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Abstract. Catastrophic forgetting is a major problem for sequential learning in neural networks.
One very general solution to this problem, known as ‘pseudorehearsal’, works well in practice for
nonlinear networks but has not been analysed before. This paper formalizes pseudorehearsal in
linear networks. We show that the method can fail in low dimensions but is guaranteed to succeed
in high dimensions under fairly general conditions. In this case an optimal version of the method
is equivalent to a simple modification of the ‘delta rule’.

1. Introduction

If a neural network which has learned a training set of items now learns a new item, the
result is usually the ‘catastrophic forgetting’ of the earlier items. Installing the new ‘memory’
alters the function implemented by the network in a non-local way and is almost certain
to alter its outputs for the original training set. In general, unless all of the patterns to be
learned are repeated thousands of times in random order, learning any one of them interferes
with the storage of the others. While such interference is a very general phenomenon,
the term ‘catastrophic forgetting’ has tended to be associated with networks with a fixed
architecture (as opposed to ‘dynamic’ networks which add or remove nodes) employing
supervised learning. Several recent studies have explored this problem in backpropagation type
networks [11, 7, 16, 13, 14, 4, 5, 6, 12, 9, 10, 21, 17, 18, 19]. Similar issues have been explored
in Hopfield networks [15, 1, 20]§.

The most common practical solution to this problem is simply to form a new training set
which includes all the old items as well as the new one, and learn this enlarged training set.
This is known as ‘rehearsal’, and obviously requires the explicit storage of the original training
set—something that has its disadvantages, notably that storage of these items is often what the
network itself is supposed to do!

‘Pseudorehearsal’ [17] (see also [18, 6, 20]) is an alternative algorithm which, although
very like conventional rehearsal, does not require the explicit storage of prior training items.
Instead,randominputs are temporarily stored along with their associated outputs. Each time
a new item is to be learned, a temporary set of such ‘pseudoitems’ can be created and learned
alongside the genuine item. This simple algorithm works remarkably well, in that it appears

§ Although not directly connected to the catastrophic learning literature, the ‘unlearning’ method [8, 3, 23, 2, 22]
addresses the same issues of capacity and sequential learning tasks in Hopfield networks.
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to substantially reduce interference between sequential training items while still allowing new
information to be learned.

Pseudorehearsal can be interpreted in terms of a kind of ‘function fixing’ [17, 19]:
pseudoitems have the effect of fixing the function being implemented by the net to its existing
values at random points in the input space. Figures 1–3 show this effect for a network with one
input, 20 hidden units and one output. All units are standard sigmoidal units, and the weights
are trained by gradient descent of the sum of squared output errors (backpropagation). Figure
1 shows five functions arrived at from random initial weights. Figure 2 shows the functions
found by the same networks after subsequently learning just one new item—these networks
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Figure 1. Examples of the function found by backpropagation fitting the initial training set (full
squares).
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Figure 2. Subsequent naive learning of a single new item (full square). The previously learned
items are shown as open squares.
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Figure 3. Learning the new item with ‘pseudorehearsal’.
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now get the original items completely wrong. Figure 3 shows what happens if we learn the new
genuine item along with pseudoitems: in this case a pool of 100 pseudoitems was generated
from the function shown in figure 1, and one of these was chosen at random with each training
epoch as the new item was learned.

The behaviour of this algorithm has not yet been understood analytically, and a sensible
place to begin is to look at its effect on learning in a linear system. Thus section 2 introduces
catastrophic forgetting in linear nets and introduces the formalism to be used. Sections 3 and 4
apply this to rehearsal and pseudorehearsal respectively, and section 5 uses the results to show
that two intuitions about the method are in fact incorrect. Section 6 extends the analysis to
the special case of high input dimension, section 7 shows a simple simulation, and section 8
presents conclusions.

2. Catastrophic forgetting in linear networks

As a first step towards understanding pseudorehearsal in quantitative terms, consider the
catastrophic forgetting effect in a linear network. Assume this network has a single output
and at least three input lines, meaning it can learn at least two items (input–output pairs)
successfully. Because any multi-layer linear network has a single-layer equivalent, it will be
sufficient to treat our network as a single unit whose output is a weighted sum of its inputs,
that is:w · b, wherebi is theith input andwi is the corresponding connection weight (vectors
are shown in bold throughout this paper). The error for itemB is then simply

errB = tb −w · b.
LetA = (ta,a) denote an input item for which the current weights give the correct output,

i.e. errA = 0. Note that a change of1w to the weights will result in an error of

err′A = −1w · a. (1)

