The prisoner’s dilemma without synchrony
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SUMMARY

There are many situations in which biological organisms cooperate despite obvious incentives to do
otherwise. Such situations are commonly modelled by using a paradigm known as the prisoner’s dilemma.
In this way cooperative behaviour has previously been shown to emerge in a model population of
strategies. If players can make probabilistic choices, taking into account their co-player’s previous action,
a strategy known as ‘generous tit for tat’ dominates the long-term behaviour of such a population. If they
can also take into account their own previous action, a strategy of ‘win stay, lose shift’ dominates instead.
These models assumed that participants make their decisions in synchrony, which seems improbable in
many biological situations. Here we show that the timing of decisions is critical in determining which
strategy emerges in the long run. If individuals make their decisions at different times, neither of the above
strategies survives given the usual payoffs. In the former case, generous tit for tat succumbs to inveterate
defectors, and in the latter a new strategy takes over. This ‘firm but fair’ strategy is retaliatory yet highly

cooperative. In particular, continued exploitation of a sucker is no longer a successful behaviour.

1. INTRODUCTION

Animals frequently show cooperative behaviour in
situations where it appears better not to on an
individual basis. Examples include predator inspection
(in which groups of fish approach a predator together),
reciprocal grooming, mutual restraint of conflict, and
food sharing: all these share the characteristic that
individual exploitation of some kind would seem to be
more advantageous than mutual cooperation. Because
evolution has presumably tended to select behaviours
that benefit the individual as opposed to the group,
mutual cooperation in this context is somewhat
surprising.

Situations such as this can be modelled as a game in
which two players interact, and each opts either to
cooperate or defect (i.e. not cooperate). If both players
cooperate each gets a payoff of R points (a ‘reward’),
compared with the lesser P points should both defect
(‘punishment’). If they choose different behaviours,
the player who defects receives the maximum 7 points
(‘temptation’), whereas the ‘sucker’ who cooperated
gets the minimum score of §. With § < P < R < T and
S+ T < 2R, the dilemma becomes apparent: regardless
of the other player’s choice, an individual is better off
defecting in a game consisting of a single round. This
leads to mutual defection even though mutual co-
operation carries a greater reward.

If the game is iterated, however, and players can
base their decision on previous encounters, cooperation
may become worthwhile. The striking success of ‘ tit for
tat’ in Axelrod’s computer tournaments (Axelrod &
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Hamilton 1981 ; Axelrod 1984 ; Axelrod & Dion 1988)
showed how this could occur, and this strategy has
subsequently been observed in a variety of biological
contexts (Lombardo 1985; Milinski 1987; Dugatkin
1991; Hart & Hart 1992; Godard 1993). Tit for tat
(TFT) starts by cooperating, and then simply copies
whatever the other player did last. This proves
remarkably effective: for instance, in a population of
strategies which all play each other and reproduce in
relation to their mean payoff, TFT is almost alone in
being able to invade a population of Ap (‘always
defect’). However, if two TFT’s play one another, any
error leads to a long run of switching between
cooperation and defection. This intolerance to noise
allows other strategies to take over (Nowak & Sigmund
1992), notably generous tit for tat (eTFT), which
cooperates with some non-zero probability even after a
defection by the other player. ‘Turning the other
cheek’ in this way prevents long runs of back-biting
but at the cost of vulnerability to inveterate defectors.

TFT and its probabilistic variants are ‘opponent-
driven’ in the sense that they only consider the action
of the other player in making their decisions. The idea
of a genetic tournament has recently been extended to
include probabilistic strategies which can also consider
their own previous action (Nowak & Sigmund 1993):
these might be called ‘state-driven’ strategies. Within
this larger space of possibilities, a strategy of ‘win stay,
lose shift’ (wsrs) dominates. Like TFT, wsLs cooperates
after a mutual cooperation and defects if it is a sucker.
Unlike TFT, however, it continues to defect against a
sucker, and cooperates after a mutual defection.

