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Abstract

Large amounts of Java software have been written since the la
guage’s escape into unsuspecting software ecology moneté¢ina
years ago. Surprisingly little is known about the structofdava
programs in the wild: about the way methods are grouped into
classes and then into packages, the way packages relatehto ea
other, or the way inheritance and composition are used tthese
programs together. We present the results of the first ithdgtpdy

of the structure of Java programs. We have collected a nuofber
Java programs and measured their key structural attridivebkave
found evidence that some relationships follpawer-laws while
others do not. We have also observed variations that seatedel

to some characteristic of the application itself. This gtpbvides
important information for researchers who can investigate and
why the structural relationships we find may have originabatht
they portend, and how they can be managed.

Categories and Subject Descriptors D.2.8 [SOFTWARE ENGI-
NEERING: Metrics—Product metrics; D.1.FPROGRAMMING
TECHNIQUES$: Object-oriented Programming

General Terms Design, Measurement

Keywords Power-law distributions, object-oriented design, Java

1. Introduction

Much of software engineering has focused on how softwarécou
or should be written, but there is little understanding oawdictual
software really looks like. We have development methodekg
design principles and heuristics, but even for a well-defiaighset
of software, such as that written in the Java programminguage,
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the methodologies are actually working. We are left witlcwaiar
arguments of the form “The methodologies are good becawse th
software is good, and the software is good because the nwthod
gies are good.” Understanding the shape of existing soéisga
crucial first step to understanding what good software |disdes

Just as hiologists classify species in terms of shape amctste
and ecologists study the links and interactions betweem thee
have been collecting a body of software and analysing itgatis
form. We remove semantics and focus on the network of connec-
tions where information flows between components. Justals bi
ogists (and other scientists) seek to understand the dhartics
of the population under study, so too would we like to knowhsuc
basic features as the distributions of the software strastwe find.

Of specific interest are recent claims that many importdat re
tionships between software artifacts follow a ‘power-lalistribu-
tion (e.g. [34]). If this were true, it would have importantplica-
tions on the kinds of empirical studies that are possibles Bgue
is the fact that a power-law distribution may not have a fimtsan
and variance. If this is the case, the central limit theoremsdot
apply, and so the sample mean and variance (which will akbays
finite, because the sample size is finite) cannot be usediamésts
of the population mean and variance. This would mean thatngas
any conclusions on sample means and variances withoutdaHy
derstanding the distribution would be questionable at best

In this paper, we extend past similar studies in two waysstFir
we examine a much larger sample than previous studies. e hav
analysed a corpus of Java software consisting of 56 apiglitat
of varying sizes, and measured a number of different atethu
of these applications. Second, we consider distributidherahan
those following a power-law. We find evidence that suppdesr s
by others of the existence of power-law relationships, havave

we cannot answer simple questions such as “How many methodsalso find evidence that some distributions miat appear to obey

does the typical class have?” or even “Is there such a thirg as
‘typical class'?”

What we would really like to know about software is “Is it
good?” that is, does it have quality attributes such as higHifia
ability, high reusability, high testability, or low maimtence costs.
We believe current methodologies lead to good softwarewitht
out knowing what good software looks like, we cannot knowt tha
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a power-law. Furthermore, whether or not a relationshifofcd a
power-law appears to depend on an identifiable charadtesighe
relationship, namely, whether or not the programmer isrieity
aware of the size of the relationship at the time the softigloeing
written. We also see variations between applications. Weidpte
that this may be due to some characteristic in the applicatio
design that is, some property of the design is reflected in the
distribution of some measurements.

The rest of the paper is organised as follows. In Section 2, we
discuss the motivation for our study. Section 3 describedetail
the salient features of our study, namely the corpus we ude an
the metrics we gather. In Section 4 we give the analysis of our
results, and in Section 5 we give our interpretation of thislgsis.
Section 6 discusses the most relevant related work, andweeogr
conclusions in Section 7.



2. Motivation and Background

Software systems are now large, complex, and ubiquitowsever
surprisingly little is known about the internal structuispracti- 10°t
cal software systems. A large amount of research has sthdigd

software ‘ought’ to be written, how it ‘should’ be structdrteMany )
rules, methodologies, notations, patterns and standardfesign- §

ing and programming such large systems [9, 17, 24] have been g 102k
produced. Psychological models have been constructec qfrth <
gramming process [6, 33]. Quantitative models of softwareeh 2
been designed to predict the effort required to produce &isys “g’
measure the development rates of software over time (psones g 10t

rics) or measure the volume of software in a system and itétgua
(product metrics) — see e.g. [7, 15, 27]. But we know veryeitt
about the large-scale structures of software that existedrreal
world.

With the methodologies, notations, and other advice that ha 10° 5

1
been developed, we should be able to say something aboufthe s 10 10
ware that results such advice is followedHowever the conditional . — count (log scale)
is key — until recently there was very little work done in dietén- Figure 1. A distribution that does not appear to obey a power-law.
ing even if the advice that has been offered is actually bakert ~ Open circles are data, solid line is best it power law distitn.

There is some evidence that common advice is not being fetiow
For example, a number of people have advised against qgeatin
cles of dependencies in software, but recent evidence sttt
not only do programmers regularly introduce cycles, buy tue
often very large [20].

One consequence of much of the advice offered with respect to
object-oriented design is what we call thego Hypothesjswvhich
says that software can be put together like Lego, out of lbts o
small interchangeable components [26, 29]. Software coctstd
according to this theory should show certain kinds of stmect
components should be small and should only refer to a smait nu
ber of closely related components.

In fact, we don’t know whether or not this is true, because we
lack models describing the kinds of large structures thiat éxreal
programs. There are no quantitative, testable, predithtieeries
about the internal structures of large scale systems, orthoge
structures evolve as programs are constructed [8, 13].8/deiign
patterns, rules, metrics and so on, can give guidance riegard
developing program structure, they cannot predict the arsto
questions about the large-scale structure that will resulth as:
in a program of a given size, how many classes or methods will
exist? How large will they be? How many instances of a eacscla 3. Method
will be created? How many other objects will refer to any give 3.1 Gathering the Corpus

Egjzgﬁé Vﬁ%g&?gnﬁnﬁ;vezzrtoetgfii I;:)r}(tjsa?(fa q;z(s:ttlo:”s in aoder t The corpus consists of 56 applications whose source codaiis a
u wlarg ware | uallyntsgm, able from the web. Many of the applications were chosen tsrau

built, and maintained in practise. ; :
! . . . they have been used in other studies (e.g., [10, 12, 26foudth
Recently there has been an interest in looking dower-law comparison to these other studies isn’t possible as versiom-