Starting from weights which getA correct then, consider learning a new itemB, for
which these weights give error errB 6= 0. The learning rule we will use is of the general form
1wi = δ b, with δ yet to be determined†. In vector notation

1w = δb.
We require that the new weightsw + 1w get itemB correct; making the appropriate
substitutions it is easy to show thatδ = errB/|b|2. Thus the weight change required to
getB correct is

1w = η errBb (2)

whereη = 1/|b|2.
This is the usual ‘delta rule’, with a learning rate of 1/|b|2. In most conventional neural

network applications one learns a number of new items together, and as a result the delta rule
is used with a much smaller learning rate than this. However, with one item we can consider
the net effect of many such iterations as a single step in the same direction (namelyb) of the
correct size. After training then, errB = 0, but in general errA (equation (1)) will no longer be
zero; hence we will refer to this as ‘naive’ learning. Substituting equation (2) into (1), this is

errnaive
A = −a · b

b · b
errB (3)

where errB refers to theoriginal error onB. Clearly itemAwill always be ‘forgotten’ to some
extent unless vectorsa andb are orthogonal.

† This covers virtually all the commonly used neural net learning rules.
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3. Rehearsal

The conventional solution to such forgetting is simply to learn the new item alongside any old
items we wish to preserve, so for this linear model consider learningB along withA, keeping
the error onA close to zero. Assuming that a simple rule of the same form as before is used,
the overall weight change will be

1w = δAa + δBb (4)

with δA andδB to be found. We require that (i) err′A = 0 and (ii) err′B = 0. The first condition
implies1w · a = 0, giving

δAa · a + δBa · b = 0. (5)

The second impliesw′ · b = tb, so1w · b = errB , which gives

δAa · b + δBb · b = errB. (6)

One can then solve equations (5) and (6) to obtainδA andδB , and substitute these into equation
(4), giving

1w = η errB(b− γa) (7)

where

η = 1

|b|2 sin2 θab
(8)

and

γ = a · b
a · a

. (9)

This is the net weight change which must be made in learning that corrects the output for item
B without corrupting itemA. Note that1w · a = 0, as it must be if the error on itemA is to
remain zero. Ifa andb are orthogonal, the above reverts to the earlier expression, namely the
delta rule forB alone.

By definition there is no forgetting ofA in this full rehearsal situation.

4. Pseudorehearsal

In pseudorehearsal we generate random inputs, put them through the network and treat the
outputs as if they were targets. Suppose we generate a pseudoitemX, and rehearse that instead
of A. In this scenario, what is the effect on errA of learningB? Because the weightsw give
the correct output for a pseudoitem by definition, the appropriate weight change in learningB

is given by equation (7) withx in place ofa:

1w = η errB(b− γx) (10)

where

η = 1

|b|2 sin2 θxb
(11)

and

γ = x · b
x · x

. (12)

This leaves the output fromx unchanged, while correcting the original error onB. Thus
err′B = 0 and err′X = 0, but now err′A = 1 errA = −1w · a. Substituting for1w (with
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equation (10)) and simplifying, one finds the error incurred by using a pseudoitem instead of
the correct original item to be

errpseudo
A = −R errB

a · b
b · b

where

R = 1 − cosθxa cosθxb/ cosθab
sin2 θxb

. (13)

Since there is no forgetting at all with full rehearsal, this corresponds toR = 0. Learning with
no rehearsal (equation (3)) corresponds to havingR = 1, so we can say that

R = errpseudo
A

errnaive
A

.

Thuspseudorehearsal alleviates catastrophic forgetting if and only if|R| 6 1.

5. Properties ofR

R depends only on the angles between the three vectors: all dependence on their magnitudes,
the targets and even the initial weights has conveniently cancelled out. We would like to get a
picture of whereabouts in this ‘angle space’|R| 6 1. Figure 4 shows lines of constantR on a
plot of cosxa against cosxb, for a particular value of cosab. In this figure the area outside the
ellipse corresponds to combinations of angles that cannot actually occur in a Euclidean space.
That is, given any three vectors in a Euclidean space and the three angles between them, the
sum of any two angles is necessarily bounded below by the third angle (and above by 360◦

minus the third angle). When translated into cosines this restricts possible values to the area
within the ellipse in figure 4.

There are two claims we expected to be able to make in the light of pseudorehearsal’s
success on nonlinear problems, but which the figures show cannot be true:

• It is not true that the volume of ‘angle space’† for which pseudorehearsal works exceeds
that for which it fails. This can be seen by noting that theR = 1 isocontours are two
straight lines which each bisect the space (for any given cosθab). Thus the volume of
space whereR > 1 is exactly half the space, but since there are finite areas (within the
dotted ellipse) whereR < −1 the|R| < 1 volume must beless thanhalf.
• It is not true that ifx is closer toa than tob then pseudorehearsal will work. This would

correspond to all points above the rising diagonal being within the preferred range ofR,
which is not the case.

