Java programs. We have collected a numberof
Java programs and measured their key structural attributes. We have
found evidence that some relationships followpower-laws, while
others do not. We have also observed variations that seem related
to some characteristic of the application itself. This study provides
important information for researchers who can investigatehow and
why the structural relationships we find may have originated, what
they portend, and how they can be managed.

Categories and Subject Descriptors D.2.8 [SOFTWARE ENGI-
NEERING]: Metrics—Product metrics; D.1.5 [PROGRAMMING
TECHNIQUES]: Object-oriented Programming

General Terms Design, Measurement

Keywords Power-law distributions, object-oriented design, Java

1. Introduction
Much of software engineering has focused on how software could
or should be written, but there is little understanding of what actual
software really looks like. We have development methodologies,
design principles and heuristics, but even for a well-defined subset
of software, such as that written in the Java programming language,
we cannot answer simple questions such as “How many methods
does the typical class have?” or even “Is there such a thing asa
‘typical class’?”

What we would really like to know about software is “Is it
good?” that is, does it have quality attributes such as high modifi-
ability, high reusability, high testability, or low maintenance costs.
We believe current methodologies lead to good software, butwith-
out knowing what good software looks like, we cannot know that
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the methodologies are actually working. We are left with circular
arguments of the form “The methodologies are good because the
software is good, and the software is good because the methodolo-
gies are good.” Understanding the shape of existing software is a
crucial first step to understanding what good software lookslike.

Just as biologists classify species in terms of shape and structure
and ecologists study the links and interactions between them, we
have been collecting a body of software and analysing its abstract
form. We remove semantics and focus on the network of connec-
tions where information flows between components. Just as biol-
ogists (and other scientists) seek to understand the characteristics
of the population under study, so too would we like to know such
basic features as the distributions of the software structures we find.

Of specific interest are recent claims that many important rela-
tionships between software artifacts follow a ‘power-law’distribu-
tion (e.g. [34]). If this were true, it would have important implica-
tions on the kinds of empirical studies that are possible. One issue
is the fact that a power-law distribution may not have a finitemean
and variance. If this is the case, the central limit theorem does not
apply, and so the sample mean and variance (which will alwaysbe
finite, because the sample size is finite) cannot be used as estimators
of the population mean and variance. This would mean that basing
any conclusions on sample means and variances without fullyun-
derstanding the distribution would be questionable at best.

In this paper, we extend past similar studies in two ways. First,
we examine a much larger sample than previous studies. We have
analysed a corpus of Java software consisting of 56 applications
of varying sizes, and measured a number of different attributes
of these applications. Second, we consider distributions other than
those following a power-law. We find evidence that supports claims
by others of the existence of power-law relationships, however we
also find evidence that some distributions donot appear to obey
a power-law. Furthermore, whether or not a relationship follows a
power-law appears to depend on an identifiable characteristic of the
relationship, namely, whether or not the programmer is inherently
aware of the size of the relationship at the time the softwareis being
written. We also see variations between applications. We speculate
that this may be due to some characteristic in the application’s
design, that is, some property of the design is reflected in the
distribution of some measurements.

The rest of the paper is organised as follows. In Section 2, we
discuss the motivation for our study. Section 3 describes indetail
the salient features of our study, namely the corpus we use and
the metrics we gather. In Section 4 we give the analysis of our
results, and in Section 5 we give our interpretation of this analysis.
Section 6 discusses the most relevant related work, and we give our
conclusions in Section 7.



2. Motivation and Background
Software systems are now large, complex, and ubiquitous, however
surprisingly little is known about the internal structuresof practi-
cal software systems. A large amount of research has studiedhow
software ‘ought’ to be written, how it ‘should’ be structured. Many
rules, methodologies, notations, patterns and standards for design-
ing and programming such large systems [9, 17, 24] have been
produced. Psychological models have been constructed of the pro-
gramming process [6, 33]. Quantitative models of software have
been designed to predict the effort required to produce a system,
measure the development rates of software over time (process met-
rics) or measure the volume of software in a system and its quality
(product metrics) — see e.g. [7, 15, 27]. But we know very little
about the large-scale structures of software that exists inthe real
world.

With the methodologies, notations, and other advice that has
been developed, we should be able to say something about the soft-
ware that resultsif such advice is followed. However the conditional
is key — until recently there was very little work done in determin-
ing even if the advice that has been offered is actually been taken.
There is some evidence that common advice is not being followed.
For example, a number of people have advised against creating cy-
cles of dependencies in software, but recent evidence suggests that
not only do programmers regularly introduce cycles, but they are
often very large [20].

One consequence of much of the advice offered with respect to
object-oriented design is what we call theLego Hypothesis, which
says that software can be put together like Lego, out of lots of
small interchangeable components [26, 29]. Software constructed
according to this theory should show certain kinds of structure:
components should be small and should only refer to a small num-
ber of closely related components.

In fact, we don’t know whether or not this is true, because we
lack models describing the kinds of large structures that exist in real
programs. There are no quantitative, testable, predictivetheories
about the internal structures of large scale systems, or howthose
structures evolve as programs are constructed [8, 13]. While design
patterns, rules, metrics and so on, can give guidance regarding
developing program structure, they cannot predict the answers to
questions about the large-scale structure that will result, such as:
in a program of a given size, how many classes or methods will
exist? How large will they be? How many instances of a each class
will be created? How many other objects will refer to any given
object? We need answers to these kinds of questions in order to
be able understand how large scale software is actually organised,
built, and maintained in practise.

Recently there has been an interest in looking forpower-law
relationships in software. A distribution of the number of occur-
rencesNk of an event of sizek is a power-law if it is proportional
to k raised to some powers. A common method used to detect pos-
sible power-laws is to rank the event sizes by how often they occur,
and then plotN vs. the rank on logarithmic scales. A distribution
following a power-law will appear as a line with slopes.

Studies of computer programs have considered both static [30,
31, 34] and dynamic [23, 25, 26] relationships, in differentforms
of software as diverse as LISP, visual languages, the Linux kernel,
and Java applets [3, 22, 23, 25, 26, 28, 31], and the design of Java
programs [5, 30, 31]. The conclusions from these studies is that
power-laws appear to be quite common.

Our work follows from Wheeldon and Counsell, who examined
a number of inter-class relationships in Java source code, namely
Inheritance, Interface, Aggregation, Parameter Type, andReturn
Type in three Java systems: the core Java class libraries, Apache
Ant, and Tomcat [34]. We attempted to reproduce the Wheeldon
and Counsell study, and found examples of their metrics that, for
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Figure 1. A distribution that does not appear to obey a power-law.
Open circles are data, solid line is best fit power law distribution.

some applications, did not appear to obey a power-law. One exam-
ple is shown in Figure 1 (which appears again, with full explana-
tion, as Figure 3). This figure shows a plot organised as described
above — it is a log-log plot of frequency of occurrence of different
values of a particular metric. The data in this figure seems tohave
a distinct curve to it. Had we plotted this on a normal scale, we
would see something like a power-law curve, except ‘truncated’ at
the high end. This figure casts some doubt as to whether the distri-
bution shown is a power-law.