;zlr?égjs?\?h'gfs;g ;ogm%rfeélA@qStélbgtlzr:_g thfe.tr‘.:mi);roﬁtgr;l bers were not always provided. Also, we weren't always able t
k v 12 IS a pow W ITILIS proport acquire all applications used in those other studies. Eudppli-

t(')b]? raised t? some Fowerk,?hcommotn methgd #Sed }? dettect POS- " cations were then added to the corpus based on software ¢hat w

SIble power-laws IS to rank the event sizes by how often WO_ were familiar with (e.g. Azureus, ArgoUML, Eclipse, NetBe.

and then plotV vs. the rgnk on Iogarlthmlc s.cales. A distribution Finally we identified popular (widely down-loaded) and wely

fo”%\’t‘”gg a p?wer-IaV\t/ will appear a; aline W'Fg SIOE% th static [3 developed open-source Java applications from varioussiteb;
udies of computer programs have considered both stalic | including: developerWorks SourceForge Freshmedt Java.né,

31, 34] and dynamic [23, 25, 26] relationships, in differéarms
of software as diverse as LISP, visual languages, the Lieunek, Op_en SOF”CG Sofl_ware In_ Ja?vand The Apa(_:he_ Sqﬁware FO“U'
datiorf. Figure 2 gives an indication of the distribution of the size

and Java applets [3, 22, 23, 25, 26, 28, 31], and the desigavaf J
programs [5, 30, 31]. The conclusions from these studiebas t
power-laws appear to be quite common.

Our work follows from Wheeldon and Counsell, who examined
a number of inter-class relationships in Java source caategly 3
Inheritance, Interface, Aggregation, Parameter Type, Retlirn http://freshmeat.net/
Type in three Java systems: the core Java class libraries;hep “http://community.java.net/projects/
Ant, and Tomcat [34]. We attempted to reproduce the Wheeldon Shttp://java-source.net/
and Counsell study, and found examples of their metrics fhat Shttp://apache.org/

some applications, did not appear to obey a power-law. Oamex
ple is shown in Figure 1 (which appears again, with full erpla
tion, as Figure 3). This figure shows a plot organised as ibestr
above — it is a log-log plot of frequency of occurrence of eliéint
values of a particular metric. The data in this figure seentmat@

a distinct curve to it. Had we plotted this on a normal scale, w
would see something like a power-law curve, except ‘trusdaht
the high end. This figure casts some doubt as to whether thre dis
bution shown is a power-law.

Our experience raised two questions. The first is, do the rela
tionships others have studied really obey a power-law? &\thié
evidence provided is compelling to the naked eye, therettls li
analytical support. In this paper, we will provide such aalgsis
to support our claims. The second question is, are the stueje
resentative of software in general. This is not a questian ¢an
be answered easily due to the scale involved, however, ady st
involves a much larger corpus than other studies, and sadasv
better support for our claims.

Inttp://www-128.ibm.com/developerworks/views/java/
downloads. jsp

2http://sourceforge.net/
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Figure 2. Distribution of application size in Corpus.

of the applications, measured in terms of the number of ¢optl
classes. Appendix B gives more details of contents of thpusor
we used.

3.2 Metrics

There are a number of variables that must be taken into atcoun
when carrying out this kind of research. In the interestdlofang
others to reproduce and extend our results, we discuss oigesh

in detail.

Any Java program makes some use of the Standard API, and
so there is a question of how much the Standard API is counted
when doing the analysis. For example, when counting the num-
ber of methods per class, should the number of methods in the
java.lang.String class be counted, or should the number of
methods that usgtring as a parameter or return type be counted?
This type is so heavily used that measuring its use seemly like
to distort the results, and so it would seem reasonable tacamt
sider it. However there are also less frequently used tyqped) as
java.util.jar.Pack200, that seem less likely to distort the re-
sults and so maybe should be counted. It is not clear whenato d
the line.

In this analysis we have chosen to consider only the human ed-
itable aspect of an application’s construction, that ig, source
code that is under the control of the application develapecs
this reason, when metrics have been computed, we have eoadid
only those classes declared in the source files of the afiplica
Uses of the Standard API (and indeed any other API used but not
constructed for the application) are not considered. Indéwerip-
tions below, the phrase “in the source” will reinforce thimice.
Note that in the case where the application is the JDK/JR&flite
Standard API being analysed.

All the metrics have been computed from the byte code repre-
sentation of ‘top-level’ classes, that is, classes thanhateontained
within the body of another class or interface [11, chapteRg&]la-
tionships relating to inner classes are merged with theitaining
class. To restrict the analysis to only those classes in ihéca-
tion’s source code, names discovered in the byte code wereetil
according to package names of packages in the source coti. No
that this means our analysis is limited to those applicattbat use
a package structure.

We used two methods to carry out the analysis. One method ap-
plied to the byte code directly, using the Byte Code Engiinger
Library (BCELY. The other appliedavap, a Java byte code dis-
assembler that outputs representations of classes inratpiaifor-

"http://jakarta.apache.org/bcel

mat. From this, we were able to extract information abousthec-
ture of fields, methods, and opcode instructions, which vesl ts
build a meta model of each application as a nested collection
the basic types ‘package’, ‘class’, ‘method’, and ‘fieldhése col-
lections gave us a simple source for calculating metrics weew
interested in. When byte code is generated, some inform§iar-
ticularly type information) is thrown away. This means savheur
results will not match a similar analysis done directly oa slource
code. We discuss this point in more detail when we presemhtte
rics.

Many of the metrics we use come from Wheeldon and Coun-
sell, as indicated in the list below, and we use their namatgse
where possible [34, Figures 8-10]. Due to the difficulty ireipret-
ing their descriptions [34, Figure 1] we give more detailedird-
tions here, with a more formal treatment in Appendix A. Wel wil
use the abbreviations given below. Where the abbreviaties dot
match the Wheeldon and Counsell names, we indicate theghras
on which they are based.

Our definitions assume that there is only ¢op-level[11] type
declaration per source file {ava file). That is, we explicitly rule
out the following situation, where two classes are declametthe
same file (orcompilation unij.

// A.java containing two class declarations
public class A { ... }
class B{ ... }

The main reason for making this assumption is that it singdithe
definitions. However, compiling the filg. java above will yield
two files,A. class andB. class. Since there is no requirement that
a class be declared to pablic, even when it is the only class in
a compilation unit, there is no way to tell from lookingBatclass
that it was generated from the same source fil®.ad ass.

In the following description, we occasionally need to disti
guish between when a name refers tolassand when it refers
to aninterface. When no distinction is necessary, we will say the
name refers to type.

Number of Methods nM (WC)

For a giventype, the number of all methods of all access types
(that is, public, protected, private, package private)lated
(that is, not inherited) in the type.

Number of Fields nF (WC)

For a giventype, the number of fields of all access types
declared in the type.

Number of Constructors nC (WC)
For a giverclass the number of constructors of all access types
declared in the class.

Note that since the measurements are taken from the byte code
this is guaranteed to be at least 1. If no constructor is speci
fied, the Java compiler automatically generates a defabltqu
nullary constructor that is included in the byte code.

SubclassessP — Subclass as Provider (WC)

For a givenclass the number of top-level classes that specify
that class in theiextends clause.

Implemented Interfaces IC — Interface as Client (WC)

For a givenclass the number of top-level interfaces in the
source that are specified in itsplements clause. For a given
interface, the number of top-level interfaces in the source that
are specified in itextends clause.



Interface Implementations IP — Interface as Provider (WC)

For a giveninterface, the number of top-level classes in the
source for which that interface appears in thiplements
clause. Note that when an inner class implements a givenr: inte
face, itis the top-level class that contains it that is cednt

References to class as a membet? — Aggregate as Provider
(We)

For a givertype, the number of top-level types (including itself)
in the source that have a field of that type.

Members of class typeAC — Aggregate as Client (WC)
For a giventype, the size of the set of types of fields for that
type.

References to class as a paramet@P — Parameter as Provider
(e
For a giventype, the number of top-level types in the source
that declare a method with a parameter of that type.

Parameter-type class reference®C — Parameter as Client (WC)

For a giventype, the size of the set of types used as parameters
in methods for that type.

References to class as return typ&P — Return as Provider (WC)

For a giventype, the number of top-level classes in the source
that declare a method with that type as the return type.

Methods returning classeskRC — Return as Client (WC)

For a givertype, the size of the set of types used as return types
for methods in that type.

Depends onD0

For a giventype, the number of top-level types in the source
that it needs in order to compile.

The intent is to count all top-level types from the source sého

all values by application, count the number of occurrende=aoh
value and record that in order of value. The primary goal af ou
analysis was then to determine whether the resulting bigtan
obeyed a power-law.

Some of the distributions derived from our analysis of soft-
ware structure look like straight lines when plotted witlgdoith-
mic scales on both axes. This is the hallmark of a power-law di
tribution, which is interesting because of its ‘scale-fig®perties,
which we will describe below. Any other distribution will hbe
exactly a straight line in such a plot.

Not all the plots look exactly straight. Some have a sort ofeu
to them. We can respond by either saying that we do not care, as
they arenearlystraight, at least for part of the range, or we can say
that they really are not power-laws at all, and are charse@hy
some other distribution. Secondly, even if it ‘really’ is ayer-law,
because the data is noisy and because there is a finite samgple s
and a finite range of ‘sizes’, a power-law curve won't exafitithe
data, especially at large values of the metric. This alsons&aat
some alternative distributions might be made to fit the dasags
well — we might not be able to discriminate, even for the pthest
look pretty straight.

Our approach is to take the data, and do rigorous best-fits to
several different distributions, and see first whetheriie@sonable
to fit a power-law, second whether a power-law is more reddena
than the others, third whether the data can be divided intodw
more groups according to which distribution fits ‘best’.

4.1.1 Power-Law
In general a power-law distribution has the form [21]:

Prowtaw (2) < 27,

1)

whereq is a positive constant and we assumi® be non-negative.
In our casey is the value of the metric as defined in the previous
section. Ifa. < 1 there must be a finite maximum value of in

names appear in the source for the type. There are some rareorder for the distribution to be normalisable.df > 1, normalis-

situations (when only methods from parent classes aredoatie
the object) where the types of local variables are not resbrd
in the byte code. Our experience is that this happens surfigie
rarely to have no effect on the results.

Depends On inverseD0inv

For a giventype, the number of type implementations in which
it appears in their source.

Public Method Count PubMC
The number of methods intgpe with public access type.
Package SizePkgSize

The number ofypescontained direction in a package (and not
contained in sub-packages).

Method size MS

The number of byte code instructions for a method. Note that
this is not the number of bytes needed to represent the method

4, Results

We have applied the 17 metrics described in the previougosetct

56 applications from our corpus. This has yielded more dza t
can be conveniently shown here, so instead we have done som
preliminary analysis based on various assumptions as to tivha
distribution of the data is, and present the results of aigly

4.1 Analysis

The raw data consists of a number for each ‘element’ (metiopd,
level class, package) in each application. The first stegovgoup

ability requires that the minimum value afnot be equal to zero.
Fora < 2 the mean of the distribution is infinite (assuming there
is no upper cutoff inz). Whena > 2 the mean is proportional
to the smallz cutoff. Fora < 3 the variance is also infinite. One
consequence of this fact is that the central limit theoremsdt
hold for such distributions, so the mean and variance of gkam
(which will always be finite) cannot be used as estimatorsHer
population mean and variance.

A distribution is said to be scale free if [21]:

p(bx) = g(b)p(z), )

whereg does not depend an This means the relative probability
of occurrence of ‘events’ of two different sizdsc(andx) depends
only on the ratid, and not on the ‘scalet. One of the reasons for
the interest in power-laws is that they possess this scategrop-
erty. If we can show that the distributions we see in our asialgf
software obey a power-law, we can say that there is no claract
istic size (where ‘size’ might mean in-degree, for exampiephe
components. A scale-free distribution such as a power-lawidv
contradict the Lego Hypothesis.

While an idealised power-law distribution might be stgctl
scale-free, for the distributions we encounter in realeyst this
can only be approximately true. The data in our studies ootyirs

&t discrete, integer values of This imposes a small-size cutoff

on z — the smallest value of we measure i4. There is also a
large-size cutoff ofr, as the programs in the corpus are of finite
size. Nevertheless, we are still interested in power-ahs. scale-
free property (2) may still hold over a limited range. We camar
say for certain that a distributias a power-law — because we are
always dealing with measured data that involve some nois#, a



also finite size effects — but we might be able to say that ipis a
proximately a power-law, well characterised by a power-taer a
large range, or more likely to be a power-law than somethisg. e

4.1.2 Other Candidates

Given our experience with plots such as that shown in Figure 1
we are interested in distributions that are close to poass] but
resemble the curves we have seen. Two other distributionshwh
have some credibility as ‘natural’ distributions are:

Log-normal distributionPower-laws and log-normals look the
same at low values ofz’ (i.e., at the high frequency end), but
the tail is ‘fatter’ for a power-law. For continuousa log-normal
probability density function is defined as:

frequency (log scale)

1 —(Inz — u)?
Plognorm () = 5 exp{ ( 252 4) } ) (3)
rovem count (log scale)
while for discrete values of, the normalisation will be more Figure 3. AC distribution and fitted curves for Eclipse. Open cir-
complicated, and the distribution is of absolute probabilhot cles are data, solid line is best-fit power-law, dashed Erigeist-fit
probability density. log-normal and dotted line is best-fit stretched exponéntia

Note that our data is not ranked, so it is usually, but not nec-
essarily monotonically decreasing with sometimes the smallest
value ofz does not have the highest frequency. Log-normal distri-
butions can reproduce this pattern, but to fit a power-law wetm 10%P
treat this ‘turnover’ as a statistical anomaly.