An implicit assumption in this work has been that
the two individuals make their decisions at effectively
the same moment, which is uncharacteristic of many
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Figure 1. An alternating form of the prisoner’s dilemma: a
particular sequence is shown for illustration. For example, at
time ¢ player IT makes a decision (in this case C) based on
player I’s decision at time t—1 (D) and its own decision at
{—2 (also D). Equivalently, its decision is simply based on the
immediate behaviours of both players. The payoff for each
individual is determined by the joint behaviour over the
interval between decisions. For example, between time ¢ and
t+ 1, player I defects while player IT cooperates, so the latter
receives the ‘suckers’ payoff S.

biological situations. For example, in the case of
reciprocal food sharing between vampire bats
(Wilkinson 1984), a bat that has found food shares
with one that has gone without, which clearly should
not be modelled as a simultaneous exchange. Another
frequently quoted example concerns ‘predator in-
spection’, in which fish approach a potential predator
in pairs (Milinski 1987), even though hanging back
and observing the other’s fate is the safer option for
either individual. This occurs under conditions in
which the fish are constantly interacting with one
another: although their behaviour might appear to be
synchronous there is no evidence that they actually
make simultaneous decisions as opposed to rapid but
asynchronous ones.

In the following we consider an asynchronous
alternative in which players take turns’. That is, each
individual waits for the other to respond before
reassessing its own decision, instead of making its
decision at the same moment. (Another alternative,
not shown here, is that players make their decisions at
random and independent times: the results in this case
closely parallel those of alternating games. Notably the
payoff under each of these two dynamics for a strategy
playing against itself'is the same.) This does not change
the dilemma of a one-shot game, as the payoff is
greatest for a defection whatever the other player has
done (or is about to do). However, the outcome of the
iterated prisoner’s dilemma is substantially altered.

Nowak & Sigmund (1994) have considered an
alternating game dynamics in which the payoff is
entirely determined by the ‘leader’ (the individual
making the current decision and acting on it). This
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models biological situations such as that of the vampire
bat, as a well-fed bat can decide whether to share food
or not, whereas a hungry bat is unable to influence the
payoff of either party. They showed that this was
equivalent to prisoner’s dilemma with payoffs con-
strained to obey R+P = S+ T.

From the point of view of timing, it is useful to
distinguish between decisions about how to act and the
behaviour that results from such decisions. Decisions
are made at discrete times, whereas behaviours can be
discrete (as in feeding by vampire bats) or continuous
(as in body positioning by fish). This paper addresses
the latter situation, shown schematically in figure 1.
Players alternate in their decision making, and their
actions are extended over time. As in the synchronous
case, players make decisions based on their own
previous decision and that of their co-player. The
payoff is determined by the current joint behaviour of
both players over the next interval of their interaction.
This models situations in which individuals adopt a
given behaviour for some period of time (such as
approaching a predator in the case of fish), and the
payoff they receive (such as a lowered risk of predation)
results from the joint behaviour of both animals over
that time. The overlap in behaviours means that each
decision actually results in two payofls: one due to the
other player’s previous decision, and one due to their
subsequent one. Note that under these conditions the
restriction R+P = §+4 T does not apply.

2. METHODS

We use the same approach as Nowak & Sigmund (1993).
A strategy is defined by four parameters p,, p,, p,, p4, these
being its probabilities of cooperation following each of the
possible previous joint behaviours CC, CD, DC and DD,
respectively (where the first letter refers to the strategy in
question and the second to the other player). For example, if
player I defected at time ¢— 1, and this is followed by player
IT cooperating at ¢, player I will decide to cooperate at ¢+ 1
with probability p,. Unless stated otherwise, Axelrod’s
payoffs of R = 3,8 =0, T= 5 and P = 1 are used. Note that
opponent-driven strategists have p, = p, = pand p, = p, = ¢,
responding to the other player’s cooperation or defection,
respectively. Under this notation TFT can be written as (1, 0,
1,0),and wsLsis (1, 0, 0, 1). In simulations, we limit all these
probabilities to be between 0.001 and 0.999, meaning that
every strategy, no matter how ‘pure’, is subject to some
uncertainty. The interaction between two players can then
be seen as a Markov process, and the payoff in the limit of an
infinitely long game calculated in the following way. The
strategy adopted by player I is denoted by (p,, p,, ps, p,) and
that of player II by (py, p3, p3, p2). We can then write down
a matrix in which each row gives the probabilities of the four
joint behaviours after a decision, with the columns indexing
the joint behaviour before the decision. If it is player I’s turn
to decide, this matrix is