Our experience raised two questions. The first is, do the rela-
tionships others have studied really obey a power-law? While the
evidence provided is compelling to the naked eye, there is little
analytical support. In this paper, we will provide such an analysis
to support our claims. The second question is, are the studies rep-
resentative of software in general. This is not a question that can
be answered easily due to the scale involved, however, our study
involves a much larger corpus than other studies, and so provides
better support for our claims.

3. Method
3.1 Gathering the Corpus

The corpus consists of 56 applications whose source code is avail-
able from the web. Many of the applications were chosen because
they have been used in other studies (e.g., [10, 12, 26]), although
comparison to these other studies isn’t possible as versionnum-
bers were not always provided. Also, we weren’t always able to
acquire all applications used in those other studies. Further appli-
cations were then added to the corpus based on software that we
were familiar with (e.g. Azureus, ArgoUML, Eclipse, NetBeans).
Finally we identified popular (widely down-loaded) and actively
developed open-source Java applications from various web-sites,
including: developerWorks1, SourceForge2, Freshmeat3, Java.net4,
Open Source Software In Java5 and The Apache Software Foun-
dation6. Figure 2 gives an indication of the distribution of the size

1http://www-128.ibm.com/developerworks/views/java/
downloads.jsp
2http://sourceforge.net/
3http://freshmeat.net/
4http://community.java.net/projects/
5http://java-source.net/
6http://apache.org/



Figure 2. Distribution of application size in Corpus.

of the applications, measured in terms of the number of top-level
classes. Appendix B gives more details of contents of the corpus
we used.

3.2 Metrics

There are a number of variables that must be taken into account
when carrying out this kind of research. In the interests of allowing
others to reproduce and extend our results, we discuss our choices
in detail.

Any Java program makes some use of the Standard API, and
so there is a question of how much the Standard API is counted
when doing the analysis. For example, when counting the num-
ber of methods per class, should the number of methods in the
java.lang.String class be counted, or should the number of
methods that useString as a parameter or return type be counted?
This type is so heavily used that measuring its use seems likely
to distort the results, and so it would seem reasonable to notcon-
sider it. However there are also less frequently used types,such as
java.util.jar.Pack200, that seem less likely to distort the re-
sults and so maybe should be counted. It is not clear where to draw
the line.

In this analysis we have chosen to consider only the human ed-
itable aspect of an application’s construction, that is, the source
code that is under the control of the application developers. For
this reason, when metrics have been computed, we have considered
only those classes declared in the source files of the application.
Uses of the Standard API (and indeed any other API used but not
constructed for the application) are not considered. In thedescrip-
tions below, the phrase “in the source” will reinforce this choice.
Note that in the case where the application is the JDK/JRE, itis the
Standard API being analysed.

All the metrics have been computed from the byte code repre-
sentation of ‘top-level’ classes, that is, classes that arenot contained
within the body of another class or interface [11, chapter 8]. Rela-
tionships relating to inner classes are merged with their containing
class. To restrict the analysis to only those classes in the applica-
tion’s source code, names discovered in the byte code were filtered
according to package names of packages in the source code. Note
that this means our analysis is limited to those applications that use
a package structure.

We used two methods to carry out the analysis. One method ap-
plied to the byte code directly, using the Byte Code Engineering
Library (BCEL)7. The other appliedjavap, a Java byte code dis-
assembler that outputs representations of classes in a plain text for-

7http://jakarta.apache.org/bcel

mat. From this, we were able to extract information about thestruc-
ture of fields, methods, and opcode instructions, which we used to
build a meta model of each application as a nested collectionof
the basic types ‘package’, ‘class’, ‘method’, and ‘field’. These col-
lections gave us a simple source for calculating metrics we were
interested in. When byte code is generated, some information (par-
ticularly type information) is thrown away. This means someof our
results will not match a similar analysis done directly on the source
code. We discuss this point in more detail when we present themet-
rics.

Many of the metrics we use come from Wheeldon and Coun-
sell, as indicated in the list below, and we use their naming scheme
where possible [34, Figures 8-10]. Due to the difficulty in interpret-
ing their descriptions [34, Figure 1] we give more detailed defini-
tions here, with a more formal treatment in Appendix A. We will
use the abbreviations given below. Where the abbreviation does not
match the Wheeldon and Counsell names, we indicate the phrase
on which they are based.

Our definitions assume that there is only onetop-level[11] type
declaration per source file (.java file). That is, we explicitly rule
out the following situation, where two classes are declaredin the
same file (orcompilation unit).

// A.java containing two class declarations
public class A { ... }
class B { ... }

The main reason for making this assumption is that it simplifies the
definitions. However, compiling the fileA.java above will yield
two files,A.class andB.class. Since there is no requirement that
a class be declared to bepublic, even when it is the only class in
a compilation unit, there is no way to tell from looking atB.class
that it was generated from the same source file asA.class.

In the following description, we occasionally need to distin-
guish between when a name refers to aclassand when it refers
to an interface. When no distinction is necessary, we will say the
name refers to atype.

Number of Methods nM (WC)

For a giventype, the number of all methods of all access types
(that is, public, protected, private, package private) declared
(that is, not inherited) in the type.

Number of Fields nF (WC)

For a given type, the number of fields of all access types
declared in the type.

Number of Constructors nC (WC)

For a givenclass, the number of constructors of all access types
declared in the class.

Note that since the measurements are taken from the byte code,
this is guaranteed to be at least 1. If no constructor is speci-
fied, the Java compiler automatically generates a default public
nullary constructor that is included in the byte code.

SubclassesSP — Subclass as Provider (WC)

For a givenclass, the number of top-level classes that specify
that class in theirextends clause.

Implemented InterfacesIC — Interface as Client (WC)

For a givenclass, the number of top-level interfaces in the
source that are specified in itsimplements clause. For a given
interface, the number of top-level interfaces in the source that
are specified in itsextends clause.



Interface Implementations IP — Interface as Provider (WC)

For a giveninterface, the number of top-level classes in the
source for which that interface appears in theirimplements
clause. Note that when an inner class implements a given inter-
face, it is the top-level class that contains it that is counted.

References to class as a memberAP — Aggregate as Provider
(WC)

For a giventype, the number of top-level types (including itself)
in the source that have a field of that type.

Members of class typeAC — Aggregate as Client (WC)

For a giventype, the size of the set of types of fields for that
type.

References to class as a parameterPP — Parameter as Provider
(WC)

For a giventype, the number of top-level types in the source
that declare a method with a parameter of that type.

Parameter-type class referencesPC — Parameter as Client (WC)

For a giventype, the size of the set of types used as parameters
in methods for that type.

References to class as return typeRP— Return as Provider (WC)

For a giventype, the number of top-level classes in the source
that declare a method with that type as the return type.

Methods returning classesRC — Return as Client (WC)

For a giventype, the size of the set of types used as return types
for methods in that type.

Depends onDO

For a giventype, the number of top-level types in the source
that it needs in order to compile.

The intent is to count all top-level types from the source whose
names appear in the source for the type. There are some rare
situations (when only methods from parent classes are called on
the object) where the types of local variables are not recorded
in the byte code. Our experience is that this happens sufficiently
rarely to have no effect on the results.