5.1. Orthogonal weight changes andR

At this point we should confirm that low values ofR correspond to weight updates which are
orthogonal toa. Given equation (1) we can writeR as

R = ∆wpseudo· a
∆wnaive · a

.

On its own this does not mean that the directions of pseudorehearsal’s weight changes are
more orthogonal toa than those from naive learning, because the magnitudes of the two

† A more accurate term would perhaps be ‘cosine space’.
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Figure 4. Isocontours ofR in the space of angles between vectors. The first plot is for cosθab = 75◦
and the second is for cosθab = 135◦. R-values of−1, 0 and 0.99 are indicated by the arrows (the
other values plotted being 0.25, 0.5 and 0.75). Note that only combinations of angles within the
dotted ellipses are possible.

weight changes are different. However∆wnaive is theshortestpath from the point in weight
space where errA = 0 to one where errB = 0, so we know that

|∆wnaive| 6 |∆wpseudo|.
Thus|R| < 1 implies that

∆wnaive

|∆wnaive| · a
is larger in magnitude than

∆wpseudo

|∆wpseudo| · a.
Hence, in the cases where pseudorehearsal works, the pseudoitems lead to weight changes
which are more orthogonal to the original item than with naive learning.
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6. The effect of input dimensionality

The distribution of angles between randomly chosen vectors in a Euclidean space narrows
as the dimensionalityN grows. In this section we look at the consequences of this for
pseudorehearsal. It turns out that this means pseudorehearsal will tend to work better as
the dimensionality of the input grows. On the other hand we derive an ‘optimal’ pseudoinput,
which is equivalent to altering the delta rule slightly and using no pseudoitems at all.

6.1. Angles in high dimensional spaces

It is straightforward to show that the cosine of the angle between two vectors whose elements
are not correlated tends to a product of means divided by root mean squares:

cosθxa
largeN−→ λxλa

where

λu =
∑N

i ui/N√∑N
i u

2
i /N

= averageui
rmsui

.

The expected value of the cosine converges on the above value for largeN , and its variance
tends to zero. This rather unintuitive result tells us that the angles between virtually all vectors
are the same in high dimensional spaces. For example, if elements ofx are chosen from a zero
mean distribution,λx = 0 so the cosine is zero, meaning thatx is almost certainly orthogonal
to (anyother) vectora. Incidentally this means that zero-mean pseudoinputs will confer no
advantage (see figure 4: if both cosines are zero,R = 1).

For any distribution which is not zero mean, cosθ = λ2, so the angle between two vectors
tends to some value other than 90◦. For example, the uniform distribution between zero and
one has mean 1/2 and root mean square 1/

√
3 soλ = √3/2. If two vectors are chosen in

this way the cosine of the angle between them tends toλ2 = 3/4, meaningθ ≈ 41◦. For later
reference, note thatλ2 6 1 with equality only for vectors of form(c, c, . . . , c).

From now on we will need to make the simplifying assumption thatA andB are drawn
from similar distributions so thatλa ≈ λb. Note that this is only an assumption about the
distribution of inputs, and not of targets.

6.2. A general condition under which pseudorehearsal works in high dimensions

Since the pseudoinputx is chosen at random we can approximate cosθxa and cosθxb by
λxλa and λxλb respectively, in high dimensions. Assuming thatλa ≈ λb it follows that
cosθxa ≈ cosθxb, which we will write as coŝθ . We can then write

R = 1− cos2 θ̂/ cosθab

1− cos2 θ̂
. (14)

Some straightforward manipulation shows that thisR is between plus and minus one if (and
only if)

cosθab >
cos2 θ̂

2− cos2 θ̂
which is itself greater than zero. The right-hand side will tend to be a small number, so
intuitively this condition is not difficult to satisfy: cosθab needs to be larger than a fairly small
positive number for pseudorehearsal to work. In other words, ifa andb are separated by an
angle which is ‘not too large’, pseudorehearsal with even a single pseudoitem does alleviate
forgetting.
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6.3. A special case

Suppose that the elements of vectorsa andb tend to be uncorrelated, and that the pseudoitems
are chosen to have a similar value ofλ. This means that for largeN all three vectors will tend
to be separated bŷθ , which easily satisfies the above condition and gives

R̂ = 1

1 + cosθ̂
. (15)

This is between 0.5 and 1 because the cosine (beingλ2) must be positive. Hence
pseudorehearsal, although not perfect, always improves matters in this case.