21 0 1 —h 0
_ 0 by 0 1 —bs

! bs 0 1 —bs 0
0 by 0 1 2

For instance, the probability of DC and CC is simply the
chance that player I defects after a mutual cooperation,
namely 1—p,. The zero entries refer to transitions that are



impossible given that only player I is making a decision. If it
is player II’s turn to decide, the corresponding matrix is

pol=py 00
MII = p/z 1_p/2 0/ 0 q
0 0 py 1=pf

0 0 p l=p;

For a round consisting of a pair of decisions in which player
I decides first followed by player I, the transition matrix is
therefore M; M. This has a unique left eigenvector whose
elements are the relative frequencies of each of the four joint
behaviours in a game of infinite length. We can then simply
add up the four payofls, weighted by their frequencies, to
obtain the expected payoff per round for a long interaction.
This is how Nowak & Sigmund (1994) calculate the payoffs
in their model. It corresponds to counting each round in
which player I decides first, followed by player II. However,
as noted above, if behaviours are extended over time each
action results in two payofls, corresponding to the other
player’s previous and subsequent action. To include both we
need to repeat the above procedure for the matrix M;; M, as
well as M, M, and add the resulting payoffs together.

To put the game into an evolutionary context, payoff is
equated with genetic fitness. Simulations begin with a single
strategy of (0.5, 0.5, 0.5, 0.5), and we keep track of relative
proportions of strategies rather than numbers of individuals.
At each successive generation all the strategies play one
another (each game being an infinitely long sequence of
interaction), and their proportions in the population then
change according to the usual dynamics (Maynard Smith,
1982). Under these dynamics any strategy gaining a net
payofl which is above the average will increase its relative
share of the population. There is a small probability (19%,) in
any generation that a small amount (0.2 %,) of a new mutant
strategy enters the population, and those making up less than
0.19%, of the total population are removed. Simulations need
to be run for large numbers of generations for a consistent
‘winner’ to emerge. In part this reflects the fact that a large
number of mutants need to be tried out to see that one in
particular stands out from the crowd. Moreover, the mutant
probabilities were generated from a uniform distribution,
which unavoidably means that huge numbers of very poor
random strategies are tried out.

3. RESULTS

We first note the effect of asynchrony on opponent-
driven strategists (see figure 2). To check for robustness,
a variety of values of R (the payoff for mutual
cooperation) were used, between the limits 2R > S+ T
and R < T required of a prisoner’s dilemma. For each
value of R, 50 runs were made, and in each run the
values of p and ¢ were recorded after 107 generations.
Runs for larger numbers of generations do not give
significantly different results. In the synchronous case a
strategy of ¢TrFT dominates the long-term population
over a wide range of values for the payoff R: p is almost
1 and the ‘generosity’ ¢ closely follows the theoretical
optimum value (Molander 1985; Nowak & Sigmund
1990) of min [1—(T—R)/(R—-S), (R—P)/(T—P)].
Without synchrony, for R < 3.5 no TF1-like strategists
survive and AD is the clear victor (hence TFT might not
have won Axelrod’s tournaments had the dynamics
been asynchronous). By contrast, for R > 4 the highly
cooperative GTFT strategy with ¢~ 0.8 (as in the
synchronous case) wipes out ap completely. The
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transition is not smooth. At R = 3.8, ¢TFT and AD are
present in about equal numbers (non-extremal values
of p are almost never present).

The distribution of probabilities obtained by state-
driven strategists is shown in figure 3. Virtually every
strategy which survives in the long term is cooperative
after a mutual cooperation (p,), and likely to retaliate
after being made a sucker (p,), i.e. if they cooperated in
a given round, they play ‘tit for tat’ in the sequel. The
probability of cooperating after exploiting the other
player, ps, is strikingly different: whereas wsLs would
‘win and stay’, successful strategists in alternating
games strongly prefer to switch to cooperation, despite
having just received the maximum payoff 7T for
defecting. Hence they are unable to make the most of
naive cooperators. Cooperation following a mutual
defection (p,) is favoured in both cases. In the
synchronous case, as expected, the long-term popu-
lation is dominated by wsLs, but in the alternating case
a new strategy emerges. This strategy could be called
‘firm but fair’ (FBF): it is ‘“firm’ in that it retaliates by
defecting if it was a sucker in the previous round. It is
also ‘fair’ in that it does not retaliate against a defector
if it defected itself, and it cooperates with suckers rather
than continuing to exploit them. In the notation
above, FBF is (1, 0, 1, &), with « significantly greater
than zero. Note that if @ were to be near zero the
strategy would just be TFT.