Depends On inverseDOinv

For a giventype, the number of type implementations in which
it appears in their source.

Public Method Count PubMC

The number of methods in atype with public access type.

Package SizePkgSize

The number oftypescontained direction in a package (and not
contained in sub-packages).

Method size MS
The number of byte code instructions for a method. Note that
this is not the number of bytes needed to represent the method.

4. Results
We have applied the 17 metrics described in the previous section to
56 applications from our corpus. This has yielded more data than
can be conveniently shown here, so instead we have done some
preliminary analysis based on various assumptions as to what the
distribution of the data is, and present the results of analysis.

4.1 Analysis

The raw data consists of a number for each ‘element’ (method,top-
level class, package) in each application. The first step wasto group

all values by application, count the number of occurrences of each
value and record that in order of value. The primary goal of our
analysis was then to determine whether the resulting distribution
obeyed a power-law.

Some of the distributions derived from our analysis of soft-
ware structure look like straight lines when plotted with logarith-
mic scales on both axes. This is the hallmark of a power-law dis-
tribution, which is interesting because of its ‘scale-free’ properties,
which we will describe below. Any other distribution will not be
exactly a straight line in such a plot.

Not all the plots look exactly straight. Some have a sort of curve
to them. We can respond by either saying that we do not care, as
they arenearlystraight, at least for part of the range, or we can say
that they really are not power-laws at all, and are characterised by
some other distribution. Secondly, even if it ‘really’ is a power-law,
because the data is noisy and because there is a finite sample size
and a finite range of ‘sizes’, a power-law curve won’t exactlyfit the
data, especially at large values of the metric. This also means that
some alternative distributions might be made to fit the data just as
well — we might not be able to discriminate, even for the plotsthat
look pretty straight.

Our approach is to take the data, and do rigorous best-fits to
several different distributions, and see first whether it isreasonable
to fit a power-law, second whether a power-law is more reasonable
than the others, third whether the data can be divided into two or
more groups according to which distribution fits ‘best’.

4.1.1 Power-Law

In general a power-law distribution has the form [21]:

ppowlaw(x) ∝ x−α , (1)

whereα is a positive constant and we assumex to be non-negative.
In our case,x is the value of the metric as defined in the previous
section. Ifα < 1 there must be a finite maximum value ofx, in
order for the distribution to be normalisable. Ifα > 1, normalis-
ability requires that the minimum value ofx not be equal to zero.
For α ≤ 2 the mean of the distribution is infinite (assuming there
is no upper cutoff inx). Whenα > 2 the mean is proportional
to the small-x cutoff. Forα ≤ 3 the variance is also infinite. One
consequence of this fact is that the central limit theorem doesn’t
hold for such distributions, so the mean and variance of a sample
(which will always be finite) cannot be used as estimators forthe
population mean and variance.

A distribution is said to be scale free if [21]:

p(bx) = g(b)p(x) , (2)

whereg does not depend onx. This means the relative probability
of occurrence of ‘events’ of two different sizes (bx andx) depends
only on the ratiob, and not on the ‘scale’x. One of the reasons for
the interest in power-laws is that they possess this scale-free prop-
erty. If we can show that the distributions we see in our analysis of
software obey a power-law, we can say that there is no character-
istic size (where ‘size’ might mean in-degree, for example)to the
components. A scale-free distribution such as a power-law would
contradict the Lego Hypothesis.

While an idealised power-law distribution might be strictly
scale-free, for the distributions we encounter in real systems this
can only be approximately true. The data in our studies only occurs
at discrete, integer values ofx. This imposes a small-size cutoff
on x — the smallest value ofx we measure is1. There is also a
large-size cutoff ofx, as the programs in the corpus are of finite
size. Nevertheless, we are still interested in power-laws.The scale-
free property (2) may still hold over a limited range. We can never
say for certain that a distributionis a power-law – because we are
always dealing with measured data that involve some noise, and



also finite size effects — but we might be able to say that it is ap-
proximately a power-law, well characterised by a power-lawover a
large range, or more likely to be a power-law than something else.

4.1.2 Other Candidates

Given our experience with plots such as that shown in Figure 1,
we are interested in distributions that are close to power-laws, but
resemble the curves we have seen. Two other distributions which
have some credibility as ‘natural’ distributions are:

Log-normal distribution.Power-laws and log-normals look the
same at low values of ‘x’ (i.e., at the high frequency end), but
the tail is ‘fatter’ for a power-law. For continuousx a log-normal
probability density function is defined as:

plognorm(x) =
1

xσ
√

2π
exp

{

−(lnx − µ)2

2σ2

}

, (3)

while for discrete values ofx, the normalisation will be more
complicated, and the distribution is of absolute probability, not
probability density.

Note that our data is not ranked, so it is usually, but not nec-
essarily monotonically decreasing withx: sometimes the smallest
value ofx does not have the highest frequency. Log-normal distri-
butions can reproduce this pattern, but to fit a power-law we must
treat this ‘turnover’ as a statistical anomaly.

Stretched exponential.This is known to occur in natural dis-
tributions [18] (it is the same as the two-parameter Weibulldis-
tribution [32] which is used to model electrical component failure
probabilities):

pstrexp(x) =
c

x0

(

x

x0

)c−1

exp
{

−
(

x

x0

)c}

. (4)

Again, this is the continuousx version of the distribution. The form
is the same in the discrete case, but the normalisation is different. A
stretched exponential looks just like a power-law for smallvalues
of x, but has a sort of exponential behaviour for largex.

Both of these (depending on the choice of parameters) are
slightly curved on a log-log plot, so they are likely to be good
fits to the data we have that is not exactly straight. Neither has
the long tail characteristic of a power-law, so the curves drop off
sharply at the right hand side of a log-log plot.

The distinguishing features of power-laws are therefore ‘straight-
ness’ in the log-log domain, and not dropping off as fast as the
others for large values ofx. This is sometimes called a ‘fat tail’ or
‘long tail’, in contrast with the ‘truncated tail’ evident in Figure 1.
One potential problem is that the data is poorest in this tailregion
— our best statistics will be at the non-tail end.

4.1.3 Weighted Least Squares Fits

Fitting a distribution to data means choosing the parameters of the
distribution so that it is ‘closest’ to the data. One way to dothis is
to minimise the sums of the squares of the differences between the
data values and the distribution values.

Suppose the data takes valuehi at xi, wherei runs from 1 to
k, the number of data points. If the value of the distribution at xi

is given byf(α, β, xi), whereα andβ are the parameters of the
distribution, we want to chooseα andβ so that theresidual:

Q =

k
∑

i=1

[hi − f(α, β, xi)]
2 (5)

is as small as possible.
Weighted least squares fitting is where we use this method

but allow for different uncertainties in different data points by
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Figure 3. AC distribution and fitted curves for Eclipse. Open cir-
cles are data, solid line is best-fit power-law, dashed line is best-fit
log-normal and dotted line is best-fit stretched exponential.
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Figure 4. AP distribution and fitted curves for NetBeans.

introducing a weight to each square in the sum:

Q =

k
∑

i=1

wi[hi − f(α, β, xi)]
2 . (6)

wi should reflect how much uncertainty there is in the value of a
data point. We setwi = 1/hi. Thus

Q =

k
∑

i=1

1

hi

[hi − f(α, β, xi)]
2 . (7)

4.1.4 Uncertainty and Confidence Intervals

If f is the ‘true’ distribution, we would haveE[hi] = f(α, β, xi)
whereE[z] denotes the expected value ofz. Expanding each term
in (7) and neglecting higher terms we find

E[Q] ∼ k − 1 (8)

and
Var[Q] = E[(Q − E[Q])2] ∼ k − 2 . (9)

We have assumedhi is binomially sampled from a distribution with
meanf/N , whereN is the sample size,N =

∑

i
hi.