Stretched exponentialhis is known to occur in natural dis-

tributions [18] (it is the same as the two-parameter Weibligh %
tribution [32] which is used to model electrical componeaiture @
probabilities): 8 107y 3
c [z )\ ! z \° ?
pareen@) = = (£) e {- (=)} @ 5
To \Zo Zo =
E 10°F |

Again, this is the continuous version of the distribution. The form
is the same in the discrete case, but the normalisationfeselift. A
stretched exponential looks just like a power-law for smmalles
of z, but has a sort of exponential behaviour for lagge .
Both of these (depending on the choice of parameters) are 100 X v
slightly curved on a log-log plot, so they are likely to be doo 10 10 10
fits to the data we have that is not exactly straight. Neithees h count (log scale)

the long tail characteristic of a power-law, so the curvespdff Figure 4. AP distribution and fitted curves for NetBeans.
sharply at the right hand side of a log-log plot.
The distinguishing features of power-laws are therefdraight- introducing a weight to each square in the sum:
ness’ in the log-log domain, and not dropping off as fast &s th
others for large values af. This is sometimes called a ‘fat tail’ or b 5
‘long tail’, in contrast with the ‘truncated tail’ evidentiFigure 1. Z wi[hi — f(a, B, 2i)]” . (6)

One potential problem is that the data is poorest in thisrégjion

— our best statistics will be at the non-tail end. w; should reflect how much uncertainty there is in the value of a
data point. We set; = 1/h;. Thus

4.1.3 Weighted Least Squares Fits

Fitting a distribution to data means choosing the pararaetethe Q= Z [h — fla, B, z:)]? . @)
distribution so that it is ‘closest’ to the data. One way tothis is
to minimise the sums of the squares of the differences bettee . )
data values and the distribution values. 4.1.4 Uncertainty and Confidence Intervals
Suppose the data takes valbgat z;, where: runs from 1 to If fis the ‘true’ distribution, we would hav&|h;] = f(«, 8, :)

k, the number of data points. If the value of the distributibn:a where E[z] denotes the expected valuezofExpanding each term
is given by f(«, 3, x:), wherea and 3 are the parameters of the  in (7) and neglecting higher terms we find

distribution, we want to choose and3 so that theeesidual

EQ]~k—1 ®)
and
=) [hi— )2 5
Q=D [hi — f(e,820) ) VarlQ] = B[(Q — B[Q))*]| ~ k —2. ©
=t We have assumeéd is binomially sampled from a distribution with
is as small as possible. meanf /N, whereN is the sample sizdy = ZZ hi.

Weighted least squares fitting is where we use this method  This gives us a way to estimate how good our fit is. We have
but allow for different uncertainties in different data pts by effectively a distribution forQ, based on our assumption that the
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Figure 5. PC distribution and fitted curves for Eclipse.

data follows the candidate distributioh We can then choose a
Confidence Interva(Cl) for @, and if the value forQ that we
actually find from our fitting procedure actually falls withthis
range, we can take this as evidence for our assumption ghout
For example, if the distribution is ‘really’ the one we have
fitted, we would expect) to be within 1.640 of E[Q], where

o = 4/VarQ], 90% of the time E[Q] £ 1.640 is called a 90%
confidence interval (Cl), and if the minimum value of the desil

Q that wedo get falls within this range, we say that the distribution
fits the data at the 90% CI. (Thisi®t the same as saying that “we
are 90% sure the distribution is right.”)

4.1.5 Fitting the data

in the current study, the minimisation of equation (7) wasalou-
merically, with f(«, 3, ;) replaced by each of the three distribu-
tions (1), (3) and (4) in turn. The raw data is in the form ofjien-
cies occurring at integral values of Note that the normalisation of
these distributions at discrete values differs from thenadisation

of a continuous distribution, and it is important to takestinito ac-
count. This normalisation depends of course on the paramaite
ues. The log normal and stretched exponential distribatigech
have two parameters, while the power-law distribution ifinzel
by a single parameter. A second parameter could be introduge
allowing the constant of normalisation to vary (in a log-lugt, a
power-law appears as a straight line, with slope given byihgle
parameterq, also known as the ‘exponent’. The ‘offset’ of the line
is given by the normalisation constant, so fitting an offssatm-
eter is equivalent to fitting the normalisation constanty fdund
that the fit was very similar when the fit was done with only a sin
gle parameter (calculating the normalisation explicjthgturning
very similar exponent values and residuals.

The aim of this exercise is mainly to establish the plauiyodlf
the different distributions fitting the data, therefore veermt give
uncertainties in the fitted parameters, or speculate omtieepire-
tation of, for example, different fitted power-law exporgent

Table 1 shows a small excerpt from the results of the fit pro-
cess. This shows the estimated parameters for each of dedts-
tributions using the full datasetsa:pow is for power-law,m_log
ands_log are for log-normal, ané_str andb_str are for the
stretched exponential. The next three columns show thdualsi
for each of the fitted curvespt_cnt is the sum of the frequencies,
and the last column is the number of data points.

Recall that the expected value for the residuals is 1 and the
variance isk — 2. This means, for the first row of Table 1 (the AC
metric) the 90% confidence interval would B& + 8.03 (1.64 x

Figure 6. nF distribution and fitted curves for JRE.

\/ﬂ), and so we can conclude that the log-normal distribution fits
the data at the 90% ClI, but the other two distributions do not.

Figure 3 shows an example of a plotted dataset with fittedssurv
(and is the same as Figure 1). This figure is a log-log plot ef th
number of typesy-axis) having a given number of fields-@xis),
that is, the AC metric, for Eclipse. The best-fit for a powalis
shown as a solid line, the best fit for the log-normal is shown a
a dashed curve, and the best fit for the stretched exponéntal
dotted curve. In this case, there is a pronounced curve idate
and in fact the log-normal has a much better fit than the pdaver-

Figures 4-15 show a representative sample of fitted curves fo
different metrics and different applications. The pararetand
residuals for these curves are shown in Table 2.

4.1.6 Summarising the results

For each metric of each program in the corpus, the fits were don
first to the whole set of available data, then the number afitgoi
was reduced by removing 5, 10, 15, or 20 percent of the datasoi
(or ‘cuts’) from both ends — that is, using only the ‘middl€,30,

70, or 60 percent of the non-zero data points.

The residuals for each fit were then compared for the three
distributions. We checked whether each fit was consistetfit thve
data at 95%, 90%, 80% and 60% confidence intervals, and then
the power-law fit was compared to the best (residual closetbtet
expected value) of the other two fits. Each metric for eaclynamm
could then be classified at each Cl with ‘flags’ as follows:

a Power-law residual is within the Cl and both other residuals
outside ClI.

b Power-law residual within CI and one or both of the other
residuals within CI.

¢ Log normal and/or stretched exponential residual withinbQt
power-law residual outside CI.

d None of the residuals within CI.
x No data.

Roughly speaking, this order (ignoring representslecreasing
support for the distribution of the data being a power-lavinil/b
does not rule out a power-law, the fact that it fits one of thept
candidate distributions indicates more doubt thamdicates. Since
we chose our other candidate distributions to be close t@ptaw,
ad suggests that not only do we not have a power-law, but we do
not even have something close.



[ Metric || apow mlog slog asir b_sir Qpow Qlog Qstr tot_cnt k]
AC 1.72 0.62 083 064 1.03 163.54 32.63 52.79 668 26
AP 3.03 052 840 194 0.95 12.06 410.05 19.61 326 23
DO 1.11 156 0.78 0.28 0.63 1004.79 187.74 575.22 1251 97
DOinv 1.12 -3.20 380 0.33 054 1045.67 684.07 650.27 1251 634
IC 212 -023 085 1.09 0.90 3.91 8.92 12.72 89 14
IP 3.29 072 7.79 204 0.97 8.18 240.15 2.88 157 9
MS 0.91 238 1.20 0.08 0.57 7304.28 135452 5545.82 9859 1854
PC 1.65 0.68 085 061 1.05 254.13 22.11 61.78 1105 18
PP 183 -0.30 120 0.69 0.89 8.27 14.55 19.22 127 113
PubMC 1.36 095 114 0.42 0.98 199.13 70.02 110.66 1005 B06
RC 155 -1.07 190 052 0.76 994.56 510.30 426.12 1240 38
RP 244 -030 075 151 0.86 25.34 41.39 50.76 263 31
SP 141 -295 880 057 0.80 37.45 47.79 36.81 133 94
nC 3.07 -006 050 172 0.99 37.32 13.01 32.34 1153 10
nF 1.40 0.72 124 045 1.03 80.27 36.37 43.36 668 146
nM 1.21 1.22 115 033 0.93 292.00 113.29 205.25 1170 320
pkgSize 0.92 280 285 0.00 1.19 13.73 12.53 13.51 72 128

Table 1. The estimated parameters for the three distributionafgnuml1-0.18. 1 for the full dataset.

[ Application Metric [ apow mlog slog astr b_str Qpow Qlog Qstr k]
eclipse AC 1.82 0.80 082 058 1.03 3685.96 4452 701.82 41
eclipse PC 1.57 1.24 079 0.44 0.76 10613.55 214.25 3470.69 118
eclipse IC 191 -0.06 1.12 0.70 1.01 65.96 33.83 64.41 117
eclipse MS 1.11 253 122 0.18 0.38 286047.39 13143.66 91823.29 4172
5jre nF 1.47 090 129 042 1.038 933.12 113.72 229.11 427
jre nM 1.26 154 125 031 0.92 2374.36 218.22 1084.17 P57
jre nC 274 -006 070 1.16 1.00 340.55 68.30 243.58 14
jre SP 1.84 -0.03 110 0.72 1.01 91.50 46.63 61.28 353
jre IC 1.86 0.10 099 0.73 1.02 74.64 37.64 40.27 451
netbeans AP 213 -0.15 095 0.87 0.96 44.61 105.89 184.63 %08
netbeans IP 3.14 -002 050 163 1.00 109.44 11.08 45.33 7
netbeans PP 1.85 -0.25 135 058 0.93 93.60 204.40 308.58 ©18
tomcat MS 0.89 245 125 0.00 0.51 10318.07 4334.30 7020.94 1634
tomcat (5% cut) MS 1.68 1.65 175 029 0.96 320.63 569.26 285.78 562
openoffice IP 3.74 0.43 9.15 226 0.95 133.66 19713.79 21.95 8
compiere RC 1.20 1.20 062 030 0.37 3113.16 457.41 923.42 18

Table 2. Fitted parameters for applications and metrics shown itsplo
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Figure 7. nM distribution and fitted curves for JRE.

Figure 8. nC distribution and fitted curves for JRE.
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Table 3. Quality of fit at Confidence Interval 80% for full dataset: aed fit only to power-law, b—good fits to more than one curvgooed

fit only to other curves, d—no good fits. Applications are oedeby increasing size (number of classes).
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Figure 13. IP distribution and fitted curves for Openoffice.

3

frequency (log scale)

[
o

0

10
10

0

count (log scale)

Figure 11. IP distribution and fitted curves for NetBeans.

Figure 14

. IC distribution and fitted curves for Eclipse.
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Figure 16. MS distribution and fitted curves for Tomcat.

Table 3 shows these results for the 80% CI and using complete
datasets (0% cuts). In this table, the applications arereddm
increasing size, as measured by number of classes. Therfupgy
are: applications with fewer than 200 classes, applicatigith
fewer than 500 classes, applications with fewer than 108€sels,
and those with more than 1000 classes. To aid compreheng®on,
use different typefaces for the entries.

For the moment, we will just note patterns and trends, and
leave interpretation and discussion to the next sectioe. fifst
thing to note (other than the sheer size), is that, while allies
are represented, (multiple distributions have good fits) is quite
prominent. The next point is that(good fit only to power-law) is
relatively rare.

Looking at individual metrics for the larger applicatioriast
category), we note that AC, PC, and RC tend to hawnd d,
indicating lack of support for them having a power-law digition,

whereas their opposites, AP, PP, and RP, as well as SP, tend to

havea andb. In almost all cases, however, there are exceptions
for individual applications. IC and IP show the oppositattewith
IC having mainlya andb and IP having mainly andd.

It must be kept in mind that Table 3 represents only 5% of the
results of the curve fitting (which itself represents a sumisaéion
of the original data) — there are the other Cls and cuts. Wit t
results show for the other cuts and Cls is what one would éxpec
As the cut size increases, meaning the highest and lowesteney

count (log scale)

Figure 17. MS distribution and fitted curves for Tomcat after a 5%
cut.
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Figure 19. MS distribution and fitted curves for Eclipse after a 5%
cut.




data (where most of the variation occurs) is removed, we efié¢b
fits for all three distributions (that is, tending towasd Similarly,
as the Cl is increased, it also becomes easier to get a good fit.

variables (or rather, not used in the published interfacegatount
for significant dependency structures [19].
MS, with few exceptions (all small applications), does nbt fi

We chose to show the 80% ClI as it seemed the most representaany distribution at the 80 Cl. However, at 90 Cl and aboveghee

tive. The 60% Cl is not that different from what is shown in [eab
3, and all of the differences are what one would expect — ri@re
(no good fits) at 60% than at 80% or tending towamshen going
from 60% to 80%.