Again it is important to test for robustness by
varying R. At R = 2.6, where cooperation is scarcely
better than oscillating between payoffs 7 and §, wsLs’s
domination drops to less than 10 9, in the synchronous
case under the same conditions. However, without
synchrony, FBF strategists (with o > 0.3) still made up
over 989, of the pooled populations. For R = 4.5
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Figure 2. Opponent-driven strategists. The figures show
average values of p (diamonds) and ¢ (crosses) in the long
term population against R, the reward for mutual co-
operation. (a) Synchronous, (4) alternating. In () the dotted
line shows the theoretical optimum of ¢.
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cooperation is favoured very strongly: the result is FBF
(with @ > 0.5) in 409, of cases, with the remainder
preferring to cooperate in all four situations. Hence FBF
is more robust in the asynchronous case than is wsLs in
the synchronous one.

4. DISCUSSION

The prisoner’s dilemma has found wide acceptance
as a model for the evolution of cooperation amongst
selfish agents. In a one-shot game it makes no difference
what the order of play is. In the iterated form it has
always been the case that individuals are modelled as
making synchronous decisions. Synchronicity here
really means that they must determine their behaviour
in the light off the co-player’s previous action rather
than the current one. However, in many situations of
interest to biologists, individuals make decisions at
different times, and in doing this take their co-player’s
present behaviour into account. Here we have exam-
ined the consequences of one such dynamic, in which
individuals make decisions one after another. In
contrast to the usual prisoner’s dilemma, this models
situations in which an animal acts and then waits for a
response before reassessing its decision.
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Figure 4. Getting out of fights. The diagrams show the first
few steps following a defection, where the strategy named at
the top is playing itself.



Why do these different playing sequences produce
different strategies? If a strategy is to dominate a
population it needs to spend as much time as possible
cooperating with itself. Suppose that two individuals
using the same strategy play each other and a single
defection occurs. In the alternating case errors are even
more detrimental to TFT than with synchrony: rather
than a run of oscillations yielding an average payoff of
(S+ T)/2 per round, a run of mutual defection ensues,
with only P points per round. The only way for an
opponent-driven strategy to escape is to become very
‘generous’, but this increases its vulnerability to attack
by hardened defectors. However, state-driven strateg-
ists can be generous while remaining difficult to exploit.
Figure 4 shows the situation for wsLs and FBF after an
unprovoked defection. If the game dynamics are
synchronous, the injured party is very likely to be
retaliating, so attempting to cooperate with them as in
FBF (or TFT) is not a route back to mutual cooperation
at all. Instead, the wsLs strategy continues to defect,
which leads almost always to mutual defection. From
there two wsLs’s will switch to mutual cooperation in
one step. Hence the significance of wsLs’s defection
against suckers is that this enables it to return to
cooperation with similar strategies one round later
(rather than an adaptation for exploiting naive
cooperators, which make only brief appearances in the
population). After a mutual defection both wsLs
players must switch to cooperation at the same moment
because if only one player is generous retaliation will
follow. If players take turns, wsLs’s behaviour leads to
mutual recriminations. Instead, apologizing becomes a
good idea: it only takes one individual to be generous,
and mutual cooperation will follow. Notice that in an
alternating game it only takes one individual to choose
cooperation and the other will follow under rBF. This
may be why p, is very close to 1 in wsLs and much more
variable in FBF.

To summarize, in the iterated prisoner’s dilemma,
strategies which can produce long runs of relatively
uninterrupted mutual cooperation can overthrow
defectors. It is vital to retaliate after a defection by the
other player to avoid being exploited. However, this
opens up the possibility of runs of oscillations or mutual
defections, and in these cases the order of play is
crucial. We have considered long interactions between
strategists with very short memories. If such players do
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not make their decisions at the same time it no longer
follows that continuing to exploit a sucker will be
successful. Guarded generosity may indeed by pref-
erable for selfish individuals.
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