This gives us a way to estimate how good our fit is. We have
effectively a distribution forQ, based on our assumption that the
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Figure 5. PC distribution and fitted curves for Eclipse.

data follows the candidate distributionf . We can then choose a
Confidence Interval(CI) for Q, and if the value forQ that we
actually find from our fitting procedure actually falls within this
range, we can take this as evidence for our assumption aboutf .

For example, if the distribution is ‘really’ the one we have
fitted, we would expectQ to be within 1.64σ of E[Q], where
σ =

√

Var[Q], 90% of the time.E[Q] ± 1.64σ is called a 90%
confidence interval (CI), and if the minimum value of the residual
Q that wedoget falls within this range, we say that the distribution
fits the data at the 90% CI. (This isnot the same as saying that “we
are 90% sure the distribution is right.”)

4.1.5 Fitting the data

in the current study, the minimisation of equation (7) was done nu-
merically, withf(α, β, xi) replaced by each of the three distribu-
tions (1), (3) and (4) in turn. The raw data is in the form of frequen-
cies occurring at integral values ofx. Note that the normalisation of
these distributions at discrete values differs from the normalisation
of a continuous distribution, and it is important to take this into ac-
count. This normalisation depends of course on the parameter val-
ues. The log normal and stretched exponential distributions each
have two parameters, while the power-law distribution is defined
by a single parameter. A second parameter could be introduced by
allowing the constant of normalisation to vary (in a log-logplot, a
power-law appears as a straight line, with slope given by thesingle
parameter,α, also known as the ‘exponent’. The ‘offset’ of the line
is given by the normalisation constant, so fitting an offset param-
eter is equivalent to fitting the normalisation constant). We found
that the fit was very similar when the fit was done with only a sin-
gle parameter (calculating the normalisation explicitly), returning
very similar exponent values and residuals.

The aim of this exercise is mainly to establish the plausibility of
the different distributions fitting the data, therefore we do not give
uncertainties in the fitted parameters, or speculate on the interpre-
tation of, for example, different fitted power-law exponents.

Table 1 shows a small excerpt from the results of the fit pro-
cess. This shows the estimated parameters for each of the three dis-
tributions using the full datasets:a pow is for power-law,m log
and s log are for log-normal, anda str and b str are for the
stretched exponential. The next three columns show the residuals
for each of the fitted curves,tot cnt is the sum of the frequencies,
and the last column is the number of data points.

Recall that the expected value for the residuals isk − 1 and the
variance isk − 2. This means, for the first row of Table 1 (the AC
metric) the 90% confidence interval would be25 ± 8.03 (1.64 ×
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Figure 6. nF distribution and fitted curves for JRE.

√
24), and so we can conclude that the log-normal distribution fits

the data at the 90% CI, but the other two distributions do not.
Figure 3 shows an example of a plotted dataset with fitted curves

(and is the same as Figure 1). This figure is a log-log plot of the
number of types (y-axis) having a given number of fields (x-axis),
that is, the AC metric, for Eclipse. The best-fit for a power-law is
shown as a solid line, the best fit for the log-normal is shown as
a dashed curve, and the best fit for the stretched exponentialis a
dotted curve. In this case, there is a pronounced curve in thedata,
and in fact the log-normal has a much better fit than the power-law.

Figures 4-15 show a representative sample of fitted curves for
different metrics and different applications. The parameters and
residuals for these curves are shown in Table 2.

4.1.6 Summarising the results

For each metric of each program in the corpus, the fits were done
first to the whole set of available data, then the number of points
was reduced by removing 5, 10, 15, or 20 percent of the data points
(or ‘cuts’) from both ends — that is, using only the ‘middle’ 90, 80,
70, or 60 percent of the non-zero data points.

The residuals for each fit were then compared for the three
distributions. We checked whether each fit was consistent with the
data at 95%, 90%, 80% and 60% confidence intervals, and then
the power-law fit was compared to the best (residual closest to the
expected value) of the other two fits. Each metric for each program
could then be classified at each CI with ‘flags’ as follows:

a Power-law residual is within the CI and both other residuals
outside CI.

b Power-law residual within CI and one or both of the other
residuals within CI.

c Log normal and/or stretched exponential residual within CI, but
power-law residual outside CI.

d None of the residuals within CI.

x No data.

Roughly speaking, this order (ignoringx) representsdecreasing
support for the distribution of the data being a power-law. While b
does not rule out a power-law, the fact that it fits one of the other
candidate distributions indicates more doubt thana indicates. Since
we chose our other candidate distributions to be close to power-law,
a d suggests that not only do we not have a power-law, but we do
not even have something close.



Metric a pow m log s log a str b str Qpow Qlog Qstr tot cnt k

AC 1.72 0.62 0.83 0.64 1.03 163.54 32.63 52.79 668 26
AP 3.03 0.52 8.40 1.94 0.95 12.06 410.05 19.61 326 23
DO 1.11 1.56 0.78 0.28 0.63 1004.79 187.74 575.22 1251 97
DOinv 1.12 -3.20 3.80 0.33 0.54 1045.67 684.07 650.27 1251 634
IC 2.12 -0.23 0.85 1.09 0.90 3.91 8.92 12.72 89 14
IP 3.29 0.72 7.79 2.04 0.97 8.18 240.15 2.88 157 9
MS 0.91 2.38 1.20 0.08 0.57 7304.28 1354.52 5545.82 9859 1854
PC 1.65 0.68 0.85 0.61 1.05 254.13 22.11 61.78 1105 18
PP 1.83 -0.30 1.20 0.69 0.89 8.27 14.55 19.22 127 113
PubMC 1.36 0.95 1.14 0.42 0.98 199.13 70.02 110.66 1005 306
RC 1.55 -1.07 1.90 0.52 0.76 994.56 510.30 426.12 1240 38
RP 2.44 -0.30 0.75 1.51 0.86 25.34 41.39 50.76 263 31
SP 1.41 -2.95 8.80 0.57 0.80 37.45 47.79 36.81 133 94
nC 3.07 -0.06 0.50 1.72 0.99 37.32 13.01 32.34 1153 10
nF 1.40 0.72 1.24 0.45 1.03 80.27 36.37 43.36 668 146
nM 1.21 1.22 1.15 0.33 0.93 292.00 113.29 205.25 1170 320
pkgSize 0.92 2.80 2.85 0.00 1.19 13.73 12.53 13.51 72 128

Table 1. The estimated parameters for the three distributions forarguuml-0.18.1 for the full dataset.

Application Metric a pow m log s log a str b str Qpow Qlog Qstr k

eclipse AC 1.82 0.80 0.82 0.58 1.03 3685.96 44.52 701.82 41
eclipse PC 1.57 1.24 0.79 0.44 0.76 10613.55 214.25 3470.69 118
eclipse IC 1.91 -0.06 1.12 0.70 1.01 65.96 33.83 64.41 117
eclipse MS 1.11 2.53 1.22 0.18 0.38 286047.39 13143.66 91823.29 4172
5jre nF 1.47 0.90 1.29 0.42 1.03 933.12 113.72 229.11 427
jre nM 1.26 1.54 1.25 0.31 0.92 2374.36 218.22 1084.17 257
jre nC 2.74 -0.06 0.70 1.16 1.00 340.55 68.30 243.58 14
jre SP 1.84 -0.03 1.10 0.72 1.01 91.50 46.63 61.28 353
jre IC 1.86 0.10 0.99 0.73 1.02 74.64 37.64 40.27 451
netbeans AP 2.13 -0.15 0.95 0.87 0.96 44.61 105.89 184.63 508
netbeans IP 3.14 -0.02 0.50 1.63 1.00 109.44 11.08 45.33 7
netbeans PP 1.85 -0.25 1.35 0.58 0.93 93.60 204.40 308.58 618
tomcat MS 0.89 2.45 1.25 0.00 0.51 10318.07 4334.30 7020.94 1634
tomcat (5% cut) MS 1.68 1.65 1.75 0.29 0.96 320.63 569.26 285.78 562
openoffice IP 3.74 0.43 9.15 2.26 0.95 133.66 19713.79 21.95 8
compiere RC 1.20 1.20 0.62 0.30 0.37 3113.16 457.41 923.42 18

Table 2. Fitted parameters for applications and metrics shown in plots.
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Figure 7. nM distribution and fitted curves for JRE.

10
0

10
1

10
0

10
1

10
2

10
3

10
4

count (log scale)

fr
eq

ue
nc

y 
(lo

g 
sc

al
e)

Figure 8. nC distribution and fitted curves for JRE.



AC AP DO DOinv IC IP MS PC PP PubMC RC RP SP nC nF nM pkgSize

jeppers b x b d x x b b d b b d x b b b b
fitjava b b c b x x c b b b b b b d b b d
junit b c b b c x d b b b b b c b b b b
jgraph b b b b b d d b b b b b d b b b b
jparse b b c d b d d d b b d b b b b c b
jaga b b d b b x d b b c c b b c b c b
joggplayer b b b b x x a c b b c d d b b b b
fitlibraryforfitnesse c c c b d d d b b b b b b b b b b
javacc b b b d b d d d b b b b b c b b b
lucene d b c d d x d d b b d b b b b b b
rssowl b b c b d d d c b b c b b c b b b
sablecc b b d d b x d d d d d b b d b c b
jag c b b c b x d c b b c b b c b b b
antlr c b c b b b d b b b d b b b b b b
jrefactory b b d d c d d d d b c b b d b b b
hsqldb b b b d b x d d b b c b b a b b b
jedit c b c c b d d c b b c b b a b b b
axion c b c c b d d d b b d b b a b b b
galleon d b b b b c d c b b c b b d c b b
james b b b b b d d c b b d b b d b b b
colt c b d b b d d c b b d b b d b b b
aglets d b c d d b d c b b c b b c b b b
jhotdraw c b c c b b d c b b c b b c c b b
ganttproject c b c d b b d c b b c b b c b c b
jetty c b d c b b d c b b d b b c b b b
ireport b b c d b d d c b b d b b c b b b
jext b b d c b x d b b b b b b d b b b
pmd b b d c b d d d d b c b b c b b b
aoi c b c d b d d c b d d b b c c c b
jung c b c c b c d d b c c b b c b b b
megamek c b c c b d d d b b d b b b b b b
jfreechart c b c c b b d c b b c b b c c b b
poi c b d d b b d d b c d c b d c d b
jmeter d b c c b b d d b c c b b c c c b
glassfish a b c d b b d c b b c b b b b c b
jchempaint c b c c b d d c b d d b b d d d b
jasperreports b b d d c c d c b b d b b c b b b
scala b b c c b d d c b d d b b c b d b
drjava b b d d c c d d d d d b d d b d b
ant c b c c b c d c b c d b b d c c b
sandmark c b c d b b d d b c d b b d c c b
tomcat c b c c b b d d b b d b b d c b b
hibernate c b c d b c d d b c d b c d c c b
sequoiaerp c b d c b d d c b c d b b d c c b
columba c b c c b c d d b c c b b d c c b
argouml c a d d b c d c b c d d b c c c b
compiere c b d d b d d d b d d b c c b d b
derby c b c d b c d c b c d b b d c c b
azureus c b c d b d d d b c c c b c c c c
geronimo d b d c a c d d d d d d b d c d b
jtopen d b d d b d d d b c d b b d c c b
openoffice c b d c b d d c b d c b b d d d b
jboss c b d d b c d d c c d c b d c c d
jre c b d d c d d d b d d b c d c c b
netbeans d a d d b c d d a c d c b d c c c
eclipse c a d d b d d d a c d b c d c c c

Table 3. Quality of fit at Confidence Interval 80% for full dataset: a–good fit only to power-law, b–good fits to more than one curve, c–good
fit only to other curves, d–no good fits. Applications are ordered by increasing size (number of classes).
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Figure 9. SP distribution and fitted curves for JRE.
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Figure 10. IC distribution and fitted curves for JRE.
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Figure 11. IP distribution and fitted curves for NetBeans.
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Figure 12. PP distribution and fitted curves for NetBeans.
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Figure 13. IP distribution and fitted curves for Openoffice.
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Figure 14. IC distribution and fitted curves for Eclipse.
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Figure 15. RC distribution and fitted curves for Compiere.
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Figure 16. MS distribution and fitted curves for Tomcat.

Table 3 shows these results for the 80% CI and using complete
datasets (0% cuts). In this table, the applications are ordered in
increasing size, as measured by number of classes. The four groups
are: applications with fewer than 200 classes, applications with
fewer than 500 classes, applications with fewer than 1000 classes,
and those with more than 1000 classes. To aid comprehension,we
use different typefaces for the entries.

For the moment, we will just note patterns and trends, and
leave interpretation and discussion to the next section. The first
thing to note (other than the sheer size), is that, while all values
are represented,b (multiple distributions have good fits) is quite
prominent. The next point is thata (good fit only to power-law) is
relatively rare.

Looking at individual metrics for the larger applications (last
category), we note that AC, PC, and RC tend to havec and d,
indicating lack of support for them having a power-law distribution,
whereas their opposites, AP, PP, and RP, as well as SP, tend to
havea and b. In almost all cases, however, there are exceptions
for individual applications. IC and IP show the opposite trend, with
IC having mainlya andb and IP having mainlyc andd.

It must be kept in mind that Table 3 represents only 5% of the
results of the curve fitting (which itself represents a summarisation
of the original data) — there are the other CIs and cuts. What the
results show for the other cuts and CIs is what one would expect.
As the cut size increases, meaning the highest and lowest frequency
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Figure 17. MS distribution and fitted curves for Tomcat after a 5%
cut.
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Figure 18. MS distribution and fitted curves for Eclipse.
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Figure 19. MS distribution and fitted curves for Eclipse after a 5%
cut.



data (where most of the variation occurs) is removed, we get better
fits for all three distributions (that is, tending towardb). Similarly,
as the CI is increased, it also becomes easier to get a good fit.

We chose to show the 80% CI as it seemed the most representa-
tive. The 60% CI is not that different from what is shown in Table
3, and all of the differences are what one would expect — mored’s
(no good fits) at 60% than at 80% or tending towardb when going
from 60% to 80%.

To finish this section, we show a few more fitted curves. In this
case, Figures 16-19, we show various MS distributions. These are
interesting as they have many more data points than the others,
being based on methods not types. We also show the effect of
applying a 5% cut.

5. Discussion
5.1 Interpretation

Recall that several of our metrics measure 5 inter-type relationships
— Inheritance (SP), Aggregation (AC and AP), Parameter (PC and
PP), Return (RC and RP), and Interface (IC and IP). The ‘C’ variant
of the metric for a relationship measures the ‘client’ end and ‘P’
the ‘provider’ end. Or, if the code were represented as a directed
graph with types as vertices and the different relationships as edges,
then ‘C’ would be the out-degree and ‘P’ the in-degree for each
relationship of each vertex. We note that out-degree is impacted by
decisions made with respect to the type represented by the vertex,
whereas in-degree is the result of decisions made with respect to
other types.

In the previous section, we noted that AC, PC, and RC distribu-
tions tended not to have good fits to a power-law, but AP, PP, RP,
and SP did. From the comments above, this suggests out-degree
distributions are not power-laws but in-degree are. The distribu-
tions we are seeing for the ‘C’ metrics tend to be truncated atthe
high-value (low-frequency) end. A person changing the codefor
a class is inherently aware of its outward dependencies (e.g. the
number of types it uses or the number of interfaces it implements),
but they are not inherently aware of the number of classes that sub-
type it or call methods on it. They therefore have less control over
the latter than they do over the former. Furthermore, we believe
there is a tendency is to avoid (consciously or subconsciously) ‘big
things’, whether due to difficulty of management (e.g., methods
with many parameters) or simply through training (“Don’t write
big classes!”). This suggests that ‘C’ relationships are more likely
than ‘P’ relationships to have ‘truncated’ curves. We can generalise
this to hypothesise that any metric that measures somethingthat the
programmer is inherently aware of will tend to have a ‘truncated’
curve, that is, not be a power-law.

The nF, nM, and PubMC, distributions are explained by our
hypothesis. They are all aspects of a type description that the
developer is inherently aware of, and all tend not to have support
for power-laws.

Unfortunately our hypothesis does not explain the IC and IP
distributions. We believe that the main cause of the poor fitsfor the
IP distributions is the small datasets (no more than 11 data points,
and see for example Figure 13). This, however, does not explain
IC (e.g., Figures 10 and 14). nC also suffers from having small
datasets, which might explain the results we see.

DO and DOinv are related — DO is the ‘client’ end, and DOinv
the ‘provider’. However in this case there is not a strong distinction
between the two, both beingc and d. The DO relationship is
effectively including all of AC, PC, RC, and IC, as well as types
used for local variables. This would mean that the behaviourof
IC noted above would oppose the behaviour of the others, which
may explain the results. We do know that types used for local

variables (or rather, not used in the published interface) do account
for significant dependency structures [19].

MS, with few exceptions (all small applications), does not fit
any distribution at the 80 CI. However, at 90 CI and above, there are
good fits to all of them. Our hypothesis would suggest this should
be a truncated curve (the size of the method being a decision made
as it is written) but it would seem that there is too much noiseto be
sure.

There is another important point to make. There is quite notice-
able variation on the degree of fit between different applications.
This raises an interesting question: if a given relationship (metric)
does follow a particular distribution, why do we not see thisdistri-
bution for all applications, how is it that this variation exists?

Two answers spring to mind. The first is that different applica-
tions come from different domains, and it is possible that different
domains have different distributions. For example, NetBeans and
Openoffice often have different values (usuallyc vs d or a vs d).
NetBeans is an IDE, whereas Openoffice is an office suite, and in
fact is really several applications wrapped as one. We picked these
two because they were both originally Sun products. That said,
Compiere is ERP and seems somewhat different in nature than,for
example, Openoffice, and yet the distributions seem mainly similar.

Another answer is that there is another thing that is potentially
quite different (and much harder to see) between the applications
— their design. If we are seeing different distributions dueto
different designs, if we could understand how aspects of thedesign
related to the kind of distribution exhibited, there is the potential
for developing aquantitative measurefor design quality. Having
such a measure could have tremendous impact on how software is
developed in the future.

Of course before this can happen, we must understand (presum-
ing such a relationship exists)which distribution corresponds to a
good design and which does not. It is not obvious that, for example,
the power-law distribution is found in ‘good’ designs — it could
just as easily be the opposite! Our results do not provide much ad-
vice either way. This does, however, suggest an extremely interest-
ing avenue for future research.

5.2 Threats to Validity

The most likely threat to the validity of our conclusions is the
corpus we used. It consists entirely of open-source applications
of small to medium size. Some applications originated from com-
mercial organisations, but it is not obvious that the IBM andSun-
donated code is typical of closed-source code. Other studies have
suggested there is little difference between open-source and closed-
source software [19], but we cannot say whether or not this istrue
here. While we cannot claim that our corpus represents a random
sample of Java software, our situation is no different than corpora
used in applied linguistics. Hunston describes a number of ways
corpora may be reasonably used [14]. Our corpus is what she de-
scribes as a reference corpus, which are often used as base-line for
further studies. Thus, a random sample is not necessary in order to
produce an valid result. Our results hold for what is in our corpus:
whether or not they hold for other collections will in itselfbe of
interest.

So we cannot say for sure how representative our corpus is of
Java software in general, or even open-source software in particu-
lar. Nevertheless, the commonality we have seen across all of the
applications we analyse gives us confidence that our conclusions
will hold generally.

A similar issue is that our corpus consists only of Java applica-
tions. It is possible we may see different distributions when looking
at other languages such as C# or C++. While there appears noth-
ing obviously different between Java and languages such as C# or
C++ with respect to our study, they do share the property of having



static type checking, so while we may see no differences for such
languages, we may see differences in languages, such as Smalltalk,
that do not have static type checking.

A property of the software we have studied that we have not ad-
dressed in our study is the manner in which the software was cre-
ated. Our hypothesis is based on the lack of global view a developer
has of the application being developed. Recently, there hasbeen a
significant increase in the use of sophisticated IntegratedDevelop-
ment Environments (IDE) such as Eclipse, and one characteristic
of these IDEs is that they provide a better view of the source code
than has been available in the past. The use of such IDEs may af-
fect the shape of the distributions we have been investigating. We
believe most of the code in our corpus was written before the ad-
vent of such IDEs, but some of the variation we see may be due to
how the code was written. Again Smalltalk may show differences
as it has always had an IDE.