To finish this section, we show a few more fitted curves. In this
case, Figures 16-19, we show various MS distributions. & laes
interesting as they have many more data points than thespther

good fits to all of them. Our hypothesis would suggest thisikho
be a truncated curve (the size of the method being a decisiole m
as itis written) but it would seem that there is too much neasiee
sure.

There is another important point to make. There is quiteceeti
able variation on the degree of fit between different appbca.
This raises an interesting question: if a given relationghietric)

being based on methods not types. We also show the effect ofdoes follow a particular distribution, why do we not see ttitri-

applying a 5% cut.

5. Discussion
5.1

Recall that several of our metrics measure 5 inter-typeiogiships
— Inheritance (SP), Aggregation (AC and AP), Parameter (RC a
PP), Return (RC and RP), and Interface (IC and IP). The ‘Gaver
of the metric for a relationship measures the ‘client’ end &
the ‘provider’ end. Or, if the code were represented as atice
graph with types as vertices and the different relatiorsagedges,
then ‘C’ would be the out-degree and ‘P’ the in-degree forheac
relationship of each vertex. We note that out-degree is atgobby
decisions made with respect to the type represented by thexye
whereas in-degree is the result of decisions made with cespe
other types.

In the previous section, we noted that AC, PC, and RC distribu

Interpretation

tions tended not to have good fits to a power-law, but AP, PP, RP
and SP did. From the comments above, this suggests outedegre

distributions are not power-laws but in-degree are. Theridis
tions we are seeing for the ‘C’ metrics tend to be truncatethet
high-value (low-frequency) end. A person changing the cude
a class is inherently aware of its outward dependencies ileeg
number of types it uses or the number of interfaces it imples)e
but they are not inherently aware of the number of classesthr
type it or call methods on it. They therefore have less cowirer
the latter than they do over the former. Furthermore, weebeli
there is a tendency is to avoid (consciously or subconslgiplisg
things’, whether due to difficulty of management (e.g., rodth
with many parameters) or simply through training (“Don’titer
big classes!”). This suggests that ‘C’ relationships areetiely
than ‘P’ relationships to have ‘truncated’ curves. We camegelise
this to hypothesise that any metric that measures somethéanthe
programmer is inherently aware of will tend to have a ‘trueda
curve, that is, not be a power-law.

The nF, nM, and PubMC, distributions are explained by our
hypothesis. They are all aspects of a type description that t
developer is inherently aware of, and all tend not to haveasrip
for power-laws.

Unfortunately our hypothesis does not explain the IC and IP
distributions. We believe that the main cause of the poofditthe
IP distributions is the small datasets (no more than 11 daitet
and see for example Figure 13). This, however, does not iexpla
IC (e.g., Figures 10 and 14). nC also suffers from having kmal
datasets, which might explain the results we see.

DO and DOinv are related — DO is the ‘client’ end, and DOinv
the ‘provider’. However in this case there is not a strongjuiision
between the two, both being and d. The DO relationship is
effectively including all of AC, PC, RC, and IC, as well as &g
used for local variables. This would mean that the behavidur
IC noted above would oppose the behaviour of the others,hwhic

bution for all applications, how is it that this variationigts?

Two answers spring to mind. The first is that different applic
tions come from different domains, and it is possible thiiedent
domains have different distributions. For example, NetBeand
Openoffice often have different values (usuallys d or a vs d).
NetBeans is an IDE, whereas Openoffice is an office suite,rand i
fact is really several applications wrapped as one. We pithese
two because they were both originally Sun products. That, sai
Compiere is ERP and seems somewhat different in naturefibran,
example, Openoffice, and yet the distributions seem mairmias.

Another answer is that there is another thing that is paiénti
quite different (and much harder to see) between the apiglita
— their design. If we are seeing different distributions doe
different designs, if we could understand how aspects ofiéisign
related to the kind of distribution exhibited, there is thatgmtial
for developing aguantitative measuréor design quality. Having
such a measure could have tremendous impact on how softsvare i
developed in the future.

Of course before this can happen, we must understand (presum
ing such a relationship exista)hich distribution corresponds to a
good design and which does not. Itis not obvious that, fonmla,
the power-law distribution is found in ‘good’ designs — itutd
just as easily be the opposite! Our results do not providehnage
vice either way. This does, however, suggest an extremtdyeist-
ing avenue for future research.

5.2 Threats to Validity

The most likely threat to the validity of our conclusions et
corpus we used. It consists entirely of open-source apita
of small to medium size. Some applications originated fram<¢
mercial organisations, but it is not obvious that the IBM &uh-
donated code is typical of closed-source code. Other studige
suggested there is little difference between open-sourdelased-
source software [19], but we cannot say whether or not thisies
here. While we cannot claim that our corpus represents sorand
sample of Java software, our situation is no different thanpara
used in applied linguistics. Hunston describes a numberaysw
corpora may be reasonably used [14]. Our corpus is what she de
scribes as a reference corpus, which are often used asibagerl
further studies. Thus, a random sample is not necessaryl@r ty
produce an valid result. Our results hold for what is in oupcs:
whether or not they hold for other collections will in itsélé of
interest.

So we cannot say for sure how representative our corpus is of
Java software in general, or even open-source softwareriicya
lar. Nevertheless, the commonality we have seen acros$ #éileo
applications we analyse gives us confidence that our cdnokis
will hold generally.

A similar issue is that our corpus consists only of Java appli
tions. Itis possible we may see different distributions wtmking
at other languages such as C# or C++. While there appears noth
ing obviously different between Java and languages suchfas C

may explain the results. We do know that types used for local C++ with respect to our study, they do share the property ahiga



static type checking, so while we may see no differencesuoh s
languages, we may see differences in languages, such akeBmal
that do not have static type checking.

A property of the software we have studied that we have not ad-
dressed in our study is the manner in which the software was cr
ated. Our hypothesis is based on the lack of global view aldpee
has of the application being developed. Recently, therdobas a
significant increase in the use of sophisticated IntegrB@dlop-
ment Environments (IDE) such as Eclipse, and one charatiteri
of these IDEs is that they provide a better view of the souotkec
than has been available in the past. The use of such IDEs may af
fect the shape of the distributions we have been investigatve
believe most of the code in our corpus was written before the a

We believe the inconsistency between Wheeldon and Cotmsell
conclusions and ours is due to our more extensive corpuso@ur
inal intention was to reproduce their study and, we thougstlts.
The ‘truncated-curve’ distribution only really became ammt in
the repetition across multiple applications. In fact, thigiure 2(b)
appears to have something of a curve to it. Our work does, Vewe
add significant evidence to support their hypothesis theretlare
regularities that are common across all non-trivial Jag@ms.