6.4. Optimal pseudorehearsal

Suppose we assume only that the elements ofa andb are to be uncorrelated. From equation
(14), an optimal pseudoitem (one which givesR = 0) has cos2 θ̂ = cosθab. We can write
cosθab = λaλb and cos2 θ̂ = λxλa λxλb, so the optimal pseudoinput hasλ2

x = 1. As noted
above, this corresponds to an input of the formx = (c, c, . . . , c)T. In particular, we can now
choosec = b̄, the average value of the elements in input vectorb. Substituting for this in
equation (10) gives the following simple learning rule, which involves no pseudoitem at all:

1wi ∝ errB(bi − b̄). (16)

This is just the delta rule except that the direction of changeb is replaced byb− I b̄, whereI
is (1, 1, . . . ,1)T, i.e. the input vector is effectively shifted so that its average element is zero†.
This rule hasR = 0 (under the assumptions given) and thus gives the optimal orthogonalization
of weight changes to input vectors, which pseudoitems only approximate.

7. A simple simulation

In this simulation each element ofa, b andx was chosen from a unit variance Gaussian
distribution, so we are dealing with the special case of section 6.3. For the simulation, targets
for A andB were chosen randomly between plus and minus 100. Training consisted of first
getting itemA correct alone, and then training on itemB using the delta rule. This latter stage
was done for various numbers of pseudoitems (if this is zero we are doing ‘naive’ learning of
B), or using the modified delta rule. This was done for various numbers of input dimensions,
N . Tables 1 and 2 show the average, over 1000 trials, of|errA| for each case.

Table 1. Case A: inputs with a mean of zero.

No of pseudoitems
Modified

N 0 1 2 3 5 10 delta rule

5 25 28 34 39 — — 28
10 14 15 16 18 22 — 15
30 8 8 8 8 9 9 8

100 4 4 4 4 4 4 4
300 2 2 2 2 2 2 2

Case A (table 1) shows just what one would expect: as the dimensionality grows vectors
become more likely to be orthogonal (i.e.λ2 ≈ 0 so θ̂ = 90◦) and interference between

† Note however that it isnotshifted in this way in calculating errB .
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items consequently decreases. Moreover in this caseR̂ = 1 (equation (15)), meaning that in
high dimensions pseudorehearsal can be no better than naive learning ofB alone, as the table
confirms. In low dimensions it is clear that pseudoitems can and do make matters substantially
worse.

Table 2. Case B: inputs with a mean of one.

No of pseudoitems
Modified

N 0 1 2 3 5 10 delta rule

5 35 33 34 37 — — 29
10 30 23 19 19 23 — 16
30 28 19 12 10 9 10 8

100 27 18 9 7 5 5 4
300 27 18 9 6 4 3 3

For case B (table 2),λ2 ≈ 1/2 so θ̂ = 60◦: vectors are unlikely to be orthogonal and
hence they interfere with one another. In this caseR̂ = 2/3, so in high dimensions a single
pseudoitem reduces the error obtained by naive learning by about a third, as the first and second
columns show. The modified delta rule deals with non-orthogonal inputs very effectively (as
can be seen by comparing the final column of case B with the first column in case A), even
in low dimensions. Multiple pseudoitems are substantially better than a single one, this being
particularly dramatic in high dimensions. For example, in a 300 dimensional input space,
using only 10 pseudoitems was enough to reduce errors to the level of the optimal rule.

8. Conclusions

Pseudorehearsal is an intruiging solution to the problem of catastrophic forgetting in neural
networks. In nonlinear networks this method can be seen in terms of ‘function fixing’:
pseudoitems act to resist global changes to the function implemented by the network. In linear
networks where the dimensionality of the input is high, we have shown that pseudorehearsal
does reduce catastrophic forgetting. This means (see section 5.1) that pseudoitems have the
effect of ‘orthogonalizing’ the weight changes with respect to previously stored items. This
orthogonality is the exact corollary of ‘function fixing’: weight changes that result in learning
of a new item do not tend to change the outputs of the net given other inputs.

For smallN pseudorehearsal fails in that it is more likely to increase forgetting than to
alleviate it. For largeN the method provably does work under fairly general conditions on
the distribution of inputs. Although our analysis deals with a single pseudoitem, simulations
confirm that multiple items increases this effect†. We have shown that in high dimensions a
simple modification of the delta rule is equivalent to pseudorehearsal with a single ‘optimal’
item: simulations indicate that this rule works well even in fairly low dimensions.
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