As noted earlier, because we measure from byte code, there is
some information from the source code not available to us. The
circumstances for which this is the case seem to be such that this
will be rare.

6. Related Work
As with many other things, Knuth was one of the first to carry out
empirical studies to understand what code that is actually written
looks like [16]. He presented a static analysis of over 400 FOR-
TRAN programmes and dynamic analysis of about 25 programs.
His main motivation was compiler design, with the concern that
compilers may not optimise for the typical case as no-one knew
what the typical case was. His analysis was at the statement level,
counting such things as the number of occurrences of anIF state-
ment, or the number of executions of a given statement.

Collberg et al. have carried out a study of 1132 Java programs
[4]. These were gathered by searching forjar files with Google
and removing any that were invalid. Their main goal was the devel-
opment of tools for protection of software from piracy, tampering,
and reverse engineering. Like Knuth, they argued that theirtools
could benefit by knowing the typical and extreme values of various
aspects of software. Consequently, their interest is in thelow-level
details of the code with a view toward future tool support or lan-
guage design.

Although their interest is in low-level details, Collberg et al. do
gather a number of similar statistics to ours, such as numberof
classes per package, number of fields per class, number of methods
per class, size of the constant pool, and so on. However comparison
with their results is problematic, as they appear to includeall
classes referred to in an application, whereas we only consider
classes that appear in the application source.

Gil and Maman analysed a corpus of 14 Java applications for the
presence ofmicro patterns, patterns at the code level that represent
low-level design choices [10]. They found that 3 out of 4 classes
matched one of the 27 micro patterns in their catalogue, and just
over half of the classes are catalogued by just 5 patterns. This
is a form of structural analysis, however it focuses on individual
classes, rather than at the application level as we have done.

As already mentioned, Wheeldon and Counsell have performed
a similar analysis to ours. They looked at JDK 1.4.2, Ant 1.5.3, and
Tomcat 4.0. They computed the 12 metrics as noted in section 3
and concluded that what they were seeing were power-laws. There
are some differences between their work and ours. Most notably
is how the metrics were computed. Wheeldon and Counsell used
a custom doclet to extract the relevant information, which limited
them to just the information available from the Javadoc comments.
Also, they were not specific as to what choices they made for the
variables discussed in section 3.

We believe the inconsistency between Wheeldon and Counsell’s
conclusions and ours is due to our more extensive corpus. Ourorig-
inal intention was to reproduce their study and, we thought,results.
The ‘truncated-curve’ distribution only really became apparent in
the repetition across multiple applications. In fact, their figure 2(b)
appears to have something of a curve to it. Our work does, however,
add significant evidence to support their hypothesis that there are
regularities that are common across all non-trivial Java programs.

7. Conclusion
We have studied the hypothesis that the distribution of a number
of metrics on object-oriented software obey a power-law. Wedid
so over a larger sample size than has been considered by past
similar studies, and applied analysis techniques to characterise how
closely each distribution obeyed a power-law. We have presented
our method and analysis in what we hope is sufficient detail to
allow our studies to be reproduced with confidence.

What we found was that while there were distributions for
which there was good evidence for a power-law, there are a number
for which there was little evidence that a power-law exists.This is
in contrast with what earlier studies have suggested. We hypothe-
sise that any metric that measures a relationship that the program-
mer is inherently aware of will tend to have a ‘truncated’ curve, that
is, not be a power-law.

Of particular interest is the fact that some applications fre-
quently differed for some metrics from the other applications, in-
dicating thatsome attribute of the application’s code can affect the
resulting distribution. This finding has potentially tremendous im-
plications. If the distribution does depend on either design quality
or domain, then knowing the distribution of a ‘good’ design would
provide a much sounder foundation for developing software than
currently exists. As open-source applications make extensive use
of version control and bug-tracking systems, we believe thedata
necessary for such studies as correlations between distribution and
prevalence of defects will be possible.

There remains much work to be done. Further studies are
needed to determine how representative our findings are. This
means expanding the studies to other (especially larger) applica-
tions, to applications developed in other environments, such as
closed-source, to other domains (for example, real-time software
is not represented in our corpus at the moment), and to other lan-
guages.

We need to be able to explain why we see some distributions in
some applications for some metrics and not others. For example,
we need models that explain how these distributions arise. In the
case of power-law distributions, there is no theory to explain why
we should see such scale-free structures in software. Two main
hypothetical mechanisms have been put forward [1] to account for
the origin of scale-free network structure in other domains: growth
with preferential attachment [2], in which existing nodes link to
new nodes with probability proportional to the number of links
they already have, and hierarchical growth [33] in which networks
grow in an explicitly self-similar fashion. Additionally arguments
from optimal design have been proposed [30, 28]. It is still far from
clear, however, what (if any) fundamental theory might account for
the ubiquity of the phenomenon in software.

Ultimately, we need to understand the relationship between
large-scale structures found in software, and quality attributes such
as understandability, modifiability, testability, and reusability. We
believe this study is an important step toward that goal.
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Appendix A: Formal definitions for Metrics
This appendix contains more formal definitions of the metrics we compute as computed from the byte code (the.class files). As mentioned
in Section 3, the definitions assume onetop-level[11] type declaration per source file (.java file).

Let S = the set ofsource filesin the application under consideration. Under our assumption, every top-level classC is declared in a
source fileC.java that in turns generates a fileC.class (which is what is used to compute the metrics). We express many of the metrics in
terms of source files because it makes some definitions easierto explain.

We define the following notation:

• For top-level classesA andB, A DEPENDS ONB if B’s name appears in the constant pool ofA.class.

• For a typeT , and fileu, T IS DECLARED IN u is true if and only if there is a declaration forT in u. Note thatu is not necessarilyT.java,
it could be the equivalent ofB in the example above, andT could also be a inner type declaration.

• T = {T |T IS DECLARED IN u, u ∈ S}. Note that this set is not just the top-level types, but also includes inner types.

• METHODS(T ) = the set of methods declared inT (appear in the.class files).

• FIELDS(T ) = the set of fields declared inT (appear in the.class files).

• ISCLASS(T ) is true iff T is a class.

• ISINTERFACE(T ) is true iff T is an interface.

• ISCONSTRUCTOR(c) is true iff c is a constructor.

• For C, D ∈ T where(ISCLASS(C) ∧ ISCLASS(D) ∨ ISINTERFACE(C) ∧ ISINTERFACE(D)) is true,C EXTENDSD if D appears in
C ’s extends clause in its declaration.

• ForC, I ∈ T where(ISCLASS(C) ∧ ISINTERFACE(I)) is true,C IMPLEMENTSI if I appears inC ’s implements clause

The following definitions apply only to top-level type declarations. We will use the conventions thatC andD refer to classes,I refers to
an interface,T refers any type,u refers to a source file,m refers to a method, andf refers to a field.