7. Conclusion

We have studied the hypothesis that the distribution of abam
of metrics on object-oriented software obey a power-law.dide

vent of such IDEs, but some of the variation we see may be due to SO over a larger sample size than has been considered by past

how the code was written. Again Smalltalk may show diffeemnc
as it has always had an IDE.

similar studies, and applied analysis techniques to cheriae how
closely each distribution obeyed a power-law. We have ptese

As noted earlier, because we measure from byte code, there isour method and analysis in what we hope is sufficient detail to

some information from the source code not available to ug Th
circumstances for which this is the case seem to be suchhisat t
will be rare.

6. Related Work

As with many other things, Knuth was one of the first to carry ou
empirical studies to understand what code that is actualitem
looks like [16]. He presented a static analysis of over 40(RFO
TRAN programmes and dynamic analysis of about 25 programs.
His main motivation was compiler design, with the concerat th
compilers may not optimise for the typical case as no-onavkne
what the typical case was. His analysis was at the statereesit |
counting such things as the number of occurrences dafrastate-
ment, or the number of executions of a given statement.

Collberg et al. have carried out a study of 1132 Java programs
[4]. These were gathered by searching jat files with Google
and removing any that were invalid. Their main goal was thele
opment of tools for protection of software from piracy, taripg,
and reverse engineering. Like Knuth, they argued that toeis
could benefit by knowing the typical and extreme values ofbuer
aspects of software. Consequently, their interest is ificivdevel
details of the code with a view toward future tool supporta-I
guage design.

Although their interest is in low-level details, Collbergat. do
gather a number of similar statistics to ours, such as nuraber
classes per package, number of fields per class, number bbdset
per class, size of the constant pool, and so on. However aisopa
with their results is problematic, as they appear to incladle
classes referred to in an application, whereas we only densi
classes that appear in the application source.

Gil and Maman analysed a corpus of 14 Java applicationséor th
presence ofnicro patternspatterns at the code level that represent
low-level design choices [10]. They found that 3 out of 4 stzs
matched one of the 27 micro patterns in their catalogue, astd j
over half of the classes are catalogued by just 5 patternis. Th
is a form of structural analysis, however it focuses on iitligl
classes, rather than at the application level as we have done

As already mentioned, Wheeldon and Counsell have performed
a similar analysis to ours. They looked at JDK 1.4.2, Ant3,.8nd

allow our studies to be reproduced with confidence.

What we found was that while there were distributions for
which there was good evidence for a power-law, there are daum
for which there was little evidence that a power-law exi$tss is
in contrast with what earlier studies have suggested. Wethgp
sise that any metric that measures a relationship that thgrgm-
mer is inherently aware of will tend to have a ‘truncated\aythat
is, not be a power-law.

Of particular interest is the fact that some applicatiores fr
quently differed for some metrics from the other applicasioin-
dicating thatsome attribute of the application’s code can affect the
resulting distribution This finding has potentially tremendous im-
plications. If the distribution does depend on either desjgality
or domain, then knowing the distribution of a ‘good’ desigould
provide a much sounder foundation for developing softwhesnt
currently exists. As open-source applications make extensse
of version control and bug-tracking systems, we believeddia
necessary for such studies as correlations between distriband
prevalence of defects will be possible.

There remains much work to be done. Further studies are
needed to determine how representative our findings ares Thi
means expanding the studies to other (especially larggjcap
tions, to applications developed in other environmentghsas
closed-source, to other domains (for example, real-tinfevace
is not represented in our corpus at the moment), and to cdher |
guages.

We need to be able to explain why we see some distributions in
some applications for some metrics and not others. For eleamp
we need models that explain how these distributions anséhéd
case of power-law distributions, there is no theory to explehy
we should see such scale-free structures in software. Twn ma
hypothetical mechanisms have been put forward [1] to addoun
the origin of scale-free network structure in other domagmewth
with preferential attachment [2], in which existing nodesIto
new nodes with probability proportional to the number okéin
they already have, and hierarchical growth [33] in whichwaeks
grow in an explicitly self-similar fashion. Additionallyrguments
from optimal design have been proposed [30, 28]. It is stilffom
clear, however, what (if any) fundamental theory might actdor
the ubiquity of the phenomenon in software.

Ultimately, we need to understand the relationship between

Tomcat 4.0. They computed the 12 metrics as noted in section 3 |arge-scale structures found in software, and qualitybattes such

and concluded that what they were seeing were power-lanweseTh

as understandability, modifiability, testability, and sebility. We

are some differences between their work and ours. Most hotab  pelieve this study is an important step toward that goal.

is how the metrics were computed. Wheeldon and Counsell used

a custom doclet to extract the relevant information, whiofited
them to just the information available from the Javadoc cemis
Also, they were not specific as to what choices they made for th
variables discussed in section 3.
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Appendix A: Formal definitions for Metrics

This appendix contains more formal definitions of the metwe compute as computed from the byte code (tass files). As mentioned
in Section 3, the definitions assume dop-leve[11] type declaration per source filejava file).

Let S = the set ofsource filedn the application under consideration. Under our asswnpgvery top-level clas€’' is declared in a
source fileC. java that in turns generates a fite class (which is what is used to compute the metrics). We express/mogtine metrics in
terms of source files because it makes some definitions ¢a®gplain.

We define the following notation:

e For top-level classed and B, A DEPENDS ONB if B's name appears in the constant pookoélass.

e For atypeTl’, and fileu, T' 1S DECLARED IN u is true if and only if there is a declaration férin u. Note thatu is not necessarily . java,
it could be the equivalent aB in the example above, aridcould also be a inner type declaration.

e 7 ={T|T 1S DECLARED INu,u € S}. Note that this set is not just the top-level types, but atetuides inner types.

METHODYT') = the set of methods declaredTh(appear in the class files).
e FIELDS(T') = the set of fields declared ifi (appear in the class files).

e ISCLASS(T) is true iff T is a class.

¢ ISINTERFACHT) is true iff T is an interface.

¢ ISCONSTRUCTOKC) is true iff ¢ is a constructor.

ForC, D € 7 where(1SCLASS(C) A ISCLASS(D) V ISINTERFACHC') A ISINTERFACE D)) is true,C EXTENDS D if D appears in
C’s extends clause in its declaration.

e ForC, I € T where(1SCLASS(C') A ISINTERFACKI)) is true,C' IMPLEMENTS I if I appears irC's implements clause

The following definitions apply only to top-level type dedtions. We will use the conventions th@tand D refer to classed, refers to
an interfaceT refers any typeuw refers to a source filen refers to a method, anfirefers to a field.
Number of Methods nM(C') = |[METHODS(C)|
Number of Fields nF(C) = |FIELDS(C)|
Number of Constructors nC(C') = [{m : m € METHODS(C'), ISCONSTRUCTORm)}|
SubclassessP(C) = [{u : v € §,3D, D 1S DECLARED INu, D EXTENDSC'}|
Implemented Interfaces IP(I) = |[{u : w € §,3D, D IS DECLARED IN u, D IMPLEMENTS I }|

Interface Implementations IC(T") = [{u : v € S,3I,I1SINTERFACHI), I IS DECLARED INu, T IMPLEMENTSI}| if 1ISCLASS(T)
[{u:u e 8,31,ISINTERFACH), I IS DECLARED INu, T EXTENDSI}| if ISINTERFACHT)

References to class as a membaP(C) = |[{u : w € §,3D, D IS DECLARED INu, C' IS FIELDTYPE OFD}|
Members of class typeAC(C) = |{T': T € 7,T 1S FIELDTYPE OFC}|
References to class as a paramet@®P(C) = |[{u : v € §,3D, D IS DECLARED INu, C' IS PARAMETERTYPE OFD}|
Parameter-type class reference®Cc(C) = {T : T € 7,3m € METHODS(C), T IS PARAMETERTYPE OFm }|
References to class as return typ&P(C') = |[{u : v € §,3D, D IS DECLARED INu, 3m € METHODS(D), C' IS RETURNTYPE OFm}|
Methods returning classesRC(C) = [{T": T' € T,3Im € METHODS(C), T IS RETURNTYPE OFm}|
Depends OnDO(C) = [{u : u € §,3D, D IS DECLARED INu, C DEPENDS OND}|
Inverse of Depends OnD0inv(C) = [{u: uw € §,3D, D 1S DECLARED INu, D DEPENDS ONC'}|
Public Method Count PubMC(C') = [{m : m € METHODS(C), ISPUBLIC(m)|
Package SizePkgSize(p) = number of top-level classes jn
Method size MS(m) = number of byte code instructions in.

Note that this is not the number of bytes needed to repreBemhéthod.



Appendix B: Corpus details

This appendix provides the details of the part of the corpesiun this study. We use the standard naming scheme for pplibaion, which
typically includes some kind of version identification. Téhemain comes from our assessment based on the applicatomeatation. We
identify where we acquired the source code. The column “Q&%&rs to whether the application can be considered opetosea source
(all applications used here are open source). The columridiftitifies where we have multiple versions (we only used dkest version in
this study). Finally, any notes that seem relevant are peali

Application # Domain Origin olIC |V Notes
aglets-2.0.2 280 Framework for| Sourceforge @) N | Donated by IBM
developing mo-
bile agents
ant-1.6.5 700 Java build tool | Apache O |Y
antlr-2.7.5 209 Parser generat antlr.org o N
tor
aoi-2.2 415 3D modelling | Sourceforge (0] N
and rendering
argouml-0.18.1| 1251 UML  draw- | tigris.org O |Y
ing/critic
axion-1.0-M2 237 SQL database | tigris.org O | N
azureus-2.3.0.4] 1650 P2P filesharing| Sourceforge O |Y
colt-1.2.0 269 High per- | hoschek.home.cern. O |Y
formance ch
collections
library
columba-1.0 1180 Email client Sourceforge (0] N
compiere-251e 1372 ERP and CRM | Sourceforge (@) N
derby-10.1.1.0 1386 SQL database | Apache Jakarta (0] N | Donated by IBM
drjava- 668 IDE Sourceforge (@) N
20050814
eclipse-SDK- 11413 | IDE www.eclipse.org O | Y | Donated by IBM
3.1-win32
fitjava-1.1 37 Automated fit.c2.com (@) N
testing
fitlibraryforfitnegse- 124 Automated Sourceforge (@) N
20050923 testing
galleon-1.8.0 243 TiVo media | Sourceforge (@) N
server
ganttproject- 310 Gantt chart| Sourceforge (@) N
1.11.1 drawing
geronimo-1.0- 1719 J2EE server Apache (@) N
M5
glassfish-9.0- 582 J2EE server dev.java.net O | N
b15
hibernate-3.1- 902 Persistence obt Sourceforge (@) N
rc2 ject mapper
hsqldb-1.8.0.2 217 SQL database | Sourceforge (@) N
ireport-0.5.2 347 Visual report| Sourceforge (0] N
design for
JasperReports
jag-5.0.1 208 J2EE applica-| Sourceforge (@) N
tion generator
jaga-1.0.b 100 API for genetic | jaga.org O | N
algorithms
james-2.2.0 259 Enterprise mail| Apache (@) N
server
jasperreports- 633 Reporting tool | Sourceforge (@) N
1.1.0
javacc-3.2 125 Parser generar dev.java.net (@) N
tor
jboss-4.0.3- 4143 J2EE server Sourceforge (0] N
SP1
Continued on next pags




Table 4 — continued from previous page

Application
jchempaint-
2.0.12

jedit-4.2
jeppers-
20050607
jetty-5.1.8

jext-5.0
jfreechart-
1.0.0-rc1
jgraph-5.7.4.3
jhotdraw-6.0.1
jmeter-2.1.1

joggplayer-
1.1.4s
jparse-0.96

jre-1.4.2.04
jrefactory-
2.9.19
jtopen-4.9

jung-1.7.1
junit-3.8.1

lucene-1.4.3
megamek-
2005.10.11
netbeans-4.1
openoffice-
2.0.0
pmd-3.3

poi-2.5.1

rssowl-1.2
sablecc-3.1

sandmark-3.4

scala-1.4.0.3

sequoiaerp-
0.8.2-RC1-all-
platforms
tomcat-5.0.28

#Classes
612

234
20
327
353
469
50
300
560
114
69

7257
211

2857

454

48

170
455

8406
2925

375

480

189
199

837

654

936

892

Domain

Editor for
2D molecular
structures

Text editor
Spreadsheet ed
itor

HTTP
Server/serviet
container

IDE

Chart drawing

Graph drawing
Graph drawing
Java perfor-
mance testing
MP3 player

Java compiler
front-end

JRE
Refactoring
tool for Java
Java  toolbox
for iSeries and
AS/400 servers
Graph drawing
Unit testing
framework
Text indexing
Game

IDE
Office suite

Java code anal
yser

AP| to access
Microsoft for-
mat files

RSS Reader
Compiler/
Interpreter
generating
framework
Software
watermark-
ing/security
Multi-
paradigm
programming
language

ERP and CRM

Servlet con-

tainer

Origin
Sourceforge

Sourceforge
Sourceforge
Sourceforge
Sourceforge
Sourceforge
Sourceforge

Sourceforge
Apache

joggplayer.
webarts.bc.ca
www.ittc.ku.edu/
JParse

sun.com
Sourceforge
Sourceforge
Sourceforge
Sourceforge

Apache
Sourceforge

netbeans.org
openoffice.org

Sourceforge

Apache

Sourceforge
Sourceforge

WWW.CS.arizona.
edu/sandmark

scala.epfl.ch

Sourceforge

Apache

o/C

(o)e)

@]
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O O OO0 OO OoOo
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Notes

Donated by IBM

Donated By Sun
Donated By Sun