Number of Methods nM(C) = |METHODS(C)|
Number of Fields nF(C) = |FIELDS(C)|
Number of Constructors nC(C) = |{m : m ∈ METHODS(C), ISCONSTRUCTOR(m)}|
SubclassesSP(C) = |{u : u ∈ S ,∃D, D IS DECLARED IN u, D EXTENDSC}|
Implemented Interfaces IP(I) = |{u : u ∈ S ,∃D, D IS DECLARED IN u, D IMPLEMENTS I}|
Interface Implementations IC(T ) = |{u : u ∈ S ,∃I, ISINTERFACE(I), I IS DECLARED IN u, T IMPLEMENTS I}| if ISCLASS(T )

|{u : u ∈ S ,∃I, ISINTERFACE(I), I IS DECLARED IN u, T EXTENDSI}| if ISINTERFACE(T )

References to class as a memberAP(C) = |{u : u ∈ S ,∃D, D IS DECLARED IN u, C IS FIELDTYPE OFD}|
Members of class typeAC(C) = |{T : T ∈ T , T IS FIELDTYPE OFC}|
References to class as a parameterPP(C) = |{u : u ∈ S ,∃D, D IS DECLARED IN u, C IS PARAMETERTYPE OFD}|
Parameter-type class referencesPC(C) = |{T : T ∈ T ,∃m ∈ METHODS(C), T IS PARAMETERTYPE OFm}|
References to class as return typeRP(C) = |{u : u ∈ S ,∃D, D IS DECLARED IN u,∃m ∈ METHODS(D), C IS RETURNTYPE OFm}|
Methods returning classesRC(C) = |{T : T ∈ T ,∃m ∈ METHODS(C), T IS RETURNTYPE OFm}|
Depends OnDO(C) = |{u : u ∈ S ,∃D, D IS DECLARED IN u, C DEPENDS OND}|
Inverse of Depends OnDOinv(C) = |{u : u ∈ S ,∃D, D IS DECLARED IN u, D DEPENDS ONC}|
Public Method Count PubMC(C) = |{m : m ∈ METHODS(C), ISPUBLIC(m)|
Package SizePkgSize(p) = number of top-level classes inp.

Method size MS(m) = number of byte code instructions inm.

Note that this is not the number of bytes needed to represent the method.



Appendix B: Corpus details
This appendix provides the details of the part of the corpus used in this study. We use the standard naming scheme for each application, which
typically includes some kind of version identification. Thedomain comes from our assessment based on the application documentation. We
identify where we acquired the source code. The column “O/C”refers to whether the application can be considered open or closed source
(all applications used here are open source). The column “V”identifies where we have multiple versions (we only used the latest version in
this study). Finally, any notes that seem relevant are provided.

Application # Domain Origin O/C V Notes
aglets-2.0.2 280 Framework for

developing mo-
bile agents

Sourceforge O N Donated by IBM

ant-1.6.5 700 Java build tool Apache O Y
antlr-2.7.5 209 Parser genera-

tor
antlr.org O N

aoi-2.2 415 3D modelling
and rendering

Sourceforge O N

argouml-0.18.1 1251 UML draw-
ing/critic

tigris.org O Y

axion-1.0-M2 237 SQL database tigris.org O N
azureus-2.3.0.4 1650 P2P filesharing Sourceforge O Y
colt-1.2.0 269 High per-

formance
collections
library

hoschek.home.cern.
ch

O Y

columba-1.0 1180 Email client Sourceforge O N
compiere-251e 1372 ERP and CRM Sourceforge O N
derby-10.1.1.0 1386 SQL database Apache Jakarta O N Donated by IBM
drjava-
20050814

668 IDE Sourceforge O N

eclipse-SDK-
3.1-win32

11413 IDE www.eclipse.org O Y Donated by IBM

fitjava-1.1 37 Automated
testing

fit.c2.com O N

fitlibraryforfitnesse-
20050923

124 Automated
testing

Sourceforge O N

galleon-1.8.0 243 TiVo media
server

Sourceforge O N

ganttproject-
1.11.1

310 Gantt chart
drawing

Sourceforge O N

geronimo-1.0-
M5

1719 J2EE server Apache O N

glassfish-9.0-
b15

582 J2EE server dev.java.net O N

hibernate-3.1-
rc2

902 Persistence ob-
ject mapper

Sourceforge O N

hsqldb-1.8.0.2 217 SQL database Sourceforge O N
ireport-0.5.2 347 Visual report

design for
JasperReports

Sourceforge O N

jag-5.0.1 208 J2EE applica-
tion generator

Sourceforge O N

jaga-1.0.b 100 API for genetic
algorithms

jaga.org O N

james-2.2.0 259 Enterprise mail
server

Apache O N

jasperreports-
1.1.0

633 Reporting tool Sourceforge O N

javacc-3.2 125 Parser genera-
tor

dev.java.net O N

jboss-4.0.3-
SP1

4143 J2EE server Sourceforge O N

Continued on next page



Table 4 – continued from previous page
Application #Classes Domain Origin O/C V Notes
jchempaint-
2.0.12

612 Editor for
2D molecular
structures

Sourceforge O N

jedit-4.2 234 Text editor Sourceforge O N
jeppers-
20050607

20 Spreadsheet ed-
itor

Sourceforge O N

jetty-5.1.8 327 HTTP
Server/servlet
container

Sourceforge O N

jext-5.0 353 IDE Sourceforge O N
jfreechart-
1.0.0-rc1

469 Chart drawing Sourceforge O N

jgraph-5.7.4.3 50 Graph drawing Sourceforge O Y
jhotdraw-6.0.1 300 Graph drawing Sourceforge O Y
jmeter-2.1.1 560 Java perfor-

mance testing
Apache O Y

joggplayer-
1.1.4s

114 MP3 player joggplayer.
webarts.bc.ca

O N

jparse-0.96 69 Java compiler
front-end

www.ittc.ku.edu/
JParse

O N

jre-1.4.2.04 7257 JRE sun.com O N
jrefactory-
2.9.19

211 Refactoring
tool for Java

Sourceforge O N

jtopen-4.9 2857 Java toolbox
for iSeries and
AS/400 servers

Sourceforge O N Donated by IBM

jung-1.7.1 454 Graph drawing Sourceforge O Y
junit-3.8.1 48 Unit testing

framework
Sourceforge O N

lucene-1.4.3 170 Text indexing Apache O Y
megamek-
2005.10.11

455 Game Sourceforge O N

netbeans-4.1 8406 IDE netbeans.org O Y Donated By Sun
openoffice-
2.0.0

2925 Office suite openoffice.org O N Donated By Sun

pmd-3.3 375 Java code anal-
yser

Sourceforge O N

poi-2.5.1 480 API to access
Microsoft for-
mat files

Apache O N

rssowl-1.2 189 RSS Reader Sourceforge O N
sablecc-3.1 199 Compiler/

Interpreter
generating
framework

Sourceforge O N

sandmark-3.4 837 Software
watermark-
ing/security

www.cs.arizona.
edu/sandmark

O N

scala-1.4.0.3 654 Multi-
paradigm
programming
language

scala.epfl.ch O N

sequoiaerp-
0.8.2-RC1-all-
platforms

936 ERP and CRM Sourceforge O N

tomcat-5.0.28 892 Servlet con-
tainer

Apache O